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ABSTRACT: A new approach for feedforward ANN control of 
nonminimum phase mechanical systems is proposed. A standard 
backpropagation-of-errors ANN is used to form an inverse model 
controller which is applied to simulated nonminimum phase sys
tems. Learning in the new approach is based on the convolution 
between a noncausal impulse response and a desired tip trajectory. 
Selection of the proper input set, input scaling and the ANN struc
ture are investigated. Once the input and structure are specified, 
the ANN is trained over a single trajectory. After training, the 
ANN is used to drive the system in an open-loop configuration. 
Plots of the system states resulting from the ideal excitation and 
from ANN excitation are compared. The results obtained by 
varying both the number of units and the input set are presented. 
The results demonstrate the effectiveness of the proposed ANN 
inverse model approach. 

I. INTRODUCTION 
Although the first study of artificial neural network (ANN) 

learning by McCulloch and Pitts occurred over 50 years ago, the use 
of ANNs did not become popular until more recently. Researchers 
have applied a variety of ANN technologies to the control of mechani
cal structures and survey papers specifically related to ANN control of 
rigid mechanical systems may be found in the literature (e.g., [1]). 
The use of ANN learning control for nonminimum phase systems has 
also been studied, although less extensively. The studies related to 
robotics, center on a particular type of nonminimum phase system, a 
flexible link manipulator. 

A three-layer perceptron has been used to control a four-bar 
mechanism through a flexible coupling[2]. Flexible joint manipula
tors, however, do not exhibit nonminimum phase behavior, so the 
results for flexible joint manipulators are not directly applicable to 
flexible link manipulators. A recurrent, three-layer perceptron has 
been used to control a scale model of a space-based, flexible manipu-

lator with both joint and link flexibility[3]. The investigation, how
ever, used low-pass filters and small gain constants to prevent excita
tion of vibration modes. In addition, neither strain nor tip measure
ments were used as inputs to the ANN controller. Thus, the experi
ment was an extension of the rigid link case. A multi-layer perceptron 
has been used for payload identification and gain selection for the 
control of a single-link flexible manipulator[4], The ANN is not used 
as a controller but rather as a pattern classifier. Once the payload is 
identified and a gain selected, the linear control law does not change 
until the payload changes. An array of four multi-layer perceptrons 
has been used to manipulate a simulated flexible plate[5]. Beam shape 
information was provided to the ANN using a novel gripper design. A 
multi-layer percept~on has also been used to control the tip-position of 
a single-link flexible manipulator[6]. The proposed ANN controller 
had a strong reliance on an external teacher, had an ANN structure of 
sparse interconnects, and used linear activation functions. No strain or 
tip measurements were used by the ANN and the results include only 
limited simulations. Perhaps the most promising research for ANN 
based flexible manipulator control used a multi-layer perceptron to 
control the tip position of a single-link flexible manipulator[7], The 
investigation used an ANN controller with access to both traditional 
state measurements and strain measurements. The network consisted 
of one hidden layer with a surprisingly small number of units. Com
parison with a fixed-gain controller showed advantages for the multi
layer perceptron. The research in [7] was shown to have certain limi
tations related to nonminimum phase characteristics[8]. In these ref
erenced studies, nonminimum phase characteristics of the flexible link 
systems were not addressed during the design.of the ANN controller. 

Now consider the block diagram in Fig. 1 where H(s) is the 

system plant and H-1 (s) is the inverse. In order to make the cas

caded transfer function of plant and inverse equal to one, the inverse 
of the plant would need to have zeros where the plant had poles and 
poles where the plant had zeros. In Fig. 1, the so called 'inverse 



model controller' configuration, the inverse is used to condition com
mands so that the system output will follow the desired input. The 
inverse model configuration is a convenient way to use ANNs to con
trol a rigid mechanical system[l]. For nonminimum phase systems, 
however, the plant has right-half-plane (RHP) zeros and the inverse 
will have RHP poles. If a causal inverse is considered, the inverse is 
unstable. If the causality condition is relaxed, it is well known that 
residue calculus can be used to find the noncausal, time-domain re
sponse of a system with poles in the RHP[9]. The use of a noncausal 
inverse to control a flexible manipulator has been re
ported[lO][1l][12]. To control such a nonminimum phase system, 
input torque is calculated by solving the convolution integral between 
the noncausal impulse response of the system inverse and the desired 
trajectory. The convolution may be computed indirectly in the fre
quency domain and transformed to the time domain[lO], or the con
volution may be computed directly in the time domain[1l][12]. ANN 
methods for determining the inverse for nonminimum phase systems 
have been proposed. These methods do not appear to have been ap
plied to flexible link mechanical systems. 

