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ABSTRACT

ASSESSING CONVOLUTIONAL NEURAL NETWORK ANIMAL
CLASSIFICATION MODELS FOR PRACTICAL APPLICATIONS IN WILDLIFE

CONSERVATION

by Julia Larson

Convolution neural network models (CNNs) can successfully identify animal species

in camera-trap images in simplified testing environments. CNN performance in more

complex, realistic environments is understudied. Here the Wellington Camera Traps

dataset was used to simulate a wildlife conservation project to detect invasive species at

low population levels using camera-trap images and CNN models.  Ten CNNs were

developed and analyzed with seven testing datasets, simulating 13 possible project

scenarios.  Model performance was measured using standard computer science metrics,

top-1, and top-5 accuracy, and two novel performance metrics developed for this research

to directly reflect wildlife conservation goals, false alarm rate, and missed invasive rate.

The highest performing models achieved 91.8% and 99.6% top-1 and top-5 accuracy;

however, these models also had the highest missed invasive rates.  This effect was related

to the ratio of native to invasive species in the model’s training images.  As this ratio

increased so did the model’s top-1 and top-5 accuracy but also the missed invasive rate.

Thus to achieve optimal performance when selecting or training a CNN for use in a

wildlife camera-trap project the metric used to judge the performance of the model must

be tailored to the specific goals of the project, and the distribution of species in the

model’s training images must match the distribution that will be seen in the project’s

camera-trap images.
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Introduction

Evidence indicates that we are in a biodiversity crisis and are experiencing a

human-induced global mass extinction event (Barnosky et al., 2011).  Protecting rare

wildlife species from threats is essential for biodiversity preservation. Primary drivers of

extinction and biodiversity loss include the direct killing of species, the introduction of

invasive populations of species, the introduction of pathogens, the fragmentation and

destruction of habitat, the overuse of resources, and human-induced climate change

(Barnosky et al., 2011). Camera-trap studies are a popular component of wildlife

conservation programs in which motion-activated cameras are placed at a study site to

capture images of passing animals (Burton et al., 2015).  The resulting images are then

used, among many applications, to study animal behavior, track individual animals,

estimate species richness and abundance, and monitor for invasive species.  All these

applications are done in a cost-effective, unintrusive, and less time-intensive manner than

traditional methods of observing animals using track censuses or direct counts (Silveira et

al., 2003).

Technological advances in photography, including improvements in image quality,

increases in the capacity to take and store images, and decreased overall costs, have

contributed to the growing popularity of camera-traps projects (El Gamal, 2002).

However, researchers and wildlife managers have quickly begun to amass more

photographs than can be reasonably processed with available budgets and labor capacity

(Tabek et al., 2018).  The current process of reviewing and labeling thousands of images
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is slow and tedious resulting in error-prone data entry and slow reaction times to

conservation issues (Harris et al., 2010; Young et al., 2018).

Convolutional neural networks (CNNs), a type of machine learning computer vision

model, promise to be an effective tool for automatically classifying (identifying) animal

species in large numbers of images (Tabek et al., 2018).  Given a batch of images the

models could quickly produce summaries of species seen, alert managers to the presence

of a target species or individual, and filter out empty images.  This would not only

remove the most error-prone stage of the process but also shrink the reaction time of

project managers from months to minutes (Norouzzadeh et al., 2018).  If animal

classification models for camera-trap images become widespread, they would not only

increase the effectiveness of wildlife conservation projects currently using camera-traps,

but would allow for large-scale camera-trap projects, previously impossible to manage,

and potentially free up time and resources for other biodiversity conservation projects.

In the future, efficiency could increase further if animal classification models are

integrated into “smart” camera-trap systems.  In a smart camera-trap system, immediately

after images are taken by a camera in the field, the species in the images are classified by

a software model and the project manager notified, in real-time, to the relevant

information coming from the camera-trap (Glover‐Kapfer et al., 2019; Håvard, 2017).

Such a system would fulfill the 2012 beliefs held by camera-trap researchers that in ten to

twenty years camera-trapping would head in the direction of automation (identifying

empty images, animal species, and individual animals), wireless capabilities via satellite

or cellular networks, and real-time capabilities (when automation and wireless
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capabilities are combined) (Glover‐Kapfer et al., 2019).  As of 2021, advances have been

made in all three areas.  Automation has shown success with machine learning models for

animal classification, while wireless capabilities are showing promise with several

camera-traps commercially available that transmit images over cellular networks.

Real-time capabilities that would be the mark of a true smart-camera-trap project are still

in the works, with several companies working towards producing camera-traps with

onboard computing for the automation of image processing. Researchers are beginning

to design fully automated systems from camera-trap to automatic image processing in

anticipation of fully viable wireless and real-time capabilities (Håvard, 2017).

Although animal classification models for camera-trap images are promising thus far

their evaluation has been limited to performance metrics developed by the computer

science field, not the conservation biology field. A shortcoming that means that how well

these models work in applied wildlife conservation projects is unknown.  To fully

evaluate the effectiveness of these models new performance metrics are necessary that

directly reflect wildlife conservation goals.

The research undertaken for this thesis advances the application of animal

classification CNNs in the wildlife conservation field in two ways.  First, this work builds

and tests CNNs that reflect realistic field situations for a camera-trap project monitoring

for invasive species.  Second, custom performance metrics were developed to directly

reflect the goals of efficiently detecting invasive species in camera-trap images, and

compared to traditional computer science measurements of performance.  Overall this
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work helps wildlife managers determine the value of deploying a machine learning

computer vision model for their wildlife conservation project.
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Related Research

Machine Learning, Neural Networks, and Convolutional Neural Networks

Machine learning is the field of study in which computer models are designed to

improve automatically through the process of training on example data (Géron, 2017;

Mitchell, 1997).  It emerged as a discipline from the more general subject of artificial

intelligence after the second world war (Russell & Norvig, 2016).  Neural networks are a

popular category of machine learning models commonly used for classification tasks, in

which the model is asked to identify the output class of new input (Murphy & Ebrary,

2012).

