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The internal degrees of freedom provided by ultracold atoms provide a route for realizing higher dimensional
physics in systems with limited spatial dimensions. Nonspatial degrees of freedom in these systems are dubbed
“synthetic dimensions.” This connection is useful from an experimental standpoint but complicated by the fact that
interactions alter the condensate ground state. Here we use the Gross-Pitaevskii equation to study the ground-state
properties of a spin-1 Bose gas under the combined influence of an optical lattice, spatially varying spin-orbit
coupling, and interactions at the mean-field level. The associated phases depend on the sign of the spin-dependent
interaction parameter and the strength of the spin-orbit field. We find “charge”- and spin-density-wave phases
which are directly related to helical spin order in real space and affect the behavior of edge currents in the synthetic
dimension. We determine the resulting phase diagram as a function of the spin-orbit coupling and spin-dependent
interaction strength, considering both attractive (ferromagnetic) and repulsive (polar) spin-dependent interactions,
and we provide a direct comparison of our results with the noninteracting case. Our findings are applicable to
current and future experiments, specifically with 87Rb, 7Li, 41K, and 23Na.

DOI: 10.1103/PhysRevA.94.063613

I. INTRODUCTION

Internal degrees of freedom in atomic Bose-Einstein con-
densates (BECs) provide a platform for realizing phenomena
conceived of in more traditional condensed matter settings.
We view these discrete internal spin degrees of freedom as
an extra “synthetic” dimension with a finite extent, allowing
phenomena in higher dimensions to exist in systems with a
lower real-space dimension [1]. The setup considered here
consists of a one-dimensional (1D) spin-1 Bose gas in an
optical lattice potential where the three hyperfine levels are
“Raman” coupled using a pair of laser beams, a scheme which
has been explored both theoretically and experimentally [1–7].

Experimental advances in ultracold atomic gases led to
spin-orbit coupling (SOC) in spinful Bose and Fermi gases,
one route for realizing synthetic dimensions [8–11]. Despite
the lack of quasi-1D true Bose-Einstein condensation, in the
weakly interacting mean-field (MF) regime the condensate
wave function is well described by the 1D Gross-Pitaevskii
equation (GPE) [11]. The introduction of a spin-orbit wave
vector imbues the single-particle energy dispersion with multi-
ple minima in momentum space [12–14]. At low temperatures
an interacting Bose gas can Bose-condense at these minima,
forming a superfluid (SF) with density order: a charge density
wave (CDW) [12,13,15,16]. Moreover, different SF phases
occur depending on the symmetry of the underlying Hamilto-
nian: spin-density waves (SWs) and magnetized phases are two
examples [17]. In spin-1/2 bosons, SOC can induce CDW and
SW phases, however, these are necessarily pseudospin systems
and an SU(2)-breaking spin-dependent interaction term is
required to achieve these phases [16,18]. For the case of spin-1
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bosons, spin-dependent interactions preserve SU(2) symmetry,
which is then broken by SOC, leading to a rich phase diagram
exhibiting multiple CDW and SW phases [14,19–21].

The second ingredient in the synthetic dimension program
is an optical lattice. The system is loaded into a 1D lattice
provided by counter-propagating lasers of wavelength λL =
2π/kL, where kL is the recoil momentum. The hyperfine spin
states −F � mF � F are viewed as an added spatial dimen-
sion, coupled using Raman lasers of a different wavelength,
λR = 2π/kR. These components are shown in Fig. 1(a). Thus,
the 1D system maps to a two-dimensional ladder model with
rungs 2F + 1 sites in width, leading to a square lattice in
the tight-binding approximation [see Fig. 1(c)]. The spatial
dependence of the Raman coupling is essential to this analogy,
as it gives each synthetic plaquette a flux � = 2πkR/kL [1].
In this space, the laser coupling of spin states gives hopping
along the synthetic dimension direction. This allows for novel
transport properties and topological states of matter to form
and be probed [1,4,6,7,22]. This system was theoretically
investigated for several types of atoms and recent experiments
observed chiral currents [1–6]. The mapping to a higher
dimensional Hamiltonian is exact for single-particle physics,
but local interactions in the 1D system translate to nonlocal
interactions in the synthetic direction. In this work, we explore
the combined effect of the Raman strength and spin-dependent
interactions on phases at the MF level, without making
tight-binding or single-band approximations. In particular, we
focus on the regime of intermediate lattice depth where the
mean-field description is applicable. At higher lattice depths,
Mott physics becomes important and the GPE is an insufficient
probe of the system. All of the parameter values used in our
calculations are listed in Table I.

