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ABSTRACT 
 

The existential threat of emerging antibiotic resistance in microbial communities poses 

significant risks to public health. In particular, wastewater can serve as a point of confluence for 

pharmaceuticals and antibiotic-resistant bacteria from urban and agricultural settings. While this 

is a prime environment for genetic drift and horizontal transfer of antibiotic resistance genes 

(ARGs) and mobile genetic elements, it also presents an opportunity for resistome monitoring via 

shotgun metagenomic sequencing and downstream analysis. This project reports the application 

of a hybrid assembly approach for the detection of ARGs within DNA derived from a wastewater 

sample collected from the San José-Santa Clara Regional Wastewater Facility, which serves a 

significant portion of the San Francisco Bay Area. Hybrid assembly (with polishing) of Nanopore-

derived long reads and Illumina-derived short reads resulted in detection of additional ARGs 

compared to a previously-performed short-read-based approach. 
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1 INTRODUCTION 

1.1 THE RESISTOME 

Wastewater from agricultural activities and sewer systems presents a notable environment 

for the confluence of multiple types of antibiotics and antibiotic-resistant bacteria. The 

environmental prevalence of antibiotics is by no means limited to wastewater. Antibiotics have 

been detected in rivers, lakes, groundwater wells, and the soil microbiome [1], applying human-

induced selective pressures that impact the frequencies of antibiotic-resistance genes (ARGs) in 

the community. 

In 2018, antibiotic resistance in the United States was estimated to account for an additional 

national cost of treatment of $2.2 billion per year [2], or an average extra cost of $1,383 per 

bacterial infection treated. However, this additional treatment expense is not represented equally 

across demographics, as black and Hispanic patients, prisoners, the elderly, and patients with 

comorbid conditions are most likely to be affected by antibiotic-resistant infections. The 

consequences of antibiotic resistance may therefore include long-term inequities that affect society 

in more far-reaching aspects than healthcare alone. 

Although humans have been exploiting modern antibiotics for nearly a century, the 

microbial capacity for antibiotic resistance is not a novel phenomenon.  Rather, microbial DNA 

sequences from microbiomes such as 30,000-year-old permafrost samples and long-isolated cave 

structures indicate a baseline frequency of ARGs existed in bacterial genomes prior to widespread 

human adoption and application of antibiotics [3], [4]. As such, ARGs are concerning not because 

of evolutionary novelty, but because their distribution may rapidly change as humans continue to 

transform our local environments. One solution to such a dynamic resistome is a frequent and 

robust monitoring pipeline for the identification of emerging pathogen-associated ARGs. 
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1.2 METAGENOMIC ANALYSIS OF ENVIRONMENTAL SAMPLES 

1.2.1 Detection of Uncultivable Species 

Environmental samples containing microbial communities present a possible means of 

assessing a habitat’s members and their frequencies. However, due to the high microbial diversity 

inherent to environmental samples, cultivable bacterial species (those which can be isolated in pure 

culture and represent less than 1% of mixed microbial communities) are unlikely to accurately 

represent the resistome [5]. One solution to this problem is cloning the extracted DNA into vectors, 

producing a library that can be clonally expanded using a competent prokaryotic host. However, 

this does not guarantee full coverage of the DNA from the environmental sample and inherently 

introduces additional fragmentation into the metagenome. Thus, one strategy for achieving broad 

detection of ARGs in a functional context is shotgun metagenomics. By immediately isolating 

DNA and sequencing the entire genomic or transcriptomic content of an environmental sample, 

cultivation-independent characterization of these community members is made feasible. One issue 

that may rise from this approach is poor alignment of the sequencing data to existing reference 

sequences, though this is gradually becoming less of an issue over time as more genomes of non-

cultivable strains are made available [6]. 

1.2.2 Next-Generation Sequencing Strategies 

The continued proliferation and improvement of high-throughput sequencing 

methodologies has enabled metagenomic analyses to be conducted at ever-increasing scale. Short 

reads generated by the Illumina sequencing-by-synthesis platform feature high per-base read 

accuracy and depth of coverage; however, due to their limited length, assembly from such reads 

may be susceptible to errors due to repetitive elements if the reads are unable to span the entire 

length of the element. Because metagenomic samples contain many species by definition, the 
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number of contigs generated by this process may reflect either the diversity of the environmental 

sample or the inability to resolve reads into contiguous segments. The former is a natural property 

of the sample of interest, while the latter is frequently a consequence of poor coverage or 

inadequate tools and techniques. Long-read sequencing technologies such as the Oxford Nanopore 

Technologies platform aim to improve genome reconstruction by enabling assembly to be 

performed with larger starting reads, facilitating greater contiguity and localizing genes in relation 

to each other with greater accuracy [7]–[9]. However, low per-base accuracy and low throughput 

make it difficult to reliably apply Nanopore sequencing to applications that require high resolution, 

such as characterizing mobile genetic elements (MGEs), ARGs, or highly polymorphic genes [10].  

