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ABSTRACT 
 

 

The National Aeronautics and Space Administration (NASA) has performed many experiments 

on the International Space Station (ISS) to further understand how conditions in space can affect 

life on Earth. This project analyzed GLDS-258, a gene set from NASA’s GeneLab repository 

which examines the impact of microgravity on human induced pluripotent stem-cell-derived 

cardiomyocytes (hiPSC-CMs). While many datasets have been run through NASA’s RNA-Seq 

Consensus Pipeline (RCP) to study differential gene expression in space, a Homo sapiens dataset 

has yet to be analyzed using the RCP. The aim of this project was to run the first Homo sapiens 

dataset, GLDS-258, through the RCP on the San Jose State University College of Engineering 

High Performance Computing Cluster and investigate any biological significance from the 

results. In this study, a total of 18 hiPSC-CMs samples from ground control, flight, and post-

flight groups are run through the RPC. The resulting differential gene expression data was 

further analyzed for biological significance using the Database for Annotation, Visualization, 

and Integrated Discovery (DAVID) and Gene Set Enrichment Analysis (GSEA). Results showed 

that most genes were differentially expressed in ground control versus flight groups, while post-

flight groups and ground control groups did not have as many differentially expressed genes. 

Gene set analysis showed significant expression of genes in mitochondrial pathways as well as 

genes related to neurodegenerative diseases such as Alzheimer’s, Huntington’s, and Parkinson’s 

disease. These results indicate that exposure to microgravity may play a role in altering 

expression of genes which are related to neurodegenerative pathways in cardiac cells. Our results 

demonstrate that it is possible to process Homo sapiens data through the RPC, and suggest that 

cardiomyocytes exposed to microgravity may exacerbate neurodegenerative disease progression. 

 

Keywords: microgravity, space flight, cardiomyocytes, bioinformatics  
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I. INTRODUCTION 

 

A. The Human Body and Space 

 

Space travel has long been one of humanity’s greatest curiosities and persisting interests. As 

modern-day technologies advance, space exploration continues to become more accessible and 

space missions can increase in number. NASA’s Perseverance Rover’s successful landing on 

Mars on February 18, 2021 is a prime example of what is possible in the field of space 

exploration in years to come [1]. This is a monumental achievement for mankind and will 

undoubtedly pave the way for future missions, including bringing astronauts back to the Moon 

and to Mars [3], [4]. NASA plans to bring astronauts, including the first woman, to the Moon by 

the year 2024 on the Artemis Lunar Exploration Program [4]. The upcoming mission to the 

Moon will demonstrate new space travel technologies and possibilities, while also capturing the 

imagination of the younger generation and people around the world [4]. 

However, space travel can be accompanied by adverse impacts on the human body since 

environments in outer space are very different from the conditions in which life on Earth 

evolved. The main concerns that studies have been focused on include space radiation, isolation 

and confinement, distance from Earth, gravity fields, and hostile or closed environments [2]. 

Among these factors, exposure to radiation and microgravity have been studied extensively in a 

scientific setting. Exposure to space radiation can be a long-term issue for astronauts because it 

can harm cell DNA repair mechanisms and possibly lead to development of cancer or other 

detrimental illnesses [3]. Similarly, astronauts who were exposed to microgravity for extended 

periods of time exhibited changes to several systems in their body, including musculo-skeletal, 

cardiovascular, nervous, and immune systems [4]. While these have been many counter 

measures implemented to alleviate some of the effects of these hazards, more research is 

required to understand how to best protect our astronauts’ health and safety. 

 

B. Cardiomyocytes: Cardiac Cell Muscle 

  

Cardiomyocytes are the muscular cells within the heart that allow the organ to contract and 

relax properly to provide blood throughout the body [5]. The contracting motions are regulated 

by ion channels that manage the entry and exit of Ca2+ into the cardiac cells [5]. 

Cardiomyocytes are difficult to study in culture for two major reasons. First, cardiomyocytes 

are not likely to divide after birth and therefore are also not likely to replicate in culture [5]. 

Second, to isolate the cardiomyocytes, the intercalated disks may become damaged that lead to 

increased intake of Ca2+ [7]. As a result, cell death will occur due to hypercontraction [7]. 

Figure 1 below depicts cardiomyocyte structure.  
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Figure 1: Graphical representation of cardiomyocyte structure [6] 

 

C. Cardiomyocytes and Space Flight 

 

NASA has performed an abundance of studies throughout the years regarding the 

cardiovascular system and human health. There has been substantial evidence to conclude that 

spaceflight will affect human cardiac function. One of the most famous studies, the NASA Twin 

Study, showed that arterial pressure will decrease while total cardiac output increases when an 

astronaut is exposed to a long-term microgravity environment [7]. In this study, identical twins 

Mark Kelly and Scott Kelly were observed after Scott lived in space for a year and Mark 

remained on Earth as a ground control. Other studies have confirmed similar findings, in which 

individuals have lowered arterial pressure and decreased heart rate [8]. While there have been 

several conclusive studies regarding the human cardiovascular system as a whole, studies of 

cardiac function at the cellular level have been limited due to the difficulty of studying 

cardiomyocytes in culture.  

Animal models have historically been a popular choice when studying the relationship 

between microgravity and cardiomyocytes at the cellular level since human trials are 

complicated and costly. In particular, mice and rats have been used for several of these 

experiments. A study published in 1992 found that rat cardiac myosin, a protein that plays an 

important role in muscle contractions, had mRNA expression that was impacted when the rats 

were exposed to microgravity for 14 days [9]. A separate experiment concluded that short 

exposure to microgravity increases the expression of various rat cardiomyocyte mitochondrial 

enzymes [10]. These are two among many other animal model-based experiments performed in 

the last several decades. While these past experiments have provided valuable insight into the 

relationship between microgravity and mammalian cardiomyocytes, animal models cannot 

provide a completely exhaustive and conclusive results for the human body. NASA continues to 

seek more informative results by utilizing new technologies that allow us to perform experiments 

on human cardiomyocytes. 

 



 - 10 - 

D. NASA GeneLab’s RNA-Seq Consensus Pipeline 

 

NASA’s GeneLab project aims to create the GeneLab Data System (GLDS) repository, 

which hosts molecular data from spaceflight mission samples [11]. Additionally, GeneLab hopes 

to process these datasets to provide more knowledge about how life on Earth changes in space 

[12]. The current version of the repository, GLDS 3.0, contains over 200 datasets from around 

the world [12]. As more datasets are uploaded to GLDS, NASA has developed methods to 

visualize and analyze the data on their repository. 

