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ABSTRACT 

The Western Antarctic Peninsula has experienced dramatic warming due to climate change over 

the last 50 years and the consequences to the marine microbial community are not fully clear. 

The marine bacterial community are fundamental contributors to biogeochemical cycling of 

nutrients and minerals in the ocean. Molecular data of bacteria from the surface waters of the 

Western Antarctic Peninsula are lacking and most existing studies do not capture the annual 

variation of bacterial community dynamics. In this study, 15 different 16S rRNA gene amplicon 

samples covering 3 austral summers were processed and analyzed to investigate the marine 

bacterial community composition and its changes over the summer season. Between the 3 

summer seasons, a similar pattern of dominance in relative community composition by the 

classes of Alphaproteobacteria, Gammaproteobacteria, and Bacteroidetes was observed. 

Alphaproteobacteria were mainly composed of the order Rhodobacterales and increased in 

relative abundance as the summer progressed. Gammaproteobacteria were represented by a wide 

array of taxa at the order level. The class Bacteroidetes had the highest relative abundance in the 

early summer and decreased as the season progressed. Bacteroidetes were primarily represented 

by the order Flavobacteriales and genus Polaribacter. A high degree of interannual variability 

was observed for some taxa, like the order Sphingobacteriales, which exhibited a high relative 

abundance in only 1 season. Richness and evenness diversity measures were found to be at the 

lowest during phytoplankton blooms, and these diversity measures were observed to increase by 

the end of the summer. Code written for data processing and analysis are available at: 

https://github.com/codey-phoun/palmer_station_16S 

 

 

Keywords: Marine bacteria, 16S rRNA gene amplicons, bacterial community composition, 

microbial oceanography, Western Antarctic Peninsula, Palmer LTER
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I. INTRODUCTION 

A. Influence of Phytoplankton and Bacteria on Biogeochemical Cycles 

Palmer Station is located on Anvers Island off the Western Antarctic Peninsula (WAP), 

as shown in Figure 1 [1]. The Palmer Station Long Term Ecological Research (PAL-LTER) was 

established in 1990 to study the marine ecosystem of the WAP [2]. During the austral winter, the 

coastal waters off of Palmer Station are covered in sea ice and low light levels, but in the austral 

summer, the water experiences increased solar irradiance, water temperatures, nutrient 

availability, water stratification, and reduced salinity and sea ice cover. Despite the extreme 

seasonal variations in the biogeochemical properties of the Southern Ocean, high levels of 

productivity by marine microorganisms occur in the spring and summer [3], making the WAP is 

one of the most productive regions in the Southern Ocean. The retreating sea ice and increased 

solar irradiance in the transition from the austral winter to summer elicits dramatic changes in the 

microbial ecosystem by inducing phytoplankton blooms in the water [4], [5]. 

These phytoplankton, bacteria, and other microbes are the primary form of biomass in the 

Southern Ocean and are crucial for supporting the Southern Ocean’s food web [6], [7]. Increased 

production of phytoplankton-associated marine bacteria and changes in the bacterial community 

composition soon follow phytoplankton blooms due to the availability of dissolved organic 

carbon and other nutrients generated by the blooms [8]. These bacteria in the microbial 

community play a key role in the biogeochemical cycling of nutrients in the ocean. Heterotrophic 

bacteria are able to degrade and utilize the dissolved organic carbon derived from phytoplankton 

[9]. When these bacteria are consumed by bacterivores like zooplankton, organic carbon is 

introduced to higher trophic levels in the food web. Other nutrients like nitrogen and 

phosphorous are also processed through this microbial loop. Bacteria in turn can influence the 

phytoplankton community by competing with phytoplankton for the nutrients available in the 

water or by providing secondary metabolites to stimulate phytoplankton growth [10]. 

This microbial ecosystem in the Southern Ocean is a major sink for atmospheric CO2. 

Overall, the world’s oceans are estimated to sequester up to a third of the world’s CO2 from the 

atmosphere [11], with the Southern Ocean responsible for an estimated 40% of the CO2 uptake 

by the world’s oceans [12], [13]. Up to 50% of the organic carbon produced by phytoplankton is 

processed by heterotrophic bacteria [14]. Due to the effects of anthropogenic climate change, the 

WAP has experienced dramatic warming in the last 50 years [15]. The effects of global warming 

on this marine microbial ecosystem are not completely clear, but changes to primary production 

and phytoplankton community composition have been reported [16]. Heterotrophic bacteria are 

inextricably linked to phytoplankton, and changes in bacterial abundance and community 

composition can affect the rest of the microbial ecosystem and the higher trophic levels that 

depend on them. Given the importance of the bacterial community to global biogeochemical 

cycles, understanding these changes is essential. Temporal surveys of the marine bacterial 

community composition can be used as reference points to develop an understanding of the 

taxonomic structure and dynamics of the bacterial communities in marine ecosystems [17]. 

Information on how the marine bacterial community and functional diversity changes over time 
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can be used to gain insight into how they may respond and adapt to fill new ecological niches 

brought by climate change. 

B. Role of Metagenomics and Bioinformatics in Microbial Ecology 

Culture-dependent methods often underestimated marine microbial diversity because the 

majority of these microbes have not been cultivated [18].Through the use of metagenomic and 

bioinformatic techniques, a more complete microbiome of an environmental sample can be 

explored. Amplification and sequencing of the 16S rRNA gene is a commonly used technique in 

studying the microbial communities of prokaryotes (bacteria and archaea) [19], [20]. The 16S 

rRNA gene encodes the rRNA portion of the prokaryotic small ribosomal subunit, and this gene 

is highly conserved in prokaryotes but also has regions of high variability, making it suitable for 

taxonomic classification [21]. “Universal primers” are used in polymerase chain reaction (PCR) 

amplification on one or more hypervariable regions of the 16S rRNA gene. The abundance of 

these 16S gene amplicons is used as a proxy to determine the prokaryotic community 

composition of a sample. Though these primers attempt to capture all prokaryotic taxa present in 

the sample, certain groups can be missed depending on the set of primers used [22], [23].  

Open-source bioinformatic tools like Cutadapt and QIIME 2 exist to process and analyze 16S 

gene amplicon data [24], [25]. QIIME 2 is an open-source bioinformatics platform with an array 

of both native and 3rd party bioinformatics tools available through different plugins. The DADA2 

plugin in for QIIME 2 can be used to create amplicon sequence variants (ASVs) from the 

nucleotide sequencing read data [26]. ASVs have single nucleotide resolution, which are 

equivalent to 100% identical operational taxonomic units (OTUs) used in older methods. ASV 

methods have been recommended to be used to replace older OTU methods common in 

microbial ecology [27]. DADA2 is capable of creating these ASVs by incorporating the quality 

and abundance information from each sample to create a statistical error model to denoise the 

reads. In the full DADA2 pipeline, reads are quality filtered, dereplicated, denoised, chimera 

filtered, and merged. Taxonomic classification is accomplished by comparing ASVs to a 

Figure 1. Bathymetry map of the Palmer Station LTER study area in the WAP 

(A) Depicts the location of Anvers Island, located within the white box, in context to the WAP 

(B) The white box shows the location of Palmer Station on Anvers Island  

(C) Yellow dots show Palmer Station LTER Sampling Sites B, E, and seawater intake (SWI) 

Figure is adapted from [1]. 
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database of known 16S rRNA sequences. Analysis of these sequences can provide a taxonomic 

resolution down to the genus or even species level.  

After the sample community composition is determined by taxonomic classification, this data 

can be integrated with environmental data to calculate various ecological community measures. 

For instance, the relative abundance of a different taxa of interest can be plotted over the course 

of the sampling period to observe the temporal dynamics of the bacterial community 

composition. Several different environmental measurements can be used to describe how the 

ecological context changes over time with bacterial community composition [28]. Bacterial 

abundance and bacterial production data are used to help measure the bacterial biomass and 

activity present in the water. Chlorophyll a concentration serves as a proxy for the amount of 

phytoplankton biomass. Primary production rates indicate the amount of uptake of inorganic 

carbon by the microbes through photosynthesis. Dissolved inorganic such as nutrients phosphate, 

silicate, and nitrite and nitrate are key sources of nutrition essential for phytoplankton growth. 

Temperature and salinity measurements help to describe the physical characteristics of the water. 

The incorporation, analysis, and visualization of the taxonomic classification results, community 

abundance data, and the environmental data can be completed with R and various metagenomic 

and ecological analysis packages.  

 

C. Past Research of the Bacterial Community in the WAP 

Previous studies on surface water bacterial community composition in or near the WAP have 

shown the classes of Bacteroidetes, Gammaproteobacteria, and Alphaproteobacteria to be 

dominate during the summer [29]–[38]. Bacteroidetes were primarily represented by the genus 

Polaribacter within the order Flavobacteriales. These bacteria are photoheterotrophs, which 

utilize sunlight and degrade organic matter available from phytoplankton blooms for energy [39]. 

Alphaproteobacteria were primarily represented by the orders of SAR11 (also known as 

Pelagibacterales) and Rhodobacterales. SAR11 has been reported to be the most abundant 

marine bacterium in the world has been observed at high abundances in both summer and winter 

populations [40]. Rhodobacterales have been identified to be primary colonizers of marine 

surface water and are mainly represented by members of the Roseobacter clade [41]. 

