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Abstract 

A single-link flexible manipulator with a rotary 
actuator at one end and a mass at the other is modeled 
using the Lagrangian method coupled with an assumed 
modes vibration model. A SIMO state space model is 
developed by linearizing the equations of motion and 
simplified by neglecting natural damping. Laplace 
domain pole-zero plots between torque input and tip 
position show nonmzmmum phase behavior. 
Nonminimum phase behavior causes difficulty for both 
conventional and artificial neural network (ANN) inverse
model control. The most promising ANN method for the 
control of flexible manipulators does not appear to 
converge to a solution when the system is lightly damped. 
To overcome this limitation, a modified cost junction is 
proposed. Simulations show that the ANN is able to 
converge to a solution even in the case of no damping. 
The modified approach fails, however, for beams 
exceeding some critical length measure. Identification of 
the critical length and proposals for extending the result 
are discussed. 

1. INTRODUCTION 

Although the first study of artificial neural network 
(ANN) learning by McCulloch and Pitts occurred over 50 
years ago, the use of ANNs did not become popular until 
mme recently. Researchers have applied a variety of 
ANN technology to the control of mechanical structures 
and survey papers specifically related to ANN control of 
rigid mechanical systems may be found in the literature 
(e.g., [1]). The use of ANN learning control for flexible 
manipulators has also been studied, although less 
extensively. 

A three-layer perceptron has been used to control a 
four-bar mechanism through a flexible coupling[2]. 
Flexible joint manipulators, however, do not exhibit 
nonminimum phase behavior so the results for flexible 
joint manipulators are not directly applicable to flexible 
link manipulators. A recurrent, three-layer perceptron has 

been used to control a scale model of a space-based, 
flexible manipulator with both joint and link flexibility[3]. 
The investigation, however, used low-pass filters and 
small gain constants to prevent excitation of vibration 
modes. In addition, no strain or tip measurements were 
used as inputs to the ANN controller. Thus, the 
experiment was an extension of the rigid link case. A 
multi-layer perceptron has been used for payload 
identification and gain selection for the control of a 
single-link flexible manipulator[4]. The ANN is not used 
as a controller but rather as a pattern classifier. Once the 
payload is identified and a gain selected, the linear control 
law does not change until the payload changes. An array 
of four multi-layer perceptrons has been used to 
manipUlate a simulated flexible plate[5]. The simulated 
plate included gravity effects, and beam shape information 
was provided to the ANN using a novel gripper design. A 
multi-layer perceptron has also been used to control the 
tip-position of a single-link flexible manipulator[6]. The 
proposed ANN controller is relatively unconventional 
with a strong reliance on an external teacher, an ANN 
structure of sparse interconnects, and a linear activation 
function. No strain or tip measurements are used by the 
ANN and the results include only limited simulations. 

The most promising research for ANN based flexible 
manipulator control used a multi-layer perceptron to 
control the tip· position of a single-link flexible 
manipulator[7]. The investigation used an ANN 
controller with access to both traditional state 
measurements and strain measurements. The network 
consisted of one hidden layer with a surprisingly small 
number of units. Comparison with a fixed-gain controller 
showed advantages for the multi-layer perceptron. 

Here, the ANN method proposed in [7] is extended to 
a more general case of a single-link flexible manipulator 
with light damping. A dynamic model is developed and 
reduced to a simplified pole-zero plot in the Laplace 
domain. In order to control the simplified model, a 
modified cost function is proposed. The modified cost 
function adds an additional gain to provide closed-loop 
damping. The addition of a damping term should allow 



the modified method to be applied to a wider range of 
mechanisms. 

2. EQUATIONS OF MOTION 

A problem that must be considered when replacing 
rigid links with flexible links is that of characterizing and 
modeling the significant vibration modes that exist in a 
flexible manipulator. Three methods have been used to 
characterize the vibration: lumped-parameter, assumed
modes and finite-element. Each method has advantages 
and limitations. Here, the assumed-modes method is 
considered. The assumed-modes method, coupled with a 
Lagrangian technique, yields a recursive, closed-form, 
dynamic solution suitable for control purposes[8]. 