Previous work identified numerous MF phases without an
optical lattice [19,21,23,24] and with a deep optical lattice
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FIG. 1. (a) The physical system consists of an optical lattice
(black line; period λL/2) with Raman lasers forming an effective
helical magnetic field (green arrows; period λR/2). (b) Single-particle
dispersion relation for the spin-1 spin-orbit-coupled Bose gas in an
optical lattice at � = 0.25EL, c2 = 0, c0 = 0. The six lowest energy
bands are pictured, with the three lowest bands well split from the
higher energy modes. (c) Synthetic dimension visualization. The
hyperfine levels mF are viewed as an additional dimension with
2F + 1 sites. Each plaquette has a uniform flux � ≈ 2πkR/kL.
(d) The three lowest bands in the synthetic dimensions set up for
� = 0.25EL. At small � and ε = 0 the bottom band has three minima,
with the lowest energy minimum at k = 0. For ε < 0 the bottom band
has two degenerate minima, reflecting degeneracy in mF = ±1.

resulting in pinning effects and an interaction-driven SF
phase [25]. “Pinning” refers to condensation only at wave
vectors commensurate with the underlying lattice [25]. The
effect of increasing the lattice depth (which is intermediate
between these two regimes) was also recently explored for
spin-1/2 systems [26,27]. A common feature of these systems

FIG. 2. Phase schematic for ε = 0 and ε = −EL. (a) ε = 0. For
� � 0.5EL the system exhibits charge-density-wave behavior and
spin polarization along Sx and is denoted CDWFM. Increasing � leads
to a uniform-density phase with a helical spin texture. The period of
the spin helix is determined by the Raman field. Positive c2 values
suppress density fluctuations. (b) ε = −EL. The BEC exhibits distinct
charge-density-wave phases with different ordering wave vectors and
different spin textures, denoted CDWSW1 and CDWSW2. A crossover
occurs between the two with increasing �. At � ≈ 2.4EL there is
a first-order transition to a uniform-density state with helical spin
polarization.

is that the lattice causes condensation at the Brillouin-zone
edge, which coincides with the wave vector of the optical
lattice potential and not with the wave vector of SOC [25–27].

The physics that continuously connects the continuum limit
to the deep lattice limit (i.e., the single-particle Hamiltonian,
optical lattice, and tight binding) is largely unexplored for
spin-1 spin-orbit-coupled bosons. In light of recent experi-
mental progress it is important to understand the possible
ground-state phases of this system including interactions to
compare with all parameter ranges possible in experiments.
We study the ground-state properties of a spin-1 Bose gas
with SOC and an optical lattice at the MF level by solving
the GPE at zero temperature for weakly interacting bosons
with either repulsive (polar) or attractive [ferromagnetic (FM)]
spin-dependent interactions and repulsive density-dependent
interactions. Of particular interest is how the phases develop
with increasing Raman coupling and how different phases
manifest in the synthetic dimension picture. Furthermore, we
compare how the synthetic dimension setup affects previously
studied phenomena in the uniform system, such as the
appearance of CDW phases [12,14,19].

The main result of this work is shown in Fig. 2, the phase
diagrams for varying Raman strength � and FM and polar
spin-dependent interaction parameter c2 for two values of the
quadratic Zeeman strength. We briefly discuss our conclusions
here, with more detail provided in Secs. III and IV. As expected
from previous work [25], the lattice suppresses condensation
at wave vectors other than k = 0 and the lattice wave vector
k = kL at the Brillouin-zone edge. However, in the regime of
interest this order is not completely suppressed and we predict
several phases. Phases are labeled CDW or uniform density,
with the type of spin texture denoted by the subscript in the
CDW regimes. When the interaction strength is comparable
to the Raman coupling, along with the CDW phases we find a
variety of spin textures: a predominantly FM state for c2 < 0
and two different spin-density waves (SW1, SW2) for c2 > 0.

063613-2
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Increasing � favors the single-particle ground state of uniform
density and helical spin order. For the purposes of this work,
a “uniform-density state” refers to a state where the total
density is modulated only by the optical lattice. We relate
these phases to the synthetic dimension picture by analyzing
the spin current and fractional population of atoms in each spin
state. The rich variety of phases reported here directly results
from the interplay between interactions and the single-particle
Hamiltonian. We are able to establish what effects result
directly from interactions by comparing our results with exact
results for the ground state in the noninteracting case.

Our results align with MF phases previously studied without
the lattice, and we conclude that the intermediate lattice depth
modifies the phase boundaries but does not destroy phases
that have already been predicted [19,23,24]. In addition,
we characterize the lattice depth at which these phases are
suppressed and the MF picture breaks down. Furthermore, we
find that the ground-state phase is dependent on the strength
of the Raman coupling, which provides an additional tunable
parameter in experiments. It is notable that increasing the
Raman coupling strength at a constant lattice depth leads
to condensation at the Brillouin-zone edge, a phenomenon
that was previously predicted solely for increasing lattice
depth [27]. Our model parameters were selected to be directly
relevant to experiments with FM atoms (e.g., 87Rb, 7Li, 41K) as
well as polar atoms (e.g., 23Na) [5–7]. In Sec. II we explain the
model and briefly review previous results. Sections III and IV
give detailed results for attractive and repulsive spin-dependent
interactions, respectively. We conclude in Sec. V and discuss
how our work relates to current and future experiments. The
effects of increasing lattice depth are provided in the Appendix.