GeneLab’s RNA-Sequence Consensus Pipeline (RCP) is one method NASA has developed 

to process datasets upload to GLDS. The pipeline is designed to analyze short-read RNA-

sequence data, and includes several steps that will ultimately detect any differentially expressed 

genes [12]. A variety of datasets can be run through the pipeline, including Homo sapiens, Mus 

musculus, Drosophila melanogaster, among others [13]. The three major steps of the pipeline are 

data pre-processing: quality control and trimming, data processing: read mapping and sample 

quantification, and finally differential gene expression calculations and gene annotations. GLDS 

contains more than 80 RNA sequencing datasets as of August 2020, and many of these sets have 

yet to be run through the pipeline. The process can take several hours and typically requires the 

user to manually run various scripts throughout the process [13]. A more streamlined, Nextflow 

implementation of the pipeline has been created by former San Jose State University student 

Jonathan Oribello; it requires little to no manual intervention throughout the process [13]. Since 

the Nextflow implementation of the pipeline was originally tailored to run Mus musculus 

datasets, this paper briefly examines how to run a Homo sapiens dataset through the Nextflow 

version of the pipeline. However, analysis will be focused around the output from manually 

running customized scripts from the pipeline since the Nextflow implementation for Homo 

Sapiens is still in development. 

 

E. GeneLab Dataset 258 

 

This paper focuses on the dataset GLDS-258, which contains RNA sequence data from 

human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) provided by Joe 

Wu’s group from Stanford University School of Medicine [14]. There are three distinct cell lines 

in this study: four and a half weeks of microgravity exposure, five and a half weeks of 

microgravity exposure with ten days of Earth gravity, and a control with five and a half weeks 

and 10 days of Earth gravity [15]. Each cell line had six samples for a total of 18 samples and 

were all generated from three individuals and differentiated into hiPSC-CMs using the 2D 

monolayer differentiation protocol [15]. Cell lines that were exposed to microgravity were sent 

to the ISS on a SpaceX Falcon 9 rocket during a resupply mission [15]. Figure 2 below depicts 

an overview of the process Wu’s research group used to obtain the data, along with types of 

analysis used after obtaining the data. 
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Figure 2: Graphical representation of the timeline for the entire experiment,  

Reprinted with permission obtained from Joe Wu from the  

Stanford University School of Medicine [15]. 

 

The raw reads gathered from these cell lines were analyzed using a different protocol from 

the RNA-Seq Consensus Pipeline [15]. Upon completion of the experiment, Wu’s research group 

completed nucleic acid sequencing using Illumina HiSeq to create paired end reads with a 100 

base pair length [15]. Their group aligned the raw reads to the hg38 human genome using 

HISAT2 [15]. The researchers then utilized featureCounts along with the Ensembl 85 annotation 

file to quantify the raw reads [15]. Finally, the genes were normalized and determined to be 

differentially expressed using the DESeq2 tool [15]. The results from this method of data 

analysis found that 2,635 genes were differently expressed based on a p-value of 0.05 [15]. 

While these methods work well, they are different from the protocol in NASA’s RCP. The 

analysis in this paper of GLDS-258 will follow NASA’s RCP and use more recent human 

reference genomes and annotations, since the hg38 human genome and Ensembl 85 references 

are from 2013 and 2016, respectively [15], [16]. This dataset will be the first Homo Sapiens 

dataset to be run through the RCP, and hopefully provide the groundwork for future Homo 

Sapiens datasets as well. 

 

II. METHODS 

A. Computational System 

 

Analysis of the GLDS-258 dataset requires a large number of computational resources, and 

therefore cannot be performed on most personal machines. In order to successfully process the 

dataset in a timely manner, the San José State University (SJSU) College of Engineering (CoE) 

High Performance Computing (HPC) system was used to implement the RCP. The HPC cluster 

is a Linux based machine with 36 nodes, each with either 128GB or 256GB of RAM, for a total 
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memory of 6.7TB for the entire cluster [17]. The Slurm Batch scheduler was used to deploy jobs 

onto the HPC. 

 

B. RCP Overview and Steps 

 

Raw reads for GLDS-258 were obtained from NASA GeneLab’s online repository, in the 

form of compressed fastq files. The raw data was prepared on the Illumina HiSeq platform and 

submitted by Dr. Joe Wu’s research group. After downloading the data from NASA GeneLab’s 

website, analysis using the RCP can begin. 

 

 
Figure 3: Overview of the RCP [11] 

 

A high-level overview of the workflow for the RCP is shown in Figure 3. In general, the 

pipeline will take input in the form of compressed fastq files, and output csv files and diagrams 

with analyzed data [11]. Each of the steps below were completed by running an adapted Slurm 

script originally provided by Dr. Amanda Saravia-Butler from NASA GeneLab.  

 

1) Raw Data Quality Control 
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The first step of the pipeline is to perform quality control with FastQC and MultiQC; 

these are two bioinformatics programs that were developed to streamline the process of assessing 

the quality of RNA sequence reads [18], [19]. FastQC and MultiQC versions 0.11.9 and 1.9 were 

used, respectively.   

 

2) Pre-processing Data 

 

The next step of the pipeline is to pre-process the raw sequence data. TrimGalore! Is  

a script that wraps around Cutadapt and FastQC to filter unnecessary or bad quality data 

[20]. Pre-processing is a necessary step to remove low quality reads, remove adapters,  

and remove any reads that have become too short in the trimming process [20]. TrimGalore! and 

Cutadapt version 0.6.6 and 3.2 were used, respectively. 

 

3) Align and Count Reads 

 

After pre-processing the data, the reads must be aligned to a reference genome by 

building a STAR index. The STAR tool requires a reference genome in the form of a fasta file, 

along with a GTF annotation file [21]. Both human genome fasta and GTF annotation files are 

from Ensembl release 102, and STAR version 2.7.7a was used. 

RSEM is a weighted quantitation tool that uses a maximum likelihood estimation to 

match reads to genes [22]. RSEM version 1.3.1 was used for quantification. 

 

4) Differential Gene Expression and Normalization Using R 

 

A R script provided by Dr. Amanda Saravia-Butler was modified then used in order to 

perform differential gene expression using DESeq2. Analysis was completed using R version 

4.0.5. Data visualization was also performed using R with the differential gene expression data 

output from DESeq2. 

The R script followed the following steps. First, DESeqDataSet object is created. We 

filter out all genes with counts of 10 or less across all conditions. Then, 

estimateSizeFactors() is called on the DESeqDataSet object. This function estimates 

the size factors with a median ratio method. A size factor is created for every sample by dividing 

the median ratio of all the counts by the mean of the genes for all samples. Each sample’s raw 

counts are then divided by the size factor created in the last step.  

