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Impurity driven Brownian motion of solitons in elon-
gated Bose-Einstein Condensates

L. M. Aycock1,2, H. M. Hurst1,3, D. Genkina1, H.-I Lu1, V. Galitski1,3, I. B. Spielman1

1Joint Quantum Institute, National Institute of Standards and Technology, and University

of Maryland, Gaithersburg, Maryland, 20899, USA

2Cornell University, Ithaca, New York, 14850, USA

3Condensed Matter Theory Center, Department of Physics, University of Maryland, Col-

lege Park, Maryland 20742, USA

Solitons, spatially-localized, mobile excitations resulting from an interplay between

nonlinearity and dispersion, are ubiquitous in physical systems from water channels1

and oceans2 to optical fibers3 and Bose-Einstein condensates (BECs)4. For the first

time, we observed and controlled the Brownian motion5 of solitons. We launched

long-lived dark solitons in highly elongated 87Rb BECs and showed that a dilute

background of impurity atoms in a different internal state dramatically affects the

soliton. With no impurities and in one-dimension (1-D), these solitons would have

an infinite lifetime, a consequence of integrability. In our experiment, the added im-

purities scatter off the much larger soliton, contributing to its Brownian motion and

decreasing its lifetime. We describe the soliton’s diffusive behavior using a quasi-
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1-D scattering theory of impurity atoms interacting with a soliton, giving diffusion

coefficients consistent with experiment.

From our pulse throbbing at our wrists to rapidly moving tsunamis, solitons appear nat-

urally at a wide range of scales6. In non-linear optical fibers, solitons can travel long

distances with applications to communication technology and potential for use in quan-

tum switches and logic3, 7. Understanding how random processes contribute to the decay

and the diffusion of solitons is essential to advancing these technologies. We studied this

physics in the highly controlled quantum environment provided by atomic Bose-Einstein

condensates (BECs), where density maxima can be stabilized by attractive interactions,

i.e., bright solitons8; or as here, where density depletions can be stabilized by repulsive in-

teractions, i.e., dark solitons4, 9. By contaminating these BECs with small concentrations

of impurity atoms, we quantitatively studied how random processes destabilize solitons.

Our BECs can be modeled by the one-dimensional (1-D) Gross-Pitaevski equation (GPE):

an integrable nonlinear wave equation with soliton solutions as excitations above the

ground state. For a homogeneous 1-D BEC of particles with mass mRb with density ρ0,

speed of sound c, and healing length ξ = ~/
√

2mRbc, the dark soliton solutions

ϕ(z, t) =
√
ρ0

[
i
vs
c

+
ξ

ξs
tanh

(
z − vst√

2ξs

)]
(1)

are expressed in terms of time t, axial position z, soliton velocity vs, and soliton width ξs =
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ξ/
√

1− (vs/c)2. Such dark solitons have a minimum density ρ0(vs/c)2 and a phase jump

−2 cos−1(vs/c) both dependent upon the soliton velocity vs. These behave as classical

objects with a negative inertial mass ms, essentially the missing mass of the displaced

atoms. The negative mass implies that increasing the velocity reduces the kinetic energy,

thus dissipation accelerates dark solitons10. This can be seen from the soliton equation of

motion

msz̈(t) = −γż(t)− ∂zV + f(t), (2)

where V is the axial confining potential and −γż is the friction force. The random

Langevin force f(t) has a white noise correlator 〈f(t)f(t′)〉 = 2γkBTδ(t − t′) for tem-

perature T and Boltzmann constant kB. The friction coefficient γ = D/kBT is related

to the diffusion coefficient D describing friction from the impurity atoms. The connec-

tion between γ and f(t) is a manifestation of the fluctuation-dissipation theorem - f(t) is

responsible for Brownian motion while γ describes friction, but both have contributions

from impurity atoms.

