
San Jose State University San Jose State University

SJSU ScholarWorks SJSU ScholarWorks

Master's Projects Master's Theses and Graduate Research

Summer 6-23-2021

Performance Evaluation of Byzantine Fault Detection in Primary/Performance Evaluation of Byzantine Fault Detection in Primary/

Backup Systems Backup Systems

Sushant Mane
San Jose State University

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_projects

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Mane, Sushant, "Performance Evaluation of Byzantine Fault Detection in Primary/Backup Systems"
(2021). Master's Projects. 1032.
https://scholarworks.sjsu.edu/etd_projects/1032

This Master's Project is brought to you for free and open access by the Master's Theses and Graduate Research at
SJSU ScholarWorks. It has been accepted for inclusion in Master's Projects by an authorized administrator of SJSU
ScholarWorks. For more information, please contact scholarworks@sjsu.edu.

https://scholarworks.sjsu.edu/
https://scholarworks.sjsu.edu/etd_projects
https://scholarworks.sjsu.edu/etd
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F1032&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F1032&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects/1032?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F1032&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu

Performance Evaluation of Byzantine Fault Detection in

Primary/Backup Systems

A Project

Presented to

The Faculty of the Department of Computer Science

San José State University

In Partial Ful�llment

of the Requirements for the Degree

Master of Science

by

Sushant Mane

May 2021

The Designated Project Committee Approves the Project Titled

Performance Evaluation of Byzantine Fault Detection in Primary/Backup Systems

by

Sushant Mane

APPROVED FOR THE DEPARTMENT OF COMPUTER SCIENCE

SAN JOSÉ STATE UNIVERSITY

May 2021

Dr. Benjamin Reed Department of Computer Science

Dr. Navrati Saxena Department of Computer Science

Fangmin Lyu Facebook, Inc.

ABSTRACT

Performance Evaluation of Byzantine Fault Detection in Primary/Backup Systems

by Sushant Mane

ZooKeeper masks crash failure of servers to provide a highly available, distributed coordi-

nation kernel; however, in production, not all failures are crash failures. Bugs in underlying

software systems and hardware can corrupt the ZooKeeper replicas, leading to a data

loss. Since ZooKeeper is used as a ‘source of truth’ for mission-critical applications, it

should handle such arbitrary faults to safeguard reliability. Byzantine fault-tolerant (BFT)

protocols were developed to handle such faults. However, these protocols are not suitable

to build practical systems as they are expensive in all important dimensions: development,

deployment, complexity, and performance. ZooKeeper takes an alternative approach that

focuses on detecting faulty behavior rather than tolerating it and thus providing improved

reliability without paying the full expense of BFT protocols. In this thesis, we studied

various techniques used for detecting non-malicious Byzantine faults in the ZooKeeper.

We also analyzed the impact of using these techniques on the reliability and the perfor-

mance of the overall system. Our evaluation shows that a realtime digest-based fault

detection technique can be employed in the production to provide improved reliability

with a minimal performance penalty and no additional operational cost. We hope that

our analysis and evaluation can help guide the design of next-generation primary-backup

systems aiming to provide high reliability.

ACKNOWLEDGMENTS

I would like to thank my project advisor Professor Ben Reed, who guided and

supported me throughout this project. Thank you to Professor Navrati Saxena and Fangmin

Lyu for their insightful suggestions and feedback. I would also like to thank the Apache

ZooKeeper developer community for being friendly and helpful. Finally, thank you to my

family and friends for their unconditional love and support.

Contents

1 Introduction 7

1.1 Background . 9

1.2 Research Objectives . 10

2 Literature Review 11

2.1 Agreement-based Protocols . 11

2.2 Quorum-based Protocols . 12

2.3 Hybrid Protocols . 13

3 Fault Model 14

3.1 Correct Replicas . 14

3.1.1 Lagging Replicas . 15

3.2 Faulty Replicas . 16

3.3 Summary . 16

4 Non-Malicious Byzantine Fault Detection 17

4.1 O�ine Comparisons . 18

2

4.2 Online Comparisons . 20

4.3 Realtime Detection . 22

4.4 Incremental Hashing . 24

4.4.1 AdHASH . 25

4.4.2 AdHASH in ZooKeeper . 27

5 Evaluation 29

5.1 Experiment Setup . 30

5.2 Workload . 31

5.3 Impact of online comparisons . 31

5.4 Impact of realtime detection . 33

5.5 Impact of hash functions . 34

5.6 Impact of requests sizes . 37

6 Technical Challenges in Evaluation 39

7 Conclusion 41

Bibliography 43

3

List of Figures

1.1 Data loss due to corruption propagation . 8

1.2 Client failure due to corruption propagation 9

3.1 ZooKeeper service with correct (consistent) replicas 15

3.2 ZooKeeper service with one faulty (corrupt) replica 16

4.1 External consistency checker veri�es that all replicas have identical data . 18

4.2 External consistency checker detects faulty replica 19

4.3 Replicas with their digest logs . 20

4.4 Online consistency veri�cation using external auditor 21

4.5 Real-time consistency check . 23

4.6 Digest computation using AdHASH . 25

4.7 Updating digest when data changes . 26

4.8 Calculating full digest from the scratch upon modi�cation of the message . 27

5.1 Experimental Setup . 30

5.2 Throughput with online comparison technique 32

5.3 Throughput with realtime detection technique 33

4

5.4 Throughput - online comparison vs realtime detection 34

5.5 Throughput with di�erent hash functions in online comparison technique 34

5.6 Throughput with di�erent hash functions in realtime detection technique . 35

5.7 Throughput comparison - request size 64B 37

5.8 Throughput comparison - request size 256B 37

5.9 Throughput comparison - request size 512B 38

5.10 Throughput comparison - request size 1024B 38

5.11 Throughput comparison - request size 2048B 38

5

List of Tables

5.1 Throughput percentage di�erence between baseline and online comparison 36

5.2 Throughput percentage di�erence between baseline and realtime detection 36

6

Chapter 1

Introduction

ZooKeeper is a critical component of modern computing infrastructure. It is widely used as

the source of truth for building distributed applications [15, 36, 41]. ZooKeeper replicates

data to provide high availability, reliability, and performance. Replications allow it to handle

failures of a bounded number of servers. ZooKeeper assumes a crash-recovery failure

model: servers in an ensemble may fail to respond but they never respond incorrectly, and

they may start responding after some unknown time [22, 25]. In production, however, not

all failures are crash failures. For example, bugs in code, operating system, hardware, or

underlying software such as JVM can corrupt the replica state [11, 20, 21, 30, 31, 32, 37, 42].

The replica corruption leads to an incorrect server response, which violates the assumption

that the servers never respond incorrectly. System state corruptions, unlike crash failures,

are not always detectable clients. Since ZooKeeper assumes key responsibilities, detecting

arbitrary faults early on is essential to safeguard reliability and correctness.