1.2.3 Hybrid Assembly 

Because of the relatively high error rate of the Nanopore long-read sequencing platform, it 

is useful to combine these sequences with short reads generated by the Illumina platform, allowing 

for both high contiguity and per-base accuracy. These two strengths are highly valuable in 

metagenomic analyses, since per-species coverage can vary greatly depending on the frequency of 

a given species and the genome sizes of other species within the sample. Approaches to hybrid 

assembly differ, but one approach is to generate a long-read assembly (with high expected 

contiguity) and use a polisher with short reads to correct incorrectly-called bases in the assembly 

[11]. In some cases, a short-read assembly is first generated, and a gap-filling stage using long 

reads is performed to improve contiguity [8]. A hybrid assembly strategy facilitates and enhances 

the recovery of multiple distinct genomes from metagenomic samples [12]–[14] allowing for the 

detection of not only ARGs or other sequences of interest, but also the species from which they 

are derived. 
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1.2.4 Taxonomic Classification and Detection of Antibiotic-Resistance Genes 

Because of the presence of uncultivated microbial species, computational approaches for 

characterizing rich metagenomic datasets will continue to be necessary. For example, because 

microbial diversity is frequently a metric of interest in environmental samples, contigs generated 

from such a dataset need to be grouped taxonomically, a process known as “binning” [15]. Binning 

accuracy plays a critical role in the conclusions drawn from a dataset, particularly in the context 

of detecting horizontal transfer of MGEs and ARGs. These types of genetic structures in particular 

pose a daunting task for both public health and metagenomic analysis [16]. Indeed, metagenomic 

analysis performed using a simulated short-read-based metagenome shows very poor recovery of 

genomic islands and plasmid sequences [10]. While binning tools such as MetaBAT 2 allow for 

significant parameter tuning to improve performance in a short-read dataset [15], the upstream 

application of long-read sequencing technology enables the assembly of larger contigs, thus 

enabling more accurate binning and more complete genome assembly [17]. Sufficiently high depth 

of coverage using long-read sequencing can even preclude the need for a binning step entirely 

[18], though such deep sequencing may not be feasible for every research group. In comparison, 

read-based classifiers like Kraken 2 match k-mers against a reference database to identify the likely 

lowest common ancestor for a sequence [19]. This approach can reduce computational overhead 

and be used earlier in the analysis pipeline.  

2 METHODS 

2.1 SAMPLE AND DATA PROVENANCE 

2.1.1 Fosmid Library 

Vector-based storage and amplification of environmental genomic samples enable long-

term preservation and study [5]. Construction of such libraries could be considered tantamount to 
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taking a genomic snapshot of the environment at that time. The fosmid library for this study was 

prepared from an environmental wastewater sample that was collected from the San José-Santa 

Clara Regional Wastewater Facility, as described in a previous manuscript [20]. In brief, DNA 

from 1.0 g pellets of sediment from wastewater were processed using the Epicentre Meta-G-Nome 

DNA Isolation Kit, yielding high molecular weight genomic DNA. This DNA was then used to 

construct the fosmid library using the CopyControl™ Fosmid Library Production Kit with 

pCC1FOS vector cloning system and E. coli EPI300™-T1R Plating Strain, resulting in 4012 

clones. Depending on the research application, DNA samples from each of these clones can be 

combined into pools. This allows for high-throughput metagenomic shotgun assembly to be 

performed.  

2.1.2 Short-Read Sequencing Data Provenance 

Short-read sequencing was performed previously using the Illumina HiSeq 1000 platform 

[20]. Short reads used in this current project have been previously made available under the NCBI 

SRA Accession ID SRX286069 as part of the study “Activated Wastewater Metagenome”. For the 

Activated Wastewater Metagenome sequencing, the 4012 fosmid clones were grouped into 12 

pools containing approximately 334 clones each. Furthermore, the MG-RAST analysis of this 

dataset is available under the ID mgm4521514.3, offering quality control metrics, taxonomic 

classifications, and functional hits for genes and gene families.  

Assuming all fosmid inserts are ~40kb in length and 3343 fosmid clones are represented, 

this dataset provides approximately 270X depth of coverage. Limiting the size of the input data 

can substantially improve processing time. In order to subsample the paired-end reads to 10% of 

the original sample (and thus a coverage of ~27X), the sample command of seqtk v1.3 was used 
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[21]. This subset can then be used with polishing tools, since lowering the coverage is not expected 

to significantly impact the final result polishing result. 

