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Magnetic systems have been extensively studied from both a fundamental physics perspective and as
technological building blocks. The topological properties of magnonic excitations in these systems remain
relatively unexplored, due to their inherently dissipative nature. The recent extension of the theory of topological
classification to non-Hermitian Hamiltonians provides a pathway to engineer topological phases in dissipative
systems. Here, we propose a magnonic realization of a topological, non-Hermitian system. A crucial ingredient
of our proposal is the injection of spin current into the magnetic system, which alters and can even change the
sign of terms describing dissipation. We show that the magnetic dynamics of an array of spin-torque oscillators
can be mapped onto a non-Hermitian Su-Schrieffer-Heeger model exhibiting topologically protected edge states.
The nontrivial topological phase is accessed by tuning the spin current injected into the array. We derive this
result using both exact diagonalization of the effective non-Hermitian Hamiltonian and numerical analysis of the
nonlinear equations of motion. In the nontrivial topological phase, a single spin-torque oscillator on the edge of
the array is driven into auto-oscillation and emits a microwave signal, while the bulk oscillators remain inactive.
Our findings have practical utility for memory devices and spintronics neural networks relying on spin-torque
oscillators as constituent units.

DOI: 10.1103/PhysRevB.102.180408

Introduction. Topology has been a cornerstone in under-
standing condensed matter systems since the discovery of the
quantum Hall effect in 1980 [1]. Connecting concepts drawn
from topology to electronic systems led to the understand-
ing of physical phenomena such as the quantum anomalous
Hall [2] and quantum spin Hall effects [3], and the discovery
of new materials including Weyl semimetals [4], topologi-
cal superconductors [5], and topological insulators [6]. One
fascinating aspect of topology is the bulk-boundary cor-
respondence [7], in which bulk system properties predict
the existence of localized boundary modes between topo-
logically distinct systems. These modes are topologically
protected, meaning they are robust with respect to envi-
ronmental perturbations, and have thus been proposed as
platforms for diverse applications from electric circuits to
quantum computation [8]. Topological phases of matter have
also been realized beyond electronic systems, for example, in
ultracold atoms [9], photonic crystals [10], and mechanical
systems [11].

The topological properties of magnons, i.e., linear ex-
citations of magnetic systems, have been considered [12].
However, this direction of research remains relatively un-
explored, in part because magnonic systems are inherently
dissipative. The magnon number is not conserved due to ubiq-
uitous spin nonconserving interactions with the crystalline
lattice [13]. The conventional classification of topological

properties relies on a Hermitian description, restricting the
theory to closed systems without dissipation.
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FIG. 1. Schematic illustration of our model. (a) A spin-torque
oscillator (STO) array represented as a one-dimensional lattice with
sublattices A and B. Nearest-neighbor hopping in the ith unit cell
(with i = 1, . . . , N) is denoted Ji, Gi and J̃i, G̃i for intra- and inter-
cell hopping, respectively. (b) Each unit cell consists of two STOs,
labeled STOA,i and STOB,i, and two metallic spacers connecting
adjacent STOs, denoted MS1(2),i. Metallic spacers MS1(2),i mediate
both a reactive RKKY-like coupling and a dissipative spin-pumping
coupling between spins of STOA,i(STOB,i ) and STOB,i(STOA,i+1),
whose strength is parametrized, respectively, by Ji(J̃i ) and Gi(G̃i ).
(c) Each STO is a free ferromagnet|spacer|fixed ferromagnet trilayer
subjected to the spin current JsA(B),i. An external magnetic field H0

sets the equilibrium direction of the magnetic order parameter mA(B),i

of the free layer. Other implementations of STOs are possible.
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The recent introduction of topological classifications for
non-Hermitian Hamiltonians opens up new prospects for real-
izing nontrivial topological phases in intrinsically dissipative
systems [14,15]. While a complete theoretical background it
is still missing, recent experimental developments have shown
that topologically protected edge modes can appear in dissipa-
tive systems under the right conditions [16].