Byzantine fault-tolerant (BFT) protocols such as PBFT [9, 10], Q/U [1], HQ

[17], Zyzzyva [28], Aardvark [13] were developed to mask the bounded number of faulty

components that exhibit arbitrary behavior in distributed systems [29, 40]. Despite the

guarantees provided by BFT protocols, they are usually not used to build production

systems for the following reasons. The BFT systems require more replicas than the crash

7

tolerant protocols: at least 35 + 1 replicas are required for BFT as opposed to 25 + 1 in

crash-stop systems. The BFT protocols also require N-independent implementations of

service and underlying software stack as they assume that the nodes fail independently of

each other. Since BFT protocols are complex, it is challenging to correctly translate the

protocol speci�cation into the implementation. Moreover, these protocols increase the

complexity of systems and incur a signi�cant performance penalty.

On the one hand, given the tremendous cost and complexity, the adoption of BFT

protocols in already stable systems such as ZooKeeper is not a practical choice. On the

other hand, ignoring arbitrary faults could lead to data loss and service outages. Therefore,

in order to provide improved reliability a more pragmatic approach is required.

Figure 1.1: Data loss due to corruption propagation

8

1.1 Background

ZooKeeper is usually run inside of trusted environments and maintained by a core team

of trusted developers. Its protocol is designed and subjected to various levels of reviews

and modeling to ensure correctness. Best practices such as code review and various levels

of testing are used to ensure that the implementation matches the protocol speci�cation.

In spite of this, failures occur due to byzantine faults. That is bugs in code, hardware,

operating system, con�guration, and more can produce an incorrect system state. For

example, in Figure 1.1, undetected byzantine fault corrupts replica '2. The corrupted state

of '2 is then propagated to new replicas '4 and '5. This can result in an irrecoverable data

loss when healthy replicas '1 and '3 are decommissioned.

Figure 1.2: Client failure due to corruption propagation

Moreover, as shown in Figure 1.2, system state corruptions can be propagated to

clients as well. The propagation of corruption to clients can cause cascading failures and

service outages.

9

Handling byzantine faults early on is a key to avoiding catastrophic failures.

Since tolerating byzantine faults is expensive, some systems take an alternative approach

that relies on fault detection to deal with arbitrary behavior of the system. Doing Byzantine

fault detection is cheaper than byzantine fault tolerance as detection doesn’t require the full

expense of BFT protocols. The Apache ZooKeeper uses a fault detection-based approach

for handling byzantine faults. However, these fault detection techniques detect only a

subset of byzantine faults, namely, non-malicious byzantine faults.

Reed and Lyu [8] implemented non-malicious byzantine fault detection tech-

niques in ZooKeeper. They were able to implement fault detection techniques in ZooKeeper

with minor development costs. In the rest of the paper, we refer to non-malicious byzantine

faults as byzantine faults.

1.2 Research Objectives

The research objective of this work is to study and evaluate non-malicious byzantine fault

detection techniques used in the ZooKeeper. In particular, we will answer the following

questions:

1. What is the cost of using AdHASH based online consistency checker for detecting

non-malicious byzantine faults in ZooKeeper?

2. What is the cost of doing real-time byzantine fault detection?

3. What’s the trade-o� of using a weak hash function vs. a strong hash function in AdHASH

for byzantine fault detection?

4. How do di�erent request sizes impact the performance when using byzantine fault

detection?

10

Chapter 2

Literature Review

A reliable distributed system must handle the failure of some of its components. The faulty

components provide con�icting information or send corrupt messages to di�erent parts of

the system. Lamport et al. formulated this type of behavior, as the Byzantine Generals

Problem [29]. They also proposed several algorithms to handle these failures and proved

that they can be used to build reliable distributed systems in synchronous environments.

However, these solutions are expensive both in time and the number of messages used

for communication. In addition to this, these solutions cannot be used in asynchronous

settings like the Internet and are extremely slow to build practical systems [9].

2.1 Agreement-based Protocols

Agreement-based protocols �rst have replicas agree on the order of a new request and

then have them execute that request according to the agreed order. Castro and Liskov

proposed a state machine replication-based protocol, namely, Practical Byzantine Fault

Tolerance (PBFT) protocol that tolerates Byzantine faults [10]. Their algorithm works

in asynchronous environments and o�ers both liveness and safety given 25 + 1 servers

out of 35 + 1 are non-faulty: i.e., only 5 servers can be simultaneously Byzantine faulty.

11

One of the disadvantages of this approach is that to mask software errors, it requires

N-version programming: i.e., N di�erent implementations of the same software, which is

not very practical [12, 27]. Therefore, despite being the landmark solution for Byzantine

fault tolerance, this protocol has failed to gain wide adoption. Yin et. al [40] proposed

separation of the agreement (request ordering) from the execution (request processing).

This separation allows the use of the same agreement component for various replication

tasks and reduces the number of execution replicas to 25 + 1.

Clement et al. proposed the UpRight library that aimed to make BFT protocols

simple and easy to adopt by existing applications [14]. Using the UpRight library, they built

the BFT version of ZooKeeper and Hadoop Distributed File System (HDFS). In contrast to

PBFT, UpRight favors simplicity for adoption. However, the performance of UpRight is

signi�cantly slower than other systems and consumes more resources.

2.2 Quorum-based Protocols

Abd-El-Malek et al. proposed Query/Update (Q/U): a single-phase quorum-based optimistic

protocol that allows building fault-scalable BFT services [1]. In contrast to the PBFT, Q/U

is a single-phase, optimistic protocol. Q/U protocol is e�cient and works in asynchronous

environments. It performs better under low contention. The major advantage of Q/U is

that it demonstrates better performance when the number of Byzantine faults tolerated

increases. The bottleneck in Q/U is resolving con�icting writes; since it is an expensive

operation and may degrade performance signi�cantly. Another issue with the Q/U protocol

is that it requires 55 + 1 servers to handle 5 Byzantine faulty components; in contrast,

PBFT requires only 35 + 1 servers.

12

2.3 Hybrid Protocols

Cowling et al. presented a Hybrid Quorum (HQ) protocol that overcomes shortcomings

of state-machine-based approach (quadratic communication cost) and quorum-based ap-

proach (a large number of replicas) [17]. As compared to Q/U, HQ requires fewer replicas:

i.e., only 35 + 1 replicas to tolerate 5 Byzantine failures but needs more rounds during

normal execution. Both Q/U and HQ cannot batch concurrent requests and are expensive

if there is a contention [39].

In an attempt to reduce the cost and simplify the design, Kotla et al. proposed

Zyzzyva: a speculative BFT protocol [28]. In traditional protocols, the agreement comes

before the execution; however, Zyzzyva takes an optimistic approach in which the execu-

tion takes place without an agreement, followed by the veri�cation of the execution for

consistency. In Zyzzyva, the client plays a major role. Clients help to verify consistency by

enabling non-faulty servers to converge on a single total order of requests. This approach

enables Zyzzyva to achieve high performance in terms of both throughput and latency.