II. MODEL AND METHOD

We consider interacting spin-1 bosons in the presence of
a Raman field and an optical lattice. The model is defined by
Ĥ = ∫

dx(Ĥ0 + Ĥso + Ĥint), setting � = 1 throughout. The
noninteracting Hamiltonian density Ĥ0 is

Ĥ0 = 1

2M
∇ψ̂†

α∇ψ̂α + ψ̂†
α[V (x) − μ]ψ̂α, (1)

with the hyperfine states coupled through the spin-orbit
coupling and interaction terms

Ĥso = ψ̂†
α

[
ε
(
F 2

z

)
αβ

+ �R(x) · Fαβ

]
ψ̂β, (2)

Ĥint = c0

2
ψ̂†

αψ̂
†
βψ̂βψ̂α + c2

2
ψ̂†

γ ψ̂†
αFγ ν · Fαβψ̂βψ̂ν, (3)

using the notation defined in Table I, with repeated indices
summed over. In particular, the spatial structure of the the SOC
term is given by �R(x) = � cos(2kRx)ex − � sin(2kRx)ey .

The single-particle physics of this system without a lattice
was studied extensively in Ref. [14]. For small � and ε the low-
energy dispersion relation has three minima, at k = 0,±2kR,
corresponding to spin states mF = 0,±1. These minima are
degenerate when ε is tuned to slightly negative values with
increasing �. Increasing ε shifts the middle minimum down,
resulting in a single-minimum structure, while decreasing ε

shifts the middle minimum up, leading to a double-minimum
structure. The dispersion relation for these two conditions

is shown in Figs. 1(b) and 1(d), where we plot the band
structure for � = 0.25EL and ε = 0 and −EL. In the triply
degenerate regime, the condensate wave function takes the
form [19]

ψ(x) = A+ξ+ei2kRx + A0ξ0 + A−ξ−e−i2kRx, (4)

where A±,0 are complex amplitudes and ξ±,0 are the single-
particle spinor eigenstates at the energy minima corresponding
to momenta k = ±2kR,0. The condensate can exhibit a
zero-momentum phase or a plane-wave phase when a single
minimum is occupied, corresponding to A0 �= 0, A± = 0,
or A± �= 0,A∓,0 = 0. The condensate also exhibits various
density-modulated (CDW) phases when at least two of the
three components A±,0 are nonzero. These CDW phases
have different wavelengths depending on how the minima are
occupied [14].

For a weakly interacting condensate Eq. (4) is still a valid
ansatz, but A±,0 are selectively occupied to minimize both
the single-particle and the interaction energies. Interactions
dictate the form of the spinor structure in the condensate,
favoring ferromagnetic order for attractive (c2 < 0) and
uniaxial nematic order for repulsive (c2 > 0) spin-dependent
interactions [19]. This is due to the fact that for c2 < 0
(c > 0), the system maximizes (minimizes) spin 〈Ŝ(x)〉, where
Ŝ(x) = ψ̂†

α(x)Fαβψ̂β(x), leading to distinct phases in the two
regimes [14,19,21,23]. Furthermore, tuning ε also alters the
ground state in the presence of interactions by changing
the structure of the underlying dispersion relation [19]. This
interplay between SW and CDW order leads to a number
of exotic phases and excitations in the continuum system
[19–21,23].

One goal of the present article is to understand the stability
of each spin-orbit- and interaction-driven phase in the presence
of an optical lattice, away from the deep-lattice limit. A
lattice invalidates the ansatz of Eq. (4) since the lattice breaks
translational symmetry, but essential features and minima of
the lowest band remain intact as shown in Figs. 1(b) and 1(d).

We describe a spinor BEC by three classical complex
fields, 〈ψ̂α(x)〉 = ψα(x) = √

n(x)ξα , where n(x) = ∑
α |ψα|2

is the total density, ξα is a three-component spinor with nor-
malization ξ ∗

α ξα = 1, and α = {1,0,−1} labels the synthetic
dimension sites. We define the GPE energy functional by
replacing the bosonic operators in Eqs. (1)–(3) with ψα(x).
This gives the coupled equations

i∂tψα =
{[

− ∇2

2M
+ V (x)

]
δαβ + �R · Fαβ + ε

(
F 2

z

)
αβ

+ c0|ψ |2δαβ + c2[(ψ†
δ Fδγ ψγ ) · Fαβ ]

}
ψβ. (5)