Neural networks are built from artificial neurons. The artificial neuron, inspired by

the biological neuron, is a mathematical function proposed by Warren McCulloch and

Walter Pitts in 1943 in which the weighted sum of the inputs plus a bias is run through an

activation function to determine the output (Figure 1) (Russell & Norvig, 2016).  The

activation function controlling the output of a neuron varies depending on the model;

popular activation functions include: logistic sigmoid, hyperbolic tangent (tanh), and

rectified linear (ReLU) (Géron, 2017).  Connected, artificial neurons become neural

networks (Figure 2).  The first neural network was a physical machine built by Marvin

Minsky and Dean Edmonds in 1950 using vacuum tubes and parts from a surplus B-24

bomber (Russell & Norvig, 2016).  Training a neural network is the process of adjusting

the weights and biases of the neurons using training data to improve the accuracy of the

model.  Training is done in multiple rounds called epochs.  After each epoch, the

network’s output error is calculated then a backpropagation algorithm determines how
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much each neuron contributed to the error (Géron, 2017).  The terms within a

backpropagation algorithm can change during each training epoch to fine-tune the model,

for example, the backpropagation algorithm Stochastic Gradient Descent has learning

rate and weight decay terms (Géron, 2017).

Figure 1

Artificial Neuron

Figure 2

Neural Network
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Neural networks are often categorized by their architecture which includes the

number, arrangement, and connections between, artificial neurons in the network.  Deep

learning neural network architectures are characterized by two or more layers of neurons,

called hidden layers, between the input and the output of the neural network.  If every

neuron in the layer is connected to every neuron in the next layer, the layer is fully

connected (Figure 3). Fully connected layers increase the accuracy of a neural network

but are computationally expensive and not always required (Géron, 2017).  CNNs

architectures are a subcategory of deep neural networks identified by the use of

convolutional and pooling layers to learn complex patterns from simpler patterns in the

input data using a limited number of neural connections (Figure 4) (Sewak et al., 2018).

In convolutional layers, neurons are connected to a limited number of nearby neurons that

summarize the input into feature maps (Géron, 2017). Pooling layers reduce the size of

the feature maps to lower the computational requirements of the model (Géron, 2017).

This architecture is inspired by the visual cortex of the mammalian brain and is

commonly used in computer vision applications to enable a computer to interpret the

contents of an image without human assistance (Lecun et al., 2015).  Images are most

frequently used as input for CNN models; however, it is possible to use any type of data

that has an inherent underlying structure, including time series, text, weather maps, or

audio files transformed into an image type structure (Sewak et al., 2018).
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Figure 3

Deep Learning Neural Network

8



Figure 4

Convolutional Neural Network

Although the first CNNs were developed and successfully used for computer vision

tasks in the 1980s, the computational barriers of the times prevented their widespread

adoption (Fukushima, 1980).  CNNs did not become practical until the 2000s when,

alongside steady increases in computational power, Oh and Jung (2004) discovered that

the implementation speed of CNNs could be increased twenty times by using Graphics

Processing Units (GPUs).  Later, pre-trained models for use in transfer learning became

freely available on the internet greatly reducing the resources needed to build an accurate
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CNN for a custom task.  Transfer learning is when the weights and biases of a model

pre-trained on a task are reused as part of a new model for a similar task; this process

increases training speed and reduces the amount of training input needed to achieve an

accurate model (Géron, 2017).  Together these events precipitated the current abundance

of research using CNNs; from 2000 to 2020 mentions of convolutional neural networks

in abstracts increased from 5 to 26,862 (Digital Science, 2021).

Animal Classification Models for Camera-trap Images

Machine learning models are increasingly used for animal classification in

conservation biology to identify animals in images (Nguyen et al., 2017; Norouzzadeh et

al., 2018; Tabak et al., 2018).  Animal classifiers receive images as input and output a list

of likelihoods indicating how confident the model is that each possible animal class is

present in each image.  Top-1 and top-5 accuracy are traditionally used to evaluate animal

classification models (Table 1) (Thoma, 2017).  These metrics are useful by providing

standard metrics for comparing animal classification models to each other and if the goal

of the project is to estimate species richness or abundance.  However, to better measure

model effectiveness for monitoring invasive species, this work developed and measured

two custom performance metrics, false alarm rate and missed invasive rate.  False alarm

rate reflects wasted time and resources.  Missed invasive rate, accounts for the high

ecological cost of undetected invasive animals (Table 1) (Thoma, 2017).
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Table 1

Model Performance Metrics

Performance metric Equation Field Status

top-1 accuracy # 𝑜𝑓 𝑡𝑖𝑚𝑒𝑠 𝑡ℎ𝑒 𝑡𝑜𝑝 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝑖𝑠 𝑐𝑜𝑟𝑟𝑒𝑐𝑡
# 𝑜𝑓 𝑖𝑚𝑎𝑔𝑒𝑠 𝑡𝑒𝑠𝑡𝑒𝑑

computer
science standard

top-5 accuracy # 𝑜𝑓 𝑡𝑖𝑚𝑒𝑠 𝑡ℎ𝑒 𝑐𝑜𝑟𝑟𝑒𝑐𝑠𝑚𝑖𝑡 𝑐𝑙𝑎𝑠𝑠 𝑖𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑡𝑜𝑝 5 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
# 𝑜𝑓 𝑖𝑚𝑎𝑔𝑒𝑠 𝑡𝑒𝑠𝑡𝑒𝑑

computer
science standard

false alarm rate # 𝑜𝑓 𝑒𝑚𝑝𝑡𝑦 𝑜𝑟 𝑛𝑎𝑡𝑖𝑣𝑒 𝑖𝑚𝑎𝑔𝑒𝑠 𝑙𝑎𝑏𝑒𝑙𝑒𝑑 𝑎𝑠 𝑖𝑛𝑣𝑎𝑠𝑖𝑣𝑒
# 𝑜𝑓 𝑖𝑚𝑎𝑔𝑒𝑠 𝑡𝑒𝑠𝑡𝑒𝑑

conservation
biology custom

missed invasive rate # 𝑜𝑓 𝑖𝑛𝑣𝑎𝑠𝑖𝑣𝑒 𝑖𝑚𝑎𝑔𝑒𝑠 𝑙𝑎𝑏𝑒𝑙𝑒𝑑 𝑎𝑠 𝑛𝑎𝑡𝑖𝑣𝑒 𝑜𝑟 𝑒𝑚𝑝𝑡𝑦
# 𝑜𝑓 𝑖𝑛𝑣𝑎𝑠𝑖𝑣𝑒 𝑖𝑚𝑎𝑔𝑒𝑠 𝑡𝑒𝑠𝑡𝑒𝑑

conservation
biology custom

Animal classification in machine learning computer vision models is categorized into

fine and coarse-grained tasks, each of which requires distinct methodologies.