2.1. Natural Frequencies 

With the assumed-modes method, natural frequencies and 
the deformed shape can be determined by applying the 
appropriate boundary conditions[9]. Boundary conditions 
consisting of hub inertia and load mass are sufficiently 
complex to demonstrate nonminimum phase behavior. 
Using Bernoulli-Euler beam assumptions, the normalized 
natural frequencies of a flexible link with inertia-mass 
boundary conditions may be determined. The normalized 
mode frequency may be expressed in radians-per-second 
by proper application of the physical parameters. After 
solving for natural frequencies, admissible mode shapes 
may be determined. By combining the set of admissible 
mode shapes with a set of time-dependent generalized 
coordinates, the one dimension vibration equation is 
obtained. Vibration displacement, which depends on both 
the position along the beam and time, is given by, 

z(/;, t) = L.'I' n~)<jl n (t) , (1) 
n 

where z(/;, t) is the displacement away from the 

undeformed shape, 'I' n (/;) is the mode shape for the nth 

mode and <I> n (t) is the generalized coordinate for the nth 

mode. The time dependent displacement in Eqn. 1 is used 
to develop the dynamic equations of motion. 

2.2. Dynamic Equations 

The inverse dynamic equations of a manipulator can 
be used to determine the torque required to cause the 
manipulator to follow a specific trajectory. Theoretically, 
if the desired trajectory were known, the inverse dynamic 
equations could be solved for torque in an open-loop 
manner. Unfortunately, the transformations between a 
desired tip trajectory and the required rigid body and 

flexible mode trajectories are not easy to determine. 
Under certain assumptions, it is possible to rearrange the 
inverse dynamic equations so that the desired tip 
trajectory can be used to drive the system. 

There are several methods which can be used to find 
the inverse dynamic equations. Here, the Lagrangian 
method is used since the method gives more insight into 
the sensitivity of the model to changes in parameter 
values. Details of the Lagrangian method may be found in 
introductory mechanics texts[lO]. Additional details 
using homogenous transformation matrices in the 
framework of the Lagrangian method may be found in 
robotics texts[ll]. Finally, application of the assumed
modes vibration description to the Lagrangian method can 
be found in the literature[8]. 

Systematic application of the Lagrangian and a two 
mode vibration assumption yield an inverse dynamic 
equation of the form, 

[ - - -1["1 No AI A2 e 0 0 0 e 1 

~I NI ~ ~I +[OKI 01[<I>ll=[~!(0)}'(2) 
A2 0 N2 <1>2 0 0 K2 <1>2 '1'2(0) 

where, 
- I 3 2 No = JO+3 pAL +mIL, 

- 2 rl( )2 Nn = Jo'l'~(O) + pALJo 'I' n(/;) d/;, 

An = J 0'1' ~ (0) + pAL
2 J~/;'I' n (/;)d/; , 

Kn = ~: J~'I'~(/;)2d/;, 
e is the rigid body angle (not necessarily the hub angle), 

't is the actuator torque, and "\ji~(0) = 1jI~0). Simplifying 

assumptions, '1'1(0)'1'2(0)=0, EP =0, <l>A) j =0, 

eel> n = 0, have been included in Eqn. 2. In this particular 

case, neglecting the second order, nonlinear terms is 
acceptable since the primary interest is to extract the 
nonminimum phase behavior. Over dot and over double
dot represent the derivative with respect to time and the 
second derivative with respect to time, respectively. 
Prime and double-prime represent the derivative with 
respect to length along the beam and second derivative 
with respect to length along the beam, respectively. The 
resulting state-space model is given by Eqn. 3, where YH is 
the hub position, YT is the tip position, and I MI is the 

determinant of the mass matrix from Eqn. 2. It is 
important to note that pole locations do not depend on the 
choice of output. Zero locations, however, depend on the 
choice of output, so that nonminimum phase behavior 
occurs only with the appropriate choice of output. 
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2.3. Generic Manipulator Parameters 

Specific parameters are chosen to correspond to 
reasonable values for single link flexible manipulator 
discussions found in the literature. The parameters are not 
specific to any particular manipulator. The selected 

values are: J 0 = am Nms2
, p = 2700 K~ , W = 0.001 m, 

m 

h = 0.02 m, ml = 0.05 Kg, and E = 71.0x109 Pa. 

Applying beam parameters and finding the first four 
natural frequencies, results in the curves given in Figure 1. 
As the beam becomes longer, natural frequencies become 
smaller, allowing high order modes (e.g., 2nd

, 3ird
, etc.) to 

add important contributions to the vibration displacement. 
For long beams, it is probably not acceptable to follow the 
standard practice of considering only the first mode when 
designing a controller. 
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right-half plane poles is to allow non-causal 
solutions [12][ 13]. 