An inverse model control method based on an adaptive FIR 
filter has been proposed for the control of nonminimum phase sys
tems[13]. In [13], the proposed use of a so called 'delayed inverse 
identification process' for nonminimum phase systems was an impor
tant contribution. The method of [13] was extended to use an ANN in 
place of the FIR filter[14]. The extension considered nonlinear sys
tems but did not consider nonminimum phase systems. There has also 
been some doubt cast over the direct inverse identification process 
required by the method of [14]. It has been argued that the identifica
tion process requires specially formed inputs and there is no guarantee 
that the correct inverse will be found in problems where the inverse is 
not one-to-one[lS]. There is also no reported evidence that the 
method of [14] will work when the input and output are non
collocated (an added complexity with flexible link manipulators). 

ur-I H-l(s)I~Um 
Figure 1, Inverse model controller. 

Other ANN based controllers for nonminimum phase systems 
have been proposed. A conventional, proportional-plus-integral con
troller with an ANN gain adjustment was proposed to control the 
nonminimum phase plant displayed by a steam generator[16]. There 
are no delays in the learning path and by the author's observation, "the 
effect of the non-minimum phase behavior is still very much pro
nounced."[16, pg. 64] A partially recurrent, ANN method has been 
proposed for use in a finite horizon model predictive control frame
work[17]. In the finite horizon paradigm, the ANN must accurately 
emulate the forward characteristics of the plant and not the inverse 
characteristics. Predictive methods do not rely on obtaining an inverse 
and will not be considered in this study. 

There is high confidence that an ANN has the capability to 
learn the required torque commands because it has been shown that an 

ANN is capable of representing an arbitrary mapping, 9t" ~ 9t1ll
, on 

a compact domain to an arbitrary accuracy[IS]. Unfortunately, there 

is no analytical method for determining the required inputs, the input 
scaling, and the network structure (e.g., number of layers, the number 
of units per layer, etc.) necessary to obtain a particular mapping. 
Here, the investigation centers on finding an input set, input scale, and 
ANN structure to allow a conventional, backpropagation-of-errors 
ANN to learn the required torque function over a single trajectory. 
The investigation includes a consideration of the noncausal character
istics of the inverse and the amount of delay required. 

Two systems will be considered. The first system is the simple 
nonminimum phase system proposed in [12]. The second system is 
the model of a flexible link manipulator developed in [S]. In both 
cases, there are no damping terms included in the system models. 
Because of the lack of damping, any error in the driving input will 
cause significant steady state vibration. The absence of significant 
vibration is an indication that the ANN has learned the required in
put/output relationship. 

11. FEEDFORWARD ANN CONTROLLER 

A. Simple System Equations 
A simplified system has been proposed to aid in the under

standing of problems associated with nonminimumphase systems[12]. 
The dynamic equation for the two degree-of-freedom system is 

[
2 1][~(t)]+[ 1 -l][X(t)]:=: [J(t)] , 
1 2 yet) -1 1 yet) 0 

(1) 

resulting in a transfer function between output, Y(s) , and input, 

F(s) , given by, 

1 s2-1 
Y(s):=: - 2 2 F(s) . 