We solve for the ground state using imaginary-time evolu-
tion where t → −iτ [28] and test convergence using the strong
criterion detailed in Ref. [29]. The system was initialized
in a uniform state,

∑
α |ψα(x)|2 = μ/c0, with all three spin

components (ladder legs) equally weighted and where the
number of particles fixes μ. We find that near the phase
transitions there are several states that are close in energy.
Our initial state biases the GPE solver and at some point
in the phase diagram there is an artificial transition between
phases, because sometimes the GPE relaxes to a metastable
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TABLE I. Notation and values used for numerical simulations (if applicable). We tune the Raman-field strength � and spin-dependent
interaction c2. Values of VL and kR come from the relevant experiment [6]. Interactions are related to scattering lengths a0 and a2 by
c0 = 4π (a0 + 2a2)/3M and c2 = 4π (a2 − a0)/3M [11].

Notation Description Value

ψ̂α(x) Boson field operator; α = mF –
N Number; N = ∫

dx 〈ψ̂ †
αψ̂α〉 N = 100

L Length of lattice L = 15λL/2
M Atomic mass –
V (x) Optical lattice potential; V (x) = VL cos2(kLx) VL = 5EL

kL Lattice recoil momentum 2π/λL

EL Lattice recoil energy EL = k2
L/2M –

vL Lattice recoil velocity vL = kL/M –

ε Quadratic Zeeman strength ε =
{

0, c2 < 0,

−EL, c2 > 0.

Fαβ Vector of spin-1 matrices –
�R(x) Spin-orbit coupling; �R(x) = � Re [e2ikRx(x̂ + iŷ)] � tuned
kR Raman wave vector kR/kL = 4/3.
c0 Density-density interaction c0N/L = 0.1EL

c2 Spin-dependent interaction c2
c0

=
{−0.25,−0.5,−0.7

0.25,0.5,1.0

state rather than the ground state. To precisely pinpoint a
transition, we ran the GPE over parameter ranges biasing the
initial guess in favor of the previously calculated result at
� ± δ� (running from small to large � and large to small
�). The lower energy phase is then taken as the ground state.
As a heuristic check, we stochastically sampled points in the
phase diagram using random initial conditions, confirming the
ground-state solution found from the above methodology. The
parameter values used in the GPE solver are detailed in Table I.
Importantly, ε has a strong influence on phases and we present
results for ferromagnetic BECs with ε = 0 and polar BECs
with ε = −EL. These two choices are explained in Secs. III
and IV.

CDW and SW phases are identified by nonzero Fourier
amplitudes of the density and spin-order parameters, n(k) and
〈S(k)〉, at the relevant wave vectors k = 2kL, k = 2kR, and
k = 4kR. The first two correspond to the wave vector of the
lattice and the spin-orbit field, respectively. Nonzero amplitude
at k = 2kL indicates an effect due to the lattice, while k = 2kR

indicates an effect due to SOC. The third wave vector, k = 4kR,
corresponds to condensation at the two degenerate minima
at ±2kR in the single-particle band structure (see Fig. 1).
The resolution of the system is set by the length L; here we
have five unit cells because the Raman beam is periodic over
three optical lattice sites. Density n(k) and spin 〈S(k)〉 are
defined by n(k) = ∫

dxeikxn(x) and 〈S(k)〉 = ∫
dxeikx〈S(x)〉.

A schematic of CDW phases in synthetic dimensions is
shown in Figs. 3(a)–3(c). In synthetic space, these phases are
captured by the fractional population in the mF states, shown
in Figs. 3(d) and 3(e). The fractional population nα is defined
as

nα =
∫

dk nα(k)∑
α

∫
dk nα(k)

. (6)

Finally, we analyze the spin currents in this system,
which is analogous to the chiral edge current in a quantum

FIG. 3. (a) Schematic of the CDWFM phase. The BEC predom-
inantly occupies the mF = 0 level. The total density is modulated
at neighboring sites due to the Raman field. (b) Schematic of the
CDWSW1 phase. The edges are preferentially occupied and there
is an overall density modulation. (c) Schematic of the CDWSW2

phase. The bulk is more occupied than in (b), and the overall density
modulation remains. (d, e) Fractional population as a function of �.
(d) c2/c0 = −0.25, ε = 0. The system begins in a CDWFM ground
state at � ≈ 0 with n0 = 1/2 (top line) and n±1 = 1/4 (bottom line)
and moves to meet the single-particle occupation. The noninteracting
case is indicated by dashed lines. (e) c2/c0 = 0.25, ε = −EL. The
system starts with n±1 = 1/2 (top line) and n0 = 0 (bottom line). As
� increases, it undergoes an edge to the bulk first-order transition at
� ≈ 2.0EL, which is weakened to a crossover in the limit c2 = 0. As
� increases the bulk is preferentially occupied. Dotted lines indicate
the case for c0 �= 0, c2 = 0.
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FIG. 4. Interplay of spin and density for c2 < 0 at small �.
(a) Lattice potential V (x). (b) Local spin polarization and Raman
field at each site for +Sx polarization. The blue arrow shows the
spin polarization, and the red arrow shows the local Raman field.
(c) CDWFM phase with +Sx polarization. The density increases at
sites where F · �R < 0. (d) Local spin polarization and Raman field
at each site for −Sx polarization. The green arrow shows the spin
polarization, and the red arrow shows the local Raman field. (e)
CDWFM phase with −Sx polarization. The density increases at the
sites where F · �R < 0.

