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ABSTRACT: A new approach for feedforward ANN control of
nonminimum phase mechanical systems is proposed. A standard
backpropagation-of-errors ANN is used to form an inverse model
controller which is applied to simulated nonminimum phase sys-
tems. Learning in the new approach is based on the convolution
between a noncausal impulse response and a desired tip trajectory.
Selection of the proper input set, input scaling and the ANN struc-
ture are investigated. Once the input and structure are specified,
the ANN is trained over a single trajectory. After training, the
ANN is used to drive the system in an open-loop configuration.
Plots of the system states resulting from the ideal excitation and
from ANN excitation are compared. The results obtained by
varying both the number of units and the input set are presented.
The results demonstrate the effectiveness of the proposed ANN
inverse model approach. ’

.  INTRODUCTION

Although the first study of artificial neural network (ANN)
learning by McCulloch and Pitts occurred over 50 years ago, the use
of ANNs did not become popular until more recently. Researchers
have applied a variety of ANN technologies to the control of mechani-
cal structures and survey papers specifically related to ANN control of
rigid mechanical systems may be found in the literature (e.g., [1]).
The use of ANN learning contro! for nonminimum phase systems has
also been studied, although less extensively. The studies related to
robotics, center on a particular type of nonminimum phase system, a
flexible link manipulator.

A three-layer perceptron has been used to control a four-bar
mechanism through a flexible coupling[2]. Flexible joint manipula-
tors, however, do not exhibit nonminimum phase behavior, so the
results for flexible joint manipulators.are not directly applicable to
flexible link manipulators. A recurrent, three-layer perceptron has
been used to control a scale model of a space-based, flexible manipu-

lator with both joint and link flexibility[3]. The investigation, how-
ever, used low-pass filters and small gain constants to prevent excita-
tion of vibration modes. In addition, neither strain nor tip measure-
ments were used as inputs to the ANN controller. Thus, the experi-
ment was an extension of the rigid link case. A multi-layer perceptron
has been used for payload identification and gain selection for the
control of a single-link flexible manipulator[4]. The ANN is not used
as a controller but rather as a pattern classifier. Once the payload is

-identified and a gain selected, the linear control law does not change

until the payload changes. An array of four multi-layer perceptrons
has been used to manipulate a simulated flexible plate[5]. Beam shape
information was provided to the ANN using a novel gripper design. A
multi-layer perceptron has also been used to control the tip-position of
a single-link flexible manipulator[6]. The proposed ANN controller
had a strong reliance on an external teacher, had an ANN structure of
sparse interconnects, and used linear activation functions. No strain or
tip measurements were used by the ANN and the results include only
limited simulations. Perhaps the most promising research for ANN
based flexible manipulator control used a multi-layer perceptron to
control the tip position of a single-link flexible manipulator[7]. The
investigation used an ANN controller with access to both traditional
state measurements and strain measurements. The network consisted
of one hidden layer with a surprisingly small number of units. Com-
parison with a fixed-gain controller showed advantages for the multi-
layer perceptron. The research in [7] was shown to have certain limi-
tations related to nonminimum phase characteristics[8]. In these ref-
erenced studies, nonminimum phase characteristics of the flexible link
systems were not addressed during the design.of the ANN controller.
Now consider the block diagram in Fig. 1 where H{s) is the

system plant and H -1 (s) is the inverse. In order to make the cas-

caded transfer function of plant and inverse equal to one, the inverse
of the plant would need to have zeros where the plant had poles and
poles where the plant had zeros . In Fig. 1, the so called ‘inverse




model controller’ configuration, the inverse is used to condition com-
mands so that the system output will follow the desired input. The
inverse model configuration is a convenient way to use ANNs to con-
trol a rigid mechanical system[1]. For nonminimum phase systems,
however, the plant has right-half-plane (RHP) zeros and the inverse
will have RHP poles. If a causal inverse is considered, the inverse is
unstable. If the causality condition is relaxed, it is well known that
residue calculus can be used to find the noncausal, time-domain re-
sponse of a system with poles in the RHP[9]. The use of a noncausal
inverse to control a flexible manipulator has been re-
ported[10]{11][12]. To control such a nonminimum phase system,
input torque is calculated by solving the convolution integral between
the noncausal impulse response of the system inverse and the desired
trajectory. The convolution may be computed indirectly in the fre-
quency domain and transformed to the time domain[10], or the con-
volution may be computed directly in the time domain[11][12]. ANN
methods for determining the inverse for nonminimum phase systems
have been proposed. These methods do not appear to have been ap-
plied to flexible link mechanical systems.