2.1.3 Reference Sequences 

Because the fosmid library clones were generated in the E. coli EPI300-T1R Plating Strain, 

there exists the possibility of host sequences within the sequencing data. The canonical reference 

genome for E. coli DH10B was downloaded from NCBI entry NC_010473.1 [22] using the 

esearch and efetch utilities available in NCBI’s Entrez toolkit. The pCC1FOS vector sequence was 

downloaded from NCBI entry EU140751.1. Resistance gene identification was performed on both 

references to determine the possible contribution of these sequences to the ARGs detected in each 

metagenomic assembly. 

 

2.2 LIBRARY PREPARATION AND LONG-READ SEQUENCING 

2.2.1 Fosmid Pool Preparation 

Because DNA extracted from these clones has been used for multiple projects, fosmid 

pools had to be reconstructed from available aliquots of DNA, which had previously been used to 

create fosmid pools for an earlier sequencing experiment (see Short-Read Sequencing Data 

Provenance). Analysis was performed on the Agilent TapeStation platform to obtain 

concentrations for each pool (Figure 1). Out of 12 clonal pools from this previous dataset, 10 were 

recovered in sufficient quantity to represent each pool equally (insufficient DNA was available to 

regenerate Pool1 and Pool10). The new pool, Pool13, was created by combining 300ng of DNA 

from each available clonal pool. The resulting pool contained 3000ng of DNA in 19.97uL, 

enabling the ten pools to be sequenced in a single run. Pool13 was used for the long-read 

sequencing and downstream analysis described in Section 2.2 and Section 2.3.  
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2.2.2 Library Preparation 

The Oxford Nanopore Technology MinION workflow consists of library preparation 

protocols, the MinION sequencing device, MinKNOW sequencing software v20.06.05, and 

downstream analysis tools. Library preparation was performed using the Ligation Sequencing Kit 

SQK-LSK109 and the Genomic DNA by Ligation protocol (Oxford Nanopore Technologies, 

vGDE_9063_v109_revV_14Aug2019). Preparation also required the NEBNext® Companion 

Figure 1. Fosmid pool fragment sizes via Agilent TapeStation. 
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Module for Oxford Nanopore Technologies® Ligation Sequencing (New England BioLabs Inc, 

E7180S) and Agencourt Ampure XP Beads (Beckman Coulter Life Sciences, A63880).  

After preparation of the fosmid pools as Pool13, 6.66µL of Pool13 fosmid DNA containing 

1µg of DNA was diluted with nuclease-free water for a final volume of 49µL. For DNA repair and 

end-prep, 47µL of diluted DNA was combined with library preparation reagents in a 0.2mL thin-

walled PCR tube according to Table 1, and thermal cycling and magnetic bead purification was 

performed. 

Table 1. Volumes for DNA repair and end-prep for Genomic DNA by Ligation 

 Reagent  Volume 

DNA CS (positive 
control) 

1µL 

DNA (from fosmid 
clones) 

47µL 

NEBNext FFPE DNA 
Repair Buffer 

3.5µL 

NEBNext FFPE DNA 
Repair Mix 

2µL 

Ultra II End-prep 
reaction buffer 

3.5µL 

Ultra II End-prep 
enzyme mix 

3µL 

Total 60µL 

 

Adapter ligation and further magnetic bead purification were performed with Long 

Fragment Buffer to complete library preparation and enrich for DNA fragments of 3kb and longer, 

per Table 2. 



DETECTION OF ANTIBIOTIC RESISTANCE GENES IN THE WASTEWATER MICROBIAL METAGENOME 

 

9 

 

Table 2. Volumes for adapter ligation and cleanup 

 Reagent  Volume 

Repaired and end-
prepped DNA 

60µL 

Ligation Buffer (LNB) 25µL 

NEBNext Quick T4 
DNA Ligase 

10µL 

Adapter Mix (AMX) 5µL 

Total 100µL 

 

2.2.3 Long-Read Sequencing with MinKNOW and the MinION Mk1B 

After library preparation, sequencing was performed using MinION sequencer with the 

R9.4.1 flow cell (Oxford Nanopore Technologies, FLO-MIN106). 12µL of the prepared library 

was combined with 37.5µL Sequencing Buffer (SQB) and 25.5µL Loading Beads (LB) in a new 

0.2mL PCR tube. The MinION SpotON Flow Cell was loaded into the MinION Mk1B and loaded 

with 800µL of flow cell priming mix via the priming port. The prepared library was mixed by 

pipetting, then 75µL of the library was added to the sample port dropwise. MinKNOW software 

was used to monitor and operate the MinION sequencer during the course of the sequencing run. 

Although the MinION flow cell is capable of longer runs, the sequencing run was manually 

terminated after approximately 24 hours of runtime because the library was depleted by that time. 

