
Recursive Algorithm for Motion Primitive Estimation

Aaron R. Enes and Wayne J. Book

Abstract— The need for knowing future manipulator motion
arises in several robotics applications, including notification or
avoidance of imminent collisions and real-time optimization
of velocity commands. This paper presents a real-time, low
overhead algorithm for identification of future manipulator
motions, based on measurements of prior motions and the
instantaneous sensed actuator velocity commanded by an oper-
ator. Experimental results with a human-controlled, two degree-
of-freedom manipulator demonstrate the ability to quickly learn
and accurately estimate future manipulator motions.

I. INTRODUCTION AND BACKGROUND

This paper presents a low overhead algorithm for identifi-

cation of future manipulator motions, based on the instanta-

neous sensed actuator velocity commanded by the operator.

The method is suited for real-time operation. Knowledge of

the anticipated manipulator path can provide several power-

ful benefits to robotics and manually controlled manipulators,

and is especially attractive if such capabilities come with

little sensing or processing overhead. For example, motion

forecasts derived from the current user commands may be

used to provide early notification of important or unexpected

events, such as imminent collisions. Conventional collision

detection schemes require pre-programmed knowledge of

the manipulator path [1] which may be unavailable or not

known ahead of time. Standard collision detection algorithms

can make immediate use of the estimates of future motion

described in this paper. Another use for estimates of future

actuator motions is to enable online optimization of the

velocity input. Such a capability could be readily applied

to previous works that study manipulator optimizations but

assume prior knowledge of the manipulator path [2,3].

The problem of deducing future motions from sensed

operator inputs may be considered a sub-problem of general

pattern recognition. There are several classical approaches

to solve these problems, including neural networks, hidden

Markov models, and linear and nonlinear variations within

the vein of principal component analysis.

Principal component analysis (PCA) is a classical tech-

nique that is simple to implement and guaranteed to represent

the true structure of data near a linear subspace of the high-

dimensional input space [4]. PCA is used in many domains
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to transform a set of correlated variables from some large-

dimension space (say, actuator velocity commands and posi-

tion) into a smaller set of uncorrelated principal components,

such as expected actuator displacement before changing

direction. Jenkins [5] used a set of measured (human) joint

angles to classify observed movements and predict future

motions.

Neural networks (NNs) have been used for many appli-

cations including pattern recognition and next-in-sequence

prediction [6] but are inherently poor at extrapolation which

may be necessary for motions that change over time [7],

unless a complicated adaption rule is introduced. The basic

formulations of NN and PCA task identification approaches

work best when the motions have been previously seen and

the corresponding classifiers established offline.

In contrast, this paper presents a simple and effective

technique to map current actuator position and operator

inputs to expected manipulator paths. The method requires

no prior knowledge of the task or operator style, and can

adapt to variations in task parameters over time.

II. THE MANIPULATOR TASK

Let q(t) = [q1(t), · · · , qn(t)]T be generalized actuator co-

ordinates (in actuator or joint space) of a serial manipulator.

Here, the actuator trajectory is decomposed into a sequence

of piecewise monotonic segments termed motion primitives.

Many manipulator paths are described independent of time,

and involve a sequence of shorter motions during which the

direction each actuator moves is constant. Ignoring the possi-

bility of constraints or keep-out regions, the motion between

the endpoints of these motion primitives is inconsequential,

so only the relative actuator displacement is considered.

A sequence of piecewise monotonic motion primitives

describe the actuator motion through the workspace. The

motion primitives have a direction, Ω, and a length, x.

Ω is a discrete variable that indicates the direction each

actuator moves (positive, negative, or static); so for an n DOF

manipulator there are n3 motion categories. The value of x
provides the remaining details of the motion by specifying

the actuator displacement relative to the absolute actuator

position q at the beginning of the motion primitive. Thus,

the operator’s task is specified by the category of motion

(Ω) and a parameterization giving the “amount” of motion

in the direction Ω. This approach is similar to other script-

based methods of describing manipulator motions [8]. Unlike

other methods, the learning-based approach described here

does not require the motion parameters x to be specified

ahead of time; rather, they are learned online.
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Fig. 1: Actuator displacement for coded by motion primi-

tives.

Consider the 2 DOF trajectory in Fig. 1, which is de-

composed into an approximate repeating sequence of motion

primitives with categories

Ω :
{
Ω(A),Ω(B),Ω(C),Ω(D)

}

and corresponding actuator displacements

x :

{[
60
0

]
,

[
0

0.32

]
,

[
0
0.2

]
,

[
60
1.2

]}

where the meaning of symbols Ω(A), Ω(B), Ω(C), Ω(D) are

“Retract q1”, “Retract q2”, “Extend q2”, and “Extend q1 and
q2”. Note that only the relative actuator displacement—and

not the temporal dependence—is specified by the sequence

of motion primitives. The alternating shared regions in

Fig. 1 denote transitions to new motion categories Ω, which

correspond to the circled values.