Gammaproteobacteria were represented by a mix of different orders dependent on the study. The 

most abundant orders of Gammaproteobacteria include Alteromondales, Cellvibrionales, 

Oceanospirillales, SAR86, and Vibrionales. Winter populations have been less studied, but 

several studies have found bacterial diversity to be at the highest in the winter season and lowest 

during periods of phytoplankton blooms in the spring and summer [29], [30], [32]. Research has 

shown winter communities to include chemolithoautotrophic bacteria and archaea [29].  

 

D. Current Study 

The PAL-LTER project has been collecting ecological data on the WAP since 1990, but 

detailed molecular data on the bacterial ecosystem is under sampled. Many of the previous 

studies surveyed the community dynamics of bacteria over a period of only one season or one 

year [29]–[35], [37]. While this may capture variability within a single season or between the 

summer and winter, it does not capture the interannual variability of bacterial community 

dynamics. Only a few studies have sampled the WAP bacterial composition over more than a 

single season or year [36], [38]. Long-term surveys of the bacterial community can help 
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elucidate how the bacterial community will respond and adapt to long-term changes brought by 

global warming. 

In this study, the bacterial community composition in the surface waters of the WAP was 

explored over the 2012-2013, 2013-2014, and 2014-2015 austral summer seasons. Both seasonal 

and interannual variability of bacterial community composition was investigated. 16S rRNA 

amplicon samples were generated through high-throughput sequencing of the microbes in the 

water samples. The gene amplicon samples were then quality controlled and taxonomically 

classified with the QIIME 2 platform to determine the bacterial community composition. Data 

analysis in R included alpha and beta diversity analysis, ordination with the environmental data 

to investigate the effects of environmental factors on community composition, and relative 

abundance plots. A core microbiome was also determined to identify taxa which were present in 

all samples seasonally and annually. These results provide additional data and insight to 

understanding what bacterial taxa are present in the surface waters of the WAP during 

phytoplankton blooms in the summer, and how their relative abundances can change over time. 

Ultimately, this work contributes to the baseline knowledge of how the bacterial community 

composition and its functional diversity will respond to future ecological changes brought by 

global warming. 

II. MATERIALS AND METHODS 

A. Environmental Data 

 

The environmental data of bacteria abundance, bacteria production, chlorophyll a, primary 

production, and dissolved inorganic nutrient concentrations of phosphate, silicate, and nitrite and 

nitrate were used to explore the biogeochemical context of the different austral summer seasons 

and the 16S samples (Table II). The date ranges of the environmental data gathered by the 

Palmer LTER research team at Palmer Sampling Station B ranged from 10/31/2012 to 

03/21/2013 for the 2012-2013 summer season. In the 2013-2014 summer season sample dates 

were from 12/12/2013 to 03/24/2014, and from 11/13/2014 to 03/18/2015 in the 2014-2015 

summer season. Environmental sampling of the 2013-2014 season did not begin at Palmer 

Sampling Station B until late December, due to the presence of sea ice. The environmental data 

are available at: http://pal.lternet.edu/data  

Temperature and salinity data were extracted from raw conductivity, temperature, and depth 

(CTD) .cnv files with a custom R script called CTD.rmd which utilized the oce package [42]. 

The script extracts the CTD data closest to 10 meters in depth in the downcast measurements. 

Environmental data for each austral summer season was imported into R v.4.0.4 and visualized 

to show the environmental context of the summer seasons and each 16S sample.  

 

B. 16S rRNA Gene Amplicon Samples 

 

16S rRNA gene amplicon samples from the 2012-2013, 2013-2014, and 2014-2015 austral 

summers were created from sequencing the microbes in water samples collected from Palmer 

Sampling Station B. The water samples were collected at 10 meters depth by Dr. Shellie Bench 

as part of her project at Palmer Station. The prokaryotic component of the water samples was 

isolated by first filtering the water samples through a 3.0 µm filter to remove eukaryotic 

microbes. The water samples were then filtered through a 0.2 µm filter, and the microbes 
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retained on the 0.2 µm filter were PCR amplified and sequenced. The V4 hypervariable region of 

the 16S rRNA gene was amplified using the primers 515F (GTGCCAGCMGCCGCGGTAA) 

and 806R (GGACTACHVGGGTWTCTAAT) [20]. The 16S rRNA gene amplicons were 

sequenced to produce forward and reverse reads of 250 base pairs in length. The FASTQ files 

containing the forward and reverse nucleotide sequence reads of each sample were in a mixed 

orientation. The “forward” labelled FASTQ sequence files also contained the reverse reads and 

“reverse” labelled FASTQ files also contained forward reads, which required additional 

considerations in the data processing pipeline. Of the three sample summer seasons, the 2012-

2013 season had only 2 samples. 2013-2014 had 6 samples in total, and the 2014-2015 season 

had 7 samples in total. A total of 15 samples comprised of 12,071,180 total paired end reads 

were processed and analyzed in this study (Table I).  

 

TABLE I. 16S RRNA SAMPLE INFORMATION 

Water 

Sample 

Date 

Sample 

Name 

Sample 

Season 

Summer 

Stage 

Total Paired 

End Reads 
Total Base Pairs 

11/27/2012 S1L13 2012-2013 Early Summer 831,275 415,637,500 

2/8/2013 S1L14 2012-2013 Mid-Summer 873,646 436,823,000 

12/27/2013 S2L05 2013-2014 Early Summer 1,004,956 502,478,000 

1/23/2014 S2L06 2013-2014 Mid-Summer 987,423 493,711,500 

2/3/2014 S2L07 2013-2014 Mid-Summer 997,341 498,670,500 

2/10/2014 S2L08 2013-2014 Mid-Summer 921,322 460,661,000 

2/28/2014 S2L09 2013-2014 Late Summer 1,027,542 513,771,000 

3/4/2014 S2L10 2013-2014 Late Summer 954,770 477,385,000 

12/1/2014 S3L03 2014-2015 Early Summer 609,390 305,913,780 

12/11/2014 S3L04 2014-2015 Early Summer 631,963 317,245,426 

1/12/2015 S3L05 2014-2015 Mid-Summer 616,212 309,338,424 

1/19/2015 S3L06 2014-2015 Mid-Summer 789,307 396,232,114 

2/9/2015 S3L07 2014-2015 Mid-Summer 612,641 307,545,782 

2/23/2015 S3L08 2014-2015 Late Summer 605,620 304,021,240 

3/9/2015 S3L09 2014-2015 Late Summer 607,772 305,101,544 

 

C. Sequence Processing 

 

The pipeline 16s_full_pipeline.sh was created to process the 16S rRNA gene amplicon 

samples with Cutadapt and QIIME 2 on the San Jose State University College of Science High-

Performance Computing Cluster (SJSU CoS HPC). Cutadapt v.3.10 was used to trim low quality 

bases from the 5’ and 3’ end of the forward and reverse reads (Table III). A minimum Phred 

quality score of 20, which equates to a 1% error rate, was set as the cutoff before a base would be 

trimmed from either end of the read. The 515F and 806R primers and Illumina adapters were 

removed from the forward and reverse reads with a minimum overlap of 10 base pairs and with a 

maximum mismatch of 1 base pair. Each primer and adapter’s forward and reverse complement 
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sequence were checked for in both forward and reverse FASTQ files in each sample due to the 

mixed orientation of the reads.  

The samples for each summer season were import separately into QIIME 2 v.2020.11 for 

further processing. The DADA2 plugin for QIIME 2 was used to create ASVs for each 16S 

rRNA gene amplicon sample. With DADA2 v.1.18.0, each summer season was processed 

separately to estimate the statistical error model unique to each sequencing run. All forward and 

reverse reads were first quality filtered. Any read with more than 4 expected errors was discarded 

by DADA2. Identical sequences were then dereplicated and the parameters for the error model 

were estimated based on the abundance and quality information. The DADA2 denoising 

algorithm then performs error correction on the nucleotide sequences based on the estimated 

error model to create ASVs. Forward and reverse reads are then merged together by DADA2 to 

create the final ASVs if the minimum criteria of an overlap of 20 bases is met. Each sample then 

underwent chimera detection and filtering to remove these contaminants (Table IV).  

Chimeras are sequence artifacts formed in the PCR amplification process that are 

combination of two or more biological sequences. The min-fold-parent-over-abundance 

parameter sets the minimum fold threshold for determining if a sequence could be considered as 

a “parent” sequence to a potential chimera sequence. A default value of 1 indicates that a 

potential parent sequence must be more abundant that the potential chimera sequence. The 

parameter was changed from the default of 1 to 8 in order to decrease the number of false 

positive chimeras from being detected and filtered out. Initial processing runs with a default 

value of 1 led to over 30% of the reads to be flagged and removed as chimeric. The separate 

summer season samples were then combined to create a single QIIME 2 object for taxonomic 

classification.  

ASVs were taxonomically classified with VSEARCH v.2.7.0 against the SILVA SSU Ref 

NR 99% v.138 database with the feature-classifier plugin for QIIME 2 [43]. The SILVA 

database contains a curated collection of taxonomically labeled and non-redundant 16S rRNA 

gene sequences that have been previously dereplicated by clustering at a 99% sequence identity 

threshold [44]. The QIIME 2 RESCRIPt v.2020.11.1 plugin was used to import the SILVA 

database and reverse transcribe the sequences from RNA to DNA [45]. The classify-consensus-

vsearch command was used for the taxonomic classification of the ASVs. 