2.3 PROCESSING OF LONG-READ SEQUENCING DATA 

A high-level depiction of the data analysis workflow is illustrated in Figure 2. After 

acquiring raw long-read sequencing data in the FAST5 format, guppy v4.4.1 (Oxford Nanopore 

Technology) with the High-Accuracy configuration for the R9.4.1 platform 
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(dna_r9.4.1_450bps_hac.cfg) was used for basecalling. Basecalling was performed locally in 

Ubuntu 16.04 with CUDA acceleration on an Nvidia RTX 3080 GPU, providing a substantial 

performance uplift compared to basecalling with a local AMD 3700X CPU. All FASTQ files 

generated via this process were concatenated into a single file using the cat command.  

2.3.1 Adapter Removal and Filtering 

Porechop v0.2.4 was used to remove adapter sequences from the reads. Porechop first 

aligns a subset of the reads to a library of known adapters. After known adapter sequences are 

detected in this subset, the rest of the reads are aligned to the known adapter sequences; if a 

matching adapter sequence is found in the read, then the sequence is trimmed [24]. Filtlong v0.2.0 

was then used to remove the worst reads, using a minimum length of 1kb [25]. Filtlong assigns an 

internal score to each read based on read length, mean quality score, and a sliding window quality 

score. For this long-read sequencing run, the default Filtlong score weighting was used, and the 

10% worst-scoring reads were discarded.  

2.3.2 Assembly 

Three separate approaches were used to generate long-read, short-read, and hybrid 

assemblies. First, MEGAHIT, an assembler designed to accommodate metagenomic data [26], was 

used to generate an assembly from the entire set of short reads. Hybrid assembly was then 

performed using the MEGAHIT short-read assembly, the processed long and short reads, and the 

hybrid metagenomic assembler OPERA-MS v0.8.3, which uses Pilon v1.22 to polish the 

MEGAHIT short-read assembly [8], [27]. OPERA-MS assembly was performed with and without 

polishing, and the default recommended references from the Genome Taxonomy Database were 

used for reference-based clustering. 
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In the second approach, long reads were assembled using Flye v2.8.3 and the --meta flag 

for metagenomic assembly [11]. This assembly was then polished in two iterations using Flye’s 

built-in polisher and the original long reads. This long-read assembly was finally polished using 

the short reads and Racon v1.4.20 [28] to generate the hybrid assembly. 

In the final approach, Unicycler v0.4.4 was used to generate short-read, long-read, and 

hybrid metagenomic assemblies [14]. Note that Unicycler is designed to assemble sequences from 

bacterial isolates rather than metagenomic samples, and this approach is primarily exploratory. 

2.3.3 Quality Control of Long and Short Reads 

Quality control metrics were generated for both the basecalled long reads and the 

trimmed/filtered long reads using NanoPlot v1.32.1 and NanoQC v0.9.4 [29]. For the existing 

short reads, fastp v0.20.1 was used [30]. 

QUAST v5.02 was used to generate assembly metrics for the metagenomic assemblies 

[31]. MultiQC v1.10.1 was used to simultaneously and interactively visualize assembly metrics 

for multiple assemblies [32]. 

2.3.4 Taxonomic Classification and Annotation 

Kraken 2 is a rapid and accurate taxonomic classifier that was used to assign taxonomy to 

sequences generated in this workflow [19]. The 12/2/2020 release of the pre-built k2_standard 

database containing archaea, bacteria, viral, plasmid, and human sequences was downloaded 

through the Kraken 2 project webpage. Classification by Kraken 2 v2.1.1 was performed on the 

short reads and short read assembly, the long reads and long-read assembly, and the hybrid 

assembly. The output from Kraken 2 was then parsed and visualized using Krona, which generates 

interactive taxonomic visualizations in HTML [33].  
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The Resistance Gene Identifier (RGI) was used to predict the resistome of the metagenomic 

contigs using reference data downloaded from the Comprehensive Antibiotic Resistance Database 

(CARD), a curated database providing reference sequences and tools for resistome monitoring and 

analysis [34]. In order to identify allelic variants and gene homologs of antibiotic resistance genes, 

RGI relies on the WildCARD dataset, which is comprised of CARD’s “Resistomes & Variants” 

and “Prevalence Data” data. WildCARD v3.1.1 was used for this project, but different versions of 

WildCARD could result in different results as annotations change or grow over time. 
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2.4 COMPUTING 

2.4.1 Computing Resources 

Computing was primarily performed on the San José State University College of Science 

High Performance Computing cluster (COS-HPC), a computing cluster available to University 

Figure 2. Overview of the sequence data analysis workflow. 
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students, faculty, and staff. As a shared utility, the COS-HPC (funded by a $900,798 grant from 

the National Science Foundation, award ID #1626645) allocates requested resources to jobs 

according to current demand and availability. Jobs were submitted to the COS-HPC using the 

Simple Linux Utility for Resource Management (SLURM) Workload Manager [35], typically 

using the srun or sbatch commands. For jobs submitted using sbatch, shell scripts were written 

on the server using the nano command line text editor or remotely using Microsoft Visual Studio 

Code and the Remote-SSH extension. An example of a job submission script for sbatch is shown 

in Figure 3.  