Unfortunately, Zyzzyva’s view-change protocol fails to provide safety against a faulty

leader [2]. When compared with PBFT, Zyzzyva o�ers high throughput; however, PBFT

o�ers a more predictable performance. One common drawback of Q/U, HQ, and Zyzzyva

is that the replicas rely on the clients to reach an agreement. This is concerning because if

the client is faulty, then replicas may produce an incorrect system state.

This review discusses the protocols to make systems Byzantine fault-tolerant.

Agreement-based BFT protocols require a minimum of 35 + 1 servers to tolerate 5 server

failures which are 25 fewer servers than the quorum-based BFT protocols. On the other

hand, quorum-based protocols are more e�cient and provide higher throughput than

agreement-based protocols. The hybrid approach seems quite attractive to build BFT

systems. However, these protocols are complicated. Also, the cost of developing and

deploying BFT services using these protocols makes them impractical. Nonetheless, when

high reliability is required, systems need to handle arbitrary behaviors.

13

Chapter 3

Fault Model

For the purpose of Byzantine fault detection, we consider replicas to be of two types:

correct (consistent) replicas and faulty (inconsistent) replicas. A replica is said to be correct

if its state is consistent with other replicas in an ensemble. We use the term “consistent"

in the sense that data is identical on all the replicas. On the other hand, a faulty replica

diverges from the correct replicas because of a corrupt state caused by byzantine failures.

Both these terms will be explained in detail in the following sections.

3.1 Correct Replicas

Figure 3.1 shows an example of a ZooKeeper service with �ve servers. In Figure 3.1, '1 is

the leader replica and it updates its state to �)1 after processing transaction with IG83 = 1.

Upon applying transaction with IG83 = 1, the follower replicas '2, '3, '4, and '5 also

change their states to �)1. Every replica that successfully updates its state to �)1 after

applying a transaction with IG83 = 1 is considered to be a correct replica. Similarly, after

applying a transaction with IG83 = 2 every replica updates its state to �)2 and thus all

replicas are in a consistent state until that point in time. In summary, a replica ' is said to

be in a consistent or correct state if after applying transaction with IG83 = = its state results

14

Figure 3.1: ZooKeeper service with correct (consistent) replicas

in �)= and every other correct replica also results in �)= upon processing transaction =.

3.1.1 Lagging Replicas

One important thing to note is that replicas in an ensemble might be at di�erent points

of execution. This means that at the instance of time) some replicas may not have

applied or even received some transactions yet, whereas other replicas may have applied

all the transactions (up-to-date state). We call replicas that lag behind up-to-date replicas

as “lagging replicas". In Figure 3.1, '2 and '3 are lagging replicas. However, this does

not mean that these replicas are in an inconsistent state. For instance, the last applied

transaction to '4 is IG83 = 3 and its state is �)3 which is also the same as that of other

correct replicas when they were at IG83 = 3. Similarly, the last applied transaction to '2 is

IG83 = 4 and its state is �)4 which is the same as that of other correct, up-to-date replicas

when they were at IG83 = 4. Since both '2 and '4 have a consistent state until the last

transaction applied to their state, they are considered as correct replicas.

15

3.2 Faulty Replicas

Figure 3.2: ZooKeeper service with one faulty (corrupt) replica

Figure 3.2 shows a ZooKeeper service with one faulty replica. After applying

transaction with IG83 = 2 every replica updates its state to �)2 and thus all replicas are

in a consistent state until that point in time. However, after applying transaction with

IG83 = 3, replicas '1, '2, '3 and '4 update their state to �)3, whereas replica '5’s state

results in �) ′
3
. This means that '5’s state has diverged from that of other correct replicas.

We refer to such diverged replicas as faulty or corrupt replicas.

3.3 Summary

In this chapter, we de�ned two types of replicas: correct replicas and faulty replicas. In the

next chapter, we will discuss three di�erent Byzantine fault detection techniques that rely

on these de�nitions to detect inconsistencies in the ZooKeeper replicas.

16

Chapter 4

Non-Malicious Byzantine Fault

Detection

In this chapter, we will discuss three di�erent Byzantine fault detection techniques used in

the ZooKeeper. However, we will �rst brie�y discuss the ZooKeeper data model.

ZooKeeper service is composed of an ensemble of replica servers. Each replica

consists of a set of data nodes, namely, znodes [22]. The znodes are organized in a

hierarchical structure called DataTree. A DataTree is an in-memory data structure, and

it represents the state of a replica. There are two types of znodes: regular znodes and

ephemeral znodes. All regular znodes can have children. The clients add, read, update, and

delete the znodes using read and write APIs.

Only write requests modify the state of replicas and require coordination among

the servers in an ensemble. All write requests are forwarded to and processed through

the leader. Upon receiving write requests, the leader prepares a transaction capturing the

changes to the state of a replica. The leader then uses ZAB protocol [25, 26] to replicate a

new state captured in a transaction on all follower replicas. A fuzzy copy of DataTree is

saved periodically to a snapshot �le. All replicas maintain a transaction log stored on a

persistent storage device.

17

In the following sections, we will discuss three modes of non-malicious byzantine

fault detections: O�ine comparisons, Online Comparisons, and Realtime Detection. We

will also look at their advantages and disadvantages. In the last section, we will cover the

incremental hashing algorithm used in online and real-time detection.

4.1 O�line Comparisons

One way to �nd out whether replicas have diverged is by comparing the data of replicas.

To this end, ZooKeeper employs an external consistency checker. It runs periodically

outside of the ZooKeeper service. When a consistency checker runs, it �rst downloads the

data (snapshots and transaction logs of the replicas. It then deserializes the DataTree of

each replica by using the corresponding snapshot �le. The ZooKeeper snapshots are fuzzy,

and they do not re�ect the exact state of replica DataTree at any point in time.

Figure 4.1: External consistency checker veri�es that all replicas have identical data

For instance, in Figure 4.1, replica '1 has data until transaction)5 and it might

contain some changes from transaction)6 and onward. Similarity, '2 and '3 have data until

transaction)3 and)4 respectively and they may have some changes from the transactions

being processed when their snapshots were taken. Therefore for every DataTree, the

18

checker replays transactions, in order, from the corresponding transaction log �le of that

replica. Replicas will be at the same point in time once the transactions until)= are replayed

for all of them. The consistency checker computes the digest of each DataTree. It uses

these digests for state comparisons. If replicas have an identical copy of DataTree then

they will produce the same digest. In Figure 4.1, all replicas produce the same digest 3 ,

and hence the checker concludes that replicas are consistent

On the other hand, if a replica has a di�erent copy of data, it will produce a

di�erent digest. The digest of such a replica will mismatch with the digest of other replicas.

In Figure 4.2, replica '3’s transaction log contains a corrupt transaction,)6. When)6 is

applied to the '3’s DataTree, it causes '3 to diverge from other replicas in the ensemble.

Due to this '3 produces digest 3′ whereas both '1 and '2 produce digest 3 . Since the digest

of '3 mismatch with other replicas, the consistency checker concludes that '3 is a faulty

replica.