3 s (s+2) 
(2) 

Eqn. 2, with zeros at s:=: ±1 , is clearly nonminimum phase. Inverting 
Eqn. 2 by replacing poles with zeros and zeros with poles results in an 
inverse that can be used to find the required input, Fr(s). The in

verse is given by, 

(3) 

where Ya (s) represents the desired acceleration of the tip (i.e., 

s2yd (s)). The inverse in Eqn. 3 has a RHP pole and is not stable 



under causal assumptions. Residue calculus can be used to find a 
noncausal, stable solution to Eqn. 3. Once the impulse.response has 
been found, the required time domain input may be found by the con
volution, 

B. Simple System ANN Input/Output 
Before an ANN may be proposed as an inverse model control

ler, the ability of an ANN to accurately learn the result of the convo
lution in Eqn. 4 must be demonstrated. To make the results compara
ble to previous results in the literature, the trajectory for this investi
gation was chosen to be the bang-bang acceleration from [12] given 
by, 

r' t<o 

d2
YdCt) = +1, O:=:;t<I 

(5) 
dt2 -1, I:=:; t < 2 

0, t:=:;2 

Plots of required force versus time and the states, xCt) and yCt), for 

the desired trajectory in Eqn. 5 are shown in Fig. 2. The force curve 
in Fig. 2 represents the function that must be learned by the ANN. 

Fig. 2 shows that the required input force is discontinuous at a 
finite number of locations. A four-layer ANN (i.e., two hidden layers) 
has been shown to be capable of approximating functions with a finite 
number of discontinuities[I8]. A four-layer ANN will be used to learn 
the force relationship. 

The most basic model of an ANN as a function approximator is 
a black-box that accepts one or more inputs and produces one or more 
outputs. Implied in this model are certain requirements on the map
ping between ANN inputs and outputs. Each unique desired output 
must be derived from at least one distinct input value (e.g., different 
output values cannot be obtained for the same input value, and multi
ple input values may map to the same output value). A continuously 
increasing function throughout the range where the output is changing 
represents one acceptable class of inputs. Time is a good example of a 
continuously increasing function. It can be shown that using time as 
an input produces a good approximation, however, time may not be 
the best choice. 

If the ultimate objective is to follow a desired tip trajectory, the 
ANN input should include some representation of the desired tip mo
tion. Unfortunately, for nonminimum phase systems, time-scale dif
ferences between the desired tip position and the required force do not 
allow the desired tip motion to be directly used as an input. The de
sired tip motion can be manipulated, however, to provide an accept
able input. 

A variety of transformations on the input may be considered. 
For the simpie system, only one transformation between the desired tip 

position and the ANN input is investigated. An additional transfor
mation is investigated later, for use with the flexible link system. 

The simple system is time-invariant, allowing for the consid
eration of an input transformation expressed by, 

(6) 

where y d (-) is the desired tip trajectory, 't a is a time advance con

stant, ks is a time stretch constant, Ka is a gain constant, and Ko is 

an offset constant. The result of applying the transformation in Eqn. 6 
, using particular values of 't a , ks' Ka , and Ko ' is shown in Fig. 3. 
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Figure 2, Force and states for the simple system. 
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Particular values of 't a and ks are determined based on the 

time values where fret) = constant for all t <'ta , and 

fr (t) = constant for all t > 't m' From Fig. 2, the time where the 

input force first becomes significant corresponds to the value for 't a 

and the time where the input force permanently returns to a value near 
zero corresponds to the value for 't m' Input scale values, Ka and 

K 0 , affect the learning performance of the ANN and are selected by 

trial and error. 
One consequence of advancing and stretching the desired input 

function is that nonminimum phase zeros close to the jOl axis will 
require a large value for 't a and left-half-plane zeros close to the jOl 

axis will require a large value for 't m' Large values make it more 

difficult to find the inverse dynamics because the spread of the plant is 
large[I9]. Thus, large flexible structures with low natural frequencies 
represent a particularly challenging problem. 

Before a particular advance time value may be determined, the 
meaning of 'significant force' must be addressed. Realistically, a 
significant value for input force would be determined by the precision 
of the components in the system. Assuming a precision of 12 bits and 
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an output range of ±5, the smallest possible output value is approxi
mately 2.5xlO-3

• In this example, a value of 2.5xlO-3 is obtained at 
approximately 't a = -6.6 seconds. Likewise, the force permanently 

returns to a value within 2.5xlO-3 of zero at 't II! = 8.6. The resulting 

stretch factor required to stretch the total motion time over 
't II! - 't a = 15.2 seconds is 0.13. 

