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ABSTRACT 

PHYSICS-BASED MODELING OF PHASE-CHANGE MEMORY DEVICES AND 

MATERIALS 

by Johan Saltin 

Artificial intelligence (AI) has become a key enabler in many applications but requires 

fast and energy-efficient computation. IBM is exploring an “Analog AI" acceleration 

approach using phase change memories (PCM). As such, there is a need to accurately 

model the physics inside each PCM cell, including the interplay between thermal and 

electrical dynamics, and the impact of PCM polycrystal grains and grain boundaries in 

materials such as Ge2Sb2Te5. The thesis uses an existing thermo electrodynamic 

Technology Computer-Aided Design (TCAD), which was created at IBM, to simulate the 

intermediate resistance states critical to the “Analog AI" application. The thesis discusses 

the simulations thermal behavior, simulates against industrial tools, and uses the three-

dimensional conservation of energy to confirm the requirement of a TCAD tool. As an 

accurate thermal simulator, the thesis continues to discuss and implement Poole Frenkel 

to simulate against experimental PCM device data. Thereafter, it discusses the 

complication of chalcogenide material and the impact of the polycrystalline electrical 

impact of grain boundaries. The availability of an accurate TCAD simulation is expected 

to have significant impact on the understanding and design of future Analog AI systems. 
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1 INTRODUCTION 

1.1 Big Data 

The internet is the global system of interconnected communication between networks 

and devices. Today, 5 billion people use the internet; by 2022 that number will be 6 

billion, which is more than 20% of the growing global population. [1] 

Big data describes the large volume of data on the internet, both structured and 

unstructured. However, it is not the amount of data that is important; it is what 

organizations do with the data that matters. Big data can be analyzed for insights that lead 

to better decisions and strategic business moves. By 2022, the amount of data in the 

world is estimated to grow to 175 zettabytes of data, where a zettabyte is 10 to the 21st 

power. [1] To cope with the large amount of data, extensive algorithms need to 

strategically process the information with different methods (Fig 1). 

 

Fig. 1.  Performance against amount data for manual data manipulation, standard machine 

learning, and deep neural networks. [2] 
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An algorithm is a finite sequence of well-defined, computer-implementable 

instructions, typically used to solve a class of problems or to perform a computation. 

Man-made algorithms can handle moderate amounts of data; however, the performance 

of scaling with large amounts of data becomes a hassle, especially when there are many 

different types of data (Fig. 1). 

Machine learning (ML) uses algorithms to parse data, learn from it, and make 

informed decisions based on what it has learned. While it can work well for large 

amounts of data, its performance saturates as the amount of data increases (Fig. 1). Its 

saturation is due to the need for manual extraction of the features for the algorithms to 

learn. [3] 

Deep learning (DL), on the other hand, involves artificial neural networks that can 

learn and make intelligent decisions on their own (Fig. 1). Instead of needing manual 

extractions, the DL does so itself, creating deep artificial neurons that continues to 

increase performance with larger amounts of data. [3] 

 
Fig. 2.  Neural networks in A) electrical hardware and B) bio hardware (brain). [4] 

These artificial neural networks were inspired through studies of a naturally occurring 
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neural network in the human biological hardware: the brain (Fig. 2 B). The brain is made 

up of complex parts that contain many billions of neurons. As signals travel from one 

axon to a dendrite through a synapse, signals will change dependent on the chemical 

ionic composition, creating instances, fantasies, memories, or object identification (Fig. 

2). Similar interactions occur within deep neural networks, with signals entering one 

layer of neurons leading to a cascade of effects that are triggered in neurons deeper 

within the network (Fig. 2 A). While a brain is a biological wetware that works by 

biochemistry, a computer implements a deep neural network (DNN) with software 

running on electronic hardware, such as digital accelerators, CPUs, or GPUs [5]. These 

kinds of hardware are all based on the Von Neumann architecture. 

1.2 Analog Accelerators 

The digital accelerator, a customized CPU, is made after the Von Neumann 

architecture. It is made to compute specific processes to reduce strain on the main CPU 

(Fig. 3) [5]. The digital accelerator connects to a bus for obtaining and delivering data. A 

small part of this data is used to tell the compute unit what operation to perform, with the 

remaining part of the data serving as the operands. If two values were to be multiplied, 

alpha and beta, using this digital design, they would initially reside in a memory unit 

(Fig. 3). Memory alpha must travel to a location in the CPU repeatedly, as does memory 

beta. Now the compute unit multiplies them into gamma. The new data element gamma 

must then travel back to the memory. These four steps of computation have two 

drawbacks: the energy cost of data movement is comparable to the actual cost of doing 
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the multiplication, and the bus has a limited bandwidth; therefore, the computation may 

slow down because of the speed of transferring data [5]. 

 
Fig. 3.  A) Digital accelerators based on the Von Neumann Architecture (VNA) and B) 

the none-VNA analog accelerator. [5] 

The analog accelerator is a device capable of in-memory computation, which is based 

on the non-Von Neumann architecture (Fig. 3) [6]. If two values, alpha and beta, are 

multiplying in the analog design, either alpha or beta reside in the memory unit while the 

other enters from a separate memory. Multiplication is done within the memory array and 

the product is read from the bottom of the column (Fig. 3). This architecture avoids costly 

data movement by performing computation where the data reside and can operate on 

entire vectors beta multiplying an entire matrix alpha simultaneously. Therefore, the 

analog accelerators improve energy efficiency for DNN applications by reducing the data 

movement. While there are different analog accelerators, this kind of device is inherently 

good for DNN applications for its parallelism despite the imprecision of analog 

computation. 
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Fig. 4.  A) Computational graph & B) Hardware implementation of neural networks. [5] 

[6][7] C) A PCM cell structure representation [8]. 

A neural network consists of a sequence of layers, with each layer having a set of 

neurons (Fig. 4A) [8]. The value, or excitation, of a downstream neuron computes by 

taking an inner product between the vector of upstream neurons in the previous layer of 

neurons (N) and the vector of weights (w) corresponding within it. This multiply and 

accumulate operation is done in analog hardware through a crossbar structure of resistive 

elements, which encode the weights of the network as conductance values (Fig. 4B and 

C). Values of the input neuron (N) encode as voltages V(t) and apply to the elements in a 

row. Through ohms law, the multiplication is performing the operation between the N 

and w terms [8]. Since weights are either positive or negative, it is the difference in 

conductance of two devices that encodes them. Because these multiplication results run 

through the resistors as an electrical current, they are accumulating all of the product 

terms along each column using Kirchhoff’s current law and evaluates them at the bottom 
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of the array (Fig. 4 B). Thereafter, a nonlinearity function, f(x), squashes the result to 

produce the output neuron M. Each layer of the network continues to perform the 

multiply and accumulate operation. 

One resistive element that can act as the weight is the phase-change memory (PCM) 

(Fig. 4C). The PCM unit cell is an electrically tunable resistor, which acts as the 

manipulating resistance variable. Because these analog accelerators depend on the precise 

manipulation of the variable resistance unit at each node of the crossbar array, it is crucial 

to understand and accurately model the underlying physics. Therefore, the electrically 

tunable resistors in the DNN crossbar array motivates to simulate the PCM device and its 

operations. 