An inverse model control method based on an adaptive FIR
filter has been proposed for the control of nonminimum phase sys-
tems[13]. In [13], the proposed use of a so called ‘delayed inverse
identification process’ for nonminimum phase systems was an impor-
tant contribution. The method of [13] was extended to use an ANN in
place of the FIR filter[14]. The extension considered nonlinear sys-
tems but did not consider nonminimum phase systems. There has also
been some doubt cast over the direct inverse identification process
required by the method of [14]. It has been argued that the identifica-
tion process requires specially formed inputs and there is no guarantee
that the correct inverse will be found in problems where the inverse is
not one-to-onef{18]. There is also no reported evidence that the
method of [14] will work when the input and output are non-
collocated (an added complexity with flexible link manipulators).

Uy — H_I(S) — H(S) > Uy

Figure 1, Inverse model controller.

Other ANN based controllers for nonminimum phase systems
have been proposed. A conventional, proportional-plus-integral con-
troller with an ANN gain adjustment was proposed to control the
nonminimum phase plant displayed by a steam generator[16]. There
are no delays in the learning path and by the author’s observation, “the
effect of the non-minimum phase behavior is still very much pro-
nounced.”[16, pg. 64] A partially recurrent, ANN method has been
proposed for use in a finite horizon model predictive control frame-
work[17]. In the finite horizon paradigm, the ANN must accurately
emulate the forward characteristics of the plant and not the inverse
characteristics. Predictive methods do not rely on obtaining an inverse
and will not be considered in this study.

There is high confidence that an ANN has the capability to
learn the required torque commands because it has been shown that an

ANN is capable of representing an arbitrary mapping, R" — R™, on
a compact domain to an arbitrary accuracy[18]. Unfortunately, there

is no analytical method for determining the required inputs, the input
scaling, and the network structure (e.g., number of layers, the number
of units per layer, etc.) necessary to obtain a particular mapping.
Here, the investigation centers on finding an input set, input scale, and
ANN structure to allow a conventional, backpropagation-of-errors
ANN to learn the required torque function over a single trajectory.
The investigation includes a consideration of the noncausal character-
istics of the inverse and the amount of delay required.

Two systems will be considered. The first system is the simple
nonminimum phase system proposed in [12]. The second system is
the model of a flexible link manipulator developed in [8]. In both
cases, there are no damping terms included in the system models.
Because of the lack of damping, any error in the driving input will
cause significant steady state vibration. The absence of significant
vibration is an indication that the ANN has learned the required in-
put/output relationship.

. FEEDFORWARD ANN CONTROLLER

A. _ Simple System Equations
A simplified system has been proposed to aid in the under-

standing of problems associated with nonminimum:phase systems[12].
The dynamic equation for the two degree-of-freedom system is
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resulting in a transfer function between output, Y(s), and input,
F(s), given by,
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Eqn. 2, with zeros at s = =1, is clearly nonminimum phase. Inverting
Eqn. 2 by replacing poles with zeros and zeros with poles results in an
inverse that can be used to find the required input, Fr(s). The in-

verse is given by,

2,2
Fr(s) - _3(6' (S + Z)J( Ya gS)) , (3)

s2 -1 s

where Y,(s) represents the desired acceleration of the tip (i.e.,

ssz(s) ). The inverse in Eqn. 3 has a RHP pole and is not stable




under causal assumptions. Residue calculus can be used to find a
noncausal, stable solution to Eqn. 3. Once the impulse.response has
been found, the required time domain input may be found by the con-
volution,