Hall system. The extremal spins represent the edges in the
synthetic dimension [9]. This provides a way to visualize
and measure chiral currents because the BEC can be imaged
in the synthetic and spatial dimensions using spin-resolved
absorption imaging [6]. The total spin current density is defined
as

jS ≡
∑

α

α〈jα〉 =
∑

α

α

∫
dk

2π

k

M
ψ†

α(k)ψα(k), (7)

where ψα(k) = ∫
dxeikxψα(x). Nonzero current corresponds

to occupying states in the edge-site conduction bands of the
corresponding two-dimensional lattice system. In this case, the
spin current is driven by the Raman beam � and, also, depends

FIG. 5. (a, b) GPE density computed for c2/c0 = −0.25 and
ε = 0. (a) The density in real space in the CDWFM phase shows
modulation between lattice sites. (b) The density in real space in
the uniform-density phase. (c) |n(2kR)| �= 0 signals a CDW phase.
The noninteracting case (dashed line at 0) has density modulation
only from the lattice, and only slight density modulation appears
for c2 = 0, c0 > 0 (bottom, cyan line). An increasing spin-dependent
interaction strength |c2| leads to greater overall density modulation
until a crossover occurs to the uniform-density regime. The largest
peak (red line) indicates the highest interaction strength tested.

on the population of atoms in the mF = ±1 Zeeman (edge)
states.

III. RESULTS: ATTRACTIVE SPIN-DEPENDENT
INTERACTIONS

The phase schematic for c2 < 0 and ε = 0 is shown in
Fig. 2(a). For � = 0 the system is an SU(2) FM [30,31] with
uniform charge density (i.e., the density is only suppressed by
the lattice potential); this symmetry is broken by the Raman
field. The physics at large � is largely explained by the
single-particle Hamiltonian: The data match up with exact
diagonalization for c0 = c2 = 0 rather well.

For small �, the SU(2) FM phase and the modulating
Raman field compete. In this regime, the charge redistributes
itself to accommodate the FM phase in the presence of the
Raman field. To understand this, consider the Raman field at
each lattice site: The angle of the Raman field in the Sx-Sy

plane is 0, 2π/3, and 4π/3 before it repeats itself every
third site. Within the GPE, the wave function at each site l

is ψα,l = √
nlξα,l with ξ

†
α,lξα,l = 1, and to leading order in �

the energy is changed by roughly

�E ≈
∑

l

nlξ
†
α,lFαβξβ,l · �R. (8)

For a given FM state, �E is minimized by a higher density
nl at sites where ξ

†
α,lFαβξβ,l · �R < 0 and a lower nl where
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FIG. 6. Spin-wave order for c2/c0 = −0.7, ε = 0. Dashed lines
show the c2,c0 = 0 case for reference. (a) 〈Sx(k)〉 is pinned to the
density in the CDWFM phase, shown by |〈Sx(2kL)〉| �= 0 (yellow
line). After the transition 〈Sx〉 is modulated primarily at the Raman
wave vector k = 2kR (red line) and |〈Sx(2kL)〉| → 0. (b) 〈Sy(k)〉 is
almost unaffected by the optical lattice but follows the Raman beam,
shown by |〈Sy(2kL)〉| � |〈Sy(2kR)〉|. Right-axis labels correspond to
the yellow line. (c) Amplitude of spin oscillations with increasing
�. Sx is indicated by the black line; Sy , by the blue line. We
see that the ferromagnetic state crosses over to Raman polarized
at � ≈ 0.5EL. (d, e) Example real-space spin texture. (d) CDWFM

phase. (e) Uniform-density phase with a helical spin texture. The
legend is the same as in (c).

ξ
†
α,lFαβξβ,l · �R > 0. This reasoning leads to two kinds of

charge density waves as depicted in Fig. 4. Our simulations
suggest that Fig. 4(b) is lower energy, shown in Fig. 5(a).
We precisely track this CDWFM regime by looking at Fourier
modes of the density n(k) at k = 2kR as shown in Fig. 5(c),
which makes clear that the CDW is an interaction-induced
effect, increased by a larger FM interaction.