1.3 Phase Change Memory 

There are multiple designs of PCM devices, such as a mushroom cell and a projected 

type (Fig. 5). In each design there is a two-terminal device that forces current to pass 

between a constricting region of phase change material, a chalcogenide layer. The 

constriction is generating heat and switches the device state to different resistances. The 

large cell in the crossbar design (Fig. 5) is called a mushroom cell, because the hot spot 

will create a hemispherical dome over the narrow bottom electrode shown in dark gray 

that is called the heater [9]. In a projected type design (Fig. 5) a cylinder of PCM is 

surrounded by a larger cylinder of slightly conductive material (shown in red) so that 

resistance changes within the (orange) PCM material can steer current into, or out of, this 

outer shell [10]. However, the rest of the thesis regards to the mushroom cell. 
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Fig. 5.  PCM cross bar devices, beside a projected and mushroom cell with amorphous 

plug and crystalline surrounding it. [9] 

As a current is conducted through the mushroom cell from the top to the bottom 

electrode, this chalcogenide layer gets hot and can change states, switching between a 

disorganized amorphous phase that has high resistivity and an ordered crystalline phase 

that has low resistivity. These changing local properties cause the device to switch weight 

in the neuron layers. When used as a binary memory device, the low resistance state is 

called the set state, and the process of switching into the high resistance state is called the 

reset operation. 

Starting in set state, a mushroom cell full of crystalline material (Fig. 6 Set state) is a 

highly conductive material. If a small read voltage passes through it, small enough to not 

disturb the material state and measure the current out, it shows a low resistance 
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corresponding to the crystalline or set state (Fig. 6 Set state). However, the actual applied 

voltage gets divided between the PCM device and any other circuit elements in series 

with the memory device; if this other circuit element is a resistor, it presents a diagonal 

load line that intersects the IV curve of the PCM device itself (Fig. 6 Set State B). 

 

Fig. 6.  The different states of PCM operation, RESET and SET. Describing the change in 

applied voltage against the device current and resistance. [11] [12] 

If a much stronger current passes through the device, above the reset threshold, the 

device becomes hot through joule heating; it melts a hemispherical portion in the material 

at temperature of around 600 degrees Celsius (in GST, later discussed) [11]. With 

increasing temperature, its conductivity increases, directing larger current fields in the 

molten state (Fig. 6 Reset Operation). The larger voltage pulse is called the reset 

operation. 
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As the electrical pulse stops, the cooling process starts quickly and rapidly because 

the device is small. If the material is brought out of the liquid state and down to room 

temperature fast enough, without giving time for crystallization to occur, it has 

successfully quenched the device. This results in an amorphous plug in the material, right 

at the top of the narrow heater electrode, which causes the resulting device resistance to 

increase (Fig. 6 Reset State). A PCM device can easily exhibit 100x or larger resistance 

ratio between the set and reset states. However, since current is the dependent factor, the 

resistance depends on electrical pulse length, electrical intensity, or heater size (Fig. 6 

Reset State C). If there are devices with different heater diameters, there are changes in 

both the voltage at which the reset transition occurred and the differences in the 

maximum total resistance. This is undesirable because it means that it is important to 

fabricate every device to have the same heater size. However, it turns out each of these 

devices can be brought to intermediate resistance states between the full set and reset 

states. This creates great opportunity to store the analog conductance needed for the 

accelerators. However, the importance of understanding variability and understanding 

how to get devices to precisely land in the intermediate resistance states additionally 

motivates the interest in modeling PCM devices.  
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Fig. 7. The nucleation dominated GST, that nucleate from the inside and outside, with a 

continuous pulse or step pulses. [13] 

When the amorphous plug intentionally needs to be removed, multiple set pulses or a 

long continuous pulse heats the cell to temperatures of around 400 degrees Celsius (in 

GST, later discussed) (Fig. 6 Set Operation) [11]. The set pulses are of higher amplitude 

than the read pulse; however, they are slightly less aggressive than the reset pulses. A 

single long pulse of exactly the right amplitude converts the amorphous plug into the low 

room temperature resistance of the set state. However, sending multiple short sets of 

pulses causes some partial crystallization and partial decrease in the room temperature 

resistance. The first pulse creates some crystalline material, but the read current still must 

pass through amorphous material to get to the bottom heater (Fig. 7 upper right). 
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However, by continuing to send pulses they can create an all-crystalline pathway for the 

read current. 

The most popular phase-change material is called GST, Germanium Antimony 

Tellurium. It is what’s called a nucleation dominated material [13].  This means that there 

are two ways to remove the amorphous plug. As the plug nucleates new crystalline 

nuclei, it can have crystal clusters reappear from the inside and there can be regrowth 

from the crystalline material surrounding the plug. By applying a large pulse to the 

material, the electrical conductivity will be lowered quickly due to the nucleation 

domination. However, while sending the electrical set pulses through the GST after a 

large pulse, the device resistance can continue to decrease. Therefore, the nucleation 

domination creates something that is still changing as more pulses are fired (G. Burr, 

personal communication, January 20, 2020). 

As the amorphous plug changes to crystalline, grains are popping up like popcorn 

depending on which random nuclei gained enough energy to be stable, and then could 

grow larger and consume its amorphous surroundings (Fig. 7). At the point when a 

crystalline path has been made through the amorphous material, the plug may already be 

mostly in the crystalline phase (shown in orange), but between the grains there are still 

amorphous like grain boundaries (shown in brown).  This is now in a polycrystalline 

phase. Now the device continues to decrease in electrical resistance due to the heat 

generation as multiple pulses are applied. A hypothesis to explain this is that the heat is 

reducing the number of grains, as big grains consume and eliminate small ones [14]. This 
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means that the electrical read current must pass through fewer grain boundaries to get to 

the bottom electrode. To add to the hypothesis, this grain growth is what explains the 

continual changes in device resistance. This means that there is a strong incentive to 

include the creation and influence of grains and grain boundaries on the read current in a 

TCAD simulator for studying the switching physics of these devices, particularly if there 

are interests in the intermediate resistance states. 

1.4 Thesis Delivery  

IBM has long been at the forefront of PCM device technology, initially driven 

by storage class memories and other data-storage applications. As part of this work, IBM 

built a full 3D simulation modeling tool. This simulator uses the finite difference method 

to approximate the derivatives within the underlying differential equations being 

simulated. Thermodynamic modeling was enabled by the alternating direction implicit 

(ADI) method, which divides each timestep into three parts, one part for each Cartesian 

direction [15]. This allows a tri-diagonal-matrix approach, which can solve systems of 

implicit equations in 1D, to be extended to three dimensions. This tool can also simulate 

the nucleation and growth of polycrystalline grains [14]; however, it currently lacks the 

capability of modeling the subsequent interaction of grains, the motion of grain 

boundaries, or the full electrical impact of these grain boundaries. Although the local 

IBM team later moved to analog-AI architectures, successfully publishing their work 

based on PCM devices in Nature [7]. The existing TCAD simulator has not been 

incorporated into any analog-AI work to date. 
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Therefore, to further develop the model and extend it for the investigation of 

intermediate resistance states applicable to Analog AI, the purpose of this thesis is to 

verify and validate the simulator, study its ability to track device simulations, and study 

grain boundary impact on electrical conductivity. The study is done against literature 

models and experimental results regarding to thermodynamics in PCM. The expected 

outcome of this study was to validate and improve a tool that can be used across IBM 

Research for engineering of the future analog-AI and memory systems based on PCM 

technology. 

