
San Jose State University San Jose State University

SJSU ScholarWorks SJSU ScholarWorks

Master's Projects Master's Theses and Graduate Research

Spring 5-25-2021

Higher-order Link Prediction using Node and Subgraph Higher-order Link Prediction using Node and Subgraph

Embeddings Embeddings

Kalpnil Anjan

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_projects

 Part of the OS and Networks Commons, and the Other Computer Sciences Commons

https://scholarworks.sjsu.edu/
https://scholarworks.sjsu.edu/etd_projects
https://scholarworks.sjsu.edu/etd
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F1010&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/149?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F1010&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/152?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F1010&utm_medium=PDF&utm_campaign=PDFCoverPages

Higher-order Link Prediction using Node and Subgraph Embeddings

A Project

Presented to

The Faculty of the Department of Computer Science

San José State University

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

by

Kalpnil Anjan

May 2021

© 2021

Kalpnil Anjan

ALL RIGHTS RESERVED

The Designated Project Committee Approves the Project Titled

Higher-order Link Prediction using Node and Subgraph Embeddings

by

Kalpnil Anjan

APPROVED FOR THE DEPARTMENT OF COMPUTER SCIENCE

SAN JOSÉ STATE UNIVERSITY

May 2021

Dr. Katerina Potika Department of Computer Science

Dr. Chris Pollett Department of Computer Science

Dr. William Andreopoulos Department of Computer Science

ABSTRACT

Higher-order Link Prediction using Node and Subgraph Embeddings

by Kalpnil Anjan

Social media, academia collaborations, e-commerce websites, biological structures,

and other real-world networks are modeled as graphs to represent their entities and

relationships in an abstract way. Such graphs are becoming more complex and

informative, and by analyzing them we can solve various problems and find hidden

insights. Some applications include predicting relationships and potential links between

nodes, classifying nodes, and finding the most influential nodes in the graph, etc.

A large amount of research is being done in the field of predicting links between

two nodes. However, predicting a future relationship among three or more nodes in a

graph is a more recent active research topic. Relationships that involve more than

two nodes is called a higher-order link. One of the approaches, that we follow in this

work, is that of mapping the graph entities, such as nodes, edges, and triangles, into a

low dimensional space by generating embeddings vectors. In that way, we work with

vectors and reduce the higher-order link prediction to a classification problem.

The primary objective of this project is to utilize the GloVeNoR node embedding

technique, as well as Simplex2Vec triangle embedding technique, to perform higher-

order link prediction, i.e., to predict the possibility of interaction. Additionally,

we evaluate the predictions generated by our methods and compare them with

existing higher-order link prediction approaches using benchmark datasets. Based

on our experiments, we show that the triangle embeddings generated using the

techniques discussed in the report increase the average performance over the five

datasets evaluated using the AUC-PR relative to random baseline as a metric for

higher-order link prediction by 48%.

ACKNOWLEDGMENTS

I am deeply grateful to my project advisor, Dr. Katerina Potika for her valuable

inputs and guidance throughout every stage of my master’s project. Her immense

expertise in the domain of graphs and social network gave the impetus for better

understanding of the related topics and shaping my research approach. I appreciate

her constant encouragement and efforts to steer me in the most efficient direction.

I would also like to extend my sincerest gratitude towards Dr. Chris Pollett and

Dr. William Andreopoulos, for being a part of my defense committee. I would like to

thank them for their time and valuable feedback.

Lastly, I am humbled to acknowledge the unwavering faith and support of my

family and friends. Their encouragement when the going got tough was duly noted

and much appreciated.

v

TABLE OF CONTENTS

CHAPTER

1 Introduction . 1

1.1 Node Representation . 1

1.2 Link Prediction . 3

1.3 Motivation and Problem Statement 4

2 Terminology . 6

3 Related Work . 12

3.1 Global Vectors for Node Representations (GloVeNoR) 12

3.2 Simplex2Vec embeddings for community detection 15

3.3 Higher-order Link Prediction using Triangle Embeddings 17

4 Methodology . 21

4.1 Higher-order link prediction in temporal graphs 21

4.2 Workflow for higher-order link prediction 22

4.3 Data Preprocessing . 24

4.4 Enumerating Triangles . 24

4.5 Embedding Algorithms . 25

4.5.1 Approach 1: Node Embedding using GloVeNoR 26

4.5.2 Approach 2: Subgraph Embedding using Simplex2Vec . . . 26

4.6 Triangle Closure Prediction . 32

5 Datasets and Experiments . 34

5.1 Datasets . 34

vi

vii

5.2 Experiments . 35

5.3 Evaluation Metric . 37

5.4 Experimental Setup . 37

6 Inference and Results . 39

6.1 Results for Approach 1 (Node Embedding) 39

6.2 Results for Approach 2 (Subgraph Embedding) 42

6.3 Results using different binary classifiers 44

6.4 Comparison with existing results 47

7 Conclusion and Future Work . 49

7.1 Conclusion . 49

7.2 Future Work . 50

LIST OF REFERENCES . 51

LIST OF TABLES

1 Information about datasets [1] [2] 36

2 Parameters for experiments using Approach 1 (refer 4.5.1) 36

3 Parameters for experiments using Approach 2 (refer 4.5.2) 37

4 Best results for prediction using Approach 1 (GloVeNoR Node
Embedding) . 40

5 Results (AUC-PR relative to random baseline) for different
embedding vector sizes using Approach 1 (GloVeNoR Node
Embedding) . 40