Figure 4.2: External consistency checker detects faulty replica

The advantage of using the external consistency checker is that it does impact

ZooKeeper’s performance as it runs outside of the ZooKeeper service. Also, the develop-

ment cost is minimal as no change is needed to the core ZooKeeper source code. However,

this approach has several disadvantages. First, every time the consistency checker runs, all

19

ZooKeeper replicas need to be stopped at the same time to download their data. Second,

copying data every time the consistency checker runs consumes resources such as network

bandwidth. Third, a faulty replica might serve the corrupt responses i.e. it may propagate

the corruption until the consistency checker runs.

4.2 Online Comparisons

In online consistency check mode, as shown in Figure 4.3 every replica maintains a digest of

its DataTree and a digest log. The digest log contains a list of historical digests (�ngerprint

or hash) and their corresponding metadata such as zxids (i.e., zxid of the last transaction

applied to the DataTree when the digest was calculated).

Figure 4.3: Replicas with their digest logs

After applying a transaction to the DataTree replicas update their DataTree’s

digest. As shown in Figure 4.4 step 6, upon applying a transaction C1 to the DataTree each

replica computes a new digest and stores it along with the DataTree. After every �xed

number of transactions, replicas add the current digest and corresponding zxid to the

20

digest log. For example, in Figure 4.3 after every 128 transactions replicas add digests to

their digest log. As shown in Figure 4.4, the auditor, which is scheduled to run periodically,

collects recent digest log entries from each replica. It compares the digests corresponding

to the last zxid that was applied to all the replicas. At the time) 1 and) 2 the digests from

all the replicas match. If digest for any replica is di�erent from the majority digests then

the auditor reports digest mismatch. For example, at time)< the digest �′= of replica '3

does not match with the digest �= of replica '1 and '2; hence the auditor reports digest

mismatch for '3.

Figure 4.4: Online consistency veri�cation using external auditor

21

Computing a full digest from the scratch upon every transaction is an expensive

operation. Therefore, this fault detection technique uses an incremental hashing algorithm,

AdHASH, to compute the digests. The AdHASH algorithm is described in section 4.4.

The major advantage of this method over the o�ine external consistency checker

is that there is no need to download huge data of ZooKeeper replicas every time we want

to check replicas for inconsistencies. Also, the auditor can be scheduled to run more

frequently as the amount of data transferred from replicas to the auditor is comparatively

very small and it can be served by replicas with minimal interruption. Because of this, the

auditor can help in catching faulty replicas sooner than the external consistency checker

and thereby substantially reduces the chances of serving corrupt data to the clients. This

technique also provides a context such as transaction id which makes it easier to investigate

the root cause of the state corruption.

Since every replica needs to compute and update its digest on every transaction,

this a�ects the overall throughput. The impact on performance varies depending on the

hash function used in AdHASH and the transaction data size. Also, to store digests some

additional memory for DataTree and space for snapshots and transaction logs is required;

however, compared to the rest of replica data it is a trivial amount of data. Similar to the

external checker, the main disadvantage of this method is that by the time a faulty replica

is detected it might already have served the corrupt data to the clients.

4.3 Realtime Detection

In order to avoid serving corrupt data to the clients, it is essential to detect faults as soon as

they occur. To that end, ZooKeeper uses a predictive digest mechanism to detect byzantine

faults in real-time. As shown in Figure 4.5, when preparing transaction proposal for C1 the

leader '1 also computes the digest 31 of DataTree when changes captured in transaction C1

are applied to it. The leader sends this digest as a part of the transaction proposal to the

22

followers. When followers apply this transaction to their DataTree, they compute a new

digest of DataTree and check it with the leader’s digest. In Figure 4.5, both '2 and '3’s

digest after applying transaction C1 is 31, which is same as that of the leader’s digest 31.

After applying transaction C2, replica '2 computes digest which is same as that of leaders

digest; however, replica '3’s digest is 3′
2

is di�erent from the leaders digest 32. Since the

digest of '3 is di�erent than the digest of the leader replica, we conclude that the '3 has

diverged from the leader replica.

Figure 4.5: Real-time consistency check

The main advantage of this technique is that it allows us to detect inconsistencies

as data is changing. With this technique, replicas can avoid serving corrupt data and can

prevent the propagation of corruption. In addition to this, when a faulty replica is detected,

we get a speci�c context like zxid, DataTree that helps in the root cause analysis of a

replica state corruption.

23

In this method, the leader computes a predictive digest for each transaction.

This adds extra load on the CPU of the leader server. Furthermore, upon processing a

transaction, every replica in an ensemble updates its digest, and this adds an extra CPU load

on all replicas. Because of these reasons, doing real-time detection a�ects the performance

more than the online comparison method.

4.4 Incremental Hashing

A collision-free hash function is used to map long messages to a �xed-length digest in

such a way that it is computationally infeasible to have the same digest for two di�erent

messages. In order to compute digests of two di�erent messages, we have to compute

digest from scratch for each message individually. Computing digests using cryptographic

hash functions is a computationally expensive operation. If these messages are related

to each other, for example, one message is a simple modi�cation of another, we can use

incremental hash functions to speed up the digest calculation. This means that if message

G was hashed using an incremental hash function, then the hash for message G′ which is

a modi�cation of message G is obtained by updating the hash of message G rather than

re-computing it from the scratch [7].

To summarize, when we have data that is composed of multiple blocks, for

example, G = G1 . . . G= and if we modify G to G′ by changing G8 to G′8 then given 5 (G), G8, G′8
we should be able to compute 5 (G′) by simply updating 5 (G). Bellare et. al. [7] proposed

the randomize-then-combine paradigm for the construction of incremental hash functions

. It consists of two main phases: randomize (hash) phase and combine phase. According to

this paradigm, the message G is viewed as a sequence of blocks G = G1. . .G= . Each block G8

is then processed using a hashing function ℎ to produce output ~8 . These outputs are then

combined to compute the �nal hash value ~ = ~1 � ~2 � · · · � ~= .

24

~ = ℎ(G1) � ℎ(G2) � · · · � ℎ(G=)

The hashing function ℎ also acts as a compression function. Standard hash

functions such as CRC32, MD5, and SHA-256 can be used as randomizing functions. The

combine operation � is usually a group operation such as addition or multiplication. In the

next section, we will discuss AdHASH [7] which is based on the randomize-then-combine

paradigm.

Figure 4.6: Digest computation using AdHASH

4.4.1 AdHASH

As discussed earlier, the main advantage of using an incremental hash function is to speed

up the computation of new hash value calculation when there is a small update to the

input data. AdHASH uses addition as the combine operator in the randomize-and-combine

paradigm for construction. The addition operator is both fast and secure [7]. Its inverse

operator is subtraction and is used to update the hash value when input data is modi�ed

by substitution or deletion.

Let’s take one example to understand how AdHASH works. Suppose our input

data is a string x = San Hose State University. Each word in this string is considered as

25

a one block G1 = (0=, G2 = �>B4, G3 = (C0C4, G4 = *=8E4AB8C~. As shown in Figure

4.6 every block is then processed via a hashing function such as CRC32, to produce

~1 = 1196908354, ~2 = 94739505, ~3 = 1649606143, ~4 = 4012344892. These outcomes are

added together to calculate the �nal hash value ~ = 6953598894.