Fine-grained animal classification tasks attempt to distinguish between similar species

(mouse versus rat) or individual animals within a species and are considered to be more

difficult, while coarse-grained animal classification tasks attempt to classify animals into

general groups (rodents, cats, birds, etc.).  The work presented here focuses on

coarse-grained animal classification tasks.  Images are often but not always cropped to

the area of interest before the classification step of the model.  Cropping removes

irrelevant background information to help with animal identification across different

contexts but increases the overall complexity of making and using a model (Norouzzadeh

et al., 2021).

In 2013, Yu and colleagues made one of the earliest attempts to classify animals in

camera-trap images using external feature extraction methods, manually cropped images,
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and a support vector machine (SVM) and achieved a classification top-1 accuracy of 82%

on 18 animal classes.  Soon after, Chen et al. (2014) attempted to fully automate the

process by using a CNN and a novel external animal cropping algorithm developed by

Ren et al. (2013) specifically for the highly dynamic scenes typically found in

camera-trap images.  Although Chen et al. (2014) only achieved a top-1 accuracy of 38%

on twenty animal classes, their methodology contained the key traits that would be vital

for upcoming success in the field.

Although Sharath Kumar et al. (2015) made the animal classification task simpler by

using hand taken images instead of camera-trap images, their work was still important, as

it demonstrated that animal classification tasks were within the realm of possibility.

Their model reached a top-1 accuracy of 82% on 25 animal classes, using a K-Nearest

Neighbor classifier model, an external feature extraction algorithm, and a fast but still

human-reliant cropping algorithm.  Villa et al. (2017) relied on manual cropping and

achieved a top-1 accuracy of 88.9% on 26 animal classes. Despite the time-consuming

disadvantage of manual cropping, their research demonstrated that newly developed

CNN models could classify animals in camera-trap images with a high degree of

accuracy.

In 2017, researchers developed fully automated external cropping algorithms for

animals in camera-trap images using segmentation algorithms (Zhu et al., 2018;

Giraldo-Zuluaga et al., 2017a).  Giraldo-Zuluaga et al. (2017b) used an animal detection

segmentation algorithm they had developed (Giraldo-Zuluaga et al., 2017a) to create a

species classification model with a top-1 accuracy of 92.65% on ten mammal classes.
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Yousif et al. (2017) built a block-based algorithm to automatically draw bounding boxes

around animals with an accuracy rate of 83.78% that assisted a CNN to reach a top-1

accuracy of 95.6% --but only on three coarse classes (animal, background, and human).

Most recently researchers have explored the ability of CNNs to detect the location of

the animal in the image, in addition to classifying the animal, with either a single CNN or

two separate CNNs.  The single CNN route uses a CNN architecture designed with

integrated object (animal) detection to classify the camera-trap image.  Schneider et al.

(2018a) used this approach to develop a faster region-CNN that achieved a top-1

accuracy of 93.0% and 76.7% on two models trained with different, relatively small

datasets (946 and 4,432 images respectively).  The CNN animal classifier developed by

Tabak et al. (2018) achieved a top-1 accuracy of 94% on 27 animal classes when tested

on an in-sample testing dataset (a dataset containing images from the same camera-traps

as the images in the model’s training dataset); on an out-of-sample testing dataset (a

dataset containing images from different camera-traps as the images in the model’s

training dataset) the model achieved a top-1 accuracy of 82%.  This model also used the

single CNN approach to animal detection and itself can be used as a binary animal

detection classifier (animal or no animal) on images from a completely different

ecosystem from which it was trained, with an accuracy of 94% (Tabak et al., 2018).

Two papers have explored the use of two separate CNNs for detecting and classifying

animals in camera-trap images.  The first CNN is a binary animal detection classifier that

filters out empty images and in some models crops the image to the animal. The second

CNN takes the non-empty images and classifies them by species or group.  A CNN
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binary animal detection classifier developed by Nguyen et al. (2017), had an accuracy of

96.6% that assisted a species classifier to reach a top-1 accuracy of 90.4% on three

animal classes.  Norouzzadeh et al. (2018) did a similar project, creating a binary CNN

animal detection classifier with an accuracy of 96.8%, that assisted their species classifier

to reach a top-1 accuracy of 93.8% on 48 animal classes. The two-step approach is the

method used in this paper.

Challenges of Camera-trap Images for Convolutional Neural Networks

CNN animal classifiers for camera-trap images must address generalization issues

like all machine learning models.  Beery et al. (2018) demonstrated that state-of-the-art

neural network classifiers experience accuracy drop-offs when classifying images from

camera sites on which they were not trained, with errors increasing up to 140%.  Tabak et

al. (2018) confirmed this trend, seeing a top-1 accuracy in their model at 94% for

in-sample images versus 82% for out-of-sample images.