In Fig. 6 we describe a system with 0 < �/EL � 0.5 that
is polarized along Sx , connected to two other degenerate states

FIG. 7. jS(�) computed for c2/c0 � 0 and ε = 0. Ferromagnetic
spin-dependent interactions first suppress and then slightly enhance
the overall spin current compared to the noninteracting case (dashed
line) in the regime where the density modulation is highest. For
spin-independent interactions only (c2 = 0; cyan line) the current is
hardly changed.

with the transformation

ψ(x) → e− 2πi
3 Fzψ(x − π/kL). (9)

We confirmed numerically that the above transformation yields
degenerate states with the same energy, and one would expect
this from the above reasoning. The precise nature of the FM
state with increasing � is captured in Fig. 6, where we see that
〈Sx(k)〉 is at first only modulated at 2kL and 〈Sy(k)〉 is quite
small, but as the Raman field � increases we obtain a small
SW in 〈Sy(x)〉, shown in Figs. 6(c) and 6(d). This minimizes
the energy in Eq. (8), as depicted in Fig. 4.

For strong enough �, the easy axis ferromagnetic order
is suppressed and the helical order of the single-particle
picture takes over, as indicated in Fig. 3(c) by the increase
in occupation in the mF = 0 state for � ≈ 0.3EL. Finally, a
crossover to a helical spin texture occurs for large �, shown in
Fig. 6. The preference for mF = 0 is shown in the single-
particle picture: for small � the degenerate mF = −1,0,1
states split so that mF = 0 becomes the lowest energy, as
discussed in Sec. II.

The spin current is initially suppressed by these FM
interactions as shown in Fig. 7. In the synthetic space, an FM
state implies little phase change between neighboring sites
with m = 1 or m = −1, leading to a suppressed spin current,
but an SW is induced as a function of increasing Raman
strength. This leads to an increased spin current and even
enhances it past the single-particle value where the density
modulation is highest. Finally, the spin current approaches the
noninteracting case.

IV. RESULTS: REPULSIVE SPIN-DEPENDENT
INTERACTIONS

In the case of polar interactions the system cannot lower its
energy through the interplay of enhanced density modulation
and spin-wave order. Setting ε = 0 gives a uniform-density
ground state with n(x) ∼ cos2(kLx). An experimentally acces-
sible way to stabilize a CDW phase in a polar BEC is to bias the
system with a large negative ε. Setting ε = −EL for c2 > 0 fa-
vors occupation of the single-particle minima in maximal spin
states. This induces competition between the spin-dependent
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FIG. 8. (a, b) GPE density computed for c2/c0 = 0.25 and
ε = −EL. Density in real space in the CDWSW1 (a) and CDWSW2

(b) phases. (c) n(k) at k = 2kR and (d) 4kR . The noninteracting case
(black line) has no density modulation other than by the lattice, so it
is 0 in this case. For c0 �= 0 the density is modulated at two different
wave vectors of the same order of magnitude, varying slightly with
varying c2. For |n(4kR)| > |n(2kR)| we denote the CDWSW1 phase,
while for |n(4kR)| < |n(2kR)| the system is in the CDWSW2 phase.
The crossover from CDWSW1 to CDWSW2 occurs for � ≈ 1.7EL.
The system undergoes a first-order transition to uniform density for
� ≈ 2.4EL, corresponding to the transition to the single-minimum
regime. This first-order transition occurs at slightly higher � values
for increasing interaction strength. The red line indicates the highest
interaction strength tested.

interaction and the underlying single-particle dispersion; in
the language of synthetic dimensions, ε < 0 favors edge
over bulk states. The phase diagram for c2 − � and ε < 0
is shown in Fig. 2(b). There exist two phases with nonzero
n(2kR) and n(4kR). These phases are denoted CDWSW1 for
|n(4kR)| > |n(2kR)| and CDWSW2 for |n(4kR)| < |n(2kR)|,
which are analogous to the distinct density-modulated phases
found without the optical lattice in Ref. [23]. The existence
of multiple density-wave phases allows for the possibility of
observing a continuous CDWSW1 → CDWSW2 crossover with
increasing �, as shown in Figs. 8(a)–8(c). For c2/c0 = 0.25,
0.5, and 1.0, the crossover occurs at � ≈ 1.7EL. We find a
first-order phase transition at � ≈ 2.4EL into the uniform-
density phase, which occurs when the lowest band becomes
extremely flat (not shown). The first-order transition is a
generic feature of the transition from two minima to one and

FIG. 9. jS(�) computed for c2/c0 � 0 and ε = −EL. Repulsive
spin-independent (c0) interactions suppress the current compared to
the noninteracting case, indicated by the dashed black line. The first-
order transition causes a sharp increase in the current and is weakly
dependent on c2. It occurs at higher values of � for higher values of
c2/c0. The red line indicates the highest interaction strength tested. In
the noninteracting case (dashed line), the discrete steps in the current
are a finite-size effect due to the change in curvature of the lowest
band. As ε is tuned, the momentum k where the band minimum occurs
decreases in discrete steps from the original value of k = ±2kR until
the single-minimum regime at k = 0 is reached. In the infinite system
this curve would be smooth.

has also been predicted for the interacting system without the
optical lattice [21,23].