Figure 4.7: Updating digest when data changes

Now suppose we want to update the message G = (0= �>B4 (C0C4 *=8E4AB8C~ to

become G′ = (0= �>B4 (C0C4 *=8E4AB8C~ by changing block G2 = �>B4 to G2 = �>B4 . Given,

~ = 6953598894, ~2 = 94739505, and G′
2

we can compute the new hash value as follows:

�rst, process G′
2
= �>B4 via hashing function to yield outcome ~′

2
= 2947306682. Then as

shown in Figure 4.7, to re-compute the new hash value, subtract the hash value of the

block to be removed from the old hash value and add the hash value of the new block.

~′ = ~ � ~−18 � ~′8

~′ = ~ − ~2 + ~′2

= 6953598894 − 94739505 + 2947306682

= 9806166071

(4.1)

Figure 4.8 shows that we get the same hash value if we compute it from the

scratch using AdHASH. In summary, when input data is changed by the addition of a

new block to it, we add the hash of a new block to the old hash value to get the new hash

26

value. Similarly, when data is changed by deleting a block, then to get the new hash value

we subtract the hash value of a block to be removed from the old hash value. As seen in

the above example, we only need to compute the hash value of the block whose data is

modi�ed and the time taken to compute the new hash value is proportional to the size of

change. This property is particularly very useful in cases where the size of input data is

large and changes made to it are comparatively small.

Figure 4.8: Calculating full digest from the scratch upon modi�cation of the message

The security of any incremental hash function depends on the randomizing

function and the combine operator. The XOR operator cannot be used as a combine

operation since it is not collision resistant [7]. On the other hand, the addition operator is

both secure and e�cient as the combine operation.

4.4.2 AdHASH in ZooKeeper

In this section, we will brie�y discuss how AdHASH is used to calculate the incremental

digest of a DataTree in ZooKeeper.

As discussed at the beginning of this chapter, DataTree is composed of multiple

znodes. Each such znode is considered as one block for computing tree digest. To get the

hash value of a znode, the digest calculator uses znodes path, stats, and data, if any. In the

27

current implementation, the hash value is an 8-byte long integer.

When a new znode is created, we compute its hash value using a digest calculator.

This hash value is added to the old digest of DataTree to get a new digest. The hash values

of znodes are usually cached to avoid recomputation when that znode is updated or deleted.

Also, with caching, the overhead of AdHASH in the case of delete operations is just one

subtraction. When a znode is deleted, we remove its hash value from the old digest to get

an updated tree digest. When a znode is updated, we compute and add its new hash to the

tree digest and remove its old hash value.

The hash values of znodes are computed using the standard hash functions.

The default hash function is CRC-32. It produces an 8-byte long integer hash value. We

also added support for using MD5, SHA-1, SHA-256, and SHA-512. The output of these

hash functions, however, is larger than the 8-bytes. Hence with these hash functions, we

consider only the �rst 8 bytes for tree digest computation.

28

Chapter 5

Evaluation

As discussed in Chapter 4, in both online comparison via auditor and realtime detection,

we compute a digest on every operation that modi�es the state. However, computing a

digest on every transaction comes with a compute cost, which means that it a�ects the

overall performance of ZooKeeper. Doing byzantine fault-detection in production requires

it to be feasible from a performance standpoint. Therefore, in this chapter, we will analyze

how doing byzantine fault-detection impacts ZooKeeper’s performance. To that end, our

experimental evaluation seeks to answer the following questions:

1. What is the cost of using AdHASH based online consistency checker for detecting

non-malicious byzantine faults in ZooKeeper?

2. What is the cost of doing real-time byzantine fault detection?

3. What’s the trade-o� of using a weak hash function vs. a strong hash function in

AdHASH for byzantine fault detection?

4. How do di�erent request sizes impact the performance when using byzantine fault

detection?

29

5.1 Experiment Setup

For our evaluation, we used a cluster of seven servers running the CentOS Linux (release

7.9.2009) operating system. Every server had an Intel Xeon X5570 processor (8 cores,

16 logical CPUs, 2.93GHz clock speed), 62GiB of DDR3 RAM, one SATA hard drive, one

NVMe SSD, and a gigabit ethernet. Servers used OpenJDK (version 14.0.2) as a Java runtime

environment.

Figure 5.1: Experimental Setup

All experiments were run using the benchmark tool provided in Apache ZooKeeper

source code [5]. We used Apache ZooKeeper version 3.7.0 (development branch commit

7f66c7680) with additional changes to support the use of various hash functions for com-

puting the incremental digest. As shown in Figure 5.1, we used an ensemble of three

ZooKeeper servers R1, R2, and R3, hosted on machines N1, N2, and N3, respectively. We

con�gured every replica server to use a dedicated SSD for transaction logs and a dedicated

HDD for snapshots. We used 3 machines (N4-N6) to simulate 900 load-generating clients

30

(C001 - C900), i.e., each machine ran 300 simultaneous clients. To balance the load evenly

and to keep load distribution consistent across di�erent benchmark runs each ZooKeeper

server had exactly 300 ZooKeeper clients connected to it. We used a controller node (N7)

to send workload commands to and get the count of completed operations from clients.

The controller collects the number of completed operations every 300<B from clients and

samples them every 6B .

5.2 Workload

All benchmarks were run with asynchronous APIs. Each client creates an ephemeral znode

and performs, depending on the workload set by the controller, repeated getData (read) or

setData (write) operations on its znode. Every client has at most 100 outstanding requests.

Depending on the benchmark run we change the request size and hash function used for

digest calculation.

5.3 Impact of online comparisons

As discussed in 4.2, every replica server upon applying a transaction computes digest. To

measure the impact of this on throughput, we ran a benchmark with and without fault

detection enabled. Each request was either a read or write of 1KiB of data. We did not use

an external auditor for comparing digests as it is external to ZooKeeper service and its

impact is relatively trivial from the ZooKeeper performance viewpoint. While computing

the digest of a znode along with node data, the digest calculator uses znode’s path and

stats. The size of the path and stats in our experiments was 17B and 60B, respectively.

In Figure 5.2, we show throughput as we vary the percentage of the read re-

quest. The blue line illustrates baseline ZooKeeper throughput, and the orange line shows

throughput with fault detection in online mode. As shown in Figure 5.2, when fault detec-

31

Figure 5.2: Throughput with online comparison technique

tion is enabled, throughput decreases. When all operations are read throughput remains

the same. For 100% write operations throughput decreases by only around 2% which is

relatively minimal overhead.

In Figure 5.2, the di�erence between baseline and online comparison is highest

when the read to write ratio is between 40-70 percent. It seems to be in�uenced by two

factors: nature of the workload and FIFO client ordering provided by ZooKeeper [22]. In our

experiments, every client performs a repeated read or write operation on its distinct znode.