Idealized solitons are infinitely long-lived due to the integrability of the 1-D GPE. Integra-

bility breaking is inherent in all physical systems, for example from the non-zero trans-

verse extent of quasi-1-D systems. Indeed in experiments, solitons are only long-lived in

highly elongated geometries11–13, where integrability breaking is weak. Cold atom exper-

iments have profoundly advanced our understanding of soliton instability by controllably
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lifting integrability by tuning the dimensionality14, 15. Here, we studied the further lifting

of integrability by coupling solitons to a reservoir of impurities.

Our system16 consisted of an elongated 87Rb BEC, confined in a nominally flat-bottomed

time-averaged potential, created by spatially dithering one beam of our crossed dipole

trap. We prepared N = 8(2) × 105 atoms1 in the |F = 1,mF = 0〉 internal state at T =

10(5) nK. Our system’s ≈ 250 µm longitudinal extent was about 30 times its transverse

Thomas-Fermi diameter 2R⊥ set by the radial trap frequency ωr = 2π × 115(2) Hz and

chemical potential µ ≈ h × 1 kHz. We controllably introduced a uniform17 gas of NI

impurity atoms in thermal equilibrium with our BECs using an rf pulse resonant with the

|F = 1,mF = 0〉 to |F = 1,mF = +1〉 transition prior to evaporation to degeneracy18.

This gave impurity fractions NI/N from 0 to 0.062 in our final BECs. We then launched

lone long-lived dark solitons using a phase imprinting technique4, 9.

We absorption-imaged our solitons after a sufficiently long time-of-flight (TOF) that their

initial width ξs ≈ 0.24 µm expanded beyond our ≈ 2 µm imaging resolution. Figure 1a

is an image of our elongated BEC with no soliton present, and in contrast Fig. 1b displays

an image of a BEC with a dark soliton taken 0.947 s after its inception. The soliton is the

easily identified density depletion sandwiched between two density enhancements. We

quantitatively identified the soliton position as the minimum of the density depletion from

1In our system, number fluctuations increased at the lowest trap depth (see methods).
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1-D distributions (right panel of Fig. 1 b). Our phase imprinting process launched several

excitations in addition to the dark soliton of interest. After a few hundred milliseconds, the

additional excitations dissipated and the remaining soliton was identified. By backtracking

the soliton trajectory, we were able to distinguish the soliton even at short times.

Figure 1c shows a series of 1-D distributions taken from time t ≈ 0 s to 4 s after the

phase imprint. These images show three salient features: (1) the soliton underwent ap-

proximately sinusoidal oscillations, (2) the soliton was often absent at long times, and (3)

there was significant scatter in the soliton position. Items (2) and (3) suggests that ran-

dom processes were important to the soliton’s behavior. The solitons’ position zi–when

present–is represented by the light pink symbols in Fig. 1d and the darker pink symbols

mark the average position 〈zi〉 for each time t.

Having established a procedure for creating solitons, we turned to the impact of coupling

to a reservoir of impurities, thus further breaking integrability. Figure 2 displays the soliton

position versus time for a range of impurity fractions. Adding impurities gave two domi-

nant effects2: further increasing the scatter in the soliton position z and further decreasing

the soliton lifetime. These effects manifested as a reduced fraction fs of images with a

soliton present and an increase in the sample variance Var(z) =
∑

(zi − 〈z〉)2 / (M − 1)

2The soliton oscillation frequency was slightly shifted with impurities resulting from an unintentional

change in the underlying optical potential. This change also slightly reduced the BECs longitudinal extent.
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computed using the number M of measured positions zi at each time.

The addition of impurities had a dramatic impact on the soliton lifetime. While we lack a

quantitative model of the soliton’s decay mechanism, there are several reasons to expect a

finite lifetime. When dissipation is present, solitons accelerate to the speed of sound and

disintegrate. Additionally, because our trap geometry has a finite transverse extent, quan-

tified by the ratio µ/~ωr ≈ 9, solitons can be dynamically unstable and decay into 3-D

excitations19. Our soliton’s initial velocity vs ≈ 0.3 mm/s, roughly 1/5 the 1-D speed of

sound c ≈ 1.4 mm/s20, implies it is in an unstable regime, where, as observed, it should

decay10. Furthermore, numerical simulations show that in anharmonic traps solitons lose

energy by phonon emission, accelerate, and ultimately decay21. All of these decay mech-

anisms can contribute to the soliton lifetime even absent impurities.