In this Rapid Communication, we propose a non-
Hermitian, topological magnonic system. As illustrated in
Fig. 1, we consider a one-dimensional (1D) array of spin-
torque oscillators (STOs) [17], which are current-driven mag-
netic nanopillars. In the regime of linear dynamics, this array
is a magnonic realization of a non-Hermitian Su-Schrieffer-
Heeger (SSH) model with parity-time (PT ) symmetry or
chiral-inversion (CI) symmetry [18–20]. Different symmetry
classes are accessed by changing experimentally controllable
parameters. The injection of spin current into the magnets is
a crucial ingredient of our setup, because it counteracts and
can even overcome damping. Using exact diagonalization and
a numerical solution of the nonlinear equations describing
the magnetization dynamics, we show that this system dis-
plays a robust topological phase where a single STO at the
edge is driven into auto-oscillation while the bulk remains
inactive.

Model. We consider a one-dimensional array of 2N STOs
arranged in N unit cells, as shown in Fig. 1. The ith unit cell
consists of two STOs, labeled STOA,i and STOB,i, and two
metallic spacers coupling the intracell and intercell STO ele-
ments, denoted MS1,i and MS2,i, respectively. The dynamics
of the magnetic order parameter mη,i (with η = A, B) of an
isolated spin-torque oscillator STOη,i subject to a magnetic
field H0 = H0ẑ and a spin current (in units of frequency)
Jsη,i = Jsη,iẑ is [21]

ṁη,i|0 = ωη,iẑ × mη,i + αη,imη,i × ṁη,i

+ Jsη,imη,i × (mη,i × ẑ). (1)

Here, ωη,i = γη,i(H0 − 4πMη,i ) is the ferromagnetic reso-
nance frequency, with γη,i the gyromagnetic ratio, Mη,i the
saturation magnetization, and αη,i � 1 is the (dimensionless)
Gilbert damping parameter. The second and third terms on
the right-hand side of Eq. (1) are, respectively, the dissipa-
tive torque accounting for energy dissipation [22] and the
Slonczewski-Berger spin-transfer torque describing the inter-
action of the magnetic order parameter with the spin-polarized
current [23]. In our proposed setup, the spin-transfer torque
acts as a dissipative process that counteracts the intrinsic
dissipation and thus provides tunable gain. Metallic spacers
can mediate both reactive and dissipative coupling between
STOs. For the reactive coupling, we consider a Ruderman-
Kittel-Kasuya-Yosida (RKKY)-type exchange whose strength
is parametrized by the frequency Ji (J̃i) for the spacer
MS1,i (MS2,i). In our convention, Ji(J̃i ) > 0 corresponds to
a ferromagnetic exchange coupling. The dissipative cou-
pling is mediated by spin pumping through the spacer MS1,i

(MS2,i) [24]; its efficiency is parametrized by the dimension-
less parameter Gi(G̃i ) � 1, which is microscopically related
to the spin-mixing conductance of the oscillator|metallic
spacer interface [25]. Note that we ignore dipolar interactions.
Such interactions are made small by considering synthetic

antiferromagnets as the free layers of the spin-torque oscilla-
tors [26]. Assuming a nearest-neighbor coupling, the coupled
dynamics introduced via the metallic spacers reads as

ṁA,i|coup = − mA,i × (JimB,i + J̃i−1mB,i−1)

+ Gi[mA,i × ṁA,i − mB,i × ṁB,i]

+ G̃i−1[mA,i × ṁA,i − mB,i−1 × ṁB,i−1],

ṁB,i|coup = − mB,i × (JimA,i + J̃imA,i+1)

+ Gi[mB,i × ṁB,i − mA,i × ṁA,i]

+ G̃i[mB,i × ṁB,i − mA,i+1 × ṁA,i+1], (2)

where G̃1(N ) = J̃1(N ) = 0. The sum of Eqs. (1) and (2) de-
termines the full system dynamics. In the following, we
consider identical unit cells and drop the parameter depen-
dence on index i. We assume that the magnetic field is
large enough to order the magnets along its direction, and
proceed to linearize Eqs. (1) and (2) around the equilib-
rium direction of the magnetic order parameter. That is,
we write mη,i = (mη,ix, mη,iy, 1), with |mη,i| � 1. Next, we
introduce the complex variable 2m−

η,i = mη,ix − imη,iy and in-
voke the Holstein-Primakoff transformation [27] m−

A(B),i(t ) =
〈ai(bi )〉e−iωt , where the second-quantized operator ai(bi ) an-
nihilates a magnon at the sublattice A(B) of the ith unit cell
and obeys bosonic commutation relations.