Van Horn and Perona (2017) demonstrated that, when it comes to top-1 accuracy, it is

better to train image classifiers on image datasets that reflect the long-tailed distributions

found in the field instead of artificially balancing the datasets, except when the lack of

balance is extreme.  This idea was supported by Nguyen et al. (2017), who experienced a

drop in accuracy when balancing their dataset, as well as by Villa et al. (2017), whose

model was trained on an extremely unbalanced dataset and had top-1 and top-5

accuracies of only 35.4% and 60.4%.
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Invasive Predators as a Global Problem

The unchecked activities of humans have resulted in the earth's sixth global mass

extinction event (Barnosky et al., 2011).  The conservative calculated rate of global

extinctions is desperately fast and will only increase as the currently high rate of

population losses transform into extinctions (Ceballos et al., 2015; Ceballos et al., 2017).

In comparison to other species, terrestrial vertebrates on islands are at higher risk of

extinction because of multiple factors, invasive species are one major factor (Spatz et al.,

2017).

Invasive species occur when humans introduce into a landscape novel species that

harm endemic species (Beck et al., 2008).  They can also occur when the population of an

endemic species is increased through anthropogenic means to a level that harms other

endemic species (Colautti & MacIsaac, 2004).  Western colonization around the world is

responsible for most invasive species seen today; colonists enabled the spread of invasive

species by altering landscapes and/or by introducing invasive populations of species,

either unintentionally as stowaways or intentionally as food sources, pets, or weapons for

disrupting local systems (McNeely, 2001).

Invasive populations damage ecosystems in many ways including direct consumption,

the spread of disease, competition for resources, and the altering of ecosystem processes,

species abundance, or habitat (Mack et al., 2000). Invasive populations of predators

introduced into previously predator-free islands can be especially destructive to endemic

species, which often live in only a few locations and lack predator defenses (Russell et

al., 2017).  The introduction of rats has been particularly damaging with approximately
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40-60% of all globally recorded bird and reptile extinctions partially attributed to

invasive populations of rats (U.S. Fish and Wildlife Service, 2007).  Other destructive

invasive species commonly targeted for removal include hedgehogs, rabbits, possums,

mice, stoats, ferrets, weasels, foxes, deer, domestic cats, goats, and horses (DIISE, 2018).

While the spread of invasive species globally is an ongoing issue, many of the

original vectors through which invasive populations of animals established on small,

uninhabited islands (shipwrecks and the establishment of food sources for months-long

ship journeys) have mostly disappeared.  Several organizations have started to remove

invasive predators from islands to restore natural systems and save threatened species.

So far, approximately 1,233 mammalian eradications have been conducted on 806 islands

with a success rate of 88% (DIISE, 2018).  Governments are increasingly aware of the

threat invasive species pose to functional ecosystems and are taking action.  Aotearoa -

New Zealand, a prime example, has an ambitious Predator Free 2050 goal to remove the

most destructive invasive predators from the entire country by 2050 (New Zealand

Government, 2017).  However, with costs into the millions and the labor-intensive

requirements of current eradication methods, the number of eradication campaigns

completed is limited, despite the great need (Brooke et al., 2007).  If more or larger

islands are to be freed of invasive animals, new or enhanced methodologies are required.

One particular challenge in eradication campaigns is confirming that all invasive

animals have been successfully removed.  Eradication campaigns commonly consist of

two steps.  First, there is a removal step, during which invasive animals are removed

frequently through trapping or poisoning, followed by a monitoring step during which
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camera-traps are set out to monitor the island for individual animals that were missed.

Typically, someone must physically return to each camera between every one to three

months to retrieve the images.  Processing the images then takes several more months.

During this time, missed animals can reproduce and more effort and money must be spent

to initiate another removal campaign.

To stimulate novel improvements to the monitoring step, Conservation X Labs, an

organization that runs challenges to encourage the development of new conservation

technologies, and Island Conservation, a non-profit organization that removes invasive

animals from islands, have published an open challenge called "Confirming Zero" to help

find solutions.  Implementing a CNN to automatically identify invasive animals in

camera-trap images quickly and immediately after retrieval would be one such solution.
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Objectives

Despite the accuracy of CNN models in automatically identifying animals in

camera-trap images, wildlife managers are not widely adopting CNN models for their

camera-trap projects.  Hindering their adoption is a lack of information on how the

variations in building, training, using, and measuring model performance affect their

utility in realistic wildlife conservation projects. More generally, wildlife managers may

not know that these models can be effective and, if they do, there is no clear guidance on

how to select the right model and train it for their specific project.

To address these immediate challenges, I trained several CNN animal classification

models to test the effectiveness of the models in detecting invasive species in a simulated

invasive species monitoring camera-trap project (Table 2).  The models addressed the

following questions using two standard computer science performance metrics, top-1 and

top-5 accuracy, and two custom conservation biology metrics, false alarm rate, and

missed invasive rate:

Q1 - How do model performance metrics change if a model’s output classes are

grouped into invasive, native, or empty classes or left as individual species classes?

Q2 - How do model performance metrics change as the maximum number of training

images of each output class from each camera site scales logarithmically both in models

with grouped and individual output classes?

Q3 - How do model performance metrics change when novel invasive animal species

classes not present in the training dataset are included in the testing dataset?
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Q4 - How do model performance metrics compare between custom and off-the-shelf

biome models and between large and small project-specific models?

Table 2

Research Questions and Models

Research

question
Model

Training

datasetᵃ
Testing

datasetᵇ

Q1
grouped A A

individual B B

Q2

10 image grouped C A

100 image grouped D A

1,000 image grouped E A

10 image individual F B

100 image individual G B

1,000 image individual H B

Q3

large project
without novel species I D

with novel species I E

small project
without novel species J F

with novel species J G

Q4

biome
custom B B

off-the-shelf B C

large project-specific I D

small project-specific J F

Note. Some training/testing dataset combinations were used multiple times to answer
different research questions.

ᵃ Table 3. ᵇ Table 4.
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Methods

Camera-trap Image Dataset

Training and testing images were selected from the Wellington Camera Traps dataset,

the publicly available labeled camera-trap image dataset with the most relevant species

for the invasive species monitoring scenario at the time this project started (Anton et al.,

2018).  This dataset is available via the Labeled Information Library of Alexandria:

Biology and Conservation (http://lila.science/), and consists of 270,450 images taken of

17 animal classes at 182 camera sites in Aotearoa - New Zealand with 17% of images

labeled empty.  Images were taken in sequences of three and labeled by citizen scientists

and/or professional ecologists from Victoria University of Wellington.  Images in the

same sequence were given the same label even if the animal did not appear in all images.