For a real system, the existence of 't a in Eqn. 6 implies that 

there must be a constant time delay between the desired trajectory and 
the resulting measured trajectory. For example, if the desired trajec
tory is specified beginning at t = 0, the measured trajectory should 
not begin before t = 't a' The delay is necessary because of the way 

the noncausal function is being approximated. In the simulated re
sults, however, there are no physical barriers to achieving negative 
time values. In the simulations, the force begins at some negative time 
and the desired motion begins at time equal to zero. 

C. ANN Approximation 
A four layer ANN structure with one input and one output was 

used in an attempt to learn the force function in Fig. 2. A variety of 
input scale functions and variety of values for 'til and k.\. were ex-

amined. The stretch and shift values derived directly from Fig. 2. did 
not produce acceptable results. The minimum values for 't a and 't II! 

had to be extended slightly to -7.5 and 9.5 seconds, respectively, re
sulting in a value for ks of 0.118. The input scale function found to 

produce the best results for this particular desired trajectory is given 
by, 

Yilt,anlt (t) = 40y d (0.118(t + 7.5) - 't) - 20. (7) 

The stretched and scaled input function is shown in Fig. 3. 
Using the scale function from Eqn. 7, the required number of 

units in the hidden layer was investigated. Increasing the number of 
units in the hidden layer, results in a continuous reduction in the error 
between the ideal force and the ANN generated force, between the 
simulated tip position and the desired tip position and in the residual 
vibration. A 1-2-2-1 network (figure not shown, Ferror,rms=0.32, Per-
ror,rms=1.5, Vibrationp_p=0.36) was inadequate for both gross slewing 
motion and vibration. A 1-6-6-1 network (Fig. 4, Ferror.rms=O.092, 
Perror,rms=0.033, Vibrationp_p=0.073) resulted in adequate gross slewing 
with some residual vibration. Increasing from 1-6-6-1 to 1-8-8-1 (Fig. 
5, Ferror,rms=0.089, Perror,rms=0.062, Vibrationp_p=0.060) resulted in an 
18% reduction in the residual vibration. A 1-12-12-1 network (figure 
not shown, Ferror,rms=0.075, Perror.rms=0.051, Vibrationp_p=0.056) re
duced the residual vibration by an additional 7%. This result leads to 
the observation that the number of units in the network may be se
lected based on an application's measure of acceptable, residual vi
bration. 

Units in both hidden layers and in the output layer used a hy
perbolic tangent activation function. The output layer values were 
scaled to range between ±5. Learning was performed by sampling the 

ideal force function, Fig. 2, and randomly presenting the samples to 
the ANN. Approximately 800 uniformly distributed samples of the 
input and desired force from -7.5 to 9.5 seconds were used. Extending 
the sampling beyond these limits caused the initial and final force 
values to be closer to zero at the expense of a less accurate active re
gion and larger steady state oscillation. A higher sample rate did not 
affect the results except that the learning times were longer. A lower 
sample rate did not allow the learned force to exhibit sharp transitions, 
resulting in a slightly larger steady state oscillation. Non-uniform 
sampling was also attempted. Sampling the input and the desired 
force function so that the absolute value of the force change between 
two adjacent samples equaled a constant drove the solution into a local 
minimum that did not produce acceptable results. Uniform sampling 
augmented with non-uniform, force-change samples caused large er
rors in the initial and final force values after learning. 
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The weights were updated after each sample presentation using 
the standard backpropagation-of-errors method (BackProp). The 
BackProp learning rate was adjusted downward when learning at the 
current rate slowed. The initial rate was 0.05 and the final rate was 
0.0001. Approximately 7500 random presentations of the sample set 
were required. Epoch based learning was also attempted. Epoch 
based learning consistently converged to a local minimum that re
sulted in an unacceptable system response. In both cases, epoch based 
and sample based, an inertia term was not added to the BackProp algo-
rithm. . . 