VSEARCH conducts a global sequence alignment with both the forward and reverse 

complemented ASVs for taxonomic classification against the SILVA database. Potential matches 

of a query ASV against a potential reference sequence had to meet a minimum criteria of 80% 

sequence identity and 80% query coverage. A maximum of 1,000 matches were found for each 

ASV. Taxonomy was assigned for a query ASV at the lowest taxonomic level by finding the 

level where a minimum consensus of 51% of the top scoring matches agreed. For example, if a 

query ASV aligned to the sequences of Rhodobacteraceae;Yoonia-Loktanella, 

Rhodobacteraceae;Planktomarina, and Rhodobacteraceae;uncultured with equal alignment 

scores, the consensus taxonomy assigned to the ASV would be the family Rhodobacteraceae 

with no genus.  

ASVs matching mitochondria, chloroplasts, eukaryote, or unassigned were filtered out from 

the final per-sample ASV abundance table and the ASV taxonomy classification file (Table V). 

ASVs that were unable to be taxonomically assigned by VSEARCH were extracted with the 

python script extract_unassigned.py. This script separated out the unassigned ASVs to a single 
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FASTA file. The unassigned ASVs in the FASTA file were then aligned to the NCBI BLAST 

16S rRNA database using blastn with a max of 10 output target sequences. The 

blast_unassinged.sh script was written and used to perform this additional assignment step to 

check what taxonomy assignments VSEARCH may have missed.  

 A de novo phylogenetic tree was created for the ASVs with the align-to-tree-mafft-iqtree 

pipeline in the phylogeny plugin for QIIME 2. Default parameters were used for the pipeline of 

this plugin. Multiple sequence alignment (MSA) of the ASVs is first handled by MAFFT v7.475 

[46]. The ambiguously aligned regions of the generated MSA are then masked by the pipeline to 

remove potentially misleading and noisy columns in the MSA. A maximum likelihood 

phylogenetic tree is constructed with IQ-TREE v.2.03 and midpoint rooted by the pipeline [47]. 

 

D. Microbiome Analysis in R 

 

The final output files created by the 16s_full_pipeline.sh script for use in the downstream 

microbiome analysis in R consisted of the per-sample ASV abundance table, the ASV taxonomy 

classification file, and the phylogenetic tree. These files, along with an additional file containing 

each sample’s metadata, were imported to a phyloseq object with the qiime2R v.0.99.5 package 

[48]. Phyloseq is an R package used for handling, analyzing, and visualizing microbiome data 

[49]. The phyloseq object is an object-oriented class that integrates the ASV abundance table, 

taxonomy information, phylogenetic tree, and sample metadata together as an experiment level 

object. Other R packages build off the phyloseq object and provide additional functions for 

processing, analyzing, and visualizing microbiome data. In this study, the packages microbiome 

v.1.12.0 and phylosmith v.1.0.5 were also used to conduct microbiome analyses [50], [51]. 

Several processing steps were required before microbiome analysis could be performed on 

the phyloseq object. First, samples were split into three different summer stages for comparisons 

that required categorical variables. The austral summer in Antarctica lasts from November 

through March. Samples between late November through mid-January were assigned as early 

summer. The mid-summer samples were from mid-January through mid-February, and late 

summer samples were between mid-February through March. The sample data in the phyloseq 

object was then agglomerated to the genus level. VSEARCH classified the taxonomy of the 

ASVs down to the species level if the samples met the minimum consensus criteria, but 

limitations 16S rRNA V4 region and SILVA database do not provide enough resolution to 

classify all ASVs to this level. Many of the ASVs are labelled as “uncultured” at the species 

level, which is not phylogenetically informative. Some analyses also agglomerated the data to 

even higher levels, such as the taxa levels of phylum, class, and order, to aid in the interpretation 

of different community composition analyses. Environmental data for each sample was also 

scaled and centered. For each set of environmental data, centering was performed by subtracting 

the mean value and scaling was achieved by dividing the centered values by the standard 

deviation. Finally, the 16S samples were normalized by rarefying the samples to the smallest 

sample size.  

Rarefaction is a widely used method in microbial ecology for normalizing a set of samples 

for differences in the sample size due to sequencing depth [52]. In general, samples with a higher 

sequencing depth will capture more species and display a higher diversity measurement. 

Rarefaction attempts to address this issue by subsampling each sample without replacement to a 

specified equal size, like the smallest sample size. Rarefaction curves can be plotted to aid in 
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visualizing how the number of recovered taxa changes with sequencing depth for each 16S 

sample. These plots can show how, initially, the number of observed taxa rapidly increases with 

sequencing depth, but the curves will level out to an asymptote if only a few rare taxa remain to 

be sampled. If a sample curve does not converge to an asymptote, this indicates that the sample 

needs a higher sequencing depth to fully capture the diversity of the given environment. These 

results can be used to help guide how different samples may be underestimating the diversity of 

the environment after rarefaction.  

The use of rarefaction is under debate in the literature [53], [54]. The main criticism of this 

method is that valid data is being discarded, subsampling creates additional uncertainty, and 

statistical power is reduced for certain analyses like differential abundance testing. Transforming 

the ASV abundance data to a relative proportion of the total sample size is an alternative 

normalization method, but this does not address how increased sampling depth tends to also 

increases the number of taxa in a sample. A sample with low sequencing depth may show 0 for a 

rare taxa, while a sample with a higher sequencing depth may show a fractional relative 

abundance value. Other methods proposed for normalizing 16S amplicon samples the log-ratio 

based centered log-ratio, additive log-ratio, and relative log expression transformations [55]. 

ASV abundance tables are sparse data sets containing a high proportion of zeros. Log-ratio 

transformations require the addition of a pseudo-count to the abundance data, as the log of zero 

is undefined, but the optimal pseudo-count value is also under debate in literature [56], [57]. 

Rarefaction was chosen as the normalization method for this study because most of the other 

Antarctic microbial composition profiling studies used rarefaction [29], [30], [33]–[35], [37], 

[38], with a few exceptions [36]. Normalization by rarefaction may help to facilitate comparisons 

with these studies. In addition, rarefaction-sensitive differential abundance testing was not 

conducted in this study.  

Relative abundances of 16S rRNA gene amplicon data at different taxonomic levels were 

visualized with a treemap and stacked bar charts. The overall relative taxonomic composition of 

all samples combined was visualized at the class and order levels as a treemap. A treemap is a 

nested hierarchical plot of rectangles that are proportional in size to the relative abundance of 

each group. Stacked bar charts provided the visualization for each 16S sample’s relative 

taxonomic composition at the phylum, class, order, family, and genus levels. Taxa that 

contributed less than 2% to the relative abundance of sample were labelled as “Other” to reduce 

the number of taxa shown in order to improve visualization.  

Alpha diversity is the measure of diversity within a single sample and can be described in 

terms of the number of different observed taxa (richness) and the distribution of the abundance 

of different taxa (evenness). For this study, the number of observed taxa and the Chao1 index 

were both used to estimate the richness of each sample [58]. The Chao1 index estimates the 

expected number of taxa based on the number of rare taxa observed. For richness and evenness 

measures, Shannon diversity and the inverse Simpson index were used [59]. Shannon diversity 

gives more weight towards species richness than evenness and measures the uncertainty of 

predicting the identity of a randomly chosen taxa in the sample. The Simpson index gives more 

weight towards evenness than abundance and indicates the probability of two randomly sampled 

taxa of a sample are of a different classification. The inverse Simpson index is used to make this 

alpha diversity measure follow the same scale as the other measures used in this study, where a 

higher value indicates higher diversity. 
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 Statistical testing of differences in alpha diversity measures between all summer groups was 

performed with the Kruskal-Wallis rank sum test. This nonparametric test is an alternative to 

ANOVA and checks whether all three summer stages come from populations with the same 

median alpha diversity measure. For pairwise comparisons between the summer stage groups, 

the Wilcoxon rank sum test was used. This nonparametric alternative to the t-test checks whether 

two specific summer stages come from populations with the same median alpha diversity metric. 

All p-values were adjusted for the false discovery rate by the Benjamini-Hochberg method [60].  

Beta diversity is the measure of diversity between samples. A distance matrix between all 

samples was created with different beta diversity measures. Distance matrices are then used for 

hierarchical clustering and ordination through non-metric multidimensional scaling (NMDS). 

The Weighted UniFrac distance was used to represent the distances between samples for 

hierarchical clustering and NMDS [61]. This distance accounts for the relative abundance of taxa 

shared between samples and also incorporates the phylogenetic tree created earlier by IQ-TREE 

to determine the phylogenetically-weighted distances between samples. Unweighted Unifrac 

utilizes only taxa presence and absence information. This is a less appropriate representation of 

distance for this data set, due to how the relative taxonomic composition of the samples were 

largely dominated by only a few highly abundant taxa.  

A dendrogram of the samples was created by performing hierarchical clustering with 

complete linkage on the Weighted UniFrac distance of the samples. In complete linkage 

clustering, also known as furthest neighbor linkage, a clusters are iteratively formed by 

determining the pair with the shortest distance and then by creating a new distance matrix. The 

distances between clusters of the new matrix are determined by the furthest pair of points 

between two clusters. Samples were colored by their summer stage to help depict the results of 

how this categorical variable clustered.  

Ordination is a set of multivariate techniques that can be used to perform dimensionality 

reduction on a data set to visualize the ecological relationships and trends between samples. The 

R package vegan v.2.5-7 was used to perform the ordination [62]. Ordination techniques and 

code were adapted from examples in [63]. The unconstrained methods of NMDS and principal 

component analysis (PCA) were used in this study to perform exploratory analysis of the 16S 

samples.  