The added impurities act as scatterers impinging on the soliton, further destabilizing it.

This effect is captured in Fig. 3a, showing the measured survival probability fs versus time

for a range of impurity fractions. We fit to our data a model of the survival probability

fs(t) = 1− 1

2
erfc

[
− ln(t/τ)√

2σ

]
, (3)

essentially the integrated lognormal distribution of decay times, suitable for decay due

to accumulated random processes22. The survival probability fs(t) has a characteristic

width parameterized by σ and reaches 1/2 at time τ which we associate with the soliton
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lifetime. Figure 3b shows the extracted lifetime τ versus impurity fractionNI/N , showing

a monotonic decrease. Our maximum NI/N gives a factor of four decrease in lifetime τ .

The second important consequence of adding impurities was an increased scatter in soliton

position z, reminiscent of Brownian motion. Indeed, as shown in Fig. 4a, this scatter,

quantified by Var(z), increased linearly with time. We obtained the diffusion coefficient

D as the slope from linear fits to these data and calculated D using a quasi-1-D scattering

theory. The energy of the infinitely long 1-D system is given by the GPE energy functional

E [ϕ, ψ] =

∫
dz

~2

2mRb

|∇ϕ|2 +
~2

2mRb

|∇ψ|2 +
g

2
|ϕ|2|ϕ|2 +

g′

2
|ϕ|2|ψ|2, (4)

describing the majority gas interacting with itself along with the impurities with interaction

coefficients g and g′, respectively. The fields ϕ and ψ denote the condensate and impurity

wavefunctions. Since the impurities are very dilute, we do not include interactions between

impurity atoms. A soliton [Eq. (1)] gives a supersymmetric Pöschl-Teller23, 24 potential for

the impurity atoms with exact solutions in terms of hypergeometric functions25. Impurity

scattering states with momentum kz in the rest frame of the soliton are described by the

reflection coefficient

R(kz) =
1− cos(2πλ)

cosh(2πkzξ)− cos(2πλ)
, (5)

where λ(λ− 1) = g′/g. In 87Rb, we have g ≈ g′, giving λ ≈ 1.5. The scattering problem

is fully characterized by R(kz) and the problem is reduced to that of a classical heavy
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object moving through a gas of lighter particles.

We treat the soliton using Eq.(2) with the stochastic force due to elastic collisions with

the impurity atoms. The collision integral can be expressed in Fokker-Planck form26(see

methods) with diffusion coefficient

D =
(kBT )2

B
, (6)

giving Dt = Var(x). Momentum diffusion is described by the transport coefficient

B = 2~
∑
m,l

∫ ∞
−∞

dkz
2π

k2z

∣∣∣∣ ∂ε∂kz
∣∣∣∣R(kz)n(ε) [1 + n(ε)] , (7)

an extension of reference27. εm,l(kz) = ~2k2z/2mRb + ~2j2m,l/2mRbR
2
⊥ is the impurities’

quasi-1D dispersion along with quantized states in the radial direction, described by Bessel

functions. We account for radial confinement by summing over quantum numbers m and

l. n(ε) is the Bose-Einstein distribution for impurity atoms3.

Figure 4b plotsD measured experimentally (markers) and computed theoretically (curves,

colored for different temperatures) as a function of NI/N . The parameter-free theory

provides rather accurate estimets of the experimentally observed diffusion coefficient. Any

additional scatterers would also contribute to the transport coefficient B, and since D ∝

1/B, the diffusion coefficient should be smaller for more scatterers. In our quasi-1-D

system, the soliton is not reflectionless to phonons in the majority gas as in the true 1-D
3In our model, condensed atoms do not contribute to diffusion
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problem, however we have not considered them and they can reduce D. Lastly, we note

that at NI/N = 0, D is suppressed, in contrast with the prediction of our theory. The

precise mechanism of dissipation without impurities cannot be identified within the scope

of our theory and the observation of reduced diffusion remains an outstanding problem.