1.5 Thesis Organization  

The f thesis is organized in 6 chapters: 

• Chapter 1: Includes the background information of PCM and the reason for the thesis. 

• Chapter 2: Includes the explanation of the method used to simulate thermodynamic and 

voltage distribution using the ADI method. 

• Chapter 3: Includes the accuracy of the thermal modeling, comparing a one-dimensional 

simulation against the industrial software ANSYS, while showing thermal distribution in 

all directions and accuracy of the conservation of energy. 

• Chapter 4: Simulates PCM against experimental data and adds standard physics for 

improving the TCAD software. 

• Chapter 5: Studies the grain boundary growth effect on electrical conductivity, due to 

the formation of grains at different temperature ramping within GST. 

• Chapter 6: Concludes the thesis. 
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2 SIMULATION 

The simulator was created in 2004 at IBM’s Almaden Research Center by Dr. 

Geoffrey Burr and has since been updated in 2012 and 2018 [14]. Its purpose is to 

simulate the PCM devices within the third dimensional domain using the finite difference 

method (FDM) and the Douglas-Gunn approach of the alternating direction implicit 

(ADI) method. The chapter will describe the ADI methods approach to calculate both 

voltage and temperature distribution that are the main factors for material changes.  

2.1 Simulation 

The most common method in industrial semiconductor simulating tools is the finite 

element method (FEM). The FEM requires a significant amount of computer power, but 

it can simulate fine structures through its triangular mesh. FDM, on the other hand, does 

not need as much power for simple structures and reduces the number of needed nodes. 

However, FDM’s rectangular mesh requires a larger number of nodes to simulate fine 

structures. Because typical bar structures of PCM mushroom cells can be ideal 

rectangular shapes, the FDM approach is a better candidate due to quick and accurate 

simulations. 

A conventional semiconductor simulator would track full electrical effects, including 

drift diffusion and the dopant concentration within materials. However, this simulator 

uses a third dimensional mesh of voxelated resistors, driving the simulation to completion 

by minimizing leakage error current. The electrical, thermal, and nucleation models are 
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each updated once per cycle and provide the necessary information for computation of 

the subsequent components. 

The simulator initializes by applying a set voltage. It does so through evaluating 

Poisson’s equation from an initialized voxel mesh. Thereafter, the mesh’s electrical field 

and current density response is used to compute joule heating, which is heat generation 

from electrical energy (Equation 1). However, thermal sources from no joule heating are 

also possible through selected thermal generators. 

Equation 1: Joule Heating  

 𝑄𝑣(𝑥, 𝑡) =  
𝐽2(𝑥, 𝑡)

𝜎
  

Thereafter, the simulator uses the Douglas-Gunn’s approach to find the temperature 

distribution from the generating heat source of either joule heating or others. Because it 

knows the temperature, the simulator detects if a phase change material at each voxel is 

crystallized, amorphized by quenching, or liquified through melting, which provides 

resistance information for the next cycle to evaluate the current density. From here, the 

cycle repeats until a termination state is reached, which is a pre-determined duration, a 

maximum temperature, or a crystallization fraction. 

2.2 Voltage and temperature relation 

While voltage and temperature are two different phenomena, they are both dependent 

on similar variables and equations. The third dimensional Poisson equation (Equation 2) 

is used to calculate the voltage distribution in a Cartesian coordinated system. The first 
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value is negative charge over the material permittivity, which is equated to the sum of the 

second spatial derivative of voltage in all coordinate directions. However, within the 

simulator, there is no charge generation, and therefore, this term is equal to 0. The sum of 

the voltage differentials must now be equal to 0. 

Equation 2: Poisson Equation [16] 

 
𝜌

𝜖𝑜
= ∆𝑉 = 𝛻2𝑉 = (

𝛿2

𝛿𝑥2
+

𝛿2

𝛿𝑦2
+

𝛿2

𝛿𝑧2
) 𝑉  

 −
𝜌(𝑥, 𝑦, 𝑧)

∈𝑜
=

𝛿2𝑉(𝑥, 𝑦, 𝑧)

𝛿𝑥2
+

𝛿2𝑉(𝑥, 𝑦, 𝑧)

𝛿𝑦2
+

𝛿2𝑉(𝑥, 𝑦, 𝑧)

𝛿𝑧2
  

 0 =
𝛿2𝑉(𝑥, 𝑦, 𝑧)

𝛿𝑥2
+

𝛿2𝑉(𝑥, 𝑦, 𝑧)

𝛿𝑦2
+

𝛿2𝑉(𝑥, 𝑦, 𝑧)

𝛿𝑧2
  

Equation 3: A) Kirchhoff’s Current law, B) capacitance and current relation equation, C) 

modified Voltage equation. 

A) 0 = 𝐼𝑥−/+ + 𝐼𝑦−/+ + 𝐼𝑧−/+ 

B) 𝐶
𝛿𝑉

𝛿𝑡
= 𝐼 =

𝑉

𝑅
 𝐶

𝛿𝑉(𝑥, 𝑦, 𝑧)

𝛿𝑡
=

𝑉(𝑥, 𝑦, 𝑧)

𝑅
≈

𝛻2𝑉

𝑅
 

C) 𝐶
𝛿𝑉(𝑥, 𝑦, 𝑧)

𝛿𝑡
=

1

𝑅𝑥

𝛿2𝑉(𝑥, 𝑦, 𝑧)

𝛿𝑥2
+

1

𝑅𝑦

𝛿2𝑉(𝑥, 𝑦, 𝑧)

𝛿𝑦2
+

1

𝑅𝑧

𝛿2𝑉(𝑥, 𝑦, 𝑧)

𝛿𝑧2
  

The Poisson equation can be related to the Kirchhoff’s current law, which states that 

the sum of all currents entering a node must equal 0 (Equation 3 A) and can be thought as 

a voltage mesh (Fig. 8). Now incorporating the capacitance equation (Equation 3B) and 

the two earlier ones, a modified voltage equation can be determined (Equation 3 C). 

However, estimations can fail to satisfy Kirchhoff’s current law and need adjustments. 
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Through implementing an imaginary capacitor to each node, any current that fails to 

satisfy the Kirchhoff’s current law in the resistors must pass through the capacitor into 

the ground. Therefore, the capacitance can act as a fudge factor so that the simulator can 

converge the electrical voltage distribution. However, what is important to understand is 

that every time it is run, steady state must be reached. If the equation stops before the 

system has converged at steady state, there is potentially a large error current and 

significant deviations from Poisson’s equation. 

 

Fig. 8. A) Voltage and B) Temperature presented as third dimensional mesh resistors. 