Importantly, the dataset accurately reflects the unbalanced distribution of animal species

caught in camera-trap images in general (Figure 5), the different frequencies at which

each animal type appears at each camera-trap site, the high frequency of empty images,

and the different number of images captured at each camera-trap site (Van Horn &

Perona, 2017).

20

http://lila.science/


Figure 5

Species Distribution of the Wellington Camera Traps Dataset

To increase the size of the training datasets and to increase CNN accuracy, standard

data augmentation techniques were applied to all training images (Shorten et al., 2019).

Augmentation included random horizontal flipping, cropping, and color jitter.  Images

labeled as rat, Norway rat, and ship rat were combined in a single "rat" label, hare and

rabbit were combined into a single "hare" label. Each image was given two labels for

different models—an individual label specifying the species or group of species and a

grouped label where birds were labeled as "native," empty frames labeled as "empty," and

all others (unclassifiable, cat, deer, dog, hare, hedgehog, mouse, mustelid, pig, possum,

and rat) labeled as "invasive."
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Training and Testing Datasets

All images from the Wellington Camera Traps dataset were first put through

Microsoft's MegaDetector, an animal detection classifier for camera-trap images, to crop

the animal from the image (Beery et al., 2019).  MegaDetector uses a Faster-RCNN

architecture with an InceptionResNetv2 base network (He et al., 2016; Szegedy et al.,

2016).  Images labeled as empty were cropped using the boundary boxes (crop points)

from the last detected animal. The Megadetector detected an animal in 91.2% of the

Wellington Camera Traps images containing animals.

Next, the cropped images were split into training datasets (Table 3) and testing

datasets (Table 4) in such a way as to both mimic a real invasive species monitoring

project and meet standard CNN dataset practices using the reasoning and process detailed

in Figure 6.  For each camera site in the dataset, images were sorted by date, from oldest

to most recent, to reflect the reality that camera-trap images classified using the model

will be taken later than the images used in training. In training datasets A (grouped) and

B (individual) the included images were the first 80% of the images by date independent

of output class.  Training datasets C through E (grouped) and F through H (individual)

included the first ten, one hundred, and one thousand images of each output class.  All

images except those labeled empty, bird, or hedgehog were removed from training dataset

F to make training dataset I.  Hedgehogs were selected because of the high number of

available images in the database and their importance as an invasive species (Predator

Free 2050, 2017).  Training dataset J was a reduced dataset of training dataset I using

only images from the ten camera sites with the most hedgehog images.
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Table 3

Model Training Datasets

ID

Maximum
training images

per class per
camera

Camera
site

count

Image
count

Invasive to
non-invasive

ratio

Output Classes

Type Count Labels

Aᵃ all available 171 196,957 0.35 grouped 3 nativeᵇ, invasiveᶜ, empty

Bᵃ all available 171 196,957 0.35 individual 13

empty, bird,
unclassifiable, cat, deer,

dog, hare, hedgehog,
mouse, mustelid, pig,

possum, rat

C 10 171 6,435 0.74 grouped 3 nativeᵇ, invasiveᶜ, empty

D 100 171 51,717 0.47 " " "

E 1,000 171 214,403 0.37 " " "

F 10 171 10,205 1.76 individual 13

empty, bird,
unclassifiable, cat, deer,

dog, hare, hedgehog,
mouse, mustelid, pig,

possum, rat

G 100 171 64,617 0.84 " " "

H 1,000 171 216,417 0.39 " " "

I 10 171 4,089 0.11 individual 3 empty, bird, hedgehog

J 10 9 316 0.44 " " "

ᵃ Training datasets A and B consist of the same images but with different output class
labels. ᵇ Animals included in the native output class are birds. ᶜ Animals included in the
invasive output class are unclassifiable, cat, deer, dog, hare, hedgehog, mouse, mustelid,
pig, possum, and rat.
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Table 4

Testing Datasets

ID
Camera

site
count

Image
count

Invasive to
non-invasive

ratio
Sample type

Classes

Type Count Labels

Aᵃ 171 27,170 0.03 in-sample grouped 3 nativeᵇ, invasiveᶜ, empty

Bᵃ 171 27,170 0.03 in-sample individual 13

empty, bird, unclassifiable,
cat, deer, dog, hare,

hedgehog, mouse, mustelid,
pig, possum, rat

C 10 428 0.03 out-of-sample individual 13 "

D 171 26,436 0.01 in-sample individual 3 empty, bird, hedgehog

E 171 26,681 0.01 in-sample individual 5 empty, bird, hedgehog, rat,
unclassifiable

F 9 3,585 0.00 in-sample individual 3 empty, bird, hedgehog

G 9 3,596 0.01 in-sample individual 5 empty, bird, hedgehog, rat,
unclassifiable

ᵃ Testing datasets A and B consist of the same images but with different output class
labels. ᵇ Animals included in the native output class are birds. ᶜ Animals included in the
invasive output class are unclassifiable, cat, deer, dog, hare, hedgehog, mouse, mustelid,
pig, possum, and rat.
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Figure 6

Process for Splitting Camera Trap Images into Training and Testing Datasets

Note. Process executed using a Python script.

All testing datasets were made from images not included in any of the training

datasets.  For testing datasets A (grouped) and B (individual) images labeled empty or

bird, and a random 1% of each invasive class (which simulates the reduced animal

numbers after an eradication campaign) were included. Testing datasets D and E

contained only images labeled empty, bird, or hedgehog, and empty, bird, hedgehog, rat,

or unclassifiable, respectively.  Testing datasets F and G were the same as D and E

respectively but only contained images from the ten camera sites with the most hedgehog
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images.  The final step for all training and testing datasets was to exclude all images from

the same 11 (1 for training dataset J and testing datasets F and G) random camera sites.