Solitons in spinor systems with impurity scatterers is an exciting playground for study-

ing integrability breaking and diffusion of quasi-classical, negative-mass objects. Our

observed reduction in soliton lifetime with increasing impurity fraction is in need of a

quantitative theory. For the case of no impurities there is a further open question for both

theory and experiment of whether friction and diffusion can be present even in the case of

preserved integrability, for example due to non-Markovian effects, as was recently discov-

ered for bright solitons 28. Future experiments could study the impact of different types

of impurities on soliton dynamics by introducing impurities of a different atomic mass.

Lastly, mixtures with tunable interactions could freely tune the amount of integrability

breaking.

Methods

BEC creation. We created BECs in the optical potential formed by a pair of crossed

horizontal laser beams of wavelength λ = 1064 nm16. The beam traveling orthogonal to

the elongated direction of the BEC was spatially dithered by modulating the frequency of
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an acoustic-optic modulator at a few hundred kHz. This created an anharmonic, time-

averaged potential. To reach the extremely cold temperatures necessary to realize long

lived solitons, we evaporated to the lowest dipole trap depth in which our technical stability

allowed us to realize uniform BECs.

Temperature measurement. We measured temperature below the majority atom’s con-

densation temperature Tc = 350 nK by removing the majority atoms and fitting the TOF

expanded impurity atoms to a Maxwell-Boltzmann (MB) distribution18. Once the tem-

perature was below Tc for the impurity atoms, MB fits systematically under estimation

the temperature. Fitting the small number of impurity atoms to a Bose distribution was

technically challenging due to low signal-to-noise and the addition of another free pa-

rameter, the chemical potential. To limit the number of free parameters, we preformed a

global fit on the different impurity fractions where we constrain the chemical potential µ

to be negative. This provided an estimate of the temperature with large uncertainties. We

found for our usual operating parameters and based on information from both temperature

measurements, T = 10(5) nK.

Impurity characterization. We use a Blackman enveloped rf pulse at a ∼ 9 G magnetic

field to transfer the |F = 1,mF = 0〉 atoms primarily to the |F = 1,mF = +1〉 internal

state 29. We varied the impurity fraction by tuning the rf amplitude. Even though the
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fraction of impurity atoms before evaporation determined the fraction after evaporation,

they were not equal due to more effective evaporation of the minority spin state18. We

characterized the impurity fraction through careful, calibrated absorption imaging with a

Stern-Gerlach technique during TOF to measure the relative fraction of the impurity atoms

after evaporation.

Soliton creation. We applied a phase shift to half of a condensate by imaging a back-lit,

carefully-focused razor edge with light red detuned by ≈ 6.8 GHz from the D2 transition

for 20 µs.

Scattering theory of impurities. Minimizing Eq. (4) with respect to ϕ∗, ψ∗ gives the

coupled equations of motion

i~∂tϕ(z, t) = − ~2

2mRb

∂2zϕ(z, t) + g|ϕ|2ϕ+
g′

2
|ψ|2ϕ, (8)

i~∂tψ(z, t) = − ~2

2mRb

∂2zψ(z, t) +
g′

2
|ϕ|2ψ. (9)

In the experiment, we observed that the soliton remained stable for long times in the pres-

ence of impurities. Therefore we neglect the last term of Eq. (8), giving the well known

solitonic solution in Eq. (1) of the main text. We seek a solution for the impurity wavefunc-

tion ψ(z) in the soliton rest frame. In the radial direction the single particle wavefunctions

are the usual Bessel functions for a particle in a cylindrical well. For ψ(z) we combine