Equation 4 A) is the third dimensional Cartesian thermal diffusion equation. It 

follows Fourier's heat law: the temporal derivative of temperature is related to the second 

order spatial derivatives of temperature.  These are related through an alpha coefficient, 

which includes the local thermal conductivity, 𝜅, density, 𝜌, and heat capacity, 𝐶𝑝, for 

each node, 𝛼 =
𝜅

𝜌𝐶𝑝
.  Comparing this equation to the voltage equation (Equation 4B), the 
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heat can be thought of in terms of Kirchhoff’s current law, which relates this variable 

alpha as if it was a kind of electrical conductance (Fig. 8). By looking at both the voltage 

and temperature equation, there is a same first derivative in time on the left-hand side and 

the same second-derivatives in space on the righthand side (Fig 8. A & B). However, 

while the voltage equation is driven to steady state, the temperature equation uses the 

actual physical timestep itself and computes the small temperature changes within any 

given simulation cycle. 

Equation 4: A) Cartesian thermal diffusion equation, B) is eq 3 C) 

A) 
𝜕𝑇(𝑥, 𝑦, 𝑧)

𝜕𝑡
= 𝛼 [

𝜕𝑥
2𝑇(𝑥, 𝑦, 𝑧)

𝜕𝑥2
+

𝜕𝑦
2𝑇(𝑥, 𝑦, 𝑧)

𝜕𝑦2
+

𝜕𝑧
2𝑇(𝑥, 𝑦, 𝑧)

𝜕𝑧2
] +

1

𝜌𝐶𝑝
𝑔(𝑥, 𝑦, 𝑧)  

B) 𝐶
𝛿𝑉(𝑥, 𝑦, 𝑧)

𝛿𝑡
=

1

𝑅𝑥

𝛿2𝑉(𝑥, 𝑦, 𝑧)

𝛿𝑥2
+

1

𝑅𝑦

𝛿2𝑉(𝑥, 𝑦, 𝑧)

𝛿𝑦2
+

1

𝑅𝑧

𝛿2𝑉(𝑥, 𝑦, 𝑧)

𝛿𝑧2
  

2.3 The Douglas-Gunn’s ADI method approach 

The Crank-Nicolson thermal equation is a 1 to 1 unconditionally stable equation that 

is derived from the explicit and the implicit thermal equation (Equation 5 A) [15].  

Equation 5: A) The Crank-Nicolson thermal equation [15], B) Voltage in CN format, 

derived Crank-Nicolson thermal equation 

A) 
𝑇𝑛+1+𝑇𝑛

∆𝑡
= 𝛼 [

𝜕𝑥
2𝑇𝑛+1+𝜕𝑥

2𝑇𝑛

2(∆𝑥)2 +
𝜕𝑦

2𝑇𝑛+1+𝜕𝑦
2𝑇𝑛

2(∆𝑦)2 +
𝜕𝑧

2𝑇𝑛+1+𝜕𝑧
2𝑇𝑛

2(∆𝑧)2 ] +
1

𝜌𝐶𝑝
𝑔(𝑥, 𝑦, 𝑧)   

B) 𝐶
𝑉𝑛+1+𝑉𝑛

∆𝑡
= [

1

𝑅𝑥

𝜕𝑥
2𝑉𝑛+1+𝜕𝑥

2𝑉𝑛

2(∆𝑥)2 +
1

𝑅𝑦

𝜕𝑦
2𝑉𝑛+1+𝜕𝑦

2𝑉𝑛

2(∆𝑦)2 +
1

𝑅𝑧

𝜕𝑧
2𝑉𝑛+1+𝜕𝑧

2𝑉𝑛

2(∆𝑧)2 ] []  

C) 

−𝑟𝑥𝑇𝑥−1,𝑦,𝑧
𝑛+1 − 𝑟𝑦𝑇𝑥,𝑦−1,𝑧

𝑛+1 − 𝑟𝑧𝑇𝑥,𝑦,𝑧−1
𝑛+1 + 2(1 + 𝑟𝑥 + 𝑟𝑦 + 𝑟𝑧)𝑇𝑥,𝑦,𝑧

𝑛+1 − 𝑟𝑥𝑇𝑥+1,𝑦,𝑧
𝑛+1

− 𝑟𝑥𝑇𝑥,𝑦+1,𝑧
𝑛+1 − 𝑟𝑥𝑇𝑥,𝑦,𝑧+1

𝑛+1  
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= 𝑟𝑥𝑇𝑥−1,𝑦,𝑧
𝑛 + 𝑟𝑦𝑇𝑥,𝑦−1,𝑧

𝑛+1 + 𝑟𝑧𝑇𝑥,𝑦,𝑧−1
𝑛+1 + 2(1 − 𝑟𝑥 − 𝑟𝑦 − 𝑟𝑧)𝑇𝑥,𝑦,𝑧

𝑛 + 𝑟𝑥𝑇𝑥+1,𝑦,𝑧
𝑛+1

+ 𝑟𝑥𝑇𝑥,𝑦+1,𝑧
𝑛+1 + 𝑟𝑥𝑇𝑥,𝑦,𝑧+1

𝑛+1 +
2∆𝑡

𝜌𝐶𝑝
𝑔𝑥,𝑦,𝑧 

The formula calculates the Cartesian thermal diffusion equation. Because equation 4A 

and 4B are alike, the same can be done with the Crank-Nicolson to the voltage equation 

(Equation 5 B). However, the Crank-Nicolson equation is complicated, and when 

simplified it generates a large equation with up to 7 unknown values for the next time 

step (Equation 5 C). Instead, Douglas and Gunn derived from the Crank-Nicholson 

equation using the ADI method to make a new simpler equation that is third 

dimensionally first ordered accurate [15].  

Equation 6: A) Douglas-Gunn ADI method, B) the three step Douglas-Gunn ADI method 

approach [15] 

A) 

𝑇𝑛+1 − 𝑇𝑛 = 𝑟𝑥

𝜕𝑥
2

2
(𝑇𝑛+1 − 𝑇𝑛) + 𝑟𝑦

𝜕𝑦
2

2
(𝑇𝑛+1 − 𝑇𝑛)

+ 𝑟𝑧

𝜕𝑧
2

2
(𝑇𝑛+1 − 𝑇𝑛) +

∆𝑡

𝜌𝐶𝑝
𝑔 

𝑟𝑥,𝑦,𝑧 =
𝛼∆𝑡

(𝛿𝑥, 𝑦, 𝑧)2
 

B) 

𝑇𝑛+
1
3 − 𝑇𝑛 =

𝑟𝑥𝜕𝑥
2

2
(𝑇𝑛+

1
3 + 𝑇𝑛) + 𝑟𝑦𝜕𝑥

2𝑇𝑛 + 𝑟𝑧𝜕𝑧
2𝑇𝑛 +

∆𝑡

𝜌𝐶𝑝
𝑔 

𝑇𝑛+
2
3 − 𝑇𝑛 =

𝑟𝑥𝜕𝑥
2

2
(𝑇𝑛+

1
3 + 𝑇𝑛) +

𝑟𝑦𝜕𝑥
2

2
(𝑇𝑛+

2
3 + 𝑇𝑛) + 𝑟𝑧𝜕𝑧

2𝑇𝑛 +
∆𝑡

𝜌𝐶𝑝
𝑔 

𝑇𝑛+1 − 𝑇𝑛 =
𝑟𝑥𝜕𝑥

2

2
(𝑇𝑛+

1

3 + 𝑇𝑛) +
𝑟𝑦𝜕𝑥

2

2
(𝑇𝑛+

2

3 + 𝑇𝑛) +
𝑟𝑧𝜕𝑧

2

2
(𝑇𝑛+1 + 𝑇𝑛) +

∆𝑡

𝜌𝐶𝑝
𝑔 [15] 

This is the Douglas-Gunn ADI method (Equation 6 A), and it is divided into three 

steps for the different coordinates: x, y, and z. The first step is implicit along x and solves 
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for temperatures using 1/3 of the actual full-time step (Equation 6 B). By being explicit 

along only one dimension, the tri-diagonal matrix method is used to solve this system of 

equations together with appropriate boundary conditions at the simulation boundaries. 