 

#!/bin/bash 

 

#SBATCH --partition=nodes 

#SBATCH --job-name=opera-ms 

#SBATCH --output=./logs/opera_%j.out 

#SBATCH --error=./logs/opera_%j.err 

#SBATCH --ntasks=24 

#SBATCH --ntasks-per-node=24 

#SBATCH --mem=96G 

#SBATCH --time=48:00:00 

#SBATCH --verbose 

 

# BEGIN SCRIPT 

perl ~/repos/OPERA-MS/OPERA-MS.pl \ 

    --contig-file 03_megahit/results_short/short_contigs.fa \ 

    --short-read1 ./02_fastp_short/ww_1.fastq \ 

    --short-read2 ./02_fastp_short/ww_2.fastq \ 

    --long-read ./02_filtered/pool13_2_filt.fastq \ 

    --out-dir 04_hybrid \ 

    --num-processors 24 \ 

    --no-gap-filling 

Figure 3. Example job submission script for SLURM.  
This specific script is used to call perl and run the OPERA-MS tool for hybrid metagenomic assembly. Parameters 

specific to the sbatch command are specified in the header with the prefix #SBATCH. 
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Resource usage in bioinformatic workloads may scale in several key areas. For example, 

in genomic assembly, read length, library size, and reference genome size (if available) all directly 

contribute to the space and time complexity of a given operation [36].  Though there are many 

ways in which performance or resource usage can be improved, such as compression [37], many 

bioinformatic workloads can specifically benefit from parallelization, or the use of multiple 

computing threads. This is dependent on algorithms and approaches that can subdivide the primary 

objective into discrete tasks that are not immediately dependent on the output of previous tasks 

[38]. Given appropriate software tools, the 72 compute nodes of the COS-HPC allow for orders of 

magnitude improvements in performance compared to a single-threaded application. In addition, 

a high-capacity scratch space and 128GB of RAM per compute node enable analyses that would 

otherwise encounter prohibitive storage and memory limits on a personal computer. After 

completing the most demanding computational workloads on the COS-HPC, data was downloaded 

from the COS-HPC to a personal computer for local analysis as necessary using Windows 

Subsystem for Linux 2 (WSL2) and rsync. 

 

2.4.2 Environments and Package Management 

Manual installation of packages and dependencies can present a major hindrance to 

workflows that incorporate many packages. To this end, the Conda package manager was used to 

create and manage environments, collect the appropriate package versions, and resolve 

dependency trees [39]. Because of the wide variety of tools used in this bioinformatic workflow, 

it may also be preferable to execute different stages of the workflow in separate environments. 

This reduces the likelihood of different packages experiencing conflicting dependencies. To this 

end, separate environments were created for each analysis step using Conda. Another benefit of 
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this practice is that it enables later versions of packages to be used, since each environment’s 

dependency tree is smaller and less likely to generate conflicts. This has been particularly 

important in the use of long-read sequencing software, as this has been an area of very active 

development, resulting in constant updates to functionality, version numbers, and dependencies. 

In total, 13 separate Conda environments were generated and used for these analyses. 

For tools that were not available via Conda package manager, such as OPERA-MS, the 

source code was downloaded and compiled on the COS-HPC. The resulting binaries were saved 

to and executed from the bin folder located in the user’s home directory.  

3 RESULTS 

3.1 QUALITY CONTROL OF LONG AND SHORT READS 

 

Figure 4. fastp report for Illumina HiSeq 1000 short reads. 
Mean per-base quality scores for forward (A) and reverse reads (B). Insert size distribution (C). 
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The sequencing dataset from the Illumina HiSeq 1000 contained a total of 36Gb of short 

reads. Of these, fastp reported that 97.47% of the bases had a quality score of at least 30. Except 

for the tail end of the reverse reads, each base position had a mean quality score of at least 36, 

indicating high confidence in the base accuracy (Figure 4A and B). Insert sizes ranged from 36bp 

to 122bp, with a peak at 87bp (Figure 4C).  