A NMDS plot maximizes the rank correlation between the Weighted Unifrac distances and 

the plotted two-dimensional distances between all samples. The fit of the sample distances to the 

ordination plot is measured by a stress value, where plots with low stress values of <0.05 are 

considered as excellent representation of the data in reduced dimensions [64].  

PCA was used to create two new axes which maximizes the overall variance of the 

abundance data between the 16S samples. Before PCA, the 16S abundance data was Hellinger 

transformed, as recommended by [65] to account for the sparse nature of the data set. Taxa with 

low counts and zero counts are given less weight after Hellinger transformation. The envfit 

function in vegan was used to fit test which environmental gradients best fit onto the ordination 

plots. Only environmental factors with a p-value ≤ 0.05 in the envfit results were plotted on the 

NMDS to improve visibility of the samples in the ordination space.  

Based on these exploratory plots, constrained ordination by redundancy analysis (RDA) on 

the Hellinger transformed abundance data was performed to assess how much variation of the 
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abundance data could be explained by the different significant environmental variables [66]. 

Permutational multivariate analysis of variance (PERMANOVA) with the adonis function in 

vegan was then used to test for the difference in centroids and dispersions between the different 

groups of summer stages. PERMANOVA was also performed on the different austral summer 

seasons. The betadisper function was used to test for homogeneity of variances for each group. 

A core microbiome was established by defining core sets of taxa for the different summer 

stages and sample seasons at taxa levels order, family, and genus. To be counted as a core taxa 

for a given group, the taxa must be detected in all samples of the group. Venn diagrams were 

created to help visualize the core microbiome of the summer stages at different taxa levels. The 

top ten taxa with the highest abundance proportion of the core microbiome at different taxa 

levels was also determined. Line plots were created to visualize the change in relative abundance 

over the austral summer for each sample season. 

All code written to perform the data processing and analysis steps are available on the project 

GitHub repository located at: https://github.com/codey-phoun/palmer_station_16S 

III. RESULTS 

A. Environmental Context of the Austral Summer Seasons 

 

Bacterial abundance (Figure 2A) ranged from 208,230,769 to 2,943,461,538 num/L for all 

austral summer seasons, where the maximum observed value occurred on 12/13/2012 in the 

2012-2013 season. The peak bacterial abundance for the 2013-2014 summer season occurred on 

01/27/2014 with a count of 1,613,384,615 num/L and peaked in the 2014-2015 season on 

02/09/2015 at a count of 1,627,538,462 num/L. The average bacterial abundance for the 

combined three seasons was 671,243,811 num/L with a standard deviation of 386,703,648 

num/L. 

Bacterial production, measured by the leucine incorporation rate (Figure 2B), followed a 

similar pattern to the bacterial abundance data. The max value observed throughout the sampling 

period of this study was 133.63 pmol/L/hr on 12/13/2012 in the 2012-2013 season. The 2013-

2014 summer season was nearly able to match this peak rate at 120.69 pmol/L/hr on 01/23/2014. 

The 2014-2015 summer season peaked at 45.98 pmol/L/hr on 02/03/2015. The average bacterial 

production of all three austral summer seasons was 31.89 pmol/L/hr with a standard deviation of 

25.74 pmol/L/hr. 

 Phytoplankton bloom biomass was measured through the proxy of chlorophyll a 

concentration (Figure 3A). A large spike in chlorophyll a concentration during the early summer 

of the 2012-2013 signifies a large phytoplankton bloom. The peak of this spike occurred on 

11/30/2012 at a concentration of 35.14 mg/m³. After this spike, the chlorophyll a concentration 

of 2012-2013 had an average value of 2.09 mg/m³ with a standard deviation of 1.13 mg/m³. The 

2013-2014 summer season had a max recorded chlorophyll a concentration of 5.77 mg/m³ on 

02/28/2014, while the 2014-2015 summer season had a recorded maximum concentration of 6.68 

mg/m³ on 01/19/2015. Chlorophyll a mean and standard deviation of the 2013-2014 summer 

season was at 2.81 ± 1.34 mg/m³. In the 2014-2015 summer season, the mean and standard 

deviation for chlorophyll a was at 2.03 ± 1.57 mg/m³.  
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Primary production rates (Figure 3B) showed a peak value of 627.06 mg/m³/day on 

12/10/2012, during the large phytoplankton bloom of the early 2012-2013 summer season. A 

secondary, smaller spike in primary production occurs on 2/12/2013 at 347.17 mg/m³/day. For 

the total 2012-2013 summer season, the mean and standard deviation primary production was at 

109.22 ± 121.92 mg/m³/day. The largest spike in primary production of the three austral summer 

seasons was on 2/6/2014 at 773.79 mg/m³/day in the 2013-2014 summer season. Overall, 

primary production in the 2013-2014 season had a mean and standard deviation of 141.26 ± 

199.17 mg/m³/day. The 2014-2015 summer season did not have the large spikes in primary 

production rates observed in the previous seasons. Mean and standard deviation for this season 

was at 26.90 ± 28.08 mg/m³/day, with a max of 139.97 mg/m³/day on 11/25/2014. 

For each austral summer season, water temperature gradually rose in the early and mid-

summer before leveling off in the late summer (Figure 5A). Water temperature data ranged from 

-1.53 to 2.22 °C for the CTD data collected in the 2012-2013 summer season. The average 

temperature and standard deviation were 0.60 ± 1.10 °C. In the 2013-2014 summer season, the 

average and standard deviation of the temperature measurements was at 0.59 ± 0.56 °C. The 

minimum and maximum observed temperature was -0.75°C and 1.81°C, respectively. In the 

2014-2015 season, the water temperature average and standard deviation was 0.14 ± 0.74 °C. A 

range of -1.38 °C to 1.10 °C was observed for this season.  

In general, the water salinity data collected for the three austral summer seasons 

gradually decreased in the early summer to mid-summer periods (Figure 5B). Water salinity data 

showed a negative correlation to water temperature with a Pearson correlation coefficient R 

value of -0.47. The 2012-2013 summer season had an average and standard deviation of 33.61 ± 

0.23, with a range from 33.09 to 33.95. For 2013-2014, the water salinity average and standard 

deviation was 33.21 ± 0.33 and had a range of 32.72 to 34.02. In the 2014-2015 summer season, 

average and standard deviation values were 33.45 ± 0.22 with an observed range of 32.98 to 

33.77. 

Inorganic nutrient concentrations of phosphate, silicate, and nitrite and nitrate for the 

three austral summer seasons are shown in Figure 6. These nutrients showed a large degree of 

variability, with multiple large dips in concentration in the early and mid-summer. The 

phosphate concentration range and average concentration with the standard deviation was 0.04 to 

2.013 µmol/L and 1.47 ± 0.45 µmol/L for the 2012-2013 season; 0.81 to 2.21 µmol/L and 1.28 ± 

0.34 µmol/L for the 2013-2014 season; and 0.61 to 2.10 µmol/L and 1.48 ± 0.29 µmol/L for the 

2014-2015 season. Silicate concentration ranges and averages with standard deviation for the 

three austral summer seasons were 50.481 to 65.674 µmol/L and 59.61 ± 3.51 µmol/L for 2012-

2013; 40.57 to 73.60 µmol/L and 52.46 ± 8.15 µmol/L for 2013-2014; and 20.98 to 62.01 

µmol/L and 52.27 ± 11.46 µmol/L for 2014-2015. Finally, nitrite and nitrate concentration 

ranges and averages with standard deviation for the three seasons were 3.71 to 29.19 µmol/L and 

21.69 ± 5.15 µmol/L for 2012-2013; 8.18 to 31.33 µmol/L and 17.49 ± 5.59 µmol/L for 2013-

2014; and 3.56 to 29.34 µmol/L and 19.85 ± 6.11 µmol/L for 2014-2015. 
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Figure 3. Phytoplankton proxy measurements 

(A) Chlorophyll a (B) Primary Production 

Figure 2. Bacterial properties in the austral summer 

(A) Bacterial Abundance and (B) Bacterial Production 
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Figure 4. Chlorophyll a and bacterial production measurements 

Vertical lines denote a 16S rRNA water sample date 
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TABLE II. 16S WATER SAMPLE ENVIRONMENTAL PROPERTIES 

 

Water 

Sample 

Date 

Abundance 

(num/L) 

Leucine 

Incorp. 