The second step is implicit along y and produces the temperatures at t + 2/3, using both 

the original temperatures at time t and the results of the first step (Equation 6 B). Finally, 

the third timestep generates the temperature at timestep t + 1 (Equation 6 B). This is all 

repeated but for the voltage diffusion equation, to calculate it in third dimensional 

domains with a first order accuracy.
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3 THERMAL SIMULATION EVALUATION 

The following chapter validates the thermal accuracy of the TCAD simulator. Its 

thermal abilities are determined through measuring the steady-heat transfer against a 

literature calculation and a ANSYS steady heat transfer simulation, and third dimensional 

transfer of thermal energy throughout the device to equal the applied power input. 

3.1 Validation 

Steady heat state is the transfer of energy with no time change or generation of heat. 

In a one-dimensional system, Fourier’s heat diffusion law can compute the steady state of 

heat by incorporating dependence on heat conductivity, temperature difference, and the 

distance between two points (Equation 7). Fourier’s law of heat transfer is the negative 

gradient of temperature and the area across a distance where heat flows. The equation 

represents the heat flow, q [
𝑊

𝑚2], the material heat conductivity, k [
𝑊

𝑚𝐾
], the temperature 

difference, dT [K], and the distance, dx [m]. 

Equation 7: Fourier's heat equation, one dimensional 

 q = −k
dT

dx
  

 

In third dimensional systems, there are no equations as simple as equation 7. 

Therefore, the Crank-Nicolson’s or other mathematical approaches need to be considered, 

to estimate the third dimensional heat distribution by simulation. However, all 

thermodynamic systems need to follow the law of conservation. The amount of energy 
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that enters a system must leave it. The total injection must be summed through 

calculation of joule heating or its direct energy injection of each node in the simulation. 

By determining the heat flow across six faces of a cube inside the edge of the simulation, 

the power out can be calculated through simple Fourier’s law and compared to the 

injected energy (Equation 8). Where Pin is the power input [W], qx+ [
𝑊

𝑑𝑦𝑑𝑥
] represents the 

heat flux in the coordinate direction x+, while dy and dz makes up the area, where the five 

other faces are represented by their direction. 

Equation 8: Power equation 

 Pin = ∫ qx+dydz + 5 other faces = Pout  

 

3.2 One dimensional 

At steady state, the temperature difference driving heat conduction is constant. 

Because there are no temperature changes, all the heat transferring in one direction 

should be equal (for 1D) if it is from the same source and nothing is interfering. 

Therefore, heat transfer through a slab of material can be thought as resistors in contact to 

each node. At the equilibration time these heat resistors are constant. A structure of 

multiple materials in series can then be thought of as multiple resistors in series (Fig. 9). 

The slab has a high temperature potential of T1 of 127 oC and a lower at T3 of 27 oC. 

Because materials can be thought of as resistors in series, all heat transfer from T1 to T3 

must be equal. It can be seen in the resistor representation that all qs’; q1, q2, and q3 are 

all equal while travelling through the structure. 
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Fig. 9. Steady heat transfer through a slab of material, to be shown that it is alike a series 

of electrical resistors. 

Fourier’s law can calculate the one-dimensional system using non-temperature 

dependent parameters. Assuming one made up materials, material_1 and material_2 at 

heat conductivity′ s of 0.5 and 2.5  [
𝑊

𝑚𝐾
]. The area that the heat flows through is 100 µm2, 

and the length of each material is 100 µm. From understanding the heat equation 

(Equation 7), one can derive the temperature at T2 and use the values provided in 

determining Q. 

𝑄 = −𝑘1𝐴
𝑇1 − 𝑇2

𝑥1 − 𝑥2
= −𝑘2𝐴

𝑇2 − 𝑇3

𝑥2 − 𝑥3
 

𝑇2 =

𝑥2 − 𝑥3
𝑥1 − 𝑥2

𝑘1

𝑘2
𝑇3 + 𝑇1

𝑥2 − 𝑥3
𝑥1 − 𝑥2

𝑘1

𝑘2
+ 1

 

𝑇2 =

100µ𝑚 − 200µ𝑚
0 − 200µ𝑚

2.5
0.5

300 + 400

100µ𝑚 − 200µ𝑚
0 − 200µ𝑚

2.5
0.5

+ 1
= 316.667𝐾 = 43.667 𝐶𝑜 
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𝑄 = −0.5 [
𝑊

𝑚𝐾
] [100 ∗ 100 ∗ µ𝑚2] [

400 − 316.667

0 − 100µ𝑚
] = 0.004167𝑊 

𝑞 = 416677
𝑊

𝑚2
 

Concluding that the literature temperature at position 2 is 43.67 oC, the total heat flow is 

0.004167W, and the flux is 416677[
𝑊

𝑚2]. 

 
Fig. 10. A) Our simulation and B) ANSYS simulation for the structure of 1 dimensional 

heat transfer. 

Although our finite-difference simulator has no one-dimension mode, a simple stack 

of materials in a 3D geometry (Fig. 10 A) can substitute it by performing adiabatic 

behavior at the edges and running the simulator until it reaches a steady-state. ANSYS, 

on the other hand, does have a one-dimensional simulation option (Fig. 10 B). This tool, 

however, uses FEM with a triangular rather than a Cartesian mesh (But can do other 

mathematical simulations). It also incorporates a nice mode that can immediately 

compute the steady-state condition and establishes the constant temperatures directly on 

the simulation boundaries. 
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Seen in the plot (Fig. 11) are the final simulations of the one-dimensional heat 

transfer for the TCAD, the ANSYS isothermal simulator, and the literature value. 

Observing the change in temperature gradient at around 100µm, the temperature for 

ANSYS is at 316.70K, while the temperature for our tool is at 316.58K. The error 

calculation can be made by: ANSYS error = 𝑎𝑏𝑠 (
316.7−316.67

316.667
) ∗ 100 = 0.0104%, while 

our error = 𝑎𝑏𝑠 (
316.58−316.67

316.667
) ∗ 100 = 0.0275%, which is accurate in regard to using 

the third-dimensional alternative. Having a value as close to the industrial tool ANSYS 

and the literature data legitimizes the simulator for simple heat transfer.  

 

Fig. 11.  The temperature distribution across the one-dimensional structure in the ANSYS 

and IBM developed simulations, and the literature value across it. 
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3.3 Third Dimensional 

The third-dimensional heat transfer uses the ADI method for time dependent 

diffusion. To legitimize its abilities, the heat transfer should act equal in all directions for 

equal domains, in terms of following the conservation of energy (Fig. 12). The third-

dimensional cube (Fig. 12 A) determines if the simulator follows the diffusion of thermal 

energy in three dimensions. Through its symmetrical structure, all the opposite direction 

should be equal. If there is a direction-dependent difference in the temperature behavior, 

this would indicate some sort of problem (Fig. 12 B). However, as seen in the 

temperature distribution plot, all temperature coordinate values in X, Y, and Z overlap 

each other (Fig. 12 C). 