2
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B. Simple System ANN Input/Output

Before an ANN may be proposed as an inverse model control-
ler, the ability of an ANN to accurately learn the result of the convo-
lution in Egn. 4 must be demonstrated. To make the results compara-
ble to previous results in the literature, the trajectory for this investi-
gation was chosen to be the bang-bang acceleration from [12] given

by,

0, t<0
A’y (1) ) +1 0<r<l1 )
dr? -1, 1<t<2’
0, t<2

Plots of required force versus time and the states, x(¢) and y(t), for

the desired trajectory in Eqn. 5 are shown in Fig. 2. The force curve
in Fig. 2 represents the function that must be learned by the ANN.

Fig. 2 shows that the required input force is discontinuous at a
finite number of locations. A four-layer ANN (i.e., two hidden layers)
has been shown to be capable of approximating functions with a finite
number of discontinuities[18]. A four-layer ANN will be used to learn
the force relationship.

The most basic model of an ANN as a function approximator is
a black-box that accepts one or more inputs and produces one or more
outputs. Implied in this model are certain requirements on the map-
ping between ANN inputs and outputs. Each unique desired output
must be derived from at least one distinct input value (e.g., different
output values cannot be obtained for the same input value, and multi-
ple input values may map to the same output value). A continuously
increasing function throughout the range where the output is changing
represents one acceptable class of inputs. Time is a good example of a
continuously increasing function. It can be shown that using time as
an input produces a good approximation, however, time may not be
the best choice.

If the ultimate objective is to follow a desired tip trajectory, the
ANN input should include some representation of the desired tip mo-
tion. Unfortunately, for nonminimum phase systems, time-scale dif-
ferences between the desired tip position and the required force do not
allow the desired tip motion to be directly used as an input. The de-
sired tip motion can be manipulated, however, to provide an accept-
able input.

A variety of transformations on the input may be considered.
For the simple system, only one transformation between the desired tip

position and the ANN input is investigated. An additional transfor-
mation is investigated later, for use with the flexible link system.

The simple system is time-invariant, allowing for the consid-
eration of an input transformation expressed by,

)’in,ann(t)=Kayd(ks(t_ra)_’c)_Ko: 6)

where y,(-) is the desired tip trajectory, T, is a time advance con-
stant, k, is a time stretch constant, K, is a gain constant, and K, is

an offset constant. The result of applying the transformation in Eqn. 6
, using particular values of T, , k,, K, ,and K, ,is shown in Fig. 3.
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Figure 2, Force and states for the simple system.

Particular values of 17, and k; are determined based on the
time values where f,.(t)=constant for all t<7t,, and
fr(t)=constant for all ¢t>1,. From Fig. 2, the time where the
input force first becomes significant corresponds to the value for T,

and the time where the input force permanently returns to a value near
zero corresponds to the value for t,,. Input scale values, K, and

K, , affect the learning performance of the ANN and are selected by

trial and error.

One consequence of advancing and stretching the desired input
function is that nonminimum phase zeros close to the jo axis will
require a large value for 7, and left-half-plane zeros close to the j

axis will require a large value for 1, . Large values make it more

difficult to find the inverse dynamics because the spread of the plant is
large[19]. Thus, large flexible structures with low natural frequencies
represent a particularly challenging problem.

Before a particular advance time value may be determined, the
meaning of ‘significant force’ must be addressed. Realistically, a
significant value for input force would be determined by the precision
of the components in the system. Assuming a precision of 12 bits and




an output range of +5, the smallest possible output value is approxi-
mately 2.5x107, In this example, a value of 2.5x10 is obtained at
approximately T, =—6.6 seconds. Likewise, the force permanently

returns to a value within 2.5x10° of zero at ©,, =86 . The resulting

stretch factor required to stretch the total motion time over
T,, —T, =152 seconds is 0.13.