(pmol/L/hr) 

Chlorophyll 

(mg/m³) 

Primary 

Production 

(mg/m³/day) 

Phosphate 

(µmol/L) 

Silicate 

(µmol/L) 

Nitrite 

and 

Nitrate 

(µmol/L) 

Temperature 

(°C) 
Salinity 

11/27/2012 419,846,154 28.3 21.2 349.2 0.6 56.3 7.6 -0.4 33.8 

2/8/2013 288,000,000 22.6 3.0 175.6 1.5 58.8 20.9 1.6 33.4 

12/27/2013 526,692,308 9.8 0.4 89.5 1.7 65.8 24.3 0.2 33.9 

1/23/2014 1,384,357,143 120.7 5.6 251.1 1.0 53.6 11.7 0.8 33.0 

2/3/2014 1,197,076,923 116.2 4.4 318.1 0.8 47.1 8.2 1.8 32.8 

2/10/2014 597,923,077 25.6 2.7 647.7 1.4 53.6 17.2 0.9 33.2 

2/28/2014 755,142,857 34.8 5.8 44.1 0.9 44.6 13.8 0.6 32.7 

3/4/2014 775,846,154 33.8 1.7 12.5 1.3 48.9 17.2 0.3 32.9 

12/1/2014 543,076,923 22.9 4.1 21.0 1.2 22.2 10.5 -0.7 33.7 

12/11/2014 970,692,308 43.1 3.1 89.5 1.7 57.4 21.9 -0.8 33.4 

1/12/2015 1,093,714,286 11.8 1.5 20.4 1.4 57.3 18.0 0.4 33.3 

1/19/2015 274,000,000 42.8 6.7 42.7 1.2 47.8 12.1 1.0 33.2 

2/9/2015 1,627,538,462 44.1 1.4 12.7 1.6 56.8 22.5 0.7 33.4 

2/23/2015 984,769,231 36.1 0.9 21.1 1.5 54.2 22.4 0.8 33.3 

3/9/2015 862,692,308 19.1 4.9 23.1 1.2 57.6 22.8 0.6 33.5 
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Figure 5. Water property measurements 

(A) Water temperature (B) Water Salinity 
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Figure 6. Inorganic nutrient measurements 

(A) Phosphate (B) Silicate (C) Nitrite and Nitrate 
 



SUMMER MARINE BACTERIAL COMMUNITY COMPOSITION OF THE WESTERN ANTARCTIC PENINSULA 

17 
 

B. Quality Control of 16S Samples 

 

Table III shows the summarized results of quality trimming and the removal of adapters and 

primers by Cutadapt. About 8 to 10% of the base pairs of the initial FASTQ read files were 

removed by Cutadapt for each 16S sample. The 16S samples for the 2013-2014 (S2) were the 

largest samples and also had the largest amount of base pairs quality trimmed, with several 

samples reaching over 10 million total base pairs trimmed. Read pairs were not filtered out by 

Cutadapt. 

TABLE III. CUTADAPT QUALITY CONTROL RESULTS 

Sample 
 Paired Reads 

Processed  

 Read 1 With 

Adapters  

 Read 2 With 

Adapters  

 Base Pairs 

Quality 

Trimmed  

Percent 

Trimmed 

S1L13 831,275 818,871 813,325 3,835,646 9.11 

S1L14 873,646 864,795 859,530 3,803,396 9.05 

S2L05 1,004,956 997,551 964,192 10,287,476 9.93 

S2L06 987,423 980,233 947,895 10,754,182 10.03 

S2L07 997,341 989,834 966,295 9,899,680 9.86 

S2L08 921,322 914,816 884,391 10,595,391 10.15 

S2L09 1,027,542 1,021,658 989,301 11,590,963 10.16 

S2L10 954,770 947,395 929,460 7,319,366 9.44 

S3L03 609,390 566,585 563,482 1,838,728 8.53 

S3L04 631,963 589,787 585,842 2,203,140 8.79 

S3L05 616,212 573,532 568,085 2,382,860 8.63 

S3L06 789,307 730,898 725,695 2,724,744 8.45 

S3L07 612,641 568,066 564,139 2,083,920 8.53 

S3L08 605,620 562,542 556,962 2,429,446 8.76 

S3L09 607,772 563,111 559,599 2,075,538 8.63 

Total 12,071,180 11,689,674 11,478,193 83,824,476 9.3% 

 

Creation of the ASVs by DADA2 in QIIME 2 resulted in an average of 67.7% reads 

remaining after all quality control processing steps (Table IV). 16S rRNA samples for the 2014-

2015 season (S3) lost about 10% of their reads to DADA2’s quality filter, where only a 

maximum of 4 expected errors in each read was accepted. The denoising and merging process 

removed an additional 8.31 to 15.56% of reads from each sample. An average of 15.6% of reads 

were removed in the chimera checking step. Proportionally, sample S3L05 from 1/12/2015 lost 

the least number of reads after all processing steps, where 73.13% of the original reads were 

kept. In contrast, S2L09 from 2/28/2014 kept only 61.73% of the original reads. DADA2’s 

output resulted in a total of 8,152,255 reads divided among 3,509 unique 16S ASVs. The length 

of the ASVs ranged from 73 to 487 base pairs and had a mean length of 249.77 base pairs with a 
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standard deviation of 24.64. The maximum frequency observed for an ASV was 378,067, while 

the median frequency of reads per ASV was 53. 

 TABLE IV. DADA2 QUALITY CONTROL RESULTS 

 

  Taxonomic classification of the 3,509 ASVs by VSEARCH in QIIME 2 resulted in 

244,263 reads in 283 different ASVs were classified as “Unassigned” (Table V). 23 ASVs with a 

total of 8,758 reads were classified to the domain Archaea. 120 ASVs with 5,463 reads were 

classified to the domain Eukaryota. 3083 ASVs with a total of 7,893,771 reads were classified to 

the domain Bacteria. For the Bacteria classified reads, 475 ASVs with 2,136,552 reads were 

classified as a chloroplast. 201 ASVs with 233,840 total reads were classified as mitochondria. 

All ASVs classified as “Unassigned”, Eukaryota, chloroplast, and mitochondria were removed 

from the ASV results. 2,430 ASVs remained in the Archaea and Bacteria domains after this 

filtering step. Of the original 12,071,180 paired end reads from the 15 16S rRNA gene amplicon 

samples, 5,532,137 reads remained after all quality control and filtering steps. S3L05 from 

1/12/2015 had the smallest sample size of 193,308 reads, leaving only 31% of the original reads. 

S2L09 from 2/28/2014 had the largest sample size of 594,964 reads, where 58% of the original 

reads remained (Table VI).  

 Samples were imported into R as a phyloseq object and agglomerated to the genus level. 

Agglomeration of the 2430 ASVs resulted in 384 unique genera. ASVs containing NAs in the 

taxonomy were also removed in this agglomeration step, resulting in a small loss of reads. S3L05 

still had the smallest sample size at 192,952 reads, and all samples were rarefied to this level 

(Figure 7). 2,894,280 reads, spread evenly between the 15 samples, represented 375 different 

taxa at the genus level. 52.44% of the 5,518,789 reads are left after rarefaction to the smallest 

Sample 

Name 

Input 

Reads 

Passed 

Filter 

% 

Passed 

Filter 

Denoised Merged 
% 

Merged 

Non-

chimeric 

% Non-

chimeri

c 

S1L13 831,275 819,824 98.62 806,309 720,349 86.66 534,763 64.33 

S1L14 873,646 863,127 98.8 848,249 769,075 88.03 542,836 62.13 

S2L05 1,004,956 980,550 97.57 964,671 855,959 85.17 665,962 66.27 

S2L06 987,423 963,481 97.58 953,833 848,383 85.92 681,908 69.06 

S2L07 997,341 978,700 98.13 968,017 863,715 86.6 697,808 69.97 

S2L08 921,322 898,868 97.56 886,183 780,854 84.75 614,562 66.7 

S2L09 1,027,542 1,004,682 97.78 986,501 844,799 82.22 634,278 61.73 

S2L10 954,770 937,580 98.2 921,660 826,758 86.59 684,382 71.68 

S3L03 609,390 558,128 91.59 549,258 499,456 81.96 417,109 68.45 

S3L04 631,963 578,114 91.48 565,566 503,698 79.7 415,529 65.75 

S3L05 616,212 561,861 91.18 552,741 507,410 82.34 450,614 73.13 

S3L06 789,307 713,928 90.45 706,476 648,330 82.14 561,892 71.19 

S3L07 612,641 557,055 90.93 547,274 492,857 80.45 427,696 69.81 

S3L08 605,620 548,708 90.6 538,005 479,385 79.16 413,606 68.29 

S3L09 607,772 551,651 90.77 539,818 478,428 78.72 409,310 67.35 

Total 12,071,180 11,516,257 95.40 11,334,561 10,119,456 83.83 8,152,255 67.53 
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library size. The number of observed taxa in the rarefaction curves for the 2012-2013 and 2014-

2015 samples did not substantially increase after the rarefaction level of 192,952 reads. 2013-

2014 samples showed a slight increase in observed taxa past the rarefaction level.  

 

TABLE V. ASV TAXONOMY CLASSIFICATION BY VSEARCH 

 

 

 

 

 

 

 

 

TABLE VI. FINAL READ COUNTS OF 16S SAMPLE PROCESSING STEPS 

Sample 

Name 

Input Reads DADA2 

Output 

Reads 

VSEARCH 

Output 

Reads 

Phyloseq 

Output 

Reads 

Final % 

Remaining 

S1L13 831,275 534,763 326,102 324,962 39% 

S1L14 873,646 542,836 363,707 362,535 41% 

S2L05 1,004,956 665,962 331,698 329,636 33% 

S2L06 987,423 681,908 501,364 501,253 51% 

S2L07 997,341 697,808 548,281 548,000 55% 

S2L08 921,322 614,562 533,557 532,506 58% 

S2L09 1,027,542 634,278 594,964 593,411 58% 

S2L10 954,770 684,382 496,252 494,396 52% 

S3L03 609,390 417,109 221,852 221,245 36% 

S3L04 631,963 415,529 275,339 274,018 43% 

S3L05 616,212 450,614 193,308 192,952 31% 

S3L06 789,307 561,892 377,484 377,212 48% 

S3L07 612,641 427,696 290,269 289,685 47% 

S3L08 605,620 413,606 242,134 241,639 40% 

S3L09 607,772 409,310 235,826 235,339 39% 

Total 12,071,180 8,152,255 5,532,137 5,518,789 46% 

 ASVs 
% of 

ASVs 
Reads 

% of 

Reads 

Unassigned 283 8.06% 244,263 2.99% 

Archaea 23 0.66% 8,758 0.11% 

Eukaryota 120 3.42% 5,463 0.07% 

Mitochondria 201 5.73% 233,840 2.87% 

Chloroplast 475 13.54% 2,136,552 26.18% 

Bacteria 2,407 68.60% 5,523,379 67.75% 

Total 3,509  8,152,225  
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C. Alpha Diversity Analysis 

 

The alpha diversity metrics of observed taxa, Chao1 index, Shannon diversity, and 

Inverse Simpson index together showed a similar overall pattern (Figure 8). In general, the 

diversity measure increases from the early summer to late summer. The late summer water 

sample S2L10 from 3/4/2014 had the highest richness measures with the number of observed 

taxa at 209 and estimated taxa by the Chao1 index at 213.32. The mid-summer sample S2L06 

from 1/23/2014 had the lowest richness measures with 108 observed taxa and an estimated 

115.14 taxa by the Chao1 index. The richness and evenness measures showed mid-summer 

sample S3L06 from 1/19/2015 to have the lowest Shannon diversity at 1.43 and an Inverse 

Simpson index at 2.95. The highest values were observed in the late summer on 3/9/2015 with 

sample S3L09, where the Shannon diversity was 3.05 and the Inverse Simpson index was 13.84. 