 

Fig. 12. A) A 3D cube with symmetrical C) temperature gradient through its Z-slice 

center and C) temperature gradient lining up in all dimensions from the center. 
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The simulation domain has a length of 600x600x600 nm in all directions, which 

contains a centered cube of 105x105x105 nm that acts as the heating element (Fig. 8, 

lower right). Both materials have a thermal conductivity of 0.5 [
𝑊

𝑚𝐾
]. Every node within 

the heating material has an identical heat generation term representing a constant input 

power density. The power density adds up to a total input power of exactly 300 uW, 

which by conservation of energy must be equal to the escaping heat at steady state.  

Once the simulation establishes a steady-state condition, slicing the temperature 

profiles into known positions (Fig. 13 A & B) makes it possible to follow equation 8. 

 

Fig. 13. A) Two slices of the third dimensional domain to calculate the thermal energy 

output across B) slice faces. 

By slicing two spatial temperature derivatives normal to all the six faces of a third 

dimensional cube (Fig. 13 A), the product of multiplying it with the thermal conductivity 

gives the heat flux in Watts-per-square-meter (Fig. 13 B). Thereafter, integrating over the 
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area of the six faces of the cube gives the power in units of Watts. The resulting value is 

299.6567 uW, which has a difference of 𝑎𝑏𝑠 (
299.6567−300

300
) ∗ 100 = 0.1144 %, and 

shows that the simulator is closely following the conservation of energy, validating its 

third-dimensional usage, and is therefore capable of simulating temperature distributions 

for PCM.
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4 DEVICE SIMULATION 

Running laboratory experiments can be expensive and time consuming. Simulating 

these experiments numerically can help to reduce the cost of laboratory experiments, 

study the detailed physical behavior of PCM, predict the device problems and solutions, 

and most importantly develop design intuition that can invent new types of PCM cells. 

Therefore, the following chapter simulates the reset procedure of PCM and fits it against 

experimental data. 

4.1 The device 

 

Fig. 14. A) The device simulated against the experimental data analysis. B) The 

description of electrical current traveling from the top to bottom contact. C) The impact 

of melting on electrical current path. 

Seen in the device (Fig. 14 A) is a mushroom cell fabricated of GST on top of a small 

heater electrode. It is comprised of multiple materials; however, the most important part 

is the exact size of the heater, due to its heat generation by current surge (Fig. 14 B and 

C). Additional dependencies are the electrical and thermal conductivities of both the 

electrode and cladding material, any thermal and electrical interface resistance at the 
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material boundaries, the voltage pulse inputs, and its interaction with the rest of the 

electrical circuit outside the PCM device. However, because the materials are dependent 

on temperature, it is the heater that makes the PCM work. 

The heater is the spot where constricting current flows from the top of the electrode to 

the bottom or vice-versa depending on the voltage polarity. The arrows (Fig. 14 B) show 

the increase in current density entering the heater. To create this current surge, the heater 

uses more conductive material (Fig. 14 B and C) (in light blue) in one portion of the 

heater with surrounding material (light green) that is more resistive, confining the 

current’s path even more. For faster simulations of the material, everything else is a true 

insulator and thus blocks all current. This light blue cylindrical shell is where most of the 

current flows, which leads to most of the joule heating either in this shell or just above it, 

as the current bunches up before leaving the GST material. The heat injection by this 

joule heating, and heat loss in all directions away from the body of the GST material, 

causes a hemisphere of high temperature centered over the heater. As a result, this is the 

region that will be the first to melt (Fig. 14 C).  

Current surge is dependent on the electrical conductivity of the device material and is 

calculated through the Arrhenius model (Equation 9). Seen in the IV curve (Fig. 15), the 

voltage increases with current, which causes the release of heat energy that creates more 

current surge. 
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Equation 9: Electrical conductivity by the Arrhenius model 

 𝜎 = 𝜎𝑜𝑒
−𝐸𝑎
𝑘𝑏𝑇   

The Arrhenius model where 𝜎𝑜 is the initial conductivity or pre-exponential factor, and 

𝑒
−𝐸𝑎

𝑘𝑏𝑇 is the fraction of material that have enough energy to increase conductivity at 

temperature T, is shown in the plot (Fig. 15 A). 

 

Fig. 15. A) The electrical conductivity of crystalline and molten GST. B) The thermal 

conductivity dependent on the Wiedemann-Franz model. C) The phase transition of GST 

and the structural property change, causing a jump. D) The effect in the IV graph. 

However, the thermal conductivity in the material is also a large contributor. If it has 

too high thermal conductivity, the material might release too much heat to its surrounding 

and not melt; if it has too low thermal conductivity, the reverse effects may be to melt 

less GST. Thermal Conductivity can be generated through the Wiedemann-Franz model 

(Equation 10). It is used to calculate the relationship between the thermal and electrical 

conductivity with respect to temperature. The thermal conductivity equals the initial 
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conductivity,  𝜅𝑝ℎ𝑜, added to the electrical conductivity, 𝜎, multiplied by the temperature 

and Lorenz number, 𝐿, which makes up for the thermal conductivity. 

Equation 10: Wiedemann-Franz model [17] 

 𝜅 = 𝜅𝑝ℎ𝑜 + 𝜎𝐿𝑇  

However, what also needs to be considered is that the material structure properties 

change between crystalline and molten phase. Seen in the plot (Fig. 15 C) is an almost 

identical graph to A, which shows in blue where there is a phase transition. As the 

crystalline gets hotter and hotter, it will lose its structure and at one point create a jump in 

the conductivity of the material. The actual impact on the IV curve is minimal due to the 

gradual change over many molecules (Fig. 15 D). However, it would be possible to be 

seen if one could measure the maximum temperature of the device, due to latent heat. 

Interestingly there is a difficult time to characterize molten conductivity. This is because 

at nano scale, materials tend to change properties, which is not hard to measure in solid 

materials, but because it acts as a liquid, researchers have lost contact with the molten 

phase and have not been able to characterize its conductivity. Therefore, the simulation is 

using assumptions within the molten phase. 

4.2 Joule heating energy by current surge 

As the current surge forms due to the confinement of the heater (Fig. 15 A), it is 

where the generation of energy will be the most extreme. This can be seen in Fig. 16 A, 

which shows both images of the heater, although the plotting of the vector arrows cause a 

slight offset. In the current plot, the vectors indicate higher density the closer it is to the 
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heater, while in the energy generation plot shining at these confinements indicates high 

levels. Fig. 16 B is a large picture of the heater; here the energy is the largest at the edges 

of the more conductive material and indicates that the current is coming from the outside 

of the cell as it tries to flow into the narrow heater. This can clearly be seen in a Z slice 

taken just inside the GST material (Fig. 16 B lower image). Again, the joule-heating is 

maximum just at the very outside rim of the highest conductive path down and out of the 

GST, causing temperatures to increase. 