III. LIMITATIONS ON TRAJECTORY TYPES

The motion primitive formulation discussed here implicitly

assumes the manipulator path is uniquely parameterized by

the generalized actuator coordinates q and the motion cate-

gory Ω (i.e., the direction each actuator is moving). Suitable

paths include non-intersecting paths, such as Fig. 2a, or any

path that self-intersects at an oblique angle, as in Fig. 2b.

Paths that intersect and are tangent, i.e., the paths’ velocities

are parallel at the intersection point, are not parametrized by

q and Ω alone. Fig. 2c shows an invalid point along a path at

which it is impossible to distinguish the “loop” to be traced

by the manipulator.

IV. ALGORITHM FOR MOTION PRIMITIVE ESTIMATION

For many conventional manipulators, one or more joy-

sticks are displaced by the operator; the angular displacement

in a given direction maps to the commanded velocity of

the corresponding actuator. Ω is directly determined by

(a) No intersections (b) Oblique intersection (c) Tangent intersection

Fig. 2: Relative displacements along paths (a) and (b) are

uniquely determined by q and Ω, whereas (c) is not.

Fig. 3: A mapping between joystick angular displacement,

direction of actuator motion, and motion category Ω.

sensing this command. Fig. 3 illustrates how certain joystick

displacements map to actuator motions and Ω (the value of

Ω is circled). For example, moving the joystick “up and

right” commands the displacement of both actuators (q1
and q2) to increase; this category of motion is assigned the

symbol Ω = 1. Similarly, joystick motion “directly left”

commands one actuator (q1) to retract, classified as motion

within category Ω = 7.

While the direction of motion is easily determined, the

length x of the primitive remains an unknown. This section

describes the Recursive Algorithm for Motion Primitive

Estimation—named RAMPE—for estimating the displace-

ment of the motion primitives.

Problem Statement: At the beginning of the

kth detected occurrence of a motion primitive in

category Ω, find the expected duration, x[k] ∈ Rn,

given the observation y[k], y[k − 1], · · · , y[1] with

y[k] ∈ Rn+m.

Argument k indicates there have been k previous occur-

rences of the motion category Ω. For convenience in notating

the following sections, the symbols x, Θ, P , etc. are used

for all categories of motion Ω even though each Ω has its

own set of variables.

The displacement x[k] is assumed to be well approximated

by some unknown function

x[k] = f(Ω, y[k]) (1)

where Ω is the primitive category and y[k] = [q[k], ξ[k]] ∈
Rm+n is an observation vector taken at the start of the

motion primitive. f is assumed to be independent of k, so

the path is unchanging with time. In reality, the path does
change (e.g. in an excavation task, the depth of a trench will



gradually increase thereby requiring longer ’reaches’ by the

manipulator); the recursions in RAMPE can be augmented

with a forgetting factor to account for the dynamics of

slowly varying paths. The observation y always consists

of the generalized coordinates q ∈ Rn at the start of Ω,

and optional additional measurements ξ ∈ Rm which may

include measures such as the sum of commanded velocities

or time.

The trajectory function 1 is approximated as a linear

function of the observation y[k] and unknown parameters

Θ, so

x[k] = H(y[k])Θ

where H is a block diagonal matrix defined as

H(y[k]) =

⎡
⎢⎣

h1(y[k]) · · · 0
...

. . .
...

0 · · · hn(y[k])

⎤
⎥⎦

The n regression elements hj(y[k]) are row vectors to

estimate the jth component of x[k]. Each hj has a unique

structure for each component of x[k]. Linear supports may

be adequate to separate the motion primitives for some

applications, while more complex trajectories may require

a set higher-order basis functions.

Θ is formed by concatenation of vectors θj :

Θ =

⎡
⎢⎣

θ1
...

θn

⎤
⎥⎦

where each θj is a vector of unknown parameters θij for

estimating the jth component of x, as xj = hjθj .

Based on all the previous observations, the estimated

displacement for the current kth occurrence of Ω is then

x̂[k] = H(y[k])Θ̂[k − 1] (2)

where x̂ is the estimated displacement. The model parameters

in Θ̂[k − 1] are recursively updated so (2) optimally (in the

least squares sense) describes the observed relative actuator

displacement of the previous k − 1 occurrences. With this

goal, Θ[k−1] is updated recursively, using the update law [9]

Θ̂[k − 1] = Θ̂[k − 2]

+K[k − 1]
(
x[k − 1]−H(y[k − 1])Θ̂[k − 2]

)

with

K[k − 1] = (P [k − 1])−1H(y[k − 1])TG (3)

The matrix P [k − 1] is also updated recursively as

P [k − 1] = P [k − 2] +H(y[k − 1])TGH(y[k − 1]) (4)

G is the inverse of the noise covariance matrix R

G−1 = R(Ω) =

⎡
⎢⎣

σ1 · · · σ1n

...
. . .