D. Flexible Link System Equations 
For flexible link manipulators, an assumed-modes method, 

coupled with a Lagrangian technique, yields a recursive, closed-form, 
dynamic solution suitable for control purposes[20]. Systematic appli
cation of the Lagrangian, a two mode vibration assumption and some 
simplifying assumptions, yield the undamped, linearized, inverse dy
namic equation[8] used in this investigation. Substitution of the par-

ticular physical parameters from [8] ( J 0 = 0,01 Nms2 , p = 2700 K~ , 
m 

w=O.OOI m, h=0.02 m, m[ =0.05 Kg, and E=71.0x109 Pa) 

and a beam length of 1.4 m results in a specific dynamic equation 
given by 

[ 

0.16 
-0.059 

0.019 

-0.059 

0.24 

o 
0.019][ fJ 1 [0 o ~l + 0 

0.071 ~2 0 

o 
3.66 

o 

where e is the rigid body angle (not necessarily the hub angle) and 
<l>i is a set of time-dependent generalized coordinates that modulate 

the amplitude of the beam vibration. Rearranging the dynamic equa
tion yields a transfer function between tip position and torque given 
by, 

l't (s) = 1.72 (s + 5.5)(s - 5.5)(s + 19.5)(s -19.5) 1: (s) . 
s2(s2 +17)(s2 +182) (9) 

Eqn. 9, with zeros at s = ±5.5 and s = ±19.5, is clearly nonminimum 
phase. By using the same procedure used with the simple system, the 
impulse response was determined. The required time domain torque 
may be found by the convolution, 

'L"r(t) = ( 0.58uo(t) + 15e-5.51/Cl (t) - 9.5e-19.51 tel (t) 

2 
+1.5e5.51/CI(-t)-9.5e19.5lu_I(-t)) * d YI.cl(t) 

dt 2 

( 

(10) 

E. Flexible Link ANN Input/Output. Bang-Bang Accel. 
Using the desired bang-bang acceleration profile from Eqn. 5, 

results in the plot of required torque versus time and plots of the 
states, e , <1>1 and <1>2' versus time as shown in Fig. 6. The torque 

curve in Fig. 6 represents the function that must be learned by the 
ANN. 

Using the same assumptions specified for the simple system, 
initial estimates for the parameters required by the input transforma
tion of Eqn. 6 were determined. Unfortunately ANN learning with a 
stretched desired input did not produce good results in this case. 
Neither adding units, varying the time scale parameters, nor varying 
the input scale parameters changed the resulting behavior. Additional 
input cues seem to be required. 

ANN practitioners commonly use tapped delay-lines to pro
vide an ANN with a state (and/or desired input) history. It is also 
common to tap the delay-line at every sample and apply all contiguous 
sample points to the ANN input. For the large delays that exist in the 
flexible link system, providing all contiguous sample points would 
result in a large number of input units and consequently a large num
ber of weights. A variation on this theme is to tap the delay line at a 
limited number of points. Because of the nature of the desired posi
tion and the time-scale of the required force, three taps from a desired 
input delay-line were found to be sufficient. The offset times for the 
taps were chosen so that the inflection points of the desired motion 
inputs occurred at times of 0, 1, and 2 seconds. The resulting input 
set, found to be effective in the simulation, was, 

(11) 

A graphical representation of the input set is shown in Fig. 7. 

F. Flexible Link ANN. Bang-Bang Accel. 
A four layer ANN structure with three inputs and one output 

was used in an attempt to learn the force function in Fig. 6. The input 
set from Eqn. 11 was used to drive the ANN. The network parameters 
and learning algorithm were identical to the simple system case. The 



differences from the simple system case were the number of units, the 
number of training cycles required (approximately 20,000) and the 
output scale factor. One example of the generated force and the corre
sponding state trajectories are shown in Fig.8. Just as in the simple 
system case, increasing the number of units improves the rendition of 
the force, which also reduces the residual vibration. Increasing the 
number of units beyond the 3-70-5-1 configuration did not, however, 
significantly reduce the error. 
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Figure 6, Force and states for flex link and bang-bang accel. 
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Figure 7, Example output of a sparsely tapped delay-line after the 
application of input scaling. 
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Figure 8, Results for sparsely tapped delay-line input, 3-70-5-1 ANN, 
bang-bang desired acceleration. 