 

Fig. 16. A) Current flow and energy generation on top of heater. B) A closer view of the 

energy from the side and top. 

4.3 Temperature increase 

With the release of heat energy, temperature will increase. Observing the first 2-D 

slice (Fig. 17 A) of the temperature profile at one timestep, it is seen that there is a 

slightly higher maximum temperature right at the interface of the conductive heater part 

because of the current entering it. What is also apparent is a hemispherical shell centered 
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above the heater. The temperature in part A (Fig. 17) is taken at about 10 ns into a 

simulation of a linearly increasing applied voltage, at a time when peak temperature is 

well below melting. However, the plot indicates that the temperature is increasing at the 

heater. 

 
Fig. 17. Temperature 2D slice of simulated device, at different time intervals. 

Increasing the applied voltage increases the peak temperature within the device. 

However, at 116 ns it is seen that the maximum temperature has reached 600 degrees and 

it seems to stay there for a few nanoseconds (Fig. 17 B). This is because the simulator 

implements the latent heat of melting for GST, that is, the endothermic energy cost of 

converting a solid into a liquid. Thereafter, at 124 ns (Fig. 17 C), parts of the structure 

that have paid this energy cost are in the molten phase and are free to exceed 600 oC.  
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Other portions of the cell are undergoing the melting process, and as electricity is the 

cause, it is important to be modeled and shown to properly follow the standard physics. 

However, by continuing to ramp up the voltage, there will be larger amount of joule 

heating while the simulator self-consistently solves for the dynamic resistance of the 

PCM device as its local resistivity changes with temperature. As a result, it is not 

expected that the IV curve of the PCM device to be a simple ohmic relation. 

4.4 Arrhenius Model 

The Arrhenius-modeled electrical current is seen in the IV, resistance power (RP), 

and resistance voltage (RV) graphs (Fig. 18). The experimental mean and median data 

are taken by Benedict Kersting from IBM’s Zurich lab, on devices fabricated at the IBM 

Albany nanotech center. Comparing the simulation result of activation energy 0.08 joule, 

in red, that uses the simple model for electrical conductivity purely as a function of 

temperature, it is seen that the values are a bit off. The simulated IV curve must bend up, 

making the device more conductive at an earlier temperature. In the RV graph it is also 

seen that the device has a too high electrical resistance compared to the experimental 

device. The dynamic-resistance curve must bend down to match the experimental results, 

again needing higher conductance. Observing the RP, it is clear as well, there is a need 

for more conductive material. 

Changing the activation energy, Ea, the conductivity changes within the device but 

not nearly enough at lower applied voltages. The IV shows the increased Ea to become so 

conductive that the device exhibits a thermally induced negative differential resistance. It 
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can clearly be seen in the values of 0.150 and 0.200 that there is a negative snap back 

from the thermal effects alone. If this were what physics was really causing, it would 

have clearly been seen in experiments. Clearly the device conductance is increasing as 

voltage increases but long before enough power is being dissipated to cause any 

significant temperature increase. To change the results, large modifications could be 

made in the material properties but would not follow experimental data. Therefore, the 

modeling needs new implemented physics that has not been considered.   

 

Fig. 18. Albany Nanotech Center PCM device mean and median experimental results 

(Benedict Kersting IBM Zurich lab) against device simulations at different activation 

energies. 
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4.5 Implementation of Poole-Frenkel 

The Poole-Frenkel effect describes how a large electric field can make it easier for 

electrons to get into the conduction band and thus increase electrical conductivity (Fig. 

19). Neutral atoms will normally act as trap states below the conduction band. To get up 

 
Fig. 19. Poole-Frenkel Field effect on electrons by traps, increasing electrical 

conductivity by field effect. 

to the conduction band, these trapped electrons need energy from random thermal 

fluctuations to overcome the energy barrier [18]. The presence of an electric field can 

help provide some additional energy, increasing the number of electrons and thus overall 

conductivity. This is the Poole-Frenkel equation that is used for the GST modeling, 

where q is charge, F is the field, and d is an effective trap distance (Equation 11). 

Equation 11: Implemented Poole-Frenkel into Arrhenius model 

 𝜎 = 𝜎𝑜𝑒
−𝐸𝑎+𝑞𝐹𝑑

𝑘𝑏𝑇   

Observing the old simulations against the experimental data in the IV plot (Fig. 18), 

the result needs an increase in conductivity, early in the voltage ramp. Now by applying 

both Arrhenius dependence on temperature and a Poole-Frenkel dependence on the field, 

the hypothesis is that the combination should provide the missing ingredient.  
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As can clearly be seen by the red dotted lines (Fig. 20), the hypothesis was correct. 

The IV graph shows a new red line of dots that follows the trend of the median and mean 

experimental results. Further on with the resistance voltage graph, it is seen that the new 

simulation follows its trend but creates a more resistive material in its early phase. To 

explain this, a new lookup table that is fairly like Fig. 15 A and B is used. The RP does 

also fit against the trend of the experimental data. Finally, observing the temperature 

versus voltage and power, a clear endothermic process where material transitions from 

crystalline to molten is seen, indicating that the model is following latent heat. 

 

Fig. 20. Experimental results with simulation results, using the Poole Frenkel effect with 

the Arrhenius model. (Mean and Median PCM experimental data from Zurich IBM lab 

2020, by Benedict Kersting on Albany Nanotech Center PCM devices) 
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5 GRAIN BOUNDARIES 

GST liquefies and reaches the molten phase. Thereafter, through quenching, it 

reaches the amorphous state, which creates a restive plug. To recrystallize the amorphous 

material, the temperature needs to rise and speed up the process; however, the formation 

of polycrystalline has multiple electrical effects on the device, depending on the 

temperature ramp. The following chapter describes the change in these effects, that 

makes GST a tunable resistor dependent on the temperature ramp. 

5.1 Nucleation  

The classical nucleation theory model is the spontaneous formation from an initial 

metastable phase, the amorphous GST, into a second more stable phase, the crystalline 

GST [14]. Any location within the amorphous material can have a probability of 

nucleating. The study of crystallization and grain interactions must of course start with a 

single grain. Simplifying the concept, a forming crystal grain is roughly spherical and 

composed of similarly spherical GST monomers, n, units that represents a small number 

of atoms. The stability of a small grain depends on its size as shown by the free energy 

equation (Equation 12), 

Equation 12:  Free energy [12] [14] 

 ∆𝐺 ≅ 4𝜋𝑟2𝜎 − 𝑛∆𝑔(𝑇)  

which describes the interplay between unfavorable surface effects, 4𝜋𝑟2𝜎,  that increase 

free-energy and dominate with small nuclei. However, the favorable volume 



 

40 

 

effects, ∆𝑔(𝑇), decrease the free-energy with monomer counts and dominate with a large 

nuclei [9] [14].  

When a single crystalline nuclei is small or sub-critical, it is more likely to shrink 

than it is to grow. In this phase, the free-energy difference of growing and shrinking by 

the monomer unit determines the rates of growth and decay in the sub-critical phase. 