The next function to be called on the object is estimateDispersions(), which 

gathers dispersion estimates for a negative binomial distribution of data. The calculations will 

assume that the gene set counts will follow a negative binomial distribution, which is why this 

method is used. Each dispersion per gene is found by maximizing the Cox Reid-adjusted profile 

likelihood [23]. Essentially, the dispersion for each gene will describe how much of the 

expressed variance across the samples deviate from the mean of the gene’s expression. 
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Finally, the function nbinomWaldTest() is called on the DESeqDataSet object. This 

function tests for any significance of coefficients in a Negative Binomial distribution, and will 

utilize the dispersion estimates from the estimateSizeFactors() and 

estimateDispersions() functions which were previously called. The Wald test will 

calculate the p-value that a gene’s expression is significant when compared to a null hypothesis. 

The raw count and normalized data are then exported. 

Adjusted p-values are calculated using the Benjamini-Hochberg technique. The false 

discovery rate used for this calculation is the default at 0.1. Finally, all data analysis is performed 

using the output table from DEDeq2. In the R script, multiple Principal Component Analysis 

(PCA) graphs were created, along with a heat map comparing all three groups.    

 

C. Nextflow Implementation of RCP for Human Genome 

 

The Nextflow implementation was initially created and tailored the analyze the GLDS-104 

dataset, which is an experiment using mouse samples [12]. In order to run GLDS-258 using 

Nextflow, certain configuration files and changes need to be made since GLDS-258 uses human 

samples. Since the Nextflow implementation is not the official standard for analyzing NASA 

GeneLab data, the output which was used for analysis is from manually running the RCP for 

GLDS-258, in case there are any unknown discrepancies between the two analysis workflows. 

This section will briefly discuss and show examples of configuration files used for running the 

pipeline through Nextflow in order to demonstrate an alternative, more automated version of the 

RCP. 

Two configuration files for the dataset of interest must be created. The first configuration file 

should include information about the dataset, and the second configuration file will specify how 

to run the workflow on the HPC. The values in the configuration file are parameters that will be 

passed into the scripts run in the pipeline. Any of these can be removed and inputted manually 

into the scripts, if needed. Other parameters can also be added to the configuration file, to make 

the scripts more parameterized and generic. Figure 4 shows an example configuration file that 

can be used for GLDS-258.  
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Figure 4. Example configuration file for GLDS-258 

 

Figure 5 shows the standard executor configuration file used, which shows instructions for 

running on the HPC. However, it is not optimal. Executor configuration files can be formatted to 

utilize the Slurm job scheduler for more intensive jobs. This would allow Nextflow to use 

resources required by open tasks, while the standard configuration shown in Figure 5 will reserve 

all resources in the beginning of execution, despite the differing demands of the pipeline 

throughout the workflow. For instance, when initially downloading the data from NASA 

Genelab, there is essentially no computational resources needed, and all the allocated computing 

resources will sit idle. The optimal executor example configuration file can be found on the 

Nextflow implementation repository at https://github.com/J-81/masterProject/blob/dev/config/ 

executor/cos-hpc-4-node.config. 

 

params { 

  // used for debugging to limit samples used 

  // default value here means no limit 

  limiter = -1 

 

  storeDirPath = '../workdir/GLDS-258/store' 

  publishDirPath = '../workdir/GLDS-258/publish' 

 

  // URLs to download data from GeneLab 

  GLDS_URL_PREFIX = 'https://genelab-

data.ndc.nasa.gov/genelab/static/media/dataset/GLDS-258_rna_seq_' 

  GLDS_URL_SUFFIX = '?version=1' // Assumption that these raw files 

are always version 1 

 

  // ensembl parameters for genome and annotations 

  genomeFasta = 'path/to/Homo_sapiens.GRCh38.dna.  

primary_assembly.fa' 

  genomeGTF = 'path/to/Homo_sapiens.GRCh38.102.gtf' 

  ensembl_version = 102 

 

  // source: https://genelab-

data.ndc.nasa.gov/genelab/accession/GLDS-258/ 

  // extracted from Sample Table, Column Sample Name 

  samples = ['GSM4066596, 'GSM4066597', 'GSM4066598', 

             'GSM4066599', 'GSM4066600', 'GSM4066601', 

             'GSM4066602', 'GSM4066603', 'GSM4066604', 

             'GSM4066605', 'GSM4066606', 'GSM4066607', 

             'GSM4066609', 'GSM4066608', 'GSM4066610', 

             'GSM4066611', 'GSM4066612', 'GSM4066613',] 

} 

https://github.com/J-81/masterProject/blob/dev/config/%20executor/cos-hpc-4-node.config
https://github.com/J-81/masterProject/blob/dev/config/%20executor/cos-hpc-4-node.config
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Figure 5: Example of HPC executor configuration file used. 

 

D. Gene Set Analysis 

 

To understand the biological impact shown in the results, further analysis of the dataset can 

be performed using the results from the RCP. In particular, the Database for Annotation, 

Visualization, and Integrated Discovery (DAVID) and Gene Set Enrichment Analysis (GSEA) 

tools were used for additional analysis. 

  

1) DAVID 

 

DAVID allows users to input a gene list of interest and view any biological meaning 

behind the set as a whole. For this project, DAVID version 6.8 was used. Since we are the most 

interested in the flight versus ground control group, we inputted all significantly expressed genes 

with an adjusted p-value of less than or equal to 0.05 using their Ensembl gene identifiers. The 

original study performed a DAVID analysis using regular p-values instead of adjusted p-values; 

for comparison purposes, this study also analyzes the gene set with a regular p-value of less than 

or equal to 0.05 using DAVID.  

 

2) GSEA 

 

GSEA allows user to further understand the significance of complete pathways and 

relationships within their dataset. Analysis was completed with GSEA version 4.1.0 for Mac. 

GSEA was performed on 25,100 genes from the output of the DESeq2 analysis. MsigDB 

hallmark gene sets version 7.4 was used for comparison, along with MsigDB gene ontology 

biological process (GO BP) gene set version 7.2  

 

3) Leading Edge Analysis 

 

params { 

  executor = 'local' 

 

  withLabel: big_mem { 

    memory = 70.GB  

  } 

 

  withLabel: maxCPU { 

    cpus = 15 

  } 

} 
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Leading Edge Analysis (LEA) was conducted with GSEA version 4.1.0 for Mac. The GO 

BP gene set was used for LEA. A total of 830 gene sets from the GO BP gene set were selected 

for LEA because they had a nominal p-value of less than 0.05.  