...

σn1 · · · σn

⎤
⎥⎦ (5)

where the constants σij in R(Ω) represents the observed

standard deviation of the actuators for a given motion cate-

gory Ω. 1.

P [k − 1] may be singular, or nearly singular, if the

regressors in H(y[k − 1]) are linearly dependent. Thus, the

inverse (P [k − 1])
−1

required in (3) may be ill-conditioned

or not unique.

As a remedy, (P [k − 1])
−1

is computed using the singular

value decomposition (SVD) of P [k − 1], giving

P [k − 1] = UΣV T

where U and V are sets of orthonormal basis vectors and

Σ is the diagonal matrix of singular values. To guarantee

convergence in a fixed number of computation steps, the

diagonal pseudoinverse of Σ is calculated by transposing

the matrix obtained after inverting each element along the

diagonal of Σ. If the matrix P [k−1] is nearly singular, some

of the elements in Σ are near zero, so only those diagonal

elements larger than a given tolerance tol << 1 are inverted;

the other elements are set to zero. Finally, the pseudoinverse

of P [k − 1] is computed as

P [k − 1]−1 = V Σ−1UT

A. Algorithm Initialization

An estimate x̂ is computed only after Ninit prior observa-

tions. To prime the RLS algorithm, an initial set of param-

eters Θ̂ is computed based on the first Ninit observations.

An initial regressor matrix H0 is formed by placing the

submatrices hj,init along its main diagonal, where

hj,init =
[
hj(y(1))

T , hj(y(2))
T , · · · , hj(y(Ninit))

T
]T

(6)

Similarly, the vector xinit is formed by “unwrapping” the

previous measurements to produce

xinit = [x1,1, · · · , x1,Ninit
, x2,1, · · · , x2,Ninit

, · · · ]T

where xj,k is component j of the kth observation x[k]. The

initial estimate of the parameter Θ̂[Ninit − 1] is obtained by

solving the system of equations in (2).

SVD is used to solve the system by direct computation

using

Θ̂[Ninit − 1] = V r (7)

where r is the solution to the diagonal system

Σr = UTG0H0xinit

and U , Σ, V compromise the singular value decomposition

of matrix [G0H0]. G0 is the inverse of the initial covariance

matrix R0, where R0 is a zero-padded version of (5) and

H0 is the initial set of regressor matrices (6). As before,

inversion of r is carried out by setting to zero the components

of r corresponding to the diagonal elements of Σ below a

specified threshold. The matrix P [Ninit − 1] for use in (4) is

P [Ninit − 1] = HT
0 G0H0

1Another key role of R scaling the elements of x, because each element
may have units of very different magnitudes (i.e., degrees versus meters)
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Fig. 4: Elements of the RAMPE algorithm.

To compute the initial estimate, first compute Θ̂[Ninit − 1]
using (7), then compute x̂[k] using (2).

Fig. 4 shows a flow chart for calculating the estimate x̂[k].
The double lines indicate transfers into or out of memory for

all data (x[k], q[k],Θ, etc.) associated with a particular Ω. A

description of each numbered block is provided in Table I.

B. Engineering Tests with the RAMPE Algorithm

An experiment was performed to demonstrate the RAMPE

algorithm. The operator used a gaming joystick to move the

end effector of a 2 DOF simulated hydraulic manipulator

displayed a standard LCD monitor. The operator’s goal was

to repeatedly maneuver the end effector through a sequence

of targets shown in Fig. 5:

A → B → C → D → C → B → A → · · ·
The control inputs were the swing rate of the arm (q̇1) and

the velocity of the boom hydraulic cylinder (q̇2). Table II

shows the location of each target in actuator space q, and

the minimum displacement x between targets.
The generalized coordinates q for the swing and boom

during a portion of the cycles are shown in Fig. 6. A total

of 23 cycles were completed.
With two active actuators, there are 32 categories of mo-

tion. The regression model chosen for this example assumes

all components of x are linearly dependent on q—plus a

possible constant offset—so

hj(q[k]) =
[
q[k]T , 1

]
(8)

Each vector of unknown parameters, θj , has 3 components

in this case.
The resulting trajectory is plotted in the q1 − q2 plane

shown in Fig. 7. Points along the trajectory are coded

with a symbol shape corresponding to the motion primitive

category Ω executed at that instant; this coding follows the

convention in Fig. 3. Fig. 7 illustrates the typical properties

of manually-controlled motion: the human operator is not



TABLE I: Description of the flow chart blocks in Fig. 4

Description of flow chart elements in Fig. 4
1. Check if the primitive category has changed.
2. Measured velocity commands are filtered to avoid mis-classifying

unintentional motion (noise) as actual manipulator motion.
3. The length of previous primitive Ω(j−1) is calculated as x[k−

1] = q(t)−q[k], where q(t) is the value of the current generalized
coordinate, and q[k] is the (recorded) starting value of primitive
Ω(j − 1). This updated information for Ω(j − 1) is saved.