The number of zeros appearing in the RHP depends 
on the physical parameters of the beam. In this example, 
as the beam length increases, zeros move from the jro axis 
to the real axis, compounding the problem of finding a 
suitable control model. For the generic manipUlator, the 
point where the second pair of zeros moves to the real
axis occurs at a length of approximately 1.2 m. In 
previous artificial neural network methods, the 
nonrninimum phase zero problem is not encountered due 
to either judicious or providential selection of the physical 
parameters[7]. A more general ANN controller, however, 
should be capable of controlling beams with an arbitrary 
distribution of system poles and zeros. 
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Pole-zero plots of the transfer function between input 
torque and output tip position for two specific beam 
lengths are shown in Figure 2 and Figure 3. Poles lie on 
the jro axis because damping has been neglected. The pair 
of poles at the origin are related to rigid-body motion and 
the remaining poles and zeros are related to vibration. 
Comparing pole locations, reiterates the inverse 
relationship between beam length and natural frequency. 

While free vibration frequency is related to pole 
location, vibration phase is related to the zero location. 
Most importantly, right-half-plane (RHP) zeros occur in 
this model. The RHP zeros are responsible for the 
resulting nonrninimum phase behavior. The RHP zeros 
are troublesome for certain types of inverse model control. 
An inverse may be found by replacing each system pole 
with a zero and each system zero with a pole, resulting in 
RHP poles and an unstable control model. One 
conventional method used to compensate for the resulting 

IMI 
(3) 

3. MODIFIED ERROR FUNCTION 

The ANN control method of [7] may be extended to 
lightly damped systems by adding a term related to the 
hub velocity to the cost function. The effect of the term is 
to increase the total system damping. The proposed cost 
function, minimized by ANN learning, is, 

J a,k =·H Qe~p,k + R't L + SV~Ub'k} , (4) 

where, etip = Ydesired - Ytip , and vhub is an approximation 

of the hub velocity. The recurrence relationship for the 
approximation is, 

xO.k+l = -xO,k +t Yhub,k 

A 2 2 
Vhub,k = - XO,k +'T Yhub,k 

(5) 



The relationships in Eqns. 4.and 5 may be used to 
find the total error. Individual error terms can be 
rewritten as, 

etip,k = Ydesired,k -CZAxk_1-CzB'tk_I' (6) 

Vhub,k =-2(-XO,k-1 +t(C1Ax k- Z +CtB't k_Z)) 
, (7) 

+t(C1Axk- 1 +C1B't k_l ) 

where Ct and C2 are the first and second rows, 
respectively, of the output matrix in Eqn. 3. 

In order to apply backpropagation, the weight change 
relationship in the output layer is the derivative chain 
given by, 

dJ a,k _ dJ a,k d't k-I 

dWoh,k-1 - d't k-I dWoh,k-1 
(8) 

The difference between the derivative chain in Eqn. 8 and 
standard backpropagation is that the derivative of the cost 
function is used instead of the normal backpropagation 
error term, (od -0). Using Eqns. 6, and 7, the derivative 

of the cost function is, 

dJak Z A (9) 
--'-=-QCzBetip,k +R't k_1 +rSCIBvhub,k' 
d't k-I 

The value obtained by evaluating Eqn. 9 is used as 
the output layer's error. Similar to [7], in order for the 
control method to be effective, the ANN learning rate, and 
the error coefficients Q, R, and S must be carefully tuned. 

To demonstrate the efficacy of the modified cost 
function, a 9-8-1 feedforward ANN is used. Units in both 
the hidden layer and the output layer use a hyperbolic 
tangent activation function. Learning is performed after 
every sample usi.ng the standard backpropagation-of
errors method (BackProp). An inertia term is not added to 
the BackProp algorithm. The structure of the ANN is 
consistent with [7] except for the use of sine and cosine on 
the angular input terms. A block diagram of the ANN 
controller and the simulation model is shown in Figure 4. 

If damping is added to the model and the system is 
simulated, results similar to [7] are obtained. For 
comparison with [7], a plot of tip position versus time 
with gains C2B=I, Q=R=l, and S=O is shown in Figure 5. 
Note that by selecting C2B=1, the characteristics of the 
plant in the cost function are assumed to be unknown. For 
the plot in Figure 5, the plant is simulated as a continuous 
model, using a 4th order Runge-Kutta integration method 
and a sub-step sample period of 0.25 ms. Consistent with 
[7], the ANN controller and the control torque are updated 
at a sample period of 8 ms. 