Even for the relatively shallow lattice at V = 5EL, contrast
of the CDW phases may be difficult to resolve in experiments.
The first-order transition can be verified through measurement
of the current, shown in Fig. 9. Spin current is suppressed for
c2 > 0 in comparison to the noninteracting case, particularly
in the flat-band region around � ≈ 2.0EL. The first-order
transition leads to a discontinuous jump in spin current.
Past this point the spin current approaches the single-particle
case.

In addition to the CDW behavior, the system exhibits
multiple spin textures. The total spin 〈S2(x)〉 is minimized
for � = 0. As � increases the spin begins to polarize in the
Sx − Sy plane. Initially 〈Sy〉 is suppressed and only begins to
grow after the CDWSW1 → CDWSW2 crossover, as shown in
Figs. 10(b) and 10(c). This spin configuration is also connected
to two other degenerate states through the transformation in
Eq. (9), which we have verified numerically. The lattice plays
a much smaller role in the spin textures than in the c2 < 0 case
as evidenced by the small but nonzero |〈Sx,y(2kL)〉|. At large
� the helical spin texture is again entirely determined by the
Raman beam, decoupled from the density behavior and the
sign of c2. The variety of spin textures is shown in Figs. 10(d)
and 10(e), where we plot the spin in real space for each of the
density-wave phases. In the uniform-density phase the spin
texture is the same as in Fig. 6(e). Due to the high degree of
degeneracy in the noninteracting case with ε = −EL, in Figs. 8
and 9 we present the noninteracting results for condensation
in a single minimum.

V. DISCUSSION AND CONCLUSION

We examined the weakly interacting spin-1 Bose gas with
SOC in an optical lattice and related it to the synthetic
dimension framework. Specifically, we have presented the
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FIG. 10. Spin-wave order for c2/c0 = 1.0, ε = −EL. Dashed
lines show the c2,c0 = 0 case. (a, b) 〈Sx(k)〉 and 〈Sy(k)〉 are modulated
at both the Raman and the lattice wave vectors for � � 2.4EL. After
the first-order transition the spin comes unpinned from the lattice as
evidenced by |〈Sx,y(k = 2kL)〉| = 0 (yellow lines) (c) The amplitude
of spin oscillations increases with increasing �. Sx is indicated by
the black line; Sy , by the blue line. The noninteracting case initially
occupies a single minimum and is polarized in 〈Sz〉 for � = 0 (not
shown). For � �= 0, 〈Sx〉 and 〈Sy〉 increase continuously, with 〈Sy〉
suppressed in the interacting case. (d, e) Real-space spin textures for
CDWSW1 and CDWSW2. The legend is the same as in (c).

phase diagram in the �-c2 plane for both positive and negative
values of c2. The system exhibits a rich phase diagram with
CDW and SW phases, which depend strongly on �, ε, and
the sign of c2. In the regime of intermediate lattice depth at
V = 5EL, we find a number of distinct phases. For attractive
spin-dependent interactions, the system exhibits ferromagnetic
behavior and density modulations at the Raman wave vector,
leading to an altered spin current in the CDWFM regime. In
the CDWFM phase there are small spin modulations that cross
over to helical polarization.

BECs with repulsive spin-dependent interactions present
density-modulated phases provided that ε < 0. In particular,
a crossover from a CDWSW1 to a CDWSW2 phase occurs with
increasing Raman intensity, and a first-order transition to a

uniform-density state is also seen. This first-order transition
can be measured through the spin current, which shows a
discontinuous jump at the transition. We show that ε plays a
crucial role in the phases that can be realized. Increasing �

leads to condensation only at the lattice wave vector, which
indicates a uniform-density state.

Finally, we studied the interplay of spin and density order
parameters by characterizing the spin textures in the Sx-Sy

plane. Notably, the interplay of interactions and single-particle
physics at low � leads to alterations of the spin current and
spin texture compared to the noninteracting case. This is true
of both attractive and repulsive c2, however, for c2 < 0 this
effect is particularly pronounced due to the appearance of
finite magnetization. Interactions lead to modified bulk or edge
occupation of the system in the synthetic dimension. For c2 >

0 and large negative ε the system favors edge occupation of the
synthetic lattice, while for c2 < 0, ε = 0 it is primarily bulk
occupation. Future research could investigate the excitation
spectrum in the present setup or more closely examine the
role of ε. These results are accessible via current experiments
and apply to a variety of atoms such as 87Rb, 7Li, 41K,
and 23Na.
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APPENDIX: EFFECT OF INCREASING LATTICE DEPTH

In this Appendix, we analyze the role of increasing lattice
depth VL on the CDW phases presented in the text. The
MF description of the BEC breaks down as the lattice depth
increases and Mott physics becomes more important. In our
results, we find that for both polar and FM spin-dependent
interactions the CDW order is suppressed for VL � 10EL.
This indicates that increasing the lattice depth by as little as
a factor of 2 reaches the boundary of applicability of the MF
description in one dimension.