Also, each client remains connected to only one replica server throughput a benchmark

run. Since digest calculations cause extra compute load, write operations spend more

time in CommitProcessor, which consequently delays the processing of read requests. In

between 40-70 percent there are substantial write requests that delay the processing of a

large number of read requests and this results in a substantial drop in overall throughput.

32

5.4 Impact of realtime detection

In Figure 5.3, we show throughput with and without realtime digest. The blue line illustrates

the baseline throughput. The blue line illustrates baseline ZooKeeper throughput, and the

orange line shows throughput when doing realtime fault detection. As discussed in 4.3,

when using the realtime detection method, we compute digest twice for every transaction.

First, when a leader receives a state update request from a client, it computes a predictive

Figure 5.3: Throughput with realtime detection technique

digest (i.e. digest that re�ects changes captured in a given transaction). This is handled

in the PrepRequestProcessor of a leader server. Second, when replica servers apply a

transaction to their DataTree. This is handled in CommitProcessor. Calculating predictive

digest on every transaction adds additional compute load on the leader server which in

turn negatively impacts overall write throughput. For 100% write operations throughput

di�erence between baseline and realtime detection with CRC-32 is around 20%.

As shown in Figure 5.4, the realtime detection method incurs a relatively higher

performance penalty than the online comparison method. However, the bene�ts of doing

byzantine fault detection in realtime outweigh its cost.

33

Figure 5.4: Throughput - online comparison vs realtime detection

5.5 Impact of hash functions

To understand how performance changes with di�erent hash functions, we measured

throughput with CRC-32, MD5, SHA, SHA-256, and SHA-512 for both online comparison

and realtime detection methods.

Figure 5.5: Throughput with di�erent hash functions in online comparison technique

34

In Figure 5.5 we show throughput of online comparison method with di�erent

hash functions. In Figure 5.6 we show throughput of realtime detection method with

di�erent hash functions. In both �gures, the blue lines indicate baseline throughput. Other

lines correspond to a di�erent hash function used in fault detection. As shown in Figure

5.5 and Figure 5.6, the throughput of ZooKeeper with byzantine fault detection changes

with the hash function used to calculate the digest.

Figure 5.6: Throughput with di�erent hash functions in realtime detection technique

The performance penalty incurred when using CRC-32 is the lowest while it is

highest for SHA-256. Also, the performance with a more secure SHA-512 is better than

SHA-256. The choice of hash function presents a trade-o� between performance and

collision resistance. A weak hash function incurs a minimal performance penalty than

a strong hash function; however, con�dence in detection is also low with a weak hash

function than the strong hash function. Table 5.2 and Table 5.2 show percentage di�erence

between throughput of baseline and di�erent hash functions used for online comparison

and realtime detection, respectively.

35

Table 5.1: Throughput percentage di�erence between baseline and online comparison

% hash functions used in online comparison

read requests CRC-32 MD5 SHA-256 SHA-512 SHA

0 2 1 4 2 0

10 2 4 13 8 7

20 6 9 20 14 12

30 4 9 20 15 12

40 6 9 23 18 14

50 6 11 25 21 16

60 7 12 24 21 17

70 7 10 22 18 15

80 5 9 19 16 13

90 4 7 15 12 11

Table 5.2: Throughput percentage di�erence between baseline and realtime detection

% hash functions used in realtime digest

read requests CRC-32 MD5 SHA-256 SHA-512 SHA

0 20 15 39 38 31

10 15 17 41 36 30

20 16 18 45 38 31

30 12 15 42 37 26

40 12 14 40 34 28

50 9 14 37 28 24

60 8 14 29 25 20

70 6 11 25 19 16

80 6 9 22 15 14

90 4 7 17 12 12

36

5.6 Impact of requests sizes

The cost of updating a digest using incremental hashing directly depends on the size of the

change. To understand how performance changes with request sizes we ran a benchmark

with various request sizes. Figures from 5.7 to 5.11 shows throughput when using various

request sizes in both online comparison and realtime digest method. For larger request

sizes such as 1K, 2K the di�erence in throughput is more pronounced than the smaller

request sizes such as 64B. In summary, large request sizes with strong collision-resistant

hash functions incur a high-performance penalty.

(a) Online digest comparison (b) Realtime digest comparison

Figure 5.7: Throughput comparison - request size 64B

(a) Online digest comparison (b) Realtime digest comparison

Figure 5.8: Throughput comparison - request size 256B

37

(a) Online digest comparison (b) Realtime digest comparison

Figure 5.9: Throughput comparison - request size 512B

(a) Online digest comparison (b) Realtime digest comparison

Figure 5.10: Throughput comparison - request size 1024B

(a) Online digest comparison (b) Realtime digest comparison

Figure 5.11: Throughput comparison - request size 2048B

38

Chapter 6

Technical Challenges in Evaluation

Measuring the performance of distributed systems is a challenging task. Several factors

such as clock skew, load distribution pose challenges for getting consistent performance

measurements. In this chapter, we will discuss some of the challenges we faced during

performance evaluation.

Clock drift

ZooKeeper benchmark utility relies on timestamps to count the number of completed

operations in an interval by all clients. When we have multiple clients running on di�erent

machines, to accurately calculate total requests completed, the timestamps generated by

clients need to match.

Zookeeper benchmark tool uses System.nanoTime() to get the timestamps. These

timestamps di�er from JVM to JVM as System.nanoTime() method returns the nanoseconds

since some �xed but arbitrary origin time [24]. This means that when we start two machines

at a di�erent time, the timestamp we get with System.nanoTime() on these machines will

di�er substantially. When timestamps do not match, the collector fails to properly sample

the number of completed operations in a particular period. To resolve this issue, we replaced

39

System.nanoTime() with clock time, i.e., System.currentTimeMillis(). The granularity of

System.currentTimeMillis() depends on the underlying operating system. Our systems

used chrony to synchronize the system clock with a local NTP server. It provides accuracy

within tens of microseconds for machines on a LAN which is an acceptable drift for our

measurements [23]. With this approach, we were able to get consistent time intervals on

both the controller and clients.

Inconsistent load distribution

Every ZooKeeper client connects to an arbitrary server from the given connectString

(comma separated host-port address list of ZooKeeper servers). Clients employ a proba-

bilistic load-balancing scheme that tries to ensure that the number of clients per server is

the same for every server. Since this is the best-e�ort scheme, it is not deterministic, and

the number of clients per server may vary across di�erent runs of the benchmark. This

nondeterminism causes variations in performance benchmark measurements. To solve

this problem, we created a static mapping of clients and servers so that, for every run, each

server has exactly the same number of clients connected to it.

40

Chapter 7

Conclusion

In this thesis, we �rst described the importance of handling non-malicious byzantine

faults in ZooKeeper. We then discussed why doing a fault-detection is cheaper than fault-

tolerance to deal with non-malicious byzantine faults. This thesis also describes three

di�erent approaches to detect byzantine faults.