The excluded images from testing dataset B were used to create testing dataset C, an

out-of-sample test for the off-the-shelf biome model.

Model Development and Training

All CNN models were trained using Pytorch, a python package for building, training,

and testing neural networks with GPU acceleration (Paszke et al., 2019), on a custom

computer with an Intel Core i7-8700K, Nvidia GeForce GTX 1080 Ti GPU, and 32 GB

of RAM.  The models use the ResNet-18 architecture (He et al., 2016) pretrained on the

imagenet database (Deng et al. 2009) with a rectified linear activation function (ReLU),

Stochastic Gradient Descent with momentum for backpropagation (Goodfellow et al.,

2016), and learning rates and weight decays matching those of Norouzzadeh et al. (2018)

and Tabak et al. (2018).

Model Analysis

Models were evaluated on the following performance metrics: top-1 and top-5

accuracy, false alarm rate, and missed invasive rate (Table 1).  Top-5 accuracy is only

reported for models with more than five output classes (models with five or fewer output

classes will always have top-5 accuracies of 100%). To answer the research questions

some of the models were analyzed multiple times using different testing datasets (Table

2).
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Description of Models

Ten CNN models using ten training datasets (Table 3) and seven testing datasets

(Table 4) in 13 combinations were developed and tested to assess each of the objectives

of this research. Some of the model/testing dataset combinations were used in multiple

research questions but were assigned different model names for each research question

for clarity (Table 2).

To assess research question 1, two models were trained—grouped and individual—to

determine what type of output classes worked best for the invasive species monitoring

scenario (Table 2).  The training (A and B) and testing (A and B) datasets for both models

contained the same images but were sorted into different output classes (Table 3, Table

4).  For the grouped model the species were grouped into empty, native, and invasive

classes; for the individual model, the species were left as individual classes.

Six models were trained to address research question 2, to help managers decide

between the desired accuracy of the model and the resources needed to collect and label

images for training (Table 2).  Three models (10/100/1,000 image grouped) used grouped

output classes with training datasets C through E, another three (10/100/1,000 image

individual) used individual output classes with training datasets F through H (Table 3).

All six models included in their training datasets a maximum of ten, one hundred, or one

thousand images of each output class from each camera site appropriately matched to

their model name (Table 3).  Due to the naturally uneven distribution of animal species in

the camera-trap images and the rarity of many species, most class/site combinations did

not reach one thousand or even one hundred training images.  The testing datasets (A and
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B) for all six models contained the same images (also the same images as the question 1

testing datasets) but were sorted into different output classes as appropriate (Table 4).

To assess research question 3, two models (large project and small project) were

trained using datasets I and J and tested on two testing datasets each (D through G) to see

how the performance metrics reacted when novel invasive animal species classes not

present in the training dataset were included in the testing dataset (Table 2).  These

models could not classify the novel species correctly because they had no matching

output class, instead, they selected an output class from those present in their training

dataset.  The training datasets consisted only of bird, hedgehog, and empty images, from

171 camera sites for the large project and nine camera sites for the small project (Table

3).  The four testing datasets consisted of images taken from matching numbers of

camera sites; one testing dataset of each pair contained images with novel invasive

animal species and species in the training dataset (birds, hedgehogs, empty, rats, and

unclassifiable), the other only species in the training dataset (birds, hedgehogs, and

empty) (Table 4).

Finally, four models were trained and tested mapping to four realistic field situations

for invasive species monitoring camera-trap projects (Table 2).  Two scenarios

represented biome models with 13 individual species output classes covering any likely

species in the region, both scenarios used training dataset B (Table 3).  One biome model

used testing dataset B to represent a project where a custom model was trained using

images from the project’s own camera sites (in-sample), the other used testing dataset C

to represent a project where an off-the-shelf model was used which was not trained using
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images from the project’s own camera sites (out-of-sample) (Table 4).  The two other

scenarios represented custom models with only the three individual species output classes

(birds, hedgehogs, and empty) specifically required for the project (Table 3).  The large

project-specific model included 171 camera sites using training dataset I; the small

project-specific model included only nine camera sites using training dataset J (Table 3).

The project-specific models used testing datasets D and F which matched their training

datasets in both output classes and the number of camera sites (Table 4).
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Results

Among the 13 model/testing dataset combinations, top-1 accuracy ranged from 59.1

to 91.8%, top-5 accuracy from 94.7 to 99.6%, false alarm rate from 1.5 to 20.8%, and

missed invasive rate from 0.0 to 44.2% (Table 5). A model’s performance metrics were

related; models with higher top-1 accuracies had lower false alarm rates but higher

missed invasive rates (Figure 7).  Top-1 and top-5 accuracy rates for individual output

classes within models showed that output classes with more training images had higher

accuracies, with some output classes reaching 100% in both top-1 and top-5 accuracy

(Figure 8).

Table 5

Model Results

Model
Top-1 Top-5ᵃ False alarm Missed invasive

Accuracy Count Accuracy Rate Count Rate Count

grouped 91.8% 24,938 - 1.5% 417 23.5% 205
individual &
custom biome 91.3% 24,817 99.6% 1.9% 510 24.0% 210

off-the-shelf biome 81.5% 349 98.1% 1.6% 7 34.1% 14
10 image grouped 71.2% 19,251 - 16.1% 4,371 10.8% 94
100 image grouped 78.5% 21,336 - 9.5% 2,568 13.8% 121
1,000 image grouped 85.0% 23,084 - 2.6% 713 23.9% 209
10 image individual 69.0% 18,752 94.7% 19.1% 5,185 8.5% 74
100 image individual 74.6% 20,272 98.0% 8.7% 2,367 15.8% 138
1,000 image individual 83.1% 22,589 99.2% 4.1% 1,127 22.3% 195
large project without novel species 77.6% 20,512 - 2.7% 708 14.3% 20
large project with novel species &
large project-specific 77.1% 20,567 - 2.5% 662 44.2% 170

small project without novel
species 60.4% 2,165 - 20.5% 736 0.0% 0

small project with novel species &
small project-specific 59.6% 2,145 - 20.8% 749 33.3% 7

ᵃ Top-5 accuracy only reported for models with more than five output classes.
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Figure 7

Top-1 Accuracy as a Function of False Alarm and Missed Invasive Rate

Figure 8

Top-1 and Top-5 Accuracy by Output Class

Note.  Each marker represents a model output class of either an individual species or a
group of species.
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Both models trained to address question 1 (grouped and individual), performed

similarly with the grouped model demonstrating slightly higher top-1 accuracy and

slightly lower false alarm and missed invasive rates (Figure 9).