Assuming the local damping to be much larger than the
nonlocal one, G̃, G � αη, the linearized dynamics that fol-
lows from Eqs. (1) and (2) corresponds to a non-Hermitian
SSH model with complex on-site potentials and complex
intercell and intracell couplings. For identical STOs on
the A and B sublattices we have ωη ≡ ω and αη ≡ α.
The corresponding Hamiltonian is H = ∑N

i=1 Hi, with Hi

the Hamiltonian for the ith unit cell, which reads

Hi = ω[a†
i ai + b†

i bi] + i(JsA − αω)a†
i ai

+ i(JsB − αω)b†
i bi + (−J + iGω)[a†

i bi + H.c.]

+ (−J̃ + iG̃ω)[a†
i bi−1 + H.c.], (3)

for i �= 1, N , with open boundary conditions

Hj = ωa†
j a j + ωb†

jb j + i(JsA − αω)a†
j a j

+ i(JsB − αω)b†
jb j + (−J + iGω)[a†

j b j + b†
ja j]

+ (−J̃ + iG̃ω)b†
jal , (4)

with j = 1, N and l = 2, N − 1. Equations (3) and (4) consti-
tute our starting point for exact diagonalization.

Results. The effective Hamiltonian in Eqs. (3) and (4) is a
realization of a non-Hermitian SSH chain with many tunable
features affecting its symmetries. We investigate the topology
as a function of J/J̃ , which can be experimentally controlled
by tuning the length of the metallic spacers. Here, we con-
sider the case where spin current is injected only at the A
sites, setting JsA = Js and JsB = 0. Importantly, H does not
exhibit the non-Hermitian skin effect. Therefore an analysis of
its topology based on periodic boundary conditions correctly
indicates the presence or absence of topologically protected
edge modes for the open system [14,20,28,29]. For systems
exhibiting the non-Hermitian skin effect this is no longer true.
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FIG. 2. Exact diagonalization of Eqs. (3) and (4) for N = 40 unit cells (80 STOs) with ω/4πγ M = 0.5, α = 0.01, J̃/4πγ M = 0.025. The
columns correspond to the four symmetry regimes of Hk discussed in the main text. (a)–(d) show Re E − ω and (e)–(h) Im E . All cases have
a line gap on the real axis and two edge modes with Re E − ω = 0 for J � |J̃|. The real part of the spectrum is mostly unaltered in each case,
aside from small deviations of the gap closing point. (a), (e) PT -symmetric case. There is one lasing edge mode for J < |J̃ − αω|, whereas
additional bulk lasing modes appear for |J̃ − αω| < J < |J̃ + αω| in the “PT -broken” regime where energy becomes complex valued [19]
(purple/light gray shaded area). The topological transition occurs at J = ±J̃ (purple/gray dashed line). (b), (f) Nonzero dissipative couplings
G, G̃ = 0.1α. Bulk modes have Im E �= 0, but there is still a well-defined lasing edge mode separated from the bulk modes for J � |J̃|. This
regime has chiral-inversion (CI) symmetry. (c), (g) Deviation of Js from the PT -symmetric value JPT

s = 2αω where Js = 0.8JPT
s . For Js < JPT

s

the imaginary spectrum is shifted down, while for Js > JPT
s it is shifted up (not shown). The edge mode is still lasing (Im E > 0) for Js � αω.

This regime has chiral symmetry (CS). (d), (h) Combination of the two PT -breaking terms, G, G̃ = 0.1α and Js = 0.8JPT
s . Im E has properties

of (f) and (g). Both CI and CS are broken, but TRS† symmetry is preserved.

However, it is not straightforward to modify our model such
that it exhibits the non-Hermitian skin effect, while being still
experimentally relevant; thus, we leave such generalizations
to future work.