In the �rst approach, we compare replicas using transaction logs and snapshots

in an o�ine mode with the help of an external consistency checker. The o�ine comparison

method is the simplest but least e�ective method. In the second approach, every replica

maintains a digest log representing its state at di�erent points in time. It employs an

external auditor to compare replicas using these digests in an online mode. This approach

is better than the o�ine comparison method; however, it does not help in completely

preventing error propagation. In the third approach, the leader computes a predictive digest

for every transaction and sends it along with a transaction proposal to the followers. After

applying a transaction to DataTree, a follower updates its digest and then compares it with

the leader’s digest. This enables real-time fault detection and prevents error propagation

from one replica to another replica and clients as well.

This thesis further presents a performance evaluation of ZooKeeper with byzan-

tine fault detection. Our evaluation shows that both online comparison and real-time

41

detection technique enables very good performance while incurring an acceptable per-

formance penalty. The performance penalty of online comparison and realtime detection

for 100% writes with CRC-32 as hash function in AdHASH is around 2% and 20%, respec-

tively. The performance penalty, however, varies with the hash function used to compute

incremental digests. Typically, strong collision-resistant hash functions come with high

con�dence in fault detection and relatively high costs than weak collision-resistant hash

functions.

To conclude, this thesis demonstrates that the real-time fault detection method

provides improved reliability with minimal performance cost and no additional deployment

cost. And hence this technique is feasible to use in production systems to safeguard

reliability.

42

Bibliography

[1] Michael Abd-El-Malek, Gregory R Ganger, Garth R Goodson, Michael K Reiter,

and Jay J Wylie. “Fault-scalable Byzantine fault-tolerant services”. In: ACM SIGOPS
Operating Systems Review 39.5 (2005), pp. 59–74.

[2] Ittai Abraham, Guy Gueta, Dahlia Malkhi, Lorenzo Alvisi, Rama Kotla, and Jean-

Philippe Martin. “Revisiting fast practical byzantine fault tolerance”. In: arXiv
preprint arXiv:1712.01367 (2017).

[3] Ramnatthan Alagappan et al. “Protocol-aware recovery for consensus-based storage”.

In: 16th USENIX Conference on File and Storage Technologies (FAST 18). 2018, pp. 15–

32.

[4] Apache ZooKeeper. url: https://zookeeper.apache.org.

[5] Apache ZooKeeper Benchmarking Tool. url: https://github.com/apache/zookeeper/

blob/master/zookeeper-it/README.txt.

[6] Avoid reverting the cversion and pzxid during replaying txns with fuzzy snapshot. url:
https://issues.apache.org/jira/browse/ZOOKEEPER-3249.

[7] Mihir Bellare and Daniele Micciancio. “A new paradigm for collision-free hashing:

Incrementality at reduced cost”. In: International Conference on the Theory and
Applications of Cryptographic Techniques. Springer. 1997, pp. 163–192.

[8] Built-in data consistency check inside ZooKeeper. url: https://issues.apache.org/jira/

browse/ZOOKEEPER-3114.

[9] Miguel Castro, Barbara Liskov, et al. “Practical byzantine fault tolerance”. In: OSDI.
Vol. 99. 1999. 1999, pp. 173–186.

[10] Miguel Castro and Barbara Liskov. “Practical Byzantine fault tolerance and proactive

recovery”. In: ACM Transactions on Computer Systems (TOCS) 20.4 (2002), pp. 398–

461.

43

https://zookeeper.apache.org
https://github.com/apache/zookeeper/blob/master/zookeeper-it/README.txt
https://github.com/apache/zookeeper/blob/master/zookeeper-it/README.txt
https://issues.apache.org/jira/browse/ZOOKEEPER-3249
https://issues.apache.org/jira/browse/ZOOKEEPER-3114
https://issues.apache.org/jira/browse/ZOOKEEPER-3114

[11] Tushar D Chandra, Robert Griesemer, and Joshua Redstone. “Paxos made live: an

engineering perspective”. In: Proceedings of the twenty-sixth annual ACM symposium
on Principles of distributed computing. 2007, pp. 398–407.

[12] Liming Chen and Algirdas Avizienis. “On the implementation of n-version pro-

gramming for software fault tolerance during program execution”. In: International
Computer Software and Applications Conference (COMPSAC). 1977.

[13] Allen Clement, Edmund L Wong, Lorenzo Alvisi, Michael Dahlin, and Mirco Marchetti.

“Making Byzantine Fault Tolerant Systems Tolerate Byzantine Faults.” In:NSDI. Vol. 9.

2009, pp. 153–168.

[14] Allen Clement et al. “Upright Cluster Services”. In: Proceedings of the ACM SIGOPS
22nd Symposium on Operating Systems Principles. SOSP ’09. Big Sky, Montana, USA:

Association for Computing Machinery, 2009, pp. 277–290. isbn: 9781605587523. doi:

10.1145/1629575.1629602. url: https://doi.org/10.1145/1629575.1629602.

[15] Containerizing ZooKeeper with Twine: Powering container orchestration from within.

url: https://engineering.fb.com/2020/08/31/developer-tools/zookeeper-twine.

[16] Miguel Correia, Daniel Gómez Ferro, Flavio P Junqueira, and Marco Sera�ni. “Prac-

tical hardening of crash-tolerant systems”. In: 2012 USENIX Annual Technical Con-
ference (USENIX ATC 12). 2012, pp. 453–466.

[17] James Cowling, Daniel Myers, Barbara Liskov, Rodrigo Rodrigues, and Liuba Shrira.

“HQ replication: A hybrid quorum protocol for Byzantine fault tolerance”. In: Pro-
ceedings of the 7th symposium on Operating systems design and implementation. 2006,

pp. 177–190.

[18] Siying Dong, Andrew Kryczka, Yanqin Jin, and Michael Stumm. “Evolution of De-

velopment Priorities in Key-value Stores Serving Large-scale Applications: The

RocksDB Experience”. In: 19th USENIX Conference on File and Storage Technologies
(FAST 21). USENIX Association, Feb. 2021, pp. 33–49.

[19] Fix potential data inconsistency issue due to CommitProcessor not gracefully shutdown.

url: https://issues.apache.org/jira/browse/ZOOKEEPER-3598.

[20] Aishwarya Ganesan, Ramnatthan Alagappan, Andrea C Arpaci-Dusseau, and Remzi

H Arpaci-Dusseau. “Redundancy does not imply fault tolerance: Analysis of dis-

tributed storage reactions to single errors and corruptions”. In: 15th USENIX Confer-
ence on File and Storage Technologies (FAST 17). 2017, pp. 149–166.

[21] Haryadi S Gunawi et al. “What bugs live in the cloud? a study of 3000+ issues in

cloud systems”. In: Proceedings of the ACM Symposium on Cloud Computing. 2014,

pp. 1–14.

44

https://doi.org/10.1145/1629575.1629602
https://doi.org/10.1145/1629575.1629602
https://engineering.fb.com/2020/08/31/developer-tools/zookeeper-twine
https://issues.apache.org/jira/browse/ZOOKEEPER-3598

[22] Patrick Hunt, Mahadev Konar, Flavio Paiva Junqueira, and Benjamin Reed. “ZooKeeper:

Wait-free Coordination for Internet-scale Systems.” In: USENIX annual technical
conference. Vol. 8. 9. 2010.