G, Flexible Link ANN Input/Output. Smooth Accel, 
From a theoretical standpoint, the bang-bang trajectory from 

Eqn. 5 is convenient for at least two reasons. First, the bang-bang 
trajectory makes it is easy to explicitly solve the required convolution 
and second, the resulting force profile has drastic features. From a 
practical standpoint, however, a bang-bang trajectory introduces some 
difficulty. The first difficulty arises due to the truncated, assumed
modes model used to find the system transfer function. Because the 
model is truncated, there are natural frequencies that exist in the real 
system which are not represented by the model. To prevent excitation 
of the unmodeled modes, the desired acceleration profile should have 
no significant high frequency components (i.e., a smooth profile)[21], 
The second difficulty arises due to the drastic features of the bang
bang induced force profile. The spikes can easily exceed the dynamic 
range of converters/amplifiers if the bang-bang trajectory is not care
fully specified. Saturation of converters/amplifiers reduces perform
ance and introduces significant high frequency components. A third 
difficulty also related to the drastic features of the bang-bang induced 
force profile is that the complexity of the ANN controller may be 
larger than necessary. The added ANN complexity causes problems 
for both learning (number of trials) and recall (processing require
ments). To overcome these problems, the drastic features of the force 
profile are smoothed by replacing the sharp transition regions of the 
bang-bang desired acceleration with a third-order polynomial spline. 
The transition time for the polynomial is a free design parameter that 
may be tuned to eliminate high frequency vibration. Experiments for a 
single-link manipulator, similar to the model in Eqn. 9, found a transi
tion time of approximately 0.2 seconds yielded good results[22]. The 
force profile and the corresponding state trajectories are shown in Fig. 
9. As expected, the peak value of the force is lower than the compara
ble bang-bang induced profile. Also as expected, the force profile in 
Fig. 9 does not have discontinuities. 

H, Flexible Link ANN, Smooth Accel. 
Because the force profile in Fig. 9 does not have discontinui

ties, a three-layer network (e.g., one hidden layer) should be sufficient 



to perform the mapping[18]. In this study, however, performances for 
three-layer networks in the single input case were disappointing. 
Three-layer networks ranging in size from 1-20-1 up to 1-200-1 pro
duced poor results. Increasing the network structure to a four-layer 
network (e.g., 1-30-40-1) produced acceptable results, however, the 
required number of units was large (e.g., approximately 1300 
weights). Because of this result, it is expected, although not investi
gated, that a one-input, three layer network with approximately 1300 
hidden units would yield acceptable results. Results for the three
input, three-layer network were more encouraging. The three-input, 
three-layer network required an order of magnitude smaller number of 
weights than to the single-input case. 

As in the previous two examples, a transformed representation 
of the desired tip motion was used as an input to the ANN. Both the 
scale-and-stretch and the sparsely tapped delay-line techniques were 
evaluated. Examples of the results obtained from the two techniques 
are shown in Figs. 10 and 11. Again, the network parameters and 
learning algorithm were identical to the simple system case. The dif
ferences from the simple system case were the number of units, the 
number of training cycles required (approximately 20,000) and the 
output scale factor. 
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Figure 9, Force and States for Smooth Trajectory. 

III. CONCLUSION 

3.5 

The results of the simulations indicate that a conventional 
ANN, of reasonable size is capable of learning the result of a convolu
tion between one desired trajectory and a noncausal impulse response. 
The study concentrated on finding a transformation from the desired 
tip position to the ANN input that allowed the ANN to learn the force 
required by a single trajectory. The input set and the network configu
ration were found to impact both the learning speed and the reSUlting 
residual vibration. In this study, the sparsely tapped delay-line yielded 
a network with a small number of weights and appeared to be applica
ble to a wide range of force functions. The proposed methods for 
determining the trajectory delay (or equivalently, the desired input 
advance time) were shown to represent a good beginning point for 
finding the actual, required delay. 

The control method in this study is strictly feedforward. The 
single trajectory learning condition is very restrictive and does not 
imply that the ANN has learned the plant inverse. Additionally, the 
learning method in this study is strictly off-line. An on-line learning 
method would greatly enhance the usefulness of the new method. The 
on-line learning methods suggested in [14] and [18] may be appropri
ate. More investigation is necessary before an inverse model ANN 
can be used to track a general trajectory or used inside a control loop. 
It is anticipated, however, that network structure, input set and delay 
requirements will be similar to those described in this investigation. 
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Figure 10, Scale-and-Stretch Input, 1-30-40-1 ANN. 
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