Results of statistical testing of these alpha diversity measures between the three different 

summer groups is shown in Figure 9. Kruskal-Wallis rank sum test on alpha diversity measures 

of the different summer stages showed a p-value under 0.05 for observed taxa, Shannon 

Figure 7. Rarefaction curves of 16S samples 

Dashed vertical line shows the minimum library size of S3L05 at 192,952 
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diversity, and the Inverse Simpson index, while the test on the Chao1 index had a p-value of 

0.052. Mid-summer and late summer comparisons with the Wilcoxon rank sum test had a p-

value of 0.054 for observed taxa, 0.036 for Chao1 index, and 0.043 for the Shannon diversity. 

Between the early summer and late summer groups, only the Wilcoxon test with Shannon 

diversity showed a p-value under 0.05 at 0.043. The Wilcoxon test did not show any p-values 

under or near 0.05 between the early summer and mid-summer groups.  

 

  

Figure 8. Alpha diversity measurements showing the number of  

observed taxa, Chao1 index, Shannon diversity, and the inverse Simpson index 
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Figure 9. Kruskal-Wallis and Wilcoxon rank sum test results on  

alpha diversity measurements for each summer stage. Horizontal brackets indicate 

pairwise group comparison and the resulting p-value of the Wilcoxon rank sum test. 
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D. Relative Taxonomic Composition 

 

 A treemap of all 16S samples in the phyloseq object showed the relative taxonomic 

composition of all reads in the combined samples (Figure 10). At the class and order levels, the 

treemap was primarily dominated by three classes. 42.03% of the reads belonged to the class 

Bacteroidia. 29.77% were of the class Gammaproteobacteria and 27.16% Alphaproteobacteria. 

The class Bacteroidia mainly consisted of the order Flavobacteriales, which contributed 40.37% 

of the total 16S reads. The next largest order in Bacteroidia were the Sphingobacteriales which 

contributed 1.14% to the total reads. Gammaproteobacteria were more diverse in terms of the 

number of different taxa at the order level that contributed relatively large numbers of reads. For 

these taxa, Oceanospirillales had an overall relative abundance of 18.13%, Cellvibrionales 

contributed 3.29%, Nitrosococcales contributed 2.10%, Thiomicrospirales contributed 1.88%, 

Burkholderiales contributed 1.62%, and Alteromonadales contributed 1.44%. Similar to the 

Bacteroidia class, the Alphaproteobacteria class was also mainly composed of just a single order, 

where the order Rhodobacterales had a relative abundance of 25.19%. The SAR11 clade 

contributed 0.77% to the total reads. The class Actinobacteria contributed 0.45% to the relative 

abundance of 16S reads.  

 

Stacked bar charts of sample-wise relative frequency for phylum to genus level taxa are 

shown in Figure 11. The taxonomic composition per sample is not static and changes in the 

relative abundance were observed throughout the summer seasons. At the phylum and class level 

(Figure 11A), the relative abundance per sample was dominated by Proteobacteria and 

Bacteroidia. On 1/19/2015, Alphaproteobacteria had a relative abundance of 76.24%. 

Gammaproteobacteria contributed 3.75 % while Bacteroidia contributed 19.7% on this date. The 

dominance in the relative abundance of Alphaproteobacteria on this date was attributed mainly to 

the order and family Rhodobacterales Rhodobacteraceae. At the genus level, Rhodobacteraceae 

were split between Yoonia-Loktanella at 49.75% and Sulfitobacter at 24.96% on sampling date 

1/19/2015. Oceanospiralles were present in all samples except for this date. Their relative 

abundance dropped to below 5% on 1/12/2015 and then disappears from the stacked bar chart on 

1/19/2015. Similar to the results of the treemap, the class Bacteroidia was mainly composed of 

the order Flavobacteriales in all samples. The genus Polaribacter are the main contributors to the 

abundance of Flavobacteriales. The family Cryomorphaceae, in the order Flavobacteriales, had a 

high relative abundance of 17.72% on 1/12/2014. The order Sphingobacteriales had a relatively 

high abundance of 9.78% on the sampling date 1/23/2014 but did not show a large abundance in 

any other sample. The taxa of the order Nitrosocococcales and family Methylophagaceae was 

only noticeable in the 2013-2014 summer season and appears in all but the first sample of this 

season. At the genus level, nearly half of the relative frequency is either labelled as Uncultured 

or contribute less than 2% to the relative abundance.  
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Figure 10. Treemap of all 16S samples combined  

to show the relative abundance of the reads by class and order taxonomy levels 
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Figure 11. Stacked bar plots of taxa relative frequency 

(A) Phylum and Class level (B) Order level (C) Family level (D) Genus level 
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E. Beta Diversity Analysis 

 

Hierarchical clustering on the Weighted Unifrac distance by complete linkage showed three 

clusters at a distance of 0.08 (Figure 12). One branch of four samples consisted solely of mid-

summer groups from both the 2013-2014 and 2014-2015 summer seasons. The late summer 

sample from 3/9/2015 is a single branch by itself until a distance at about 0.11. The third cluster 

is a mix of early summer, mid-summer, and late summer groups. At distances under 0.04, early 

summer samples do not cluster with any late summer samples.  

Unconstrained ordination by PCA and NMDS is shown in Figure 13A and 13B. The first 

two principal components of the PCA plot explain 65.5% of the variation in the Hellinger 

transformed abundance data [65]. Environmental factors projected onto the PCA with the envfit 

function in vegan showed temperature, nitrite and nitrate, and salinity to have the strongest 

correlations to the first two principal components. Salinity and temperature gradients showed a 

strong correlation to the first principal component, while nitrite and nitrate appear to correlate 

with the second principal component. Temperature correlated with both axes. Statistical 

significance of the fitting of these variables to the first two principal components showed p-

values of 0.020 for temperature, 0.068 for nitrite and nitrate, and 0.163 for salinity. NMDS on 

the Weighted Unifrac distances shows a similar pattern in the relative positioning of the samples. 

The NMDS plot has a stress value of 0.034. Only environmental factors with a p-value under 

0.05 with the envfit results were shown on the NMDS ordination. Constrained ordination by 

RDA on temperature, nitrite and nitrate, and salinity is shown in Figure 13C. 24.57% of the 

variation in the abundance table could be explained by temperature, 8.98% by nitrite and nitrate, 

and 3.33% by salinity. The total proportion of variation explained by these three variables was 

36.88%.  

A PERMANOVA test with the adonis function in vegan tested for differences in the 

centroids and dispersions in the different summer stages with the Hellinger transformed taxa 

abundance data. With the summer stages, the PERMANOVA p-value was 0.0003, indicating 

support for differences in the centroid and/or dispersions of the summer groups. The test was 

repeated for the different sample seasons, and the p-value was 0.2481. The summer stages failed 

the assumption of homogeneity of variance when tested with the betadisper function in vegan. 

This test reported a p-value of 0.026. For the category of different sample seasons, this test 

reported a p-value of 0.2702. 
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Figure 12. Dendrogram of 16S samples 

clustered on the Weighted Unifrac distance by  

complete linkage and colored by summer stages 
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Figure 13. Ordination plots of 16S samples 

(A) PCA on Hellinger distance and fit with environmental vectors 

(B) NMDS by Weighted Unifrac distance and fit with significant environmental vectors (stress = 0.034) 

(C) RDA on Hellinger distance and constrained on Temperature, Salinity, and Nitrite and Nitrate 
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F.  Core Microbiome  

 

At the order level of the core microbiome (Figure 14A), 33 different taxa were shared 

between all summer stages. The early summer stage had 6 unique taxa at the order level and the 

late summer stage had 11 unique taxa. The mid-summer stage did not contain any unique taxa. 

This pattern was consistent with the family and genus level, where only the early summer and 

late summer had taxa which were unique to those summer stages only. At the family level 

(Figure 14B), there was a share of 45 taxa between all summer stages, and 62 taxa at the genus 

level (Figure 14C). The core microbiome of the sample seasons shares the same core of 62 genus 

taxa as the summer stages. Each sample season has unique taxa at the genus level that are not 

present in the other sample seasons (14D). Season 2012-2013 has the most unique taxa, with 13 

total unique taxa at the genus level.  