 

III. RESULTS 

A. Data Quality Control 

 

 
Figure 6: FastQC Mean Quality Score graphs for (A) raw reads and (B) trimmed reads. 

 

A MultiQC report was generated for the raw reads and trimmed reads. Results from the 

MultiQC process showed that overall, all the reads are high quality since all samples had at least 

a read score of 28, indicated by the green region in the graphs in Figure 6A and Figure 6B. Each 

line on the graphs represents a unique sample. There are two distinct clusters of lines in both 

graphs in Figure 6. The clusters of lines with higher quality scores are the forward reads, while 

the clusters of lines with lower quality scores are the reverse reads. It is known that reverse reads 

tend to be lower quality than forward reads; however, the reason for this discrepancy is unknown 
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[24]. Even so, the quality for both the forward and reverse reads are high enough quality to be 

able to confidently continue with the rest of the analysis process. 

In addition to the overall mean quality scores, the MultiQC report also reported other quality 

control scores. All samples had a sequence of 100 base pairs, as we expected. There were no 

samples with adapter contamination greater than 0.1%. Less than 1% of the reads for all samples 

were made up of overrepresented sequences. These results indicate that we can move forward 

with confidence for the rest of our analysis. 

  

B. STAR Alignment Analysis 

 

 
Figure 7: STAR Alignment Scores for all samples. 

 

After STAR Alignment was completed, another round of MultiQC was run to understand the 

overall quality of the alignment process. The alignment results for each sample are shown above 

in Figure 7. All samples had 84.6 or greater percentage of uniquely mapped reads, except sample 

SRR10084987, which is a flight sample from line two. Additionally, unmapped parts of samples 

due to being too short ranged from 3.6 to 8.5 percent. All samples mapped less than 0.1 percent 

to too many loci, except for post the singular flight sample from line 2. There were no reads from 

any sample in the other unmapped category.  

 

C. RSEM Counts Analysis 
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Figure 8: RSEM Mapped Reads for all samples. 

  

After RSEM counting results were completed, another round of MultiQC was performed to 

analyze the quality of the counts. All the samples had at least 84.9 percent of reads align 

uniquely to a gene, except for the flight sample from line two, which only had 76.1 percent of 

samples map uniquely to a gene. For all samples, 4.9 percent to 5.9 percent of reads were aligned 

to multiple genes, besides the flight sample from line two, which has 10.2 percent of reads 

aligned to multiple genes. 

 

D. DESeq2 Differential Gene Expression 

 

1) General Comparison to the Previous Study 

 

The original study conducted by Dr. Wu’s research group from Stanford University 

School of Medicine found 3,008 genes differentially expressed between ground and flight 

groups, 2,026 genes differentially expressed between post-flight and flight groups, and 1,049 

genes differentially expressed between post-flight and ground groups with p <= 0.05 using a 

two-tailed Student’s t test [13]. This project found similar results, with 3,010 genes differentially 

expressed between ground and flight groups, 1,295 genes differentially expressed between post-
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flight and flight groups, and 1,182 genes differentially expressed on a p-value of <= 0.05. The 

results of the two pipelines are shown in the bar graph in Figure 9. 

 

 
Figure 9: Comparison of differentially expressed genes  

between the RCP and Stanford’s data analysis pipeline. 

 

Additionally, this project focuses on the adjusted p-values instead of the p-values, to 

account for the false discovery rate due to multi-testing. The original study does not account for 

the false discovery rate. In terms of adjusted p-values for this project, there were 212 

differentially expressed genes between flight and ground control groups, 30 differentially 

expressed genes between flight and post-flight groups, and zero differentially expressed genes 

between ground control and post-flight groups.  

 

2) Principal Component Analysis  

 

The raw counts for this analysis contain raw, unnormalized counts for each sample. This 

indicates that the samples may have different read depths, which are the number of reads that 

come off the sequencer for each sample. After normalization of data using the DESeq2 

estimateSizeFactors() function, the new, normalized data can be plotted against the unnormalized 

counts data in two Principal Component Analysis (PCA) plots shown in Figure 10A and Figure 

10B. There is no considerable difference between Fig. X (A) and Fig. X (B). In both graphs, 

there are three distinct clusters, which correlate to the three cell lines used to create the hiPSC-

CMs. The original study also found that the samples clustered based on the three original cell 

lines [13]. 

 



 - 21 - 

 
Figure 10: Principal Component Analysis for 

(A) raw data and (B) normalized data. 

 

In addition to plotting the unnormalized and normalized counts in PCA plots, the 

differentially expressed genes can be further visualized in a PCA plot. The normalized counts for 

the flight versus ground control group were filtered by an adjusted p-value of less than 0.05, then 

filtered by the log fold change greater than 1 and less than -1, and finally plotted. Figure 11 

shows the resulting PCA from this filtering process. Instead of clustering by cell line as shown in 

the previous PCA plots, the samples are now more closely clustered by their condition group. 

Ground control and post-flight samples are clustered slightly closer together in comparison to the 

flight group.   

 

 
Figure 11: Principal Component Analysis (PCA) of differentially 

expressed genes between flight and ground control groups 

 

3) Heatmap 

 

A heatmap was created for the differentially expressed genes from the flight versus 

control group analysis. In Figure 12, the left most six samples represent the post-flight samples, 

the middle six samples represent the flight samples, and the last six samples represent the ground 

control samples. The differentially expressed genes number is 117, instead of the original 212, 
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because genes with not available names were removed. The post-flight and ground control 

samples columns on the heat map have similar levels of expression, while the flight samples 

have a visibly unique expression. 

  

 
Figure 12: Heatmap of differentially expressed genes 

from flight versus control groups across all samples 

 

E. Gene Set Analysis 

 

1) DAVID Gene Set Clusters 

 

Two gene sets were submitted to DAVID for analysis. First, the set of differentially 

expressed genes for fight versus control group p-values less than or equal to 0.05. This set was 

submitted to compare and contrast the results with the previous study conducted by Stanford 

University, since they also submitted a gene set with p-values less than 0.05. The second gene set 

submitted to DAVID was the list of differentially expressed genes between flight and post-flight 

groups, also with a p-value of less than or equal to 0.05. 