For a real system, the existence of 7, in Eqn. 6 implies that

there must be a constant time delay between the desired trajectory and
the resulting measured trajectory. For example, if the desired trajec-
tory is specified beginning at ¢ =0, the measured trajectory should
not begin before ¢t =1, . The delay is necessary because of the way

the noncausal function is being approximated. In the simulated re-
sults, however, there are no physical barriers to achieving negative
time values. In the simulations, the force begins at some negative time
and the desired motion begins at time equal to zero.

C. _ANN Approximation

A four layer ANN structure with one input and one output was
used in an attempt to learn the force function in Fig. 2. A variety of
input scale functions and variety of values for 1, and &, were ex-

amined. The stretch and shift values derived directly from Fig. 2. did
not produce acceptable results. The minimum values for 1, and 1,

had to be extended slightly to -7.5 and 9.5 seconds, respectively, re-
sulting in a value for k, of 0.118. The input scale function found to

produce the best results for this particular desired trajectory is given
by,

Yinann (1) =404 (0118(s +7.5)=1)-20. @)

The stretched and scaled input function is shown in Fig. 3.

Using the scale function from Eqn. 7, the required number of
units in the hidden layer was investigated. Increasing the number of
units in the hidden layer, results in a continuous reduction in the error
between the ideal force and the ANN generated force, between the
simulated tip position and the desired tip position and in the residual
vibration. A 1-2-2-1 network (figure not shown, Feyorims=0.32, Pe.
rorms=1.5, Vibration, ;=0.36) was inadequate for both gross slewing
motion and vibration. A 1-6-6-1 network (Fig. 4, Feyor,ms=0.092,
Pesror,ms=0.033, Vibration,.;=0.073) resulted in adequate gross slewing
with some residual vibration. Increasing from 1-6-6-1 to 1-8-8-1 (Fig.
5, Ferrorms=0.089, Peror,ms=0.062, Vibration,.,=0.060) resulted in an
18% reduction in the residual vibration. A 1-12-12-1 network (figure
not shown, Ferorms=0.075, Perror,ms=0.051, Vibration,;.,=0.056) re-
duced the residual vibration by an additional 7%. This result leads to
the observation that the number of units in the network may be se-
lected based on an application’s measure of acceptable, residual vi-
bration.

Units in both hidden layers and in the output layer used a hy-
perbolic tangent activation function. The output layer values were
scaled to range between £5. Learning was performed by sampling the

ideal force function, Fig. 2, and randomly presenting the samples to
the ANN. Approximately 800 uniformly distributed samples of the
input and desired force from -7.5 to 9.5 seconds were used. Extending
the sampling beyond these limits caused the initial and final force
values to be closer to zero at the expense of a less accurate active re-
gion and larger steady state oscillation. A higher sample rate did not
affect the results except that the learning times were longer. A lower
sample rate did not allow the learned force to exhibit sharp transitions,
resulting in a slightly larger steady state oscillation. Non-uniform
sampling was also attempted. Sampling the input and the desired
force function so that the absolute value of the force change between
two adjacent samples equaled a constant drove the solution into a local
minimum that did not produce acceptable results. Uniform sampling
augmented with non-uniform, force-change samples caused large er-
rors in the initial and final force values after learning.
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Figure 3, Example of the shift and stretch input transform.
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Figure 5, Results for 1-8-8-1 ANN.

The weights were updated after each sample presentation using
the standard backpropagation-of-errors method (BackProp). The
BackProp learning rate was adjusted downward when learning at the
current rate slowed. The initial rate was 0.05 and the final rate was
0.0001. Approximately 7500 random presentations of the sample set
were required. Epoch based learning was also attempted. Epoch
based learning consistently converged to a local minimum that re-
sulted in an unacceptable system response. In both cases, epoch based
and sample based, an inertia term was not added to the BackProp algo-
rithm.