G. Community Composition Dynamics 

 

 The relative abundance values of the top 10 most abundant core taxa at the order level 

was plotted for each sample in Figure 15. The plot shows how the relative abundances of 

different order taxa change over the season and annually. Flavobacteriales began the summer 

season with a relatively high abundance but tended to decrease over the season, while 

Rhodobacterales showed an increase in the relative abundance over the season for all sampled 

summers. Several taxa like Nitrosococcales and Sphingobacteriales were detected with a high 

relative abundance in the 2013-2014 summer season only. Oceanospirillales, Alteromondales, 

and SAR11 displayed high variability in the dynamics of their relative abundances over the 

different years. Alteromondales showed a spike in relative abundance, up to 5%, at separate 

times in the 2013-2014 and 2014-2015 summer seasons. The relative abundance of 

Oceanospirillales was noticeably higher in the two sample points from the 2012-2013 season 

than any samples in the 2013-2014 and 2014-2015 season. For the 2013-2014 and 2014-2015 

summer seasons, the Gammaproteobacteria orders of Burkholderiales and Cellvibrionales 

showed a relatively low relative abundance in early summer before increasing in the mid and late 

summer. Relative abundance values of the top 10 most abundant core taxa at the family level is 

shown in Figure 16. Results of the family level largely reflected the order level, except the 

family Cryomorphaceae of the order Flavobacteriales replaces the order of Alteromondales in 

the top 10 taxa. The Cryomorphaceae appear to increase over the summer and exhibits a peak 

just before the Rhodobacteraceae peak in the 2014-2015 season. 
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Figure 14. Core microbiome of 16S samples 

(A) Core taxa in the summer stages at Order level 

(B) Core taxa in the summer stages at Family level 

(C) Core taxa in the summer stages at Genus level 

(D) Core taxa in the library seasons at Order level 
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Figure 15. Relative abundance at the Order level over the summer season 

 of the top 10 most abundant taxa in the core microbiome 
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Figure 16. Relative abundance at the Family level over the summer season 

 of the top 10 most abundant taxa in the core microbiome 
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IV. DISCUSSION 

A. Summer Bacterial Community Composition 

 

The results from this study demonstrated how surface waters of the WAP, during an 

austral summer, were dominated by the classes of Bacteroidia, Gammaproteobacteria, and 

Alphaproteobacteria (Figure 10). Bacteroidia 16S rRNA gene amplicons represented 42.03% of 

the final reads used in this study. Gammaproteobacteria accounted for 29.77% and 

Alphaproteobacteria accounted for 27.16% of the reads. Bacteroidia were primarily represented 

by the order of Flavobacteriales (96.05% of all Bacteroidia) and the genus Polaribacter (66.15 % 

of all Bacteroidia). Alphaproteobacteria reads largely consisted of the order Rhodobacterales, 

which accounted for 92.75% of all reads for this class. The Rhodobacterales class was split 

mainly between the genus of Sulfitobacter (44.79%), Yoonia-Loktanella (34.44%), and 

Planktomarina (12.70%). The order of SAR 11 only accounted for 3% of the total 

Alphaproteobacteria reads. Gammaproteobacteria composition was more diverse than 

Bacteroidia and Alphaproteobacteria. This class was represented by the orders of 

Oceanospirillales (60.89%), Cellvibrionales (11.04 %), Nitrosococcales (7.05%), 

Thiomicrospirales (6.32%), Burkholderiales (5.45%), and Alteromonadales (4.85%). Of the 

reads in Oceanospirillales, 95.76% belonged to the family Nitrincolaceae but were unclassified 

down at the genus level.  

These three classes have also been reported to dominate the surface waters of the WAP in 

other studies [29]–[38]. Visualization of the relative abundances of specific taxa throughout each 

austral summer displayed the within-season variation and annual variation of the taxa (Figure 

11). Particularly, the orders of Flavobacteriales and Rhodobacterales showed a temporal pattern 

that repeated in each sampling year (Figure 15). The relative abundance of Flavobacteriales 

generally decreased as the austral summer progressed, while the Rhodobacterales’ relative 

abundance increased. This pattern was also observed at the family level with Flavobacteriaceae 

and Rhodobacteraceae.  

A core microbiome of 31 unique taxa at the order level and 62 unique taxa at the genus 

level were found to be present in all 15 different 16S rRNA gene amplicon samples (Figure 14). 

Of the 31 taxa at the order level, the top 10 taxa by relative abundance accounted for 96.9% of 

all core taxa reads. The mid-summer samples did not have any taxa which were unique to this 

stage only, unlike the early and late summer stages. Each sample summer season had taxa which 

were unique to their respective seasons only. These results indicate that some rare taxa may be 

below detectable levels for certain summer stages and years and highlights the temporal 

variability of the marine bacterial community.  

SAR11 relative abundance was noticeably low at 3% of the total reads when compared to 

the expected relative abundance of 9-42% reported in several other studies of the WAP [29], 

[32], [35]–[37]. Relative abundance of SAR11 has been reported to highest in the winter season 

and lowest in the summer season in the Southern Ocean in some studies [29], [35]. The low 

relative abundance of SAR11 in this study is likely due to primer bias against this taxa in the 

PCR amplification step. The original 806R primer is reported to have a nucleotide mismatch to 
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the 16S rRNA V4 region of the SAR11 clade [23]. This reduces the number of SAR11 

amplicons from being created and leads to the underrepresentation observed in the data. Other 

studies which used utilized a different reverse primer for the V4 region or amplified other 

hypervariable regions of the 16S gene detected the SAR11 clade at a higher relative abundance.  

Archaea was detected with a relative abundance of only 0.16% at the genus level. The 

original 515F and 806R primers have also been shown to be biased against the archaea 

Thaumarchaea [22]. Other studies have shown a similar result for the austral summer surface 

water and found archaea to have a higher relative abundance during the winter season and in 

deeper waters [29], [32]. Archaea metabolism in the WAP has been described as 

chemolithoautotrophic, which likely cannot compete in the nutrient conditions present during 

phytoplankton blooms. The archaea may not be able to fully utilize the high levels of available 

DOM during the austral summer. 

Sample S3L06 from water sample date 1/19/2015 stood as an outlier among the other 14 

16S rRNA samples (Figure 11). On this date, the order Rhodobacterales relative abundance 

reached a high of 76%, while Flavobacteriales and Oceanospirillales had a low of 19.64% and 

1.22% respectively. Chlorophyll a concentration reached a season high of 6.68 mg/m³ on this 

date, while water temperature was recorded to be 1.02 °C, near the season high of 1.10°C (Figure 

3A and Figure 5A). The environmental conditions of the peak phytoplankton bloom in the 

summer and warm water temperature may have helped to induce the high relative abundance 

observed for Rhodobacterales. For the 2014-2015 summer season, alpha diversity measures were 

at the lowest on 1/19/2015 (Figure 8). Sample S2L06 from water sample date 1/23/2014 had the 

lowest alpha diversity measures of the 2013-2014 season (Figure 8). This was also during a peak 

phytoplankton bloom, where the chlorophyll a concentration reached 5.62 6.68 mg/m³ (Figure 

3A). This sample was not dominated by Rhodobacterales but did show a spike in the order of 

Sphingobacteriales of the class Bacteroidota instead at a relative abundance of 9.78% (Figure 

11B).  

Analyses with alpha and beta diversity measures showed significant differences between 

the three summer stages (Figure 9). The Kruskal-Wallis test showed strong evidence for 

difference in median richness among the three summer stages. The pairwise comparisons of the 

summer stages with the Wilcoxon Rank Sum Test on the Shannon diversity values showed a 

significant difference between early summer against late summer and mid-summer against late 

summer. The results showed alpha diversity metrics of bacterial community composition to 

increase by the late austral summer season. Other studies have shown alpha diversity metrics to 

decrease during phytoplankton blooms and to increase by the end of the summer [29], [30], [32], 

[35]. Samples within these stages also tend to cluster together in PCA, NMDS, and RDA 

ordination plots (Figure 13). Early summer samples are grouped together in the PCA plot, but the 

mid-summer and late summer samples were more intermixed. The temperature, salinity, and the 

dissolved inorganic nutrients of nitrite and nitrate environmental measures may be useful for 

characterizing the different physiochemical contexts of the summer stages.  
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B. Limitations of this Study 

 

16S rRNA copy numbers were not accounted for in this study. Gammaproteobacteria can 

have an average of 5 or more copies of the 16S rRNA gene and shows a large variation within 

this class [67]. Alphaproteobacteria show lower variability within the class and are reported to 

have an average of 2 16S rRNA gene copies in the genome. Variation in the copy number occurs 

at different taxonomic levels and can influence the results in the relative abundance results. 

Gammaproteobacteria abundance is likely overestimated due to this variability. The dynamics of 

SAR11 relative abundance was not fully captured by this study. The missing portion of SAR11 

abundances likely leads to an overestimation of relative abundance of all other taxa due to the 

compositional nature of relative abundance data. The water samples for this study only were 

collected only at 10m in depth, but prokaryotic composition has been shown to vary with water 

column depth [32], [33]. Additional sampling in a range of depths can be used to explore how 

community composition changes with depth.  