The first set of genes submitted has 3,010 differentially expressed genes based on a p-

value of less than or equal to 0.05. DAVID was able to recognize 2,506 genes as from the 

species Homo Sapiens and 503 genes were unknown. The top three enriched annotation clusters 
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displayed in Table I. The first cluster suggests that the Mitochondrion pathways were most 

heavily impacted from spaceflight and microgravity environments, with an enrichment score of 

26.43. The second cluster shows many impacts on pathways within the KEGG Pathway, with an 

enrichment score of 15.16. The final cluster shows expected impacts on the cardiac muscle 

contraction, as well as additional mitochondrial group disruptions. Since we are most interested 

in the flight versus ground control groups, key terms from the significant DAVID clusters were 

submitted to the PubMed search function to analyze how well-researched these topics were. 

While mitochondrial mechanisms and DNA damage and repair searches yielded many results, 

the neurodegenerative diseases from KEGG’s pathway do not seem as well researched. The 

query and their respective results are shown in Table III.  

The second set of genes was 1,295 genes from the post-flight versus flight groups. 

DAVID was able to recognize 1,019 of these genes as Homo Sapiens genes, while 275 were 

unknown. The top three enriched annotation clusters for these results are shown in Table II. 

There were far fewer significantly enriched groups in the post-flight versus flight groups in 

comparison to the flight versus group control groups. Additionally, the enrichment scores for this 

gene set are all much smaller than the enrichment group scores from the ground versus flight 

control group. The most significant cluster, the first cluster, indicates that DNA repair and 

damage mechanisms were impacted. This cluster has an enrichment score of 2.82. 
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TABLE I. 

TOP THREE ENRICHED ANNOTATION DAVID CLUSTERS 

FOR FLIGHT VERSUS GROUND CONTROL GROUPS 

Category Term Benjamini (FDR) 

Cluster 1, Enrichment Score: 26.43 

UP_KEYWORDS Mitochondrion 1.2E-41 

GOTERM_CC_DIRECT Mitochondrial inner membrane 2.4E-28 

UP_SEQ_FEATURE Transit peptide: Mitochondrion 1.9E-22 

UP_KEYWORDS Transit peptide 8.5E-24 

GOTERM_CC_DIRECT Mitochondrial matrix 8.1E-6 

Cluster 2, Enrichment Score: 15.16 

UP_KEYWORDS Mitochondrion inner membrane 1.2E-24 

KEGG_PATHWAY Parkinson’s disease 2.6E-21 

KEGG_PATHWAY Huntington’s disease 4.8E-19 

KEGG_PATHWAY Alzheimer’s disease 2.5E-18 

KEGG_PATHWAY Oxidative phosphorylation 3.0E-18 

UP_KEYWORDS Electron transport 4.7E-14 

UP_KEYWORDS Respiratory chain 7.7E-14 

KEGG_PATHWAY Non-alcoholic fatty liver disease 7.7E-12 

GOTERM_BP_DIRECT Mitochondrial respiratory chain 

complex I assembly 

2.4E-9 

GOTERM_CC_DIRECT Mitochondrial respiratory chain 

complex I 

4.0E-8 

GOTERM_BP_DIRECT Mitochondrial electron transport, 

NADH to ubiquinone 

6.0E-7 

GOTERM_MF_DIRECT NADH dehydrogenase 

(ubiquinone activity) 

7.7E-7 
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TABLE I. (CONTINUED) 

Cluster 3, Enrichment Score: 4.08 

KEGG_PATHWAY Cardiac muscle contraction 7.8E-6 

GOTERM_BP_DIRECT Mitochondrial electron transport, 

cytochrome c to oxygen 

2.7E-2 

GOTERM_MF_DIRECT Cytochrome-c oxidase activity 1.6E-1 

GOTERM_BP_DIRECT Hydrogen ion transmembrane 

transport 

2.5E-1 

GOTERM_CC_DIRECT Mitochondrial respiratory chain 

complex IV 

9.1E-2 

 

 

 

TABLE II. 

TOP THREE ENRICHED ANNOTATION DAVID CLUSTERS 

FOR FLIGHT VERSUS POST-FLIGHT GROUPS 

Category Term Benjamini (FDR) 

Cluster 1, Enrichment Score: 2.82 

UP_KEYWORDS DNA damage 8.3E-2 

UP_KEYWORDS DNA repair 9.3E-2 

Cluster 2, Enrichment Score: 1.99 

UP_KEYWORDS ATP-binding 1.5E-2 

UP_KEYWORDS Nucleotide-binding 1.5E-2 

Cluster 3, Enrichment Score: 1.64 

UP_KEYWORDS WD repeat 9.8E-2 
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TABLE III. 

PUBMED RESULTS OF TOP DAVID CLUSTERS 

Query Number of Results 

“mitochondrial” microgravity 109 

“mitochondrial” spaceflight 92 

“DNA damage” microgravity 72 

“DNA damage” spaceflight 129 

“DNA repair” microgravity 64 

“DNA repair” spaceflight 86 

"Parkinson" microgravity 8 

"Parkinson" spaceflight 20 

"Alzheimer" microgravity 6 

"Alzheimer" spaceflight 16 

"Huntington" microgravity 5 

"Huntington" spaceflight 9 

 

 

2) GSEA Results 

 

There were 50 total gene sets in the MSigDB hallmark gene set used for comparison. 

These hallmark gene sets have well-known biological states and processes with consistent 

expression [25]. There were 24 gene sets that were significantly upregulated at a false discovery 

rate (FDR) of less than 25%, and five gene sets that were significantly downregulated, also at a 

FDR of less than 25%. This FDR is much higher than most gene set analyses, however, it was 

recommended by the GSEA software because the hallmark gene set has a small number of gene 

sets. Table IV show the significantly upregulated gene sets, and Table V shows the significantly 

downregulated gene sets. 

Leading edge analysis was performed with the GO BP gene sets. There was a total of 

830 gene sets with a p-value less than 0.05 that were chosen for leading edge analysis. The genes 

that had the highest number of counts across the gene sets are shown in Table VI. The leading 

edge analysis results can also be seen in Figure 12.  
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TABLE IV. 