The Fourier transform of Eq. (3) for periodic boundary
conditions is

Hk = id0kI + dk · σ, (5)

where I is the 2 × 2 identity matrix, σ = (σ x, σ y, σ z ) is the
vector of Pauli matrices, dk = (dxk, dyk, dzk ) ∈ C is a vector
of complex functions of momentum k, and d0k ∈ R is a real
function of k. The energy spectrum is

E±
k = id0k ±

√
d2

1k − d2
2k + 2id1k · d2k, (6)

where d1k = Re[dk], d2k = Im[dk]. Here, d0k = (Js −
2αω)/2 and

dk =

⎛
⎜⎝

−J + iωG − (J̃ − iG̃ω) cos k

−(J̃ − iG̃ω) sin k

i Js
2

⎞
⎟⎠. (7)

E±
k has a real line gap where Re[E±

k ] �= 0 ∀k provided
that d2

1k > d2
2k ∀k. Systems with a real line gap can have

topologically nontrivial phases depending on their symme-

try class [14,15,28]. Furthermore, since this model includes
only short-range hopping, the condition for a topological
phase transition can be formulated as in Ref. [28]. We use
the symmetry naming conventions of Ref. [14]. We consider
four different cases, corresponding to the (i) PT -symmetric
case, (ii), (iii) two different types of breaking of PT sym-
metry, and (iv) a combination of both symmetry-breaking
terms.

(i) For Js = JPT
s = 2αω and negligible dissipative cou-

plings, G, G̃ = 0, Hk is PT symmetric with σxH∗
k σx = Hk .

This system is a well-known host of two topologically pro-
tected edge modes with Im E = ±2αω for |J| < |J̃|, and it
has a real line gap for |J − J̃| > αω [19]. The mode with
positive (negative) imaginary energy, i.e., the lasing (lossy)
edge mode, corresponds physically to a magnon population
that grows (decays) exponentially in time at the left (right)
edge. The PT -symmetric model has generated much interest
and has been experimentally realized in photonic systems and
microresonators [14,16].

(ii) For Js = JPT
s and G(G̃) �= 0, Eq. (5) obeys chiral-

inversion (CI) symmetry σyHkσy = −H−k . CI-symmetric
models have nontrivial topological phases [20]. The bulk real
gap is open for |J − J̃| > ω

√
δG2 + α2, with δG = G − G̃,

and the condition for two topologically protected edge modes
is modified to |J − iGω| < |J̃ − iG̃ω|.
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(iii) Deviations of Js from JPT
s with G, G̃ = 0 preserve

chiral symmetry (CS) defined as σzH
†
k σz = −Hk . In this case

there is a real gap for |J − J̃| > Js/2 and the system ex-
hibits a topological phase with two protected edge modes for
|J| < |J̃|.

(iv) Including both G(G̃) �= 0 and Js �= JPT
s breaks CI and

CS symmetries. The Hamiltonian maintains TRS† symme-
try, sometimes called reciprocity [30], defined as HT

k = H−k .
There is a real gap for |J − J̃| >

√
δG2ω2 + (Js/2)2; however,

TRS† alone does not guarantee topologically protected phases
in 1D [14].

This analysis shows that with dissipative coupling or in-
jected spin current Js �= JPT

s the model still has a topologically
nontrivial phase. Furthermore, only the difference δG affects
the topological transition and bulk gap closing. Thus, for the
parameter regime G, G̃ � α and G ≈ G̃, in practice resulting
from choosing the metallic spacers to be good spin sinks
(e.g., Pt), the edge modes are quite robust. Including both
PT -symmetry-breaking terms may compromise the topolog-
ical protection as PT , CS, and CI symmetries are all broken.
We find numerically that localized edge modes are still present
for Js �= JPT

s and G, G̃ = 0.1α, but these modes may not be
topologically protected [14].

The complex frequency spectrum E that results from exact
diagonalization of Eqs. (3) and (4) is presented in Fig. 2 for all
cases discussed above. For weak dissipative coupling G, G̃ �
α and ∼20% deviations of Js from the PT -symmetric value
JPT

s we always find a real line gap for |J| � |J̃|, shown in
Figs. 2(a)–2(d), and a lasing edge mode with Im E > 0 shown
in Figs. 2(e)–2(h). The lasing mode is well separated from the
imaginary spectrum of bulk states.