6 Results (AUC-PR relative to random baseline) for different number
of training iterations using Approach 1 (GloVeNoR Node
Embedding) . 41

7 Results (AUC-PR relative to random baseline) for different triangle
embedding operators using Approach 1 (GloVeNoR Node
Embedding) . 42

8 Best results for prediction using Approach 2 (Simplex2Vec
subgraph Embedding) . 42

9 Results (AUC-PR relative to random baseline) for different
embedding vector sizes using Approach 2 (Simplex2Vec subgraph
Embedding) . 43

10 Results (AUC-PR relative to random baseline) for different number
of random walks using Approach 2 (Simplex2Vec subgraph
Embedding) . 44

11 Results (AUC-PR relative to random baseline) for different lengths
of random walks using Approach 2 (Simplex2Vec subgraph
Embedding) . 44

viii

LIST OF FIGURES

1 Sample Undirected Graph . 7

2 Temporal Graph [1] [2] . 8

3 Simplices of different orders and simplicial complex [3] 9

4 Embedding nodes of a graph [4] 10

5 Sample Random Walk on a graph 10

6 A Simplicial Complex and it’s corresponding Hasse diagram [5] . 11

7 Node Embedding using node2vec [6] 15

8 Implementation Workflow . 23

9 Triadic closure over time [2] . 26

10 Approach 1: Generating Triangle Embeddings using GloVeNoR [2] 27

11 Approach 2: Simplex2Vec algorithm work flow [5] 29

12 Approach 2: Random Walks on Simplicial Complexes [5] 31

13 Comparison of the best results obtained using Approach 1 (Node
Embedding) with the results of node2vec embedding algorithm in [2] 45

14 Comparison of the best results obtained using Approach 2
(Subgraph Embedding) with the results of graph neural networks in
[2] . 45

15 Comparison of the best results obtained using Approach 2
(Subgraph Embedding) with the results of graph2vec and graph
neural networks in [2] . 46

16 Comparison of the performance of different binary classifiers . . . 46

ix

CHAPTER 1

Introduction

In computer science, the graph data structure is used to illustrate the relationships

between different data items or entities. This property of providing information about

relationships between different objects has enabled graphs to be widely used in different

fields to visualize data and find insights from the data. Graphs are now being used in

fields like social networks, academia, chemistry, e-commerce websites, etc. With huge

chunks of data being generated in these fields, the graphs have become more complex

as well as more informative. Predicting relationships and potential links between

nodes, classifying the similar nodes, finding the most influential nodes in the graph,

etc. are some of the applications that have emerged with the rise in studying graphs.

With an increase in the volume of data being generated due to businesses shifting

to the digital environment, there is an ever-increasing demand to use the data to

uncover vital insights. This increase in data has made the graphs more complex and

informative, prompting businesses to use the graph data to find insights that can be

used to ameliorate business as well as find related entities. Since most of the graphs

represent data where there are multi-node interactions, higher-order link prediction

could be used to uncover these interactions that could be used to enhance network

analysis. This report discusses the implementation of higher-order link prediction

on data from a number of different domains using node embedding and triangle

embedding approaches.

1.1 Node Representation

Graphs, in their pictorial form, provide useful insights into the network structure.

However, applications like friend recommendation in social media, link prediction, etc.,

require machine learning algorithms to be applied to the graph data. To use machine

learning algorithms on graphs, the graph data needs to be encoded or represented in a

1

way that can be used the machine learning algorithms [7]. Vectors or numerical data

are the most popular data type used in implementing numerous machine learning

techniques [8]. Thus, to use machine learning algorithms on graph data, mapping

graph data into vectors is being done extensively researched topic [8]. This technique

to compute a corresponding low-dimensional vector using the graph data and represent

the graph nodes or higher-order structures using vectors is known as representation

learning [8].

To represent the nodes of a graph in terms of vectors, features of the nodes and

their interactions with the neighboring nodes need to be extracted. Node embedding

is a technique that can be used to present the nodes of a graph in lower-dimensional

vectors of different sizes called feature vectors [9]. Using node embedding, the features

of the nodes in a graph are extracted and the node is mapped to a lower-dimensional

space such that the nodes retain their similarity from the original network in the

embedding space. Node embedding typically involves three major stages: defining

an encoder function, defining a decoder function, and optimizing the encoder-decoder

function [10]. The encoder function is used to map the nodes in a graph into a

lower-dimensional vector that represents the node in the embedding space. The

decoder function is used to reconstruct or decode the graph statistics of the nodes

from the node embedding generated by the encoder function [10]. Optimizing the

encoder-decoder function involves reducing the loss function and ensuring that the

encoder and decoder function can accurately represent the node.