D. _Flexible Link System Equations

For flexible link manipulators, an assumed-modes method,
coupled with a Lagrangian technique, yields a recursive, closed-form,
dynamic solution suitable for control purposes[20]. Systematic appli-
cation of the Lagrangian, a two mode vibration assumption and some
simplifying assumptions, yield the undamped, linearized, inverse dy-
namic equation[8] used in this investigation. Substitution of the par-

ticular physical parameters from [8] (/¢ = 0.01 Nms?, p =2700 %—,

w=0001m, 2=002m, m =005Kg, and E=710x10° Pa)

and a beam length of 1.4 m results in a specific dynamic equation
given by

016 -0059 00197 6 0 0 078 1
-0059 024 0 ¢, |+l 0 366 0 ¢ |=|-330[ (B
0.019 0 0071 |6, | 0 0 124|0,| |-115

where 6 is the rigid body angle (not necessarily the hub angle) and
9; is a set of time-dependent generalized coordinates that modulate
the amplitude of the beam vibration. Rearranging the dynamic equa-
tion yields a transfer function between tip position and torque given
by, -

2 (s+55)(s—55)(s +19.5)(s—19.5) (s) .

Y, (s)=17
s2(s% +17)(s% +182)

®

Eqn. 9, with zeros at s =455 and s=+1935, is clearly nonminimum
phase. By using the same procedure used with the simple system, the
impulse response was determined. The required time domain torque
may be found by the convolution,

Tp(1) = ( 058ug(£) + 15> u_y (1) — 9.5¢7 1%y _y (1)

10
d2y,4(t) (10
dt*

+15¢ My (-1~ 05e'73 My (~1) )
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E. _ Flexible Link ANN Input/Output, Bang-Bang Accel.
Using the desired bang-bang acceleration profile from Eqn. 5,
results in the plot of required torque versus time and plots of the
states, 8, ¢; and ¢,, versus time as shown in Fig. 6. The torque

curve in Fig. 6 represents the function that must be learned by the
ANN.

Using the same assumptions specified for the simple system,
initial estimates for the parameters required by the input transforma-
tion of Eqn. 6 were determined. Unfortunately ANN learning with a
stretched desired input did not produce good results in this case.
Neither adding units, varying the time scale parameters, nor varying
the input scale parameters changed the resulting behavior. Additional
input cues seem to be required.

ANN practitioners commonly use tapped delay-lines to pro-
vide an ANN with a state (and/or desired input) history. It is also
common to tap the delay-line at every sample and apply all contiguous
sample points to the ANN input. For the large delays that exist in the
flexible link system, providing all contiguous sample points would
result in a large number of input units and consequently a large num-
ber of weights. A variation on this theme is to tap the delay line at a
limited number of points. Because of the nature of the desired posi-
tion and the time-scale of the required force, three taps from a desired
input delay-line were found to be sufficient. The offset times for the
taps were chosen so that the inflection points of the desired motion
inputs occurred at times of 0, 1, and 2 seconds. The resulting input
set, found to be effective in the simulation, was,

Tinam =[40y4(t+1)=20, 40y,(1)=20, 40y,(r=1)=20] - 11

A graphical representation of the input set is shown in Fig. 7.

E.___Flexible Link ANN. Bang-Bang Accel.

A four layer ANN structure with three inputs and one output
was used in an attempt to learn the force function in Fig. 6. The input
set from Eqn. 11 was used to drive the ANN. The network parameters
and learning algorithm were identical to the simple system case. The




differences from the simple system case were the number of units, the
number of training cycles required (approximately 20,000) and the
output scale factor. One example of the generated force and the corre-
sponding state trajectories are shown in Fig.8 . Just as in the simple
system case, increasing the number of units improves the rendition of
the force, which also reduces the residual vibration. Increasing the
number of units beyond the 3-70-5-1 configuration did not, however,
significantly reduce the error.
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Figure 6, Force and states for flex link and bang-bang accel.
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Figure 8, Results for sparsely tapped delay-line input, 3-70-5-1 ANN,
bang-bang desired acceleration.