GSEA UPREGULATED HALLMARK GENE SETS 

Gene Set NES NOM p-

value 

FDR FWER 

p-val 

HALLMARK_OXIDATIVE_PHOSPHORYLATION 
3.53 0.000 0.000 0.000 

HALLMARK_REACTIVE_OXYGEN_SPECIES_P

ATHWAY 

2.45 0.000 0.000 0.000 

HALLMARK_FATTY_ACID_METABOLISM 2.40 0.000 0.000 0.000 

HALLMARK_ADIPOGENESIS 2.38 0.000 0.000 0.000 

HALLMARK_MYOGENESIS 2.33 0.000 0.000 0.000 

HALLMARK_XENOBIOTIC_METABOLISM 2.16 0.000 0.000 0.000 

HALLMARK_MTORC1_SIGNALING 1.90 0.000 0.000 0.002 

HALLMARK_TNFA_SIGNALING_VIA_NFKB 1.90 0.000 0.000 0.002 

HALLMARK_HYPOXIA 1.87 0.000 0.001 0.005 

HALLMARK_P53_PATHWAY 1.77 0.000 0.001 0.009 

HALLMARK_UV_RESPONSE_UP  1.77 0.000 0.001 0.009 

HALLMARK_HEME_METABOLISM 1.76 0.000 0.001 0.011 

HALLMARK_CHOLESTEROL_HOMEOSTASIS 1.73 0.000 0.002 0.020 

HALLMARK_PEROXISOME 1.63 0.000 0.026 0.066 

HALLMARK_BILE_ACID_METABOLISM 1.49 0.011 0.025 0.285 

HALLMARK_DNA_REPAIR 1.48 0.004 0.026 0.210 

HALLMARK_APOPTOSIS 1.47 0.004 0.025 0.317 

HALLMARK_COAGULATION 1.46 0.012 0.029 0.373 

HALLMARK_ESTROGEN_RESPONSE_LATE 1.42 0.008 0.042 0.513 

HALLMARK_MYC_TARGETS_V1 1.41 0.011 0.043 0.531 

HALLMARK_GLYCOLYSIS 1.35 0.028 0.072 0.750 

HALLMARK_IL2_STAT5_SIGNALING 1.28 0.042 0.127 0.127 

HALLMARK_UNFOLDED_PROTEIN_RESPONSE 1.25 0.101 0.147 0.147 

HALLMARK_COMPLEMENT 1.19 0.129 0.228 0.228 
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TABLE V. 

GSEA DOWNREGULATED HALLMARK GENE SETS 

Gene Set NES NOM p-

value 

FDR FWER 

p-val 

HALLMARK_MITOTIC_SPINDLE -1.69 0.000 0.011 0.016 

HALLMARK_G2M_CHECKPOINT -1.56 0.000 0.027 0.071 

HALLMARK_E2F_TARGETS -1.52 0.110 0.029 0.113 

HALLMARK_HEDGEHOG_SIGNALING -1.30 0.058 0.150 0.569 

HALLMARK_INTERFERON_ALPHA_RESPONSE -1.30 0.223 0.121 0.571 

 

 

TABLE VI.  

TOP LEADING EDGE ANALYSIS GENES 

Gene Name Expression Number of Gene Sets 

EDN1 Endothelin 1 Upregulated 97 

AGT Angiotensinogen Upregulated 87 

CAV3 Caveolin 3 Upregulated 84 

APOE Apolipoprotein E Upregulated 83 

PPARGC1A PPARG Coactivator 1 Alpha Upregulated 72 

APOA1 Apolipoprotein A1 Upregulated 69 

RYR2 Ryanodine Receptor 2 Upregulated 69 
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IV. DISCUSSION 

 

A. Computational Resources 

 

The combined total of all GLDS-258 raw RNA-Seq data is over 43 GB. This large amount of 

data creates a bottleneck effect in the beginning of the pipeline, causing the entire workflow to 

await the completion of this download. Thus, computing environments with sufficient download 

speed are required to complete the RCP in a timely manner. 

Large amounts of RAM are needed to process data through the RCP. The process that 

required the most memory was STAR alignment, which required 80 GB of RAM. This value was 

reached through repeated trial and error by modifying the parameter #SBATCH –-mem=80000 

in the Slurm script until it was able to run successfully. The –-mem parameter in Slurm indicates 

the amount of real memory required per node [26]. In addition, the STAR alignment parameter –

-limitBAMsortRAM was increased to 70,000,000,000 for there to be enough memory for 

BAM sorting during STAR alignment. –-limitBAMsortRAM allocates the maximum 

available RAM in bytes for sorting BAM [21]. This large amount of RAM needed is a trade-off 

for the fast mapping speed of the program [21], and suggests that this step in the RCP can also 

create a bottleneck effect. 

Another process that required a large amount of RAM was the STAR reference building 

process. The parameter #SBATCH –-mem=60000 was used to build the Homo Sapiens 

reference. The reference must be recreated if the user wishes to use newer version of the 

Ensembl releases. Otherwise, a reference genome only needs to be built once for any organism, 

and the resulting output files can be reused for any dataset from that organism. The files 

produced from STAR reference building are extremely large, totaling up to over 30GB. If users 

wish to reuse the reference genome on another system, it may be not time efficient to repeatedly 

copy the files to multiple computers. In this case, it may just be faster to run the script and build 

the reference on the new system, which should take three to four hours.  

An option that may be helpful in the future is to consider compressing the reference files and 

hosting it on cloud storage solution, such as Amazon Web Services Simple Storage Service. This 

option would allow users to build the reference for any organism once, persist the files onto 

cloud storage, and download them from any location or computer. Then, the STAR reference 

building process could be removed from the RCP and would decrease the total computational 

load significantly. 

 

B. Raw and Trimmed Data Quality Analysis 

 

The average quality of all the raw and trimmed reads were above 28; 28 is the lower 

boundary for a good quality read. There are two distinct clusters within both raw and trimmed 

mean quality score graphs in Figure 6A and Figure 6B. The cluster in both graphs with higher 

average quality scores are the forward reads, while the cluster with lower average quality scores 
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are the reverse reads. This is a known issue with Illumina sequencing, and the cause is not yet 

known, as previously mentioned [24]. This issue may be countered by using a different next 

generation sequencing technology. However, Illumina sequencing has almost two thirds of the 

market share in the next generation sequencing market because it’s cost effective, even though 

it’s less accurate than other technologies on the market [24]. Moreover, most of the existing 

GeneLab datasets were sequenced on Illumina technology. 

FastQC and MultiQC are the technologies that are used for quality control in the RPC. These 

two technologies are largely popular in the bioinformatics field; however, there are other 

technologies that may provide more insight into the quality of sequencing data. Technologies for 

quality control, including FastQC, htSeqTools, and SAMState only focus on raw sequence 

metrics [27]. A possible alternative, RNA-SeQC is a tool that considers additional checks, such 

as saturation checking [27]. Thus, future versions of the RCP should consider expanding the use 

of quality control technologies to produce more insight on the quality of sequenced data.  