If model damping terms are set to zero and S=O, a 
combination of values for Q, R, and the ANN learning 
parameter that allow the controller of [7] to converge 
could not be found. Additional simulations with relatively 
small damping terms were found to converge, however, 

the resulting tip motion had large overshoot and 
prolonged oscillation. Adjusting parameters and allowing 
the ANN to learn over long periods of time did not 
appreciably reduce the overshoot and oscillations. The 
cost function from Eqn. 4, however, allows an ANN to 
control a plant with no damping. A plot of tip position 
versus time with gains CtB=C2B=I, Q=R=l, and S=0.2 is 
shown in Figure 6. The plant used to produce Figure 6 is 
identical to the plant used to produce Figure 5, except 
there is no damping in the plant model. 

Since the pole-zero locations for any generic beam 
shorter than 1.2 m are similar to the 0.4 m case, it is 
expected that proper selection .of gains and use of the 
modified cost function will provide good compensation. 
As expected, the modified cost function of Eqn. 4 works 
relatively well for generic beams up to approximately 1.2 
m in length. Figure 7 and Figure 8 show the plots of tip 
position versus time for a 0.8 m generic beam and a 1.2 m 
generic beam, respectively. Beyond this length, ANN 
control fails due in part to a loss in the ability of a single 
strain gauge to accurately predict tip position. The loss in 
predictive ability can be seen in Figure 9. Whether the 
loss in predictive ability is caused by the changing zero 
distribution or due to a change in the second natural 
frequency is a topic for further investigation. The use of 
more than one strain gauge may allow an accurate tip 
estimate to be used in the cost function. This and other 
possible failure mechanisms for longer beams and the 
modified cost method are currently under investigation. 
Preliminary simulations using the exact, model generated 
tip position in the cost function have not been promising. 
It appears that the second nonminimum phase zero causes 
excessive error when the tip initially moves in the 
opposite direction. 

4. CONCLUSION 

A model for a single-link flexible manipulator has 
been presented and converted to a distribution qf poles 
and zeros in the Laplace domain. It has also been. shown 
that the distribution of zeros results in a nonminimum 
phase system and that the distribution of zeros changes 
radically with a relatively small change about some 
critical length. 

It has been implied that previously proposed methods 
fail to converge in the lightly damped case. The 
implication cannot be proven because there is not yet a 
definitive method for the selection of system parameters. 
Cost function gains, ANN learning parameters, activation 
function(s), number of ANN layers and number of units in 
each layer must be selected in an ad-hoc way based on 
experience. A reasonable attempt was made to find 
suitable gains in the lightly damped case. An exhaustive 
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search, however, was not. attempted. Even if the proper 
gains could be found, there are compelling reasons to use 
the new cost function. 

A new cost function that includes a term related to the . 
hub velocity has been proposed and shown to be effective 
in simulation. By penalizing the hub velocity, the new 
cost function allows the amount of closed-loop damping 
to be adjusted. By adjusting the amount of damping, 
overshoot can be traded with rise-time in a manner si.m.ilar 
to the trade-off in a standard linear controller. Analytical 
expressions for tuning the gains are not yet available. 
Currently, gains must be selected by trial and error. 

Finally, it has been shown that a single strain gauge 
looses the ability to accurately predict tip position beyond 
some critical length. The critical length is identified as 
the length when the second pair of zeros moves from the 
jro-axis to the a-axis. It is not yet known whether the 
failure of the ANN method beyond the critical length is 
due to the loss of predictive ability or whether some 
fundamental problem exists. Simulations based on the 
actual tip position are far from complete, however, 
preliminary results have not been encouraging. 
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Figure 1, natural frequency versus beam length. 
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Figure 2, tip pole-zero plot, length=0.8 ffi. 
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Figure 3, tip pole-zero plot, length=1.4 m. 
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Figure 4, block diagram of the system simulation with 
ANN controller. 

Figure 5, plot of tip position versus time for 0.4 m beam, 
Q=R=1, S=O and damping. 

Figure 6, plot of tip position versus time for 0.4 m beam, 
Q=R=1, S=0.2 and no damping 

Figure 7, plot oftip position versus time for 0.8 m beam, 
Q=O.25, R=1.0, V=0.175, no damping. 

Figure 8, plot oftip position versus time for 1.2 m beam, 
Q=0.15, R=1.6, V=0.25, no damping. 

Figure 9, plots of model tip position and predicted tip 
position versus time for 1.4 m beam with a positive 

pulse input at t=O s and negative pulse input at t=5 s. 