A 24-hour sequencing run with the MinION generated 6.35Gb of long reads with a mean 

read length of 7.4kb. For comparison, reads generated on the Illumina platform are commonly 

150bp pairs (2 x 150bp). Basecalling with guppy yielded a total of 854,745 reads. After adapter 

trimming with Porechop, the nucleotide frequencies of the heads and tails of the reads improved 

significantly, though it does appear that some adapter sequences remain, visible in Figure 5B and 

C in approximately the first and last 40bp of each read. 
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Quality filtering performed with Filtlong eliminated the reads with the worst mean quality 

scores, resulting in 576,977 remaining long-read sequences (Figure 5). Although the quality scores 

in the heads and tails of the reads were still lower than the middles of the reads, they were still 

suitable for use in assembly. 

After quality processing, was calculated for the long-read dataset. Each fosmid insert 

contains roughly 40kb of genomic DNA, and Pool13 contains roughly 3300 clones. The fosmid 

library size can therefore be approximated at 132Mb. After adapter removal, filtering, and quality 

trimming, the long-read sequencing run generated 5.7Gb, for an average of 43X coverage.  

Figure 5. NanoQC plots for adapter removal and trimming results. 
(A) Raw basecalled reads. (B) Reads after adapter removal. (C) Reads after quality trimming. 
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3.2 ASSEMBLY 

Seven metagenomic assemblies were generated: two short-read assemblies, two long-read 

assemblies, and three hybrid assemblies. QUAST metrics for all seven assemblies are shown in 

Figure 6A. All of the short-read assemblies (“OPERA-MS”, “OPERA-MS Polished”, and 

“Unicycler Short”) had more contigs and shorter contigs than the long-read and hybrid assemblies 

(“Flye”, “Flye Polished”, “Unicycler Long”, “Unicycler Hybrid”) Figure 6B. The Flye long-read 

assembly and Flye + Racon hybrid assembly exhibited high contiguity, with an N50 of 46.8Kb 

and L50 of 500 contigs (out of 2023 contigs). Furthermore, almost 20% of all contigs in these two 

assemblies were longer than 50Kb (Figure 6C). In contrast, the OPERA-MS-based assemblies had 

very few contigs longer than 50Kb, with N50 of 26Kb and L50 of 1244 (out of 16450 contigs).  

 

3.3 TAXONOMIC CLASSIFICATION OF READS AND CONTIGS 

Taxonomic classification of both the Illumina short reads and the Nanopore long reads 

using Kraken 2 showed fewer unclassified reads in the latter (Figure 7). While 56% of short reads 

were unclassified, only 5% of long reads were unclassified. Assembly of short reads also reduced 

the frequency of non-hits. The OPERA-MS short-read-only assembly had a non-hit frequency of 
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29%, and the Flye long-read-only assembly had a non-hit frequency of 0.8% (a six-fold 

improvement). Polishing did not visibly affect taxonomic classification results.  

Figure 6. QUAST-derived metrics for seven metagenomic assemblies. 
(A) Assembly statistics. (B) Number of contigs by length. (C) Percent of contigs by length. 
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Figure 7. Taxonomic classification of long reads shows reduced frequency of non-hits compared 
to short reads. Assembly also reduces frequency of non-hits. 

 (A) From top to bottom: Short reads, the OPERA-MS short-read assembly, and polished OPERA-MS assembly. (B) 
Long reads, the Flye long-read assembly, and Racon-polished long-read assembly 
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3.4 IDENTIFICATION OF RESISTANCE GENES 

The RGI aligned 83 ARGs to the polished contigs generated using the OPERA-MS hybrid 

assembler. A heat map was generated from the RGI results depicting the expression of the detected 

antibiotic resistance genes and their families (Figure 8). ARG hits are classified as either Strict 

matches (>95% identity) or Perfect matches (100% identity). A comparison of hit types and hit 

counts is shown in Table 3. After polishing with short reads, the Flye hybrid assembly showed 15 

additional Perfect hits compared to the unpolished assembly, and 16 fewer Strict hits. On closer 

examination, 15 Strict hits were upgraded to Perfect hits, 4 Strict hits were downgraded to non-

hits, and 3 new Strict hits were observed. In the OPERA-MS assemblies, one additional ARG 

(antibiotic resistant LpsB) was detected in the polished hybrid assembly compared to the 

unpolished short-read assembly. LpsB encodes a glycotransferase that is involved in 

lipopolysaccharide (LPS) synthesis, contributing to resistance by disrupting the interaction of LPS 

with the antibiotic colistin [40]. Furthermore, 18 ARGs were detected in the polished hybrid 

assembly that were not detected in the pCC1FOS vector or the E. coli DH10B reference genome 

(Table 4). 
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Table 3. Number of ARGs detected per assembly strategy 