 

C. STAR Alignment and RSEM Mapped Reads  

 

1) Quality Analysis 

 

STAR Alignment scores in Figure 7 all are good quality due to the high percentage of 

uniquely mapped reads. The only sample that does not have a high percentage of uniquely 

mapped reads is SRR10084987, which is the flight sample from line two. A lower number of 

uniquely mapped reads can indicate that there are more reads mapping to multiple loci. This can 

also be seen for sample SRR10084987 in Figure 7, which has many reads mapped to multiple 

loci in comparison to all the other reads.  

MultiQC results of RSEM mapped reads in Figure 8 show that all samples have good 

quality mapping, except for sample SRR10084987. This is expected after viewing the poor 

alignment results for the same sample in Figure 7.   

It is important for reads to be uniquely aligned to the reference for accurate quantification 

[28]. There are various biological mechanisms that may contribute to the appearance of sequence 

duplication, such as recombination, transposable elements, and alternative splicing. [29]. 

However, it seems unlikely that the duplication apparent in sample SRR10084987 would be due 

to biological mechanisms, since it is not present in any of the other samples. Instead, other 

external factors may have affected the mapped read results for sample SRR10084987. 

 

2) Comparison to Previous Study 

 

The study from Dr. Wu’s research group at Stanford University used a variety of 

different technologies and references, which could account for some of the differences shown in 

Figure 9. Table VII shows the similarities and differences between this project and the Stanford 

University publication. 
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The first major difference between the two studies is the tool used for alignment. Based 

on a previous study comparing the performance of HISAT2 and STAR, the two programs tend to 

have a large number of overlapping reads that will map to the same area in the reference genome  

[30]. STAR, however, had a higher mapping rate and more mapped reads in comparison to 

HISAT2 in this study [30]. 

The next difference is the choice of quantification tool used. A previous study found that 

RSEM for isoform quantification is more aligned with the true count values, while featureCounts 

tends to undercounts the samples when using idealized data with no indels, no single nucleotide 

polymorphisms, and other modifications [31]. However, with more realistic data, featureCounts 

was found to have more accurate counts [31]. This is only a single study, and a definitive answer 

regarding which quantification tool is better is not possible. Both tools are different and have 

their respective advantages and disadvantages. These differences can explain some of the 

variation found in the results when comparing the two studies. 

The final major difference between the two analysis workflows are the reference genome 

and annotations. Wu’s study uses Ensembl 85, which was released in July 2016. This project 

uses Ensembl 102, which was released in December 2020. One major update in Ensembl 102 for 

the human genome was an update that translates any non-ATG start codons to Methionine. This 

difference is another factor that could have contributed to the difference in results for this project 

compared to the Stanford University publication. 

 

TABLE VII.  

COMPARISON OF RESOURCES USED BETWEEN STUDIES 

Resource This Project Wu [13] 

Alignment STAR HISAT2 

Quantification RSEM featureCounts 

Human genome hg38 hg38 

Annotation Ensembl 103 (Homo Sapiens) Ensembl 85 (Homo Sapiens) 

 

D. Differential Gene Expression 

 

There are several tools designed for differential gene expression analysis, including two 

popular choices of DESeq2 and edgeR [32]. Both tools are based on a negative binomial model 

distribution. When estimating dispersion factors, DESeq2 will use all genes with similar 

expression. In contrast, edgeR combines any common dispersions among genes that is estimated 

using a likelihood method and adds this two a gene-specific dispersion [32]. DESeq2 and edgeR 

are both solid choices for differential gene expression. 
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Further study into the DESeq2 package shows that there is a function DESeq() that calls 

the functions estimateSizeFactors(), estimateDispersions(), and nbinomWaldTest() 

automatically. There were no arguments included in these three function calls. Since the R script 

used in this project manually calls all of these functions, the script could be further optimized by 

directly calling the DESeq() function. Readability of the code would remain high since there are 

no additional arguments required for this project. 

 

E. Gene Set Analysis 

 

1) DAVID Enriched Clusters Results 

 

The most significant enrichment found for flight versus ground control groups in Wu’s 

study was the mitochondrion and transit peptide groups with an enrichment score of 48.87 [13]. 

This group was also found in this project’s flight versus ground control groups to be the most 

enriched, with an enrichment score of 26.43 as shown in Table I. Other similar enrichment scores 

between the two include electron transport and mitochondrial respiratory chain scores at 14.7 and 

15.16 for Wu’s study and this project, respectively [13]. The results which indicate that 

mitochondrial metabolism is altered due to microgravity align Wu’s study, as well as with 

previous studies [13]. Rat cardiac muscle cells have been shown to have increased expression in 

the mitochondrial metabolism pathway in microgravity environments [10]. Human cells have 

also shown different amounts of mitochondrial pathway gene expression in the NASA Twins 

Study [7]. However, Parkinson’s disease, Huntington’s disease, and Alzheimer’s disease, three 

terms from the KEGG PATHWAY group in Table I cluster 1, had high enrichment scores of 

15.16 but were not mentioned in Wu’s study. The KEGG PATHWAY is a set of various known 

molecular pathways, including those about human diseases [33]. 

The top enriched clusters for post-flight versus flight groups, as shown in Table II, 

includes DNA damage and DNA repair groups, with an enrichment score of 2.82. This aligns 

well with the known knowledge that space radiation can cause DNA damage because of the 

interaction between charged particles and DNA [34]. Previous studies have also shown that DNA 

repair mechanisms expression is changed in microgravity environment, which can consequently 

increase the amount of DNA damage in human cells [35]. It is interesting, however, that the 

DNA damage and repair clusters are not present in Table I. It is possible that the hiPSC-CMs on 

the ISS return to similar levels of expression as ground controls after being returned to Earth 

[14]. This is supported by the similar levels of expression from the post-flight and ground control 

groups, shown in Figure 12. The DNA damage and repair expression may have been 

overshadowed by the large amounts of differential expression presented in the first three clusters 

in Table I, as supported by the large enrichment values. This suggests that much of the highly 

enriched mitochondrial mechanisms shown in Table I return to normal, less enriched levels upon 

return to Earth. DNA damage and repair pathways, however, may still be affected 10 days post-

flight. 
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2) GSEA Upregulated Hallmark Gene Sets 

 

GSEA is an important tool when studying differential expression because it analyzes an 

entire gene set, instead of only significantly expressed genes. This allows the program to see 

entire pathways or mechanisms that may have been impacted by microgravity and gives the user 

and opportunity to see the results as a whole picture, instead of gene by gene. The hallmark gene 

sets were chosen for this project because it is considered a good starting point for analyses that 

are looking for general insight into their dataset. 