Figure 9

Grouped Versus Individual Models

Note. Both models used the same training datasets but with different output classes.

Performance metrics for the six models used to assess question 2 (10/100/1,000

image grouped and individual) demonstrated that increasing the maximum training

images per class per camera increased top-1 accuracy and decreased false alarm rates, but

increased missed invasive rates (Figure 10).  The three grouped models performed

similarly compared to their matched individual models with the grouped models

demonstrating slightly higher top-1 accuracy and slightly lower false alarm and missed

invasive rates (Figure 10).
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Figure 10

Effects of Maximum Number of Training Images per Class per Camera Site

Because there were different numbers of each species at each camera site in the

training datasets, as the maximum number of training images per class per camera

increased, the ratio of invasive to non-invasive (empty and bird) images in the training

dataset decreased.  An increase in the ratio of invasive to non-invasive images was

associated with a decrease in top-1 accuracy and a decrease in missed invasive species

rates, but an increase in false alarm rates (Figure 11).  Note, a ratio of 1.0 does not mean

an equal number of training images in each output class but an equal number of invasive

images of any of the 11 invasive classes and non-invasive images of either of the two

classes empty or bird.
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Figure 11

Effects of Invasive to Non-invasive Animal Image Ratio in the Training Dataset

When the large and small project models were tested with and without novel invasive

species classes in the testing dataset top-1 accuracy and false alarm rates were very

similar.  However, the missed invasive rate was markedly higher with the novel species

included; in the large project model, the missed invasive rate was three times higher with

the novel species than without (Figure 12).

Figure 12

Effects of Novel Invasive Species in the Testing Dataset
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Assessing the four models representing the realistic field situations for invasive

species monitoring camera-trap projects showed that the custom biome model had the

highest top-1 accuracy (Figure 13).  The model with the lowest false alarm rates was the

off-the-shelf biome model, and the model with the lowest missed invasive rate was the

small project-specific model (Figure 13).  No one model maximized beneficial results for

all three metrics; rather, each model had different strengths and weaknesses.  Comparing

the two biome models showed that top-1 accuracy and missed invasive rate performance

dropped on the out-of-sample testing dataset compared to the in-sample testing dataset,

with increased error rates of 112.6% and 42.1% respectively, while false alarm rate

performance improved on the out-of-sample testing dataset with decreased error rates of

15.8% (Figure 13).

Figure 13

Biome and Project-specific Models
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Discussion

The overarching purpose of this research was to provide direction for managers on

the most accurate models for analyzing camera-trap images, given their project goals.

Specifically, this work focused on how to best use computer vision animal classification

models to detect invasive species at low population levels.  What emerged clearly from

the results of this research is that wildlife managers selecting a model for use for any

camera-trap project must assess the tradeoffs both between different performance

metrics—such as top-1 accuracy, false alarms, and missed invasive species—as well as

the costs of model procurement, difficulty of use, and time needed to produce a model.

Overall, the models in this study performed on par with animal classification models

in other recent camera-trap research when assessed via top-1 and top-5 accuracy, the only

performance metrics available for comparison (Norouzzadeh et al., 2018; Schneider et

al., 2018a; Tabak et al., 2018).  As generally expected in machine learning, output classes

with more training images demonstrated higher accuracy, and this research showed that

pattern (Goodfellow et al., 2016).  Results of this study also revealed an increase in top-1

error rates when moving from an in-sample testing dataset to an out-of-sample testing

dataset as was reported by Beery et al. (2018) and Tabak et al. (2018).  However, top-1

and top-5 accuracy are not the only metrics of importance, when false alarm and missed

invasive rates are taken into account a more complex picture emerges, where the best

model is not simply the one with the most training images.

Of the eight models tested on the datasets containing the same images (grouped,

individual, 10/100/1,000 image grouped and individual), the best models concerning
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top-1 accuracy (91.8%) and top-5 accuracy (99.6%) were the grouped and individual

models, respectively.  The grouped model also had the lowest false alarm rate (1.5%) of

the eight models.  In contrast, the model that performed best in regards to the lowest

missed invasive rate (8.5%) was the 10 image individual model.  In general, models that

performed well on the top-1 and top-5 accuracy metrics also performed well on the false

alarm metric but performed poorly in the missed invasive metric.  This trade-off is likely

caused by the ratio of invasive to non-invasive images in the training and testing datasets,

and the sensitivity of the performance metrics to this ratio.

Although this research did not look specifically at the effects of balancing the number

of images of each output class included in the training dataset in isolation from the total

number of training images, the models with a higher ratio of invasive to non-invasive

training images, but fewer total training images—due to the undersampling of common

classes—had lower top-1 and top-5 accuracies compared to models without

undersampling where the ratio was lower but the number of training images higher.  This

same pattern was noted by Nguyen et al. (2017) and Van Horn and Perona (2017).

However, the models with higher ratios of invasive to non-invasive images had lower

missed invasive rates.  This suggests that artificially balancing a dataset by

undersampling common classes is only a drawback if the most important metric is overall

accuracy.  However, if not missing a rare species, such as an invasive species at low

population levels, is vital, an artificially balanced dataset decreases the chance of missing

an instance of that species, albeit at the cost of more false alarms.  When taken in context

with the machine learning adage that the more relevant training data provided to the
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model the more accurate the model, the definition of relevant relates to the metric of most

importance.  If a wildlife manager's top priority is lowering missed invasive rates, there is

a point at which the addition of empty and native species images to the training dataset is

not relevant, marked by the deterioration of the missed invasive rate even if other metrics

continue to improve.