Assembly and Sequencing Type Total ARG 
Hits 

Strict ARG 
Hits 

Perfect ARG 
Hits 

Short-Read Assembly (Abrams et al.) 46 N/A N/A 

Pool13 Shotgun Metagenomic Sequencing 
Assemblies (Total) 94 45 49 

Long-Read Assembly 
Flye 74 45 29 

Flye Polished 73 29 44 

Short-Read Assembly 
OPERA-MS 82 33 49 

OPERA-MS Polished 83 34 49 

Reference E coli DH10B 64 19 45 
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Table 4. Non-fosmid-system-associated ARGs detected in OPERA-MS hybrid assembly 

Gene Family Gene Name 
AAC(2') AAC(2')-IIa 
ANT(3'') aadA13 
APH(3') APH(3')-IIa 

CTX-M beta-lactamase CTX-M-130 
Cfr 23S ribosomal RNA methyltransferase cfrC 

IDC beta-lactamase IDC-2 
Intrinsic peptide antibiotic resistant Lps LpsB 

OXA beta-lactamase OXA-205 
OXA-664 

TEM beta-lactamase TEM-116 

major facilitator superfamily (MFS) 
antibiotic efflux pump 

Rhodococcus fascians cmr 
pexA 

qacEdelta1 
pmr phosphoethanolamine transferase 

 
ArnT 
basS 

resistance-nodulation-cell division (RND) 
antibiotic efflux pump 

adeF 
opmE 

trimethoprim resistant dihydrofolate 
reductase dfr dfrA1 
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Figure 8. Heat map of detected ARGs. 
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4 DISCUSSION 

4.1 CURRENT PRACTICE OF METAGENOMIC HYBRID ASSEMBLY WORKFLOWS 

The laboratory user experience with the Nanopore platform was positive, especially in 

regard to cost, labor, and documentation. Nanopore’s Genomic DNA by Ligation kit and protocol 

allowed the entire fosmid library to be sequenced at 43X coverage for under $200 worth of reagents 

(not including the MinION flow cell or the MinION Mk1B). Additionally, preparing the 

sequencing library and starting up the sequencing process took under 3 hours. Sequencing on the 

Nanopore platform will likely continue to improve in accessibility and ease of use, and further 

development in downstream long-read analysis tools is expected. 

As demonstrated above, long-read sequencing with the Nanopore platform enables hybrid 

assembly to be performed, potentially enhancing recovery of sequences from metagenomic DNA 

samples by combining the high per-base accuracy of Illumina reads with contiguity provided by 

the Nanopore and SMRT platforms. Compared with the ease of sequencing on the Nanopore 

platform, the current ecosystem of tools enabling hybrid assembly in a metagenomic context 

remains an area of much-needed development. Many tools do not specifically accommodate 

metagenomic libraries, and instead focus on single-genome datasets. The Unicycler assembler is 

one example; because it was explicitly designed for handling reads from isolated bacterial species 

[14], it poorly scales when assembling large metagenomic datasets [12]. In addition, the 

bioinformatics community has yet to converge on standardized workflows for metagenomic hybrid 

assembly. Efforts to rectify this problem are reflected in the continued development of application-

specific workflows and pipelines [41]–[43]. 
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4.2 FOSMID LIBRARY CONSIDERATIONS 

Because the DNA samples used for library preparation were derived from previously-

generated fosmid inserts, the pooled sequencing results likely do not represent full coverage of the 

genomes present in the original DNA extraction. Note that due to the limited capture space of the 

fosmid system, recapitulation of entire genomes for less-common species is unlikely, presenting a 

technical limitation that cannot be surmounted by increasing sequencing coverage. Furthermore, 

there are two possible sources of DNA contamination: the fosmid vector (pCC1FOS) and the 

DH10B competent cells used to propagate the fosmids. The fosmid cloning system does present 

benefits in other aspects, particularly in the isolation and targeted cultivation of clones containing 

genes of interest, making it a powerful tool for molecular biology applications. It should not, 

however, be considered equivalent to a fresh DNA extraction from a wastewater sample. 

4.3 LONG READ ASSEMBLY AND HYBRID ASSEMBLY 

The Flye long-read assembly featured high contiguity and excellent taxonomic matching, 

per the QUAST (Figure 6) and Kraken 2/Krona results (Figure 7). The Flye assembly also 

generated a 4.6Mb contig, which is expected to correspond to the E. coli chromosome, though this 

binning step has not been performed. By the assembly metrics, the long-read sequencing and 

assembly process was successful in generating a high-contiguity assembly, especially compared 

to the short-read derived assemblies. 

The polished hybrid assembly generated using OPERA-MS did not greatly differ from the 

short-read assembly with MEGAHIT. Contig metrics generated by QUAST for these two 

assemblies were very similar, indicating that contiguity was not significantly affected by the 

polishing process with short and long reads. OPERA-MS, though effective at recovering low-

abundance bacterial genomes from metagenomic samples, has also been shown to generate less 
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contiguity than assemblers like Flye and Canu [44]. This was replicated in the current study (Figure 

6). Note that OPERA-MS was unable to be run with gap-filling enabled due to memory constraints 

on the COS-HPC; further investigation is required to determine if this could be remedied using the 

computing cluster’s high-memory nodes. 