Once a nuclei gets over the critical size, nc, where volume effects overtake surface 

effects, the nuclei is more likely to grow than shrink (Fig. 21). By including a geometric  

 

Fig. 21. The free energy plot of ∆𝐺, showing where the number of monomers rather 

reduce than grow, across the critical value nc. [14][19] (Inspiration from Robin Peter’s 

presentation) 

factor, the same rates compute the propagation velocity of the outward-growing interface 

between the crystal grain and the amorphous material. This nucleation theory was 

modelled against TEM images by Dr. Geoffrey Burr using the simulator in [14]. 
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However, the effect on the electrical conductivity by polycrystalline material was never 

discussed. 

5.2 Grain boundaries and electrical conductivity 

In a fully crystalline material (Fig. 22 top left A) the monomer-units are arranged in a 

ordered form, while in the amorphous phase (Fig. 22 A top right) the monomer-units are 

disorganized. The polycrystalline, however, (Fig. 22 A bottom left) contains clusters of 

crystalline material. Within polycrystalline it is quite likely that the orientation in one 

grain will not line up well with the orientation in the next grain. These differently 

orientated grains push against each other, leaving grain boundaries between them that 

represent an amorphous phase. Therefore, these grain boundaries will have a barrier that 

will produce a larger electrical resistance than in the crystalline grains. These higher 

resistances will then influence the overall current flow.  

Percolation is the movement or filtering of fluids through porous materials. In this 

context, it is in the interests of electrical current that fans out and effectively sample 

many different paths to reach its final goal [20]. A percolation process seeks out the best 

combination path between A and B (Fig. 22 B) that minimizes resistance by favoring 

paths with larger cross-sectional area, shorter travel distance, and lower resistance, 
𝜌𝐿

𝐴
. 

In Fig. 22, percolation implies that changes of resistance cause significant 

redistribution of current that changes the overall electrical resistance. During phase two 

the red arrows change thickness by going around the more resistive brown squares. 

Within the case of crystals, it could be a grain boundary, which forces more current 
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through a smaller area. The changes can have large impacts, and if the more resistive 

material disappears it will therefore change the reading of the material. This concept can 

be compared to the polycrystalline forming and changing, while heating up an amorphous 

material. 

 
Fig. 22. A) The crystal structure of crystalline, amorphous, and polycrystalline, where the 

pink line indicates a grain boundary. [21] B) Percolation through a medium with 

changing resistance. 

5.3 Grain Formation 

Fig. 23 A) is a fully amorphous material that is probed at position A and B. Seen in 

B) are Z-slices from the simulation at a temperature ramp of 0.01 C/min and around 142 
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hours into the simulation. The bottom three graphs represent the phase of the material and 

the left most graph of the light blue is amorphous. As temperature increases, a 

crystallization process occurs (Set Operation). Yellow shows fully crystalline voxels, and 

brown voxels represent freely moving crystal growth fronts, while dark blue indicates the 

amorphous like grain boundaries where two or more different grains have run into each 

other.  

 

 

Fig. 23. A) A slab of phase change material with an anode and cathode probed. B) The 

resulting crystallization over time at a ramp of 0.01C/min. Showing the grain ids on top 

and the phase on the bottom. (Crystalline = yellow, Blue=Amorphous, Dark blue = GB, 

Brown= Growth front) 
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Within the simulator, each voxel tracks its own histogram of sub-critical nuclei and 

models the stochastic transitions between these states [14]. Once a nuclei is lucky enough 

to become super-critical, the simulation continues to track its spherical expansion until it 

starts to protrude into, infect, and crystallize neighboring voxels. At the end of the 

simulation (the most right graph) all the amorphous material has been converted to 

crystalline, resulting in multiple grains. The simulator tracks each grain with its own ID, 

making it easy to flag them and measure their size (Fig. 23). Because the simulation was 

at such a low temperature ramp, there are few polycrystalline grains formed; however, by 

increasing the temperature ramp they will increase. 

Motivated by Dr. Burr’s 2012 paper [14], the study increases the temperature ramp to 

change the grain sizes. At a temperature ramp of 0.01 C/min, fewer crystals are forming 

in comparison to the 1C/min ramp (Fig. 24). By increasing the ramp to 100C/min, the 

number of crystalline grains grows. In the 2012 paper, Dr. Burr showed that this effect 

arises from the fact that nucleation and growth both grow exponentially as a function of 

temperature, but at different slopes [14]. Thus, a slow temperature ramp rate means that 

the first nucleating grains have plenty of time to grow and consume vast amounts of 

territory, leading to large grains. A fast temperature ramp does increase the speed at 

which the first nucleating grains can grow; however, it does also make it quite likely that 

a new grain will nucleate directly in its path, cutting off its ability to grow large. 

Furthermore, it is well observed that crystallization happens later in the temperature 

perspective as the crystalline grains are trying to keep up, letting more amorphous 
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material be exposed to energy, therefore creating stable grains. For the thesis purpose, 

fluctuating the temperature ramp changes the number of grain boundaries and can 

hypothetically do the same to the electrical resistance.  

 

Fig. 24. Crystallization fraction of temperature ramps at 0.01, 1, and 100 C/minute. 

Determining the temperature ramps effect on the amount of polycrystalline. 

5.4 Polycrystalline electrical conductivity 

Electrical potential across multiple grains was not a motivation in Dr. Burr’s 2012 

study [14], but by now simulating the current flow, through percolation, it’s seen that the 

grain boundaries have large effects on the current field (Fig. 25). The voltage potentials 
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are at 0 and 1 (Fig. 25 B), and it’s clearly seen that the current vectors (Fig. 25 D) pass 

through the least amount of grain boundaries (Fig. 25 A). 

The resistance plot flattens at a fraction of 0.55 (Fig. 25 C), therefore having already 

found the least resistive path through the smallest amount of grain boundaries. The 

simulator uses three constant conductivities for the crystal-grain, grain-boundary, and 

amorphous material, which are held constant even as temperature ramps up. The 

conductivities represent the expected effect on the read current if the ramp was to stop 

and cool back down to room temperature. 

 

Fig. 25. A) Polycrystalline cell state B) potential drop, C) electrical conductivity (top) 

changes with crystal fraction growth (bottom), and D) current field map. 
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Increasing the temperature ramps should now do the same to the resistance to agree 

with the hypothesis. Fig. 26 represents the crystal fraction versus the resistance. It focuses 

on the end of the simulation where it has reached steady state and nothing else is 

changing. The material is following the expected trend; the fast ramp rate that led to 

small grains has high resistance due to many grain boundaries, while the slower ramp-

rates led to large grains has low resistance due to fewer grain boundaries.  

 

Fig. 26. Electrical resistance change against crystal fraction growth with different 

temperature ramps. 
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6 CONCLUSION 

In conclusion, the thesis has introduced the studies of PCM devices, discussed the 

simulators’ ability to calculate the thermal and voltage distribution through Douglas-

Gunn ADI method, simulated one dimensional and third dimensional thermal diffusion 

against literate and the standard industry tool ANSYS, fitted simulations against 

experimental PCM device IV data by including new physics, and finally shown the 

impact and importance that grain boundaries has on intermediate resistance operations. 

Therefore, the thesis has shown how important and useful it is to simulate PCM devices 

for the future of Analog AI device research. 

Future work would include more physics that correctly model the molten PCM, as 

assumptions were used to simulate the IV plots. Additionally, future students who visit 

IBM could develop the actual grain boundary interactions in the PCM cell. 
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