[23] Introduction to chrony suite. url: https://access.redhat.com/documentation/en-

us/red_hat_enterprise_linux/8/html/con�guring_basic_system_settings/using-

chrony-to-con�gure-ntp.

[24] Java System.nanoTime(). url: https://docs.oracle.com/en/java/javase/14/docs/api/

java.base/java/lang/System.html#nanoTime().

[25] Flavio Junqueira and Benjamin Reed. ZooKeeper: distributed process coordination. "

O’Reilly Media, Inc.", 2013.

[26] Flavio P Junqueira, Benjamin C Reed, and Marco Sera�ni. “Zab: High-performance

broadcast for primary-backup systems”. In: 2011 IEEE/IFIP 41st International Confer-
ence on Dependable Systems & Networks (DSN). IEEE. 2011, pp. 245–256.

[27] John C Knight and Nancy G Leveson. “An experimental evaluation of the assumption

of independence in multiversion programming”. In: IEEE Transactions on software
engineering 1 (1986), pp. 96–109.

[28] Ramakrishna Kotla, Lorenzo Alvisi, Mike Dahlin, Allen Clement, and Edmund Wong.

“Zyzzyva: speculative byzantine fault tolerance”. In: Proceedings of twenty-�rst ACM
SIGOPS symposium on Operating systems principles. 2007, pp. 45–58.

[29] Leslie Lamport, Robert Shostak, and Marshall Pease. “The Byzantine generals prob-

lem”. In: Concurrency: the Works of Leslie Lamport. 2019, pp. 203–226.

[30] Shubhendu S Mukherjee, Joel Emer, and Steven K Reinhardt. “The soft error problem:

An architectural perspective”. In: 11th International Symposium on High-Performance
Computer Architecture. IEEE. 2005, pp. 243–247.

[31] David Oppenheimer, Archana Ganapathi, and David A Patterson. “Why do Internet

services fail, and what can be done about it?” In: USENIX symposium on internet
technologies and systems. Vol. 67. Seattle, WA. 2003.

[32] Potential data inconsistency due to NEWLEADER packet being sent too early during
SNAP sync. url: https://issues.apache.org/jira/browse/ZOOKEEPER-3104.

[33] Potential lock unavailable due to dangling ephemeral nodes left during local session
upgrading. url: https://issues.apache.org/jira/browse/ZOOKEEPER-3471.

[34] Potential watch missing issue due to stale pzxid when replaying CloseSession txn with
fuzzy snapshot. url: https://issues.apache.org/jira/browse/ZOOKEEPER-3145.

45

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_basic_system_settings/using-chrony-to-configure-ntp
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_basic_system_settings/using-chrony-to-configure-ntp
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_basic_system_settings/using-chrony-to-configure-ntp
https://docs.oracle.com/en/java/javase/14/docs/api/java.base/java/lang/System.html#nanoTime()
https://docs.oracle.com/en/java/javase/14/docs/api/java.base/java/lang/System.html#nanoTime()
https://issues.apache.org/jira/browse/ZOOKEEPER-3104
https://issues.apache.org/jira/browse/ZOOKEEPER-3471
https://issues.apache.org/jira/browse/ZOOKEEPER-3145

[35] Pzxid inconsistent issue when replaying a txn for a deleted node. url: https://issues.

apache.org/jira/browse/ZOOKEEPER-3125.

[36] Scaling services with Shard Manager. url: https://engineering.fb.com/2020/08/24/

production-engineering/scaling-services-with-shard-manager.

[37] Secure and Reliable Memory. url: https://safari.ethz.ch/architecture/fall2020/lib/exe/

fetch.php?media=onur-comparch-fall2020-lecture5c-secureandreliablememory-

afterlecture.pdf.

[38] Alexander Shraer, Benjamin Reed, Dahlia Malkhi, and Flavio P Junqueira. “Dynamic

Recon�guration of Primary/Backup Clusters”. In: 2012 USENIX Annual Technical
Conference (USENIX ATC 12). 2012, pp. 425–437.

[39] Atul Singh, Petros Maniatis, Peter Druschel, and Timothy Roscoe. Con�ict-free
quorum-based bft protocols. Tech. rep. Technical Report 2007-1, Max Planck Institute

for Software Systems, 2007.

[40] Jian Yin, Jean-Philippe Martin, Arun Venkataramani, Lorenzo Alvisi, and Mike

Dahlin. “Separating agreement from execution for Byzantine fault tolerant services”.

In: Proceedings of the nineteenth ACM symposium on Operating systems principles.
2003, pp. 253–267.

[41] ZooKeeper at Twitter. url: https://blog.twitter.com/engineering/en_us/topics/

infrastructure/2018/zookeeper-at-twitter.html.

[42] ZooKeeper Resilience at Pinterest. url: https://medium.com/@Pinterest_Engineering/

zookeeper-resilience-at-pinterest-adfd8acf2a6b.

46

https://issues.apache.org/jira/browse/ZOOKEEPER-3125
https://issues.apache.org/jira/browse/ZOOKEEPER-3125
https://engineering.fb.com/2020/08/24/production-engineering/scaling-services-with-shard-manager
https://engineering.fb.com/2020/08/24/production-engineering/scaling-services-with-shard-manager
https://safari.ethz.ch/architecture/fall2020/lib/exe/fetch.php?media=onur-comparch-fall2020-lecture5c-secureandreliablememory-afterlecture.pdf
https://safari.ethz.ch/architecture/fall2020/lib/exe/fetch.php?media=onur-comparch-fall2020-lecture5c-secureandreliablememory-afterlecture.pdf
https://safari.ethz.ch/architecture/fall2020/lib/exe/fetch.php?media=onur-comparch-fall2020-lecture5c-secureandreliablememory-afterlecture.pdf
https://blog.twitter.com/engineering/en_us/topics/infrastructure/2018/zookeeper-at-twitter.html
https://blog.twitter.com/engineering/en_us/topics/infrastructure/2018/zookeeper-at-twitter.html
https://medium.com/@Pinterest_Engineering/zookeeper-resilience-at-pinterest-adfd8acf2a6b
https://medium.com/@Pinterest_Engineering/zookeeper-resilience-at-pinterest-adfd8acf2a6b

	Performance Evaluation of Byzantine Fault Detection in Primary/Backup Systems
	Recommended Citation

	Introduction
	Background
	Research Objectives

	Literature Review
	Agreement-based Protocols
	Quorum-based Protocols
	Hybrid Protocols

	Fault Model
	Correct Replicas
	Lagging Replicas

	Faulty Replicas
	Summary

	Non-Malicious Byzantine Fault Detection
	Offline Comparisons
	Online Comparisons
	Realtime Detection
	Incremental Hashing
	AdHASH
	AdHASH in ZooKeeper

	Evaluation
	Experiment Setup
	Workload
	Impact of online comparisons
	Impact of realtime detection
	Impact of hash functions
	Impact of requests sizes

	Technical Challenges in Evaluation
	Conclusion
	Bibliography