4. Update the starting point of the previous iteration (q[k − 1] =
q[k]) and the current iteration (q[k] = q(t)).

5. Check if this primitive category is still in the initialization phase.
6. Check if this is the first time primitive Ω(j) is encountered.
7. Append the initialization data for the primitive length x.
8. Append the starting point q with the previous cycles.
9. Check if this is the first estimate of x̂
10. Prepare variables to use Least Squares via SVD to compute the

initial estimate.
11. Compute the projection vector w for the Least Squares estimate

by computing the (reduced) pseudo-inverse the singular values
matrix.

12. Compute the least squares estimate of the parameter vector Θ
and the matrix P to be used in computing the initial estimate of
x̂[k].

13. Compute the necessary terms to update the recursion relation-
ship for RLS estimation. This includes calculating the SVD of
P [k − 1].

14. To invert P [k − 1], the reduced pseudo-inverse of the matrix of
singular values Σ is used.

15. Update the variables for the RLS estimation of x[k].
16. Compute the estimate of the primitive length, x̂[k] using the

present generalized coordinates q[k] as a basis, and the most up-

to-date parameters Θ̂[k − 1].
17. Store the variables for use during the next iteration.
18. Update the number of times primitive category Ωj has been

encountered. Push all data for Ωj back to memory.
19. Output the most recent estimates, including x̂[k].

TABLE II: Location of weighpoints to guide manipulator

cycle

Generalized coordinate, q Displacement x to next target

Target q1 [deg] q2 [m] x1 [deg] x2 [m]

A 64.4 2.79 -41.7 0.16
B 22.7 2.95 -22.7 -0.16
C 0 2.79 0 -0.19
D 0 2.60 0 0.19

AABB

DD

C

xx

zz yyq2

q1

Fig. 5: Operator display with path weighpoints overlaid.

Fig. 6: Actuator coordinates during test cycle.
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Fig. 7: Resulting manipulator motion plotted in the q-plane.

The marker shape denotes the instantaneous motion primitive

category, Ω. Symbol shape denotes motion category, Ω

precise in commanding the motion, as evidenced by the

general “spread” of the plot. Further, some motion primitives

only occur in one region of the q-plane, while others occur

at multiple regions. These distinct clusterings of motions are

successfully seperated due to the state (q) dependent basis

functions h(q).
Fig. 8 shows the start points (q[k]), estimated displace-

ments (x̂[k]), and actual displacements (x[k]). The results

for the five most encountered primitives are shown. Estimates

during the three initialization periods (k < Ninit = 3) were

set to x̂[k] = 0. For Ω = 1, Ω = 4, and Ω = 7 there are

two distinct clusters from which the motion primitive begins.

This illustrates that the linear supports 8 were adequate to

separate the two clusters of displacements that occur for the

same category of motion. In general, the estimation error is

small relative to the total actuator displacement.

Fig. 9 shows the estimation error E = x[k]− x̂[k] plotted

versus occurrence count k. Large errors are present during

the initialization phase and the error generally decreases by

increasing the number of prior occurrences. The error never

settles to zero because of the inherently unpredictable nature

of a human-controlled task.

V. CONCLUSIONS

The motion primitive formulation describes manipulator

paths as a sequence of monotonic actuator displacements



Fig. 8: Actuator and estimated displacements of the five most

common motion categories. Green circles represent position

q[k] at the beginning of the motion primitive; cyan triangles

mark the estimated end point x̂+ q[k]; red squares mark the

actual end point. The solid black and dashed cyan lines link

the start and end points for a particular cycle iteration k.

and is well suited for describing motions within an obstacle

free environment. Further, the motion is conveniently de-

coupled into two elements: the motion primitive category,

Ω, and the relative actuator displacement, x. The category

Ω is determined by sensing and filtering the operator input

commands, while the expected displacement, x̂, is estimated

using previous observations in a recursive algorithm called

RAMPE. Only the point-to-point displacement of the actuator

across each primitive is saved, thus simplifying the descrip-

tion of actuator motions and the corresponding computation

load associated with processing complex trajectories. This

simplicity comes at the expense of lower-fidelity path de-

scriptions. Knowledge of future actuator motions—especially

when such knowledge can be incorporated into a system with

little overhead—has several useful applications to robotics

including early collision notification as well as optimization

of velocity commands necessary to achieve the desired goal.

The application example demonstrated good estimation

performance for a human-controlled point-to-point motion

task.
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