Selecting an appropriate performance metric in regards to the distribution of output

classes in the expected testing dataset is also important. When images of novel invasive

species not seen in the training datasets were added to the testing datasets of large and

small project models, top-1 and top-5 accuracy dropped only a little but missed invasive

rates increased a lot.  The missed invasive rate metric is more sensitive to the errors

caused by the novel species because its denominator is the number of invasive images in

the testing dataset (a small number), not the total number of images in the testing dataset

(a large number).  Wildlife managers most concerned about missing an infrequent species

should judge models based on a metric that is more, rather than less, sensitive to the

appropriate errors.

Grouping the output classes did improve the performance of the models in all three

metrics, but only by a small amount.  If this effect holds for other datasets, the value of

this improvement depends on the specifics of the project, specifically whether the small

performance improvement is worth the loss of species-specific information, the cost of

manually retrieving the species-specific information if desired, and the cost of obtaining a

grouped output class model if one is not already available. Small improvements in

performance metrics are not always worth the cost of procuring a new model.
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The results of this study also indicated that grouping output classes together is not a

substitute for including training images of each species the model will encounter.  As

shown by the increase in missed invasive rates in the models tested on novel invasive

species, the novel invasive images (rat and unclassifiable) were not conveniently

classified as the only available invasive species output class, hedgehog.  Although a rat

may appear visually closer to a hedgehog than a bird to the human eye, the computer's

"eye" does not come to the same conclusion.  This also suggests that the models are

representing the grouped output class "invasive" as a positive label with multiple visual

forms (hedgehog or rat or cat) as opposed to a negative form (not a bird or empty), which

matches the generalized understanding that CNNs are analyzing visual patterns and not

using other forms of logic.

Finally, if expertise in computer science is available, a custom-trained model is

preferable to an off-the-shelf one for multiple reasons. First, the same biome model

performed better on top-1 accuracy and missed invasive rate when used as a custom

model (tested on in-sample images) than when used as an off-the-shelf model (tested on

out-of-sample images).  Second, the images used for training the model can be

customized to reflect the goals of the project and the performance metric of choice.  Even

models with only a few hundred training images can outperform an off-the-shelf model

trained on thousands of images, as long as the training images are those that are most

relevant to the performance metric of choice.

However, given the significant amount of time and expertise in computer science

required to train a custom model, the performance benefits might not outweigh the costs.
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Especially since off-the-shelf models still perform well and might be accurate enough for

some wildlife use cases.  As supported by this research, the likelihood of an off-the-shelf

model working well enough for a camera-trap project is increased if the distribution of

species in the project’s camera-trap images matches the species distribution seen in both

the training and testing datasets of the chosen off-the-shelf model, and the metrics used

for assessing the performance of the off-the-shelf model coincides with the goals of the

project.

To further judge the acceptability of using any animal classification model, it is

valuable to translate the performance metric rates into expected counts given the number

of images in a project.  For example, if the testing images from the small project-specific

model were classified using the off-the-shelf model, there would be approximately 52

false alarms and 11 missed invasive images, compared to the original 736 false alarms

and no missed invasive species images.  The particular resources and goals of a project

dictate which model is preferable.
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Recommendations

Although the pursuit of a perfect computer vision model for detecting and classifying

camera-trap images is worthy, current models already work well enough for many

applications.  The challenge is to find and train a model that works for a specific project.

As the research here highlights, evaluating tradeoffs to select an appropriate model can be

difficult.  Custom models offer higher performance, depending on the performance

metric, even with limited training images; and they offer the chance to customize the

performance metrics.  But custom models require more time and expertise.  Off-the-shelf

models have less flexible performance metrics and offer somewhat lower performance,

but require less time, money, and expertise to implement.

If the costs and expertise required to create a custom model are beyond reach,

managers should look for an off-the-shelf model that:

● Reports the performance metric most important to the project or provides the

information to calculate that metric.

● Uses a training dataset with a similar distribution of images per species as the

expected distribution in the project’s own camera-trap images.

When it is possible to build a custom model:

● Use training images from camera-traps at the project site depicting each species

the model will classify.

● Include in the training dataset all available images of the most important species

to the performance metric of choice, including images from other projects.

● Limit the number of less relevant classes to maintain a balanced class ratio.
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The work of improving machine learning computer vision animal classification

models for camera-trap images can be advanced by exploring the use of different metrics,

such as the missed invasive rate reported here, to inform the training process of the

model.  Other techniques worth exploring include adjusting the data augmentation

techniques used on individual output classes that are more or less relevant to the

performance metrics, and further methods for handling high-class imbalance in training

datasets.

It is important to incorporate new machine learning classification and detection

models as they continue to evolve and improve into wildlife conservation applications.  A

worthy area of further research is the study of how building and using these models can

be simplified to the point that they are within reach of all wildlife managers and their

projects.  To do so will require bringing wildlife managers together with user experience

designers and engineers to design an end-to-end smart camera-trap system that is accurate

and usable.

Finally, wildlife managers without enough expertise in the computer science field to

build a model should reach out to local college and university computer science

departments.  There are many graduate students, and even undergraduate students,

capable and willing to take on applied projects that will benefit the environment.  Such

challenges allow students to use their skills in service of our environment and to teach

them the power they have to help.  There is a growing movement of people in all

disciplines who want to use their skills for good. Fostering these interdisciplinary
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connections and integrating environmental awareness into all human activities, will be

vital as we tackle the unprecedented environmental threats we face.
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Appendix A

Epoch
number

Weight
decay

Learning
rate

1-18 0.0005 0.01
19-29 0.0005 0.005
30-43 0 0.001
44-52 0 0.0005
53-55 0 0.0001
Note. Model training variables learning rate and weight decay by training epoch are the
same as those used by Norouzzadeh et al. (2018) and Tabak et al. (2018).
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