In Fig. 11 we analyze the effect of an increasing lattice depth
on the CDWFM phase. As VL increases, the CDW amplitude
grows until there is a first-order transition to a uniform-density
phase with modulation only at k = 2kL. The transition occurs
for Vc ≈ 8.6EL, therefore it is important that the system is
in a relatively shallow lattice regime to observe the CDWFM

phase. For VL > Vc, condensation only occurs at k = 0 and the
Brillouin-zone edge (k = kL) with increasing lattice depth, as
shown by the increase in |n(2kL)| with increasing VL. The deep
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FIG. 11. Dependence of the CDWFM phase on the lattice depth.
As VL increases, the CDW increases in amplitude and then undergoes
a first-order transition to a uniform-density phase. Condensation
moves toward the Brillouin-zone edge, as shown by the increasing
|n(2kL)| (red line) even after the transition. Note that here |n(k)| is
normalized by |n(k = 0)|.

lattice suppresses interaction-induced effects at the MF level
(for these values of c0 and c2) including the CDW and FM
polarization, and the spin texture is Raman-polarized as the
lattice depth increases.

The effect of increasing lattice depth on both CDWSW1

and CDWSW2 is shown in Fig. 12. Unlike the CDWFM case,
the amplitude of density modulations decreases gradually
with increasing VL and we do not find a sharp transition.
For CDWSW1 the behavior of n(k) at k = 2kR and 4kR is
slightly nonmonotonic, showing a small increase initially with
increasing VL. In the case of CDWSW2, n(k) decreases across
the entire range of VL. Condensation at the lattice wave vector
is almost the same as in the CDWFM case, with n(2kL) having
a similar magnitude. This shows that for increasing lattice
depth the condensation wave vector moves to the edge of
the Brillouin zone independent of the type of interactions
present.

FIG. 12. Dependence of the CDWSW1 and CDWSW2 phases on
the lattice depth. In both cases, condensation moves toward the
Brillouin-zone edge, as shown by increasing |n(2kL)| (top, red line;
right axis), which is much larger in magnitude than the other order
parameters. (a) CDWSW1. As VL increases, the CDW increases slightly
before decreasing. (b) CDWSW2. As VL increases, the CDW decreases.
Notably, |n(2kL)| is the same order of magnitude as in the CDWFM

case, while |n(2kR)| (yellow line) and |n(4kR)| (orange line) are
much smaller. Note that in both (a) and (b) |n(k)| is normalized
by |n(k = 0)|.

[1] A. Celi, P. Massignan, J. Ruseckas, N. Goldman, I. B. Spielman,
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Heidrich-Meisner, Strongly interacting bosons on a three-leg
ladder in the presence of a homogeneous flux, New J. Phys. 17,
092001 (2015).

[4] M. Atala, M. Aidelsburger, M. Lohse, J. T. Barreiro, B. Paredes,
and I. Bloch, Observation of chiral currents with ultracold atoms
in bosonic ladders, Nat. Phys. 10, 588 (2014).

[5] T.-S. Zeng, C. Wang, and H. Zhai, Charge Pumping of
Interacting Fermion Atoms in the Synthetic Dimension, Phys.
Rev. Lett. 115, 095302 (2015).

[6] B. K. Stuhl, H.-I. Lu, L. M. Aycock, D. Genkina, and I. B.
Spielman, Visualizing edge states with an atomic Bose gas in
the quantum Hall regime, Science 349, 1514 (2015).

[7] M. Mancini, G. Pagano, G. Cappellini, L. Livi, M. Rider,
J. Catani, C. Sias, P. Zoller, M. Inguscio, M. Dalmonte,
and L. Fallani, Observation of chiral edge states with neu-
tral fermions in synthetic Hall ribbons, Science 349, 1510
(2015).

[8] V. Galitski and I. B. Spielman, Spin-orbit coupling in quantum
gases, Nature 494, 49 (2013).

[9] M. C. Beeler, R. A. Williams, K. Jimenez-Garcia, L. J. LeBlanc,
A. R. Perry, and I. B. Spielman, The spin Hall effect in a quantum
gas, Nature 498, 201 (2013).

[10] J. Dalibard, F. Gerbier, G. Juzeliūnas, and P. Öhberg, Collo-
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