 The most upregulated gene set is the oxidative phosphorylation gene set. Oxidative 

phosphorylation a process that takes place within the mitochondria and is the primary energy 

source for human cells [36]. The upregulation of this gene set aligns well with the results from 

the DAVID analysis, since the mitochondrial pathways had high enrichment scores. The second 

most upregulated gene set is the reactive oxygen species pathway. The reactive oxygen species 

pathway plays an important role in regulating various cellular processes [37]. Previous studies 

have shown that an overproduction of reactive oxygen species may promote neurogenerative 

disorders, such as Alzheimer’s disease, Huntington’s disease, and Parkinson’s disease [38]. This 

upregulation in this hallmark gene set matches extremely well with the enriched 

neurodegenerative diseases shown in the DAVID cluster 1 in Table 1. 

Upregulated genes shown in Table VI from the leading edge analysis shows upregulation 

in several genes including AGT and APOE. APOE, or Apolipoprotein E, may have isoforms that 

can affect the lipid metabolism, which can in turn affect degenerative processes [39]. This could 

also be a contributing factor for the third most upregulated hallmark gene set, the fatty acid 

metabolism, shown in Table IV. AGT, or Angiotensinogen, has been shown to increase oxidative 

stress, which is related to the oxygen reactive species, and cause neuroinflammation and 

neurodegeneration [40]. This is another example of how one of the upregulated hallmark gene 

sets, the oxygen species pathway, correlates with the leading edge analysis genes.   

 

3) GSEA Downregulated Hallmark Gene Sets 

 

The downregulated top three significant hallmark gene sets, including mitotic spindle, 

G2M checkpoint, and E2F targets are all related to the cell division cycle. This is particularly 

puzzling given that adult cardiomyocytes do not divide [5]. However, hiPSC-CMs have 

previously been shown to have had their cell cycles activated [41]. It is unclear whether the 

hiPSC-CMs used for this experiment are cell cycle activated cardiomyocytes. Further research is 

required particularly for the downregulated hallmark gene sets to reach a more definitive answer. 

 

4) Spaceflight, Cardiomyocytes, and Neurodegenerative Diseases 
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The neurodegenerative disorders presented under Cluster 2 in Table I, are not mentioned 

in Wu’s study. Neurodegenerative disorders typically include a steady loss of neurons, which can 

cause dementia, poor motor skills, among other symptoms [42]. The high enrichment scores of 

the neurodegenerative disorders indicate that exposure to microgravity may play a role in 

altering expression of genes which are related to neurodegenerative pathways in cardiac cells. 

Although many neurological disorders are not typically thought to have any association with the 

cardiovascular system, there is evidence that heart defects could aid in the progression of 

neurodegenerative diseases [43]. In particular, huntingtin, the protein responsible for 

Huntington’s disease, is expressed in both cardiovascular and nervous systems [43]. Another 

study proposes that in order to prevent microgravity-induced neurodegeneration, possible 

hypergravity therapy could be performed on individuals who are in space [44]. There has also 

been evidence from multiple studies that cardiac sympathetic nerve degenerates in the beginning 

stages of Parkinson’s disease [45], [46]. The exact correlation between cardiomyocytes and 

neurodegenerative diseases remains unclear. However, the possible connection between the two 

as shown in previous studies and this project set the groundwork for possible discoveries in the 

future. 

Previous studies have also investigated the link between neurodegenerative diseases and 

mitochondrial pathways. This relationship is relevant to this project because of the significant 

amount of expression in mitochondrial pathway genes. One study suggests that damage to the 

mitochondrial oxidative process is a major change that typically happens in the later stages of 

neurodegenerative diseases [47], Apoptosis, or programmed cell death, are controlled by 

mitochondria and often modified in neurodegenerative diseases, thus leading to 

neurodegeneration [48] 

Cardiomyocytes and neurodegenerative diseases seem to be linked through the close 

connections of the cardiovascular and nervous system. The interactions between the different 

pathways presented in the project are complex, but consistent. Cardiomyocytes in microgravity 

environments may have differential expression of certain genes and pathways, which could be 

related to accelerating the onset of some neurodegenerative diseases.  

 

V. CONCLUSION 

 

This project implemented the NASA RCP to analyze the GLDS-258 dataset, which studies 

hiPSC-CMs in a microgravity environment. There is an available Nextflow implementation of 

the RCP for Mus musculus datasets, and this project briefly explains what changes are required 

to run a Homo Sapiens dataset through the Nextflow implementation of the RPC. Analysis was 

completed on output data from running the pipeline manually since the Nextflow implementation 

is not official and still in development. The pipeline was run on the College of Engineering HPC, 

which provides sufficient resources for the computational tasks required. Most RNA-Seq 
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experiments have millions of base pairs to sequence, and therefore, will also require immense 

computing power.   

Overall, the quality of the dataset was good, except for one sample when compared to the 

others 18. Even so, the quality of the worst sample was still acceptable and therefore the 

experiment was able to move forward. The next steps of the pipeline, STAR alignment and 

RSEM quantification, also produced good quality data. Thus, we were able to confidently run 

DESeq2 analysis was able to create a matrix of differentially expressed genes ready to be 

analyzed in gene set analysis. 

Two types of gene set analysis were performed, including DAVID and GSEA. DAVID 

provided insight into the clusters of genes that were most enriched. GSEA provided information 

on upregulated and downregulated hallmark gene sets. There is a large amount of significant 

hallmark data sets in this project that have yet to be analyzed in depth and will require future 

study to fully understand. 

When comparing to a previous study completed regarding GLDS-258, this study was able to 

have similar findings regarding significant expression of mitochondrial pathways. This project 

was also able to inspect some new information not mentioned in the previous study regarding 

neurodegenerative diseases. Previous works have touched on the relationship between the 

cardiovascular system and the nervous system, but no in-depth mechanisms have yet to be 

determined when relating pathways from the two systems. This project also explores the 

relationship between regulating mitochondrial pathways, and how they may affect 

neurodegenerative diseases. Overall, there seems to be an extremely complex web of interactions 

and gene expression cascades which can affect multiple parts of the human body. 

This project was the very first Homo Sapiens dataset run through the RCP. Hopefully, this 

study can provide more insight into future analysis of Homo Sapiens datasets on the RCP, as 

well as possible links between the cardiovascular system and the nervous system. Analyzing the 

datasets from NASA GeneLab is an essential part to understanding how the human body works 

on Earth and in space. With more people traveling to space in the coming years, it is important to 

remain vigilant in trying to protect our astronauts’ safety while they are in space. This effort will 

hopefully allow for increased space travel and more questions answered about the limitations of 

the human body for years to come. 
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