 

C. Future Research 

 

Further research in the characterization and dynamics of bacteria and other microbes 

present in the marine ecosystem of the WAP is needed to help predict the effects of climate 

change on this environment. Phylogenetic composition data of phytoplankton blooms could be 

integrated with the results presented in this study to elucidate how changes in phytoplankton 

diversity may alter bacterial diversity. 16S rRNA gene copy number databases could be utilized 

to correct for the variation present in bacterial rRNA gene copy numbers. The current water 

samples or any future water samples can be reamplified and sequenced with new universal V4 

primers to generate a more accurate snapshot of prokaryotic diversity. The data from this study 

can also be reanalyzed by categorizing the samples into different stages of phytoplankton blooms 

to investigate how bacterial community composition changes through a phytoplankton bloom. 

 

V. CONCLUSION 

 

  Marine bacterial community composition dynamics in the WAP have previously been 

investigated, but most studies have only sampled a single season or year. This study analyzed a 

molecular survey consisting of 15 different 16S rRNA V4 gene amplicon samples that covered 3 

different austral summer seasons in the surface waters of the WAP. The aim the study was to 

contribute to the baseline profiling of marine bacterial community composition and dynamics in 

the WAP. The results from this study showed how 16S rRNA sequence data of the microbes in 

environmental water samples can be used to identify a core group of bacterial taxa and detail 

their temporal dynamics. The classes of Alphaproteobacteria, Gammaproteobacteria, and 

Bacteroidia form the bulk of the bacterial community abundances. Flavobacteriales are the 

primary taxa in the early summer but are replaced by different members of the 

Alphaproteobacteria and Gammaproteobacteria as the summer progresses. Alpha diversity 

analysis of the bacterial composition helped revealed a pattern of how bacterial richness and 
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evenness measures are lowest in the early and mid-summer but rises towards the end of the 

summer.  
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APPENDICES 

 

Appendix A. Mid-point Rooted Phylogenetic Tree with Abundances 

 

A de novo phylogenetic tree was created for the ASVs with the align-to-tree-mafft-iqtree 

pipeline in the phylogeny plugin for QIIME 2. The tree and ASV abundances were visualized 

with iTOL [68]. 
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Appendix B. Taxa Names of Core Microbiome  

 

Bacteria;Bacteroidota;Bacteroidia;Flavobacteriales;Flavobacteriaceae;Polaribacter 

Bacteria;Proteobacteria;Gammaproteobacteria;Oceanospirillales;Nitrincolaceae;uncultured 

Bacteria;Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae;Planktomarina 

Bacteria;Proteobacteria;Gammaproteobacteria;Thiomicrospirales;Thioglobaceae;SUP05_cluster 

Bacteria;Proteobacteria;Gammaproteobacteria;Cellvibrionales;Porticoccaceae;SAR92_clade 

Bacteria;Bacteroidota;Bacteroidia;Flavobacteriales;Flavobacteriaceae;NS5_marine_group 

Bacteria;Bacteroidota;Bacteroidia;Flavobacteriales;NS9_marine_group;NS9_marine_group 

Bacteria;Bacteroidota;Bacteroidia;Flavobacteriales;Cryomorphaceae;uncultured 

Bacteria;Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae;Sulfitobacter 

Bacteria;Proteobacteria;Gammaproteobacteria;Burkholderiales;Methylophilaceae;OM43_clade 

Bacteria;Proteobacteria;Gammaproteobacteria;SAR86_clade;SAR86_clade;SAR86_clade 

Bacteria;Proteobacteria;Gammaproteobacteria;Nitrosococcales;Methylophagaceae;uncultured 

Bacteria;Bacteroidota;Bacteroidia;Chitinophagales;Saprospiraceae;uncultured 

Bacteria;Proteobacteria;Alphaproteobacteria;Puniceispirillales;SAR116_clade;SAR116_clade 

Bacteria;Proteobacteria;Gammaproteobacteria;Oceanospirillales;Pseudohongiellaceae;Pseudohongiella 

Archaea;Crenarchaeota;Nitrososphaeria;Nitrosopumilales;Nitrosopumilaceae;Candidatus_Nitrosopumilus 

Bacteria;Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae;Ascidiaceihabitans 

Bacteria;Proteobacteria;Alphaproteobacteria;SAR11_clade;Clade_I;Clade_Ia 

Bacteria;Proteobacteria;Gammaproteobacteria;Alteromonadales;Colwelliaceae;Colwellia 

Bacteria;Bacteroidota;Bacteroidia;Flavobacteriales;Flavobacteriaceae;NS4_marine_group 

Bacteria;Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae;Yoonia-Loktanella 

Bacteria;Proteobacteria;Gammaproteobacteria;Granulosicoccales;Granulosicoccaceae;Granulosicoccus 

Bacteria;Proteobacteria;Gammaproteobacteria;Alteromonadales;Alteromonadaceae;Paraglaciecola 

Bacteria;Bacteroidota;Bacteroidia;Cytophagales;Cyclobacteriaceae;Marinoscillum 

Bacteria;Bacteroidota;Bacteroidia;Flavobacteriales;Flavobacteriaceae;Ulvibacter 

Bacteria;Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae;Amylibacter 

Bacteria;Proteobacteria;Alphaproteobacteria;Rhodospirillales;Magnetospiraceae;Magnetospira 

Bacteria;Bacteroidota;Bacteroidia;Chitinophagales;Saprospiraceae;Lewinella 

Bacteria;Proteobacteria;Gammaproteobacteria;Thiotrichales;Thiotrichaceae;Cocleimonas 

Bacteria;Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae;uncultured 

Bacteria;Proteobacteria;Gammaproteobacteria;OM182_clade;OM182_clade;OM182_clade 

Bacteria;Proteobacteria;Alphaproteobacteria;SAR11_clade;Clade_IV;Clade_IV 

Bacteria;Bacteroidota;Bacteroidia;Chitinophagales;Saprospiraceae;Portibacter 

Bacteria;SAR324_clade;SAR324_clade;SAR324_clade;SAR324_clade;SAR324_clade 

Bacteria;Proteobacteria;Alphaproteobacteria;Caulobacterales;Hyphomonadaceae;Hellea 

Bacteria;Actinobacteriota;Acidimicrobiia;Microtrichales;Microtrichaceae;Sva0996_marine_group 

Bacteria;Proteobacteria;Gammaproteobacteria;Arenicellales;Arenicellaceae;Arenicella 

Bacteria;Proteobacteria;Alphaproteobacteria;SAR11_clade;Clade_II;Clade_II 

Bacteria;Proteobacteria;Gammaproteobacteria;Thiotrichales;Thiotrichaceae;Leucothrix 
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Bacteria;Proteobacteria;Alphaproteobacteria;Rhodospirillales;AEGEAN-169_marine_group;AEGEAN-

169_marine_group 

Bacteria;Proteobacteria;Alphaproteobacteria;Parvibaculales;OCS116_clade;OCS116_clade 

Bacteria;Proteobacteria;Alphaproteobacteria;Defluviicoccales;uncultured;uncultured 

Bacteria;Proteobacteria;Gammaproteobacteria;Cellvibrionales;Halieaceae;OM60(NOR5)_clade 

Bacteria;Proteobacteria;Alphaproteobacteria;Caulobacterales;Hyphomonadaceae;Litorimonas 

Bacteria;Campilobacterota;Campylobacteria;Campylobacterales;Arcobacteraceae;uncultured 

Bacteria;Proteobacteria;Alphaproteobacteria;Thalassobaculales;Nisaeaceae;OM75_clade 

Bacteria;Bacteroidota;Bacteroidia;Flavobacteriales;Cryomorphaceae;Vicingus 

Bacteria;Proteobacteria;Alphaproteobacteria;Caulobacterales;Hyphomonadaceae;Robiginitomaculum 

Bacteria;Proteobacteria;Gammaproteobacteria;Thiotrichales;Thiotrichaceae;uncultured 

Bacteria;Proteobacteria;Gammaproteobacteria;Oceanospirillales;Kangiellaceae;uncultured 

Bacteria;Bacteroidota;Bacteroidia;Sphingobacteriales;NS11-12_marine_group;NS11-12_marine_group 

Bacteria;Verrucomicrobiota;Verrucomicrobiae;Verrucomicrobiales;Rubritaleaceae;Rubritalea 

Bacteria;Proteobacteria;Gammaproteobacteria;Alteromonadales;Psychromonadaceae;Psychromonas 

Bacteria;Fusobacteriota;Fusobacteriia;Fusobacteriales;Fusobacteriaceae;Psychrilyobacter 

Bacteria;Actinobacteriota;Actinobacteria;PeM15;PeM15;PeM15 

Bacteria;Actinobacteriota;Acidimicrobiia;Microtrichales;Microtrichaceae;uncultured 

Bacteria;Bacteroidota;Bacteroidia;Flavobacteriales;Crocinitomicaceae;Crocinitomix 

Bacteria;Proteobacteria;Alphaproteobacteria;Caulobacterales;Hyphomonadaceae;Fretibacter 

Bacteria;Proteobacteria;Alphaproteobacteria;SAR11_clade;Clade_III;Clade_III 

Bacteria;Proteobacteria;Gammaproteobacteria;Cellvibrionales;Spongiibacteraceae;BD1-7_clade 

Bacteria;Firmicutes;Clostridia;Clostridiales;Clostridiaceae;Clostridium_sensu_stricto_1 

Bacteria;Proteobacteria;Alphaproteobacteria;Caulobacterales;Caulobacteraceae;Brevundimonas 

 


	Summer Marine Bacterial Community Composition of the Western Antarctic Peninsula
	tmp.1622093066.pdf.4n4YK