Eq. (1) and Eq. (9) with ψ(z, t) = eiEt/~eimRbvsz/~ψ(z). This gives a Schrödinger equation
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with a Pöschl-Teller potential23, 25,

∂2ψ(z′)

∂z′2
+

[
γ2sλ(λ− 1)

cosh2(γsz′)
+ k2z

]
ψ(z′) = 0. (10)

The dimensionless parameters are z′ = (z−vst)/
√

2ξ, k2z = 4mRbξ
2/~2 (Ez +mRbv

2
s/2− g′ρ0/2),

λ(λ−1) = 2mRbξ
2g′ρ0/~2 = g′/g, and γs =

√
1− (vs/c)2. g and g′ are the effective 1-D

interaction parameters after integrating over the transverse degrees of freedom in ψ and ϕ.

Since the transverse wavefunctions are different, in general g′/g . 1. However, R(kz) is

periodic in g′/g (through λ) and small variations in this parameter do not strongly affect

the result. Solving for ψ(z′) and the scattering matrix then gives R(kz) Eq. (5) of the main

text. For λ ≈ 1.5, this potential also has a single, shallow bound state. Occupation of the

bound state by an impurity atom can only occur through 3 body collisions (two impurity

atoms and soliton), scenarios which we do not consider here.

Kinetic theory of the soliton. We define a kinetic equation with a small force F due to

elastic collisions with lighter impurity atoms. Under this assumption the soliton distribu-

tion function f(z, p, t) obeys 26

∂f

∂t
+
∂f

∂p
F = I [p, f ] ; I [p, f ] = B

∂

∂p

(
p

mskBT
f +

∂f

∂p

)
, (11)

where I is the collision integral, in Fokker-Planck form. We seek a solution of the form

f = f0 + δf where f0 is the Maxwell-Boltzmann distribution in equilibrium, giving

∂f0/∂t = I [p, f0] = 0. From this new distribution function f , we compute v̄ = bF
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and find the mobility b = kBT/B, where B is the transport coefficient given in Eq. (7).

Diffusion in real space is then given by D = (kBT )2/B.
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Figure 1 | Soliton oscillations. a, An absorption image after a 19.3 ms TOF of an elon-
gated condensate without a soliton and a longitudinal density distribution obtained by
averaging over the remaining transverse direction. b, An absorption image and 1-D dis-
tribution at time t = 0.942 s with a soliton with ≈ 30% imaged contrast. c, A subset of the
data where each 1-D distribution is a unique realization of the experiment plotted versus
time t. d, The axial position zi of the soliton (light pink) versus time t for different realiza-
tions of the experiment. We repeated each measurement 8 times. Dashed lines represent
the edges of the elongated condensate. The dark markers represent the average soliton
position 〈zi〉 at each time t.
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versus time t after the phase imprint for different impurity levels. The dark pink markers
represent the average position 〈zi〉 for each time t. Dashed lines represent the endpoints
of the condensate versus t.
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Figure 3 | Soliton lifetime in the presence of impurities. a, Histograms of soliton
occurrence probability fs versus time t after phase imprint. The blue solid curves are fits
to the lognormal based survival function from which we extract the lifetime τ . For each
impurity fraction, we stopped collecting data when fs fell below about 0.2. b, Lifetime τ
extracted from fit to the survival fraction fs versus impurity fraction NI/N .
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Figure 4 | Brownian diffusion constant dependence on impurities. a, An example
for the linear fit of Var(z) versus t for 1.2% impurities. Data is binned into 0.36s bins,
the uncertainties are the sample standard deviation. b, The diffusion coefficient D versus
impurity fraction NI/N . The experimental results (markers) are extracted from the slope
of a linear fit of the sample variance Var(z) versus time t. The uncertainty in D is the
uncertainty from that fit. See methods for explanation of uncertainty in NI/N . The theory
curves (solid and dashed curves) plot the calculated D for our measured temperature.
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