Numerical solutions. To investigate the nonlinear dynamics
of the STO array, and, in particular, how nonlinearities affect
the growth of the lasing edge modes, we solve Eqs. (1) and (2)
numerically. We parametrize the magnetization direction by
the power 0 < pη,i(t ) < 1, proportional to the experimentally
emitted microwave power, and a precession angle φη,i(t ) as

mη,i =

⎛
⎜⎝

2
√

pη,i(1 − pη,i ) sin φη,i

2
√

pη,i(1 − pη,i ) cos φη,i

1 − 2pη,i

⎞
⎟⎠. (8)

The initial value of φη,i(t = 0) is taken to be a random number
between 0 and 2π and the initial power pη,i(t = 0) is drawn
from a thermal equilibrium distribution for an ensemble of
isolated STOs [21],

Peq ∝ exp
[
− Ns

kBT
ωpη,i

]
, (9)

where kB is the Boltzmann constant, T the temperature, and
Ns the number of spins in each STO. We take 2kBT/Nsh̄ω =
10−4 and α = 10−2 for typical materials used for spin-torque
experiments at room temperature [21]. For the topologically
protected edge modes to occur, the individual oscillators have
to be sufficiently phase stable [21], which is the case for these
parameters. In Fig. 3 we show the numerical results for the
power of all oscillators for J̃ = −0.025/4πγ M, ω/4πγ M =
0.5, J/J̃ = 0.5, and Js = JPT

s , which corresponds to the PT -
symmetric case supporting one lasing edge mode.

FIG. 3. Power pη,i of the oscillator with mη,i in an array of
N = 10 unit cells as a function of time (normalized by the frequency
4πγ M). The dashed line corresponds to the steady-state power
of a single oscillator. Parameters taken are 2kBT/Nsh̄ω = 10−4,
α = 10−2, J̃ = −0.025/4πγ M, ω/4πγ M = 0.5, J/J̃ = 0.5, and
Js = JPT

s .

We find that, after some time, the power of the oscillator
on the right edge grows and eventually saturates while the
other oscillators have negligible power at all times. The power
saturation level of the oscillator at the edge is, because of the
small couplings J and J̃ , well approximated by the steady-
state power of a single oscillator as found from Eq. (1) (see
Ref. [21]), denoted by a dashed line in Fig. 3. Our numerical
results therefore confirm the presence of a lasing edge mode,
which manifests as a topologically protected auto-oscillation
of the oscillator at the edge. While we find from our nu-
merical solutions that the dynamics outside the regime of
one topologically protected lasing edge mode is interesting,
it is also nonuniversal. For example, often several (but not
all) oscillators reach a steady state at nonzero power, but
which oscillators reach nonzero power strongly depends on
the initial conditions. We consider an exhaustive study of the
nonlinear dynamics of the proposed system beyond the scope
of this Rapid Communication.

Discussion. In this work, we classified the topology of
an intrinsically dissipative magnetic system. We establish a
mapping between the linearized magnetic dynamics of a 1D
array of STOs and a non-Hermitian SSH model. We find that
topologically nontrivial phases can be accessed by tuning both
the spin-current injection and the properties of the metallic
spacers connecting the STOs. The topological phases support
a topologically protected lasing edge mode, which manifests
as a single edge STO emitting a microwave signal while the
bulk STOs are not active. Our results show that the topologi-
cally protected edge mode is robust against deviations of the
spin current from the PT -symmetric value and robust against
dissipative coupling between STOs.

The emergence and position of the lasing edge mode is
controlled via spin-current injection. The location of the las-
ing edge switches sides upon changing spin-current injection
from A to B sublattice sites, thereby opening up prospects
for building tunable and robust spin-wave waveguides and
neuromorphic networks [31]. Additionally, an extension of
our model which exhibits the non-Hermitian skin effect could
have applications in sensing [32]. One option in this direction
is to consider an electronic net spin current along the direc-
tion of the chain that would modify the couplings. Future
work could also address the effects of long-range intercell
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and intracell couplings, the effects of periodic driving and
coupled dynamics [33], non-Hermitian topology of magnetic
systems in higher dimensions [29,34] and topological protec-
tion against dipolar interactions or additional spin torques, and
phase stability of the lasing edge modes.
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