One consideration with this dataset is that the nature of the fosmid library and the high 

coverage of the short-read sequencing dataset could mean that near-optimal assembly of the fosmid 

library has already been achieved by the short-read assembly. Because the fosmid inserts are 

already a subset of the wastewater metagenome, deeper sequencing of the inserts is unlikely to 

further improve contiguity; as a result, the addition of long reads did not appear to substantially 

modify the assembly metrics.  Further analysis would be required to determine the extent to which 

the polishing process modified sequences within the contigs. To determine the contribution of the 

long-read and short-read datasets to the hybrid assemblies, it may be of value to repeat hybrid 

assembly using subsamples of the input reads. For example, by reducing the input read datasets to 

10X coverage each for both the short and long reads, a larger difference between hybrid and short-

read-only assembly might be observed. This would be an effective way of determining whether 

there exists a critical coverage level or ratio of short to long reads that strongly justifies a hybrid 

assembly strategy. 

4.4 ARG DETECTION 

Resistance gene identification was performed on the fosmid vector sequence as well as the 

E. coli DH10B strain in order to detect any ARGs associated with the fosmid DNA library system 

and host strain. One ARG, the chloroamphenicol acetyltransferase gene catI, was detected in the 

fosmid vector sequence. This is expected, as one of the advertised features of the vector is 

chloramphenicol resistance, which enables isolation of successfully-transformed cells in culture. 
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Many of the ARGs detected in the metagenomic assemblies are also found in the reference 

sequence for the DH10B host. Further processing could be performed to exclude E. coli-mapped 

reads from the assembly process, as well as use a tool such as bbsplit to remove any remaining 

vector sequences. 

Fewer total ARG hits were observed in the long-read-based assemblies compared to the 

short-read-based assemblies. Even among the hybrid assemblies, the polished Flye assembly had 

10 fewer hits than the OPERA-MS polished assembly. Because RGI detects hits based on percent 

sequence identity, shorter ARGs could be more easily lost due to sequencing artifacts compared 

to longer ARGs. The OPERA-MS polished hybrid assembly did result in detection of an additional 

ARG (LpsB) compared to the OPERA-MS short-read-only assembly. This suggests that greater 

accuracy derived from the polishing process enabled alignment of a contig with the LpsB 

sequence, though this would need to be confirmed with targeted molecular assays. Further analysis 

is required to compare the sets of Strict and Perfect hits for each assembly against each other to 

determine if there is a bias in which types of ARGs each assembly is able to recover. 

Finally, compared to previous research conducted using this fosmid DNA library, the 

assemblies presented in this project identified 48 more ARGs (Table 3). Additional analysis is 

required to determine the overlap between the 46 ARGs identified by Abrams et al. and the 94 

ARGs detected with the current short-read, long-read, and hybrid assemblies. Several factors could 

cause this difference. First, Abrams et al. sequenced 38 fosmid clones, while the current 

metagenomic study sequenced over 3000 clones. The second factor is that different workflows 

were used for analysis, with the previous resistome-characterization step performed by MG-RAST 

instead of RGI. In addition, reference sequences, databases, and tools could have significantly 

changed since the Abrams et al. research was conducted. Finally, long-read and hybrid assembly 
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could have improved the resolution and recovery of ARG sequences, enabling them to be identified 

via RGI. 

5 CONCLUSION 

Hybrid assembly enables greater recovery of genomes and genes of interest from 

metagenomic environmental samples [12], [13], [23], [43]. The ability to successfully detect 

antibiotic resistance genes in wastewater samples using a shotgun metagenomic sequencing 

strategy marks a key milestone in developing information-driven approaches to epidemiology and 

public health. The workflow demonstrated here shows that long-read datasets can be quickly 

acquired, processed, assembled, and screened for ARGs. This ability to rapidly generate datasets 

at a low cost could facilitate longitudinal monitoring of dynamic environments, such as the 

wastewater resistome. As antibiotic selective pressure drives the emergence and transfer of ARGs, 

the ability to measure trends in urban and agricultural resistomes could help mitigate the over $2 

billion annual cost of treating antibiotic-resistant infections, as well as the additional agricultural 

costs of lost or non-usable livestock. Antimicrobial resistance rates have also been shown to vary 

spatially and seasonally, furthering the need for broadly applicable monitoring systems and 

analysis workflows [45], [46]. As analysis pipelines, software, and sequencing technology 

continue to mature, hybrid assembly will surely continue facilitating advances in metagenomics 

and other bioinformatic applications.   
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