G.  Flexible Link ANN Input/Qutput, Smooth Accel.

From a theoretical standpoint, the bang-bang trajectory from
Eqn. 5 is convenient for at least two reasons. First, the bang-bang
trajectory makes it is easy to explicitly solve the required convolution
and second, the resulting force profile has drastic features. From a
practical standpoint, however, a bang-bang trajectory introduces some
difficulty. The first difficulty arises due to the truncated, assumed-
modes model used to find the system transfer function. Because the
model is truncated, there are natural frequencies that exist in the real
system which are not represented by the model. To prevent excitation
of the unmodeled modes, the desired acceleration profile should have
no significant high frequency components (i.e., a smooth profile)[21].
The second difficulty arises due to the drastic features of the bang-
bang induced force profile. The spikes can easily exceed the dynamic
range of converters/amplifiers if the bang-bang trajectory is not care-
fully specified. Saturation of converters/amplifiers reduces perform-
ance and introduces significant high frequency components. A third
difficulty also related to the drastic features of the bang-bang induced
force profile is that the complexity of the ANN controller may be
larger than necessary. The added ANN complexity causes problems
for both learning (number of trials) and recall (processing require-
ments). To overcome these problems, the drastic features of the force
profile are smoothed by replacing the sharp transition regions of the
bang-bang desired acceleration with a third-order polynomial spline.
The transition time for the polynomial is a free design parameter that
may be tuned to eliminate high frequency vibration. Experiments for a
single-link manipulator, similar to the model in Eqn. 9, found a transi-
tion time of approximately 0.2 seconds yielded good results[22]. The
force profile and the corresponding state trajectories are shown in Fig.
9. As expected, the peak value of the force is lower than the compara-
ble bang-bang induced profile. Also as expected, the force profile in
Fig. 9 does not have discontinuities.

H. _ Flexible Link ANN, Smooth Accel.
Because the force profile in Fig. 9 does not have discontinui-
ties, a three-layer network (e.g., one hidden layer) should be sufficient




to perform the mapping[18]. In this study, however, performances for
three-layer networks in the single input case were disappointing.
Three-layer networks ranging in size from 1-20-1 up to 1-200-1 pro-
duced poor results. Increasing the network structure to a four-layer
network (e.g., 1-30-40-1) produced acceptable results, however, the
required number of units was large (e.g., approximately 1300
weights). Because of this result, it is expected, although not investi-
gated, that a one-input, three layer network with approximately 1300
hidden units would yield acceptable results. Results for the three-
input, three-layer network were more encouraging. The three-input,
three-layer network required an order of magnitude smaller number of
weights than to the single-input case.

As in the previous two examples, a transformed representation
of the desired tip motion was used as an input to the ANN. Both the
scale-and-stretch and the sparsely tapped delay-line techniques were
evaluated. Examples of the results obtained from the two techniques
are shown in Figs. 10 and 11. Again, the network parameters and
learning algorithm were identical to the simple system case. The dif-
ferences from the simple system case were the number of units, the
number of training cycles required (approximately 20,000) and the
output scale factor.
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Figure 9, Force and States for Smooth Trajectory.

. CONCLUSION

The results of the simulations indicate that a conventional
ANN, of reasonable size is capable of learning the result of a convolu-
tion between one desired trajectory and a noncausal impulse response.
The study concentrated on finding a transformation from the desired
tip position to the ANN input that allowed the ANN to learn the force
required by a single trajectory. The input set and the network configu-
ration were found to impact both the learning speed and the resulting
residual vibration. In this study, the sparsely tapped delay-line yielded
a network with a small number of weights and appeared to be applica-
ble to a wide range of force functions. The proposed methods for
determining the trajectory delay (or equivalently, the desired input
advance time) were shown to represent a good beginning point for
finding the actual, required delay.

The control method in this study is strictly feedforward. The
single trajectory learning condition is very restrictive and does not
imply that the ANN has learned the plant inverse. Additionally, the
learning method in this study is strictly off-line. An on-line learning
method would greatly enhance the usefulness of the new method. The
on-line learning methods suggested in [14] and [18] may be appropri-
ate. More investigation is necessary before an inverse model ANN
can be used to track a general trajectory or used inside a control loop.
It is anticipated, however, that network structure, input set and delay
requirements will be similar to those described in this investigation.
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Figure 10, Scale-and-Stretch Input, 1-30-40-1 ANN.
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Figure 11, Sparsely tapped delay line input, 3-30-1 ANN.
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