The accuracy of the tasks like node classification, link prediction, and other

applications on graphs, involving the use of machine learning algorithms depends

on the quality of features extracted using the node embedding technique. Thus, to

ensure these tasks achieve high accuracy, selecting the most suitable node embedding

technique based on the desired features is important. The node embedding techniques

2

can be classified into different types based on the features that are extracted as well

as the graph structure (node or edge or subgraph) they represent as vectors. Deep

Walk [11], node2vec [4], global vectors for node representations [9], [12] are few of the

famous node embedding techniques. Techniques like node2vec [4] and global vectors

for node representations [9], [12] are derived from word embedding techniques used

for natural language processing.

1.2 Link Prediction

Link prediction is a well-known and significant area of research that has applica-

tions in numerous fields where data can be represented using graphs. Link prediction

can be defined as the technique of predicting future relationships in a graph, i.e.,

predicting the links that will be formed in a graph in the future. Friend recom-

mendation in social networks, product recommendation in e-commerce applications,

interdisciplinary collaboration in academia, etc., are some of the applications of link

prediction techniques [13]. With the advancement of technology in various fields

where data can be represented as graphs, link prediction is now being extensively used

to enhance the existing systems and utilize the data being generated.

A link prediction problem can be defined as, given a graph network G consisting

of nodes representing entities and links representing the relationships between the

entities, which nodes are going to be most likely connected in the near future i.e., the

nodes that are not connected right now [14]. Link prediction can be classified based

on the number of nodes involved in the link prediction. Link prediction involving two

nodes in a graph is known as pairwise link prediction, while those involving more than

two nodes are known as higher-order link prediction. Pairwise link prediction has

been extensively researched since it’s computationally less expensive for large datasets

and does not require temporal as well as structural information of the entire graph [1].

3

Though pair-wise link prediction solves the rudimentary problem of predicting

links between two nodes, there are relationships in a network that would involve

interactions between higher-order structures in a graph. Multiple people interacting in

social media, different concepts being integrated into a single research topic, multiple

products bought together from an e-commerce website, etc. are some of the examples

where multiple entities represented as nodes in a graph interact together [1]. The

higher-order interactions in a graph cannot be predicted by visualizing the graph

structure. It requires temporal data i.e., the graph data at a particular time instance,

and is not necessarily used while performing pair-wise link prediction or in many cases,

eliminated from the graph if the graph is not constructed over time [1]. Due to the

lack of temporal graph data, research on higher-order link prediction has been limited

to the few available datasets [1].

1.3 Motivation and Problem Statement

As discussed in the previous section, link prediction is in increasing demand for

the graphs used to represent data in domains like academic collaborations, social

media, e-commerce applications, chemistry involving drugs and chemical reactions,

etc. However, interactions in all of the domains are not limited to two entities, thus

accurate and efficient higher-order link prediction algorithms are required to predict

potential interactions involving three or more entities. Higher-order link prediction

has been a budding research topic and yet to be explored vastly.

One of the major reasons for research in higher-order link prediction being sparse

is due to the fact that finding such interactions is computationally expensive. Thus,

for the scope of this project, the multi-node interactions are limited to three nodes,

i.e. interactions forming a closed triangle. Expanding the pairwise link prediction

for predicting relationships among three nodes would ensure that the technique is

4

computationally feasible, as well as useful to experiment with higher-order prediction.

This project focuses on implementing and modifying the existing node embedding

technique i.e., Global Vectors for Node Representation (GloVeNoR) [9] and a subgraph

embedding technique, Simplex2Vec [5] for predicting the probability of higher-order

interactions in the future in a temporal graph.

The project report is organized into seven chapters. Chapter 2 describes the

important terminologies related to graphs and higher-order link prediction. Chapter 3

discusses the existing node embedding, subgraph embedding, and link prediction

techniques that are used as a reference for the technique proposed in this project.

Chapter 4 provides details about the proposed approach and the algorithms used for

project implementation. Chapter 5 enlists the datasets used for the project and the

experiments performed for the project, along with the evaluation metrics. Chapter 6

presents the results for the experiments carried out in the project and a comparative

study with the results from past research projects. Chapter 7 concludes the project

and mentions the future potential improvements to the proposed approach.

5

CHAPTER 2

Terminology

This chapter provides an overview of the terminologies that are used throughout

the report and for the project.

• Graph: A graph can be defined as a non-linear data structure representing the

entities as a set of vertices or nodes and the relationships between the entities

as links between the nodes called edges [15]. Graphs are used to represent

many real-world networks like social media networks, academic networks of

collaborators, protein interactions in chemistry, etc.

Figure 1 below shows the graph structure and its corresponding adjacency

matrix and adjacency list representation. The number of rows and columns of

an adjacency matrix is the same as the number of nodes present in the graph.

A link between the 𝑖𝑡ℎ node and the 𝑗𝑡ℎ node is represented by a value (in this

case is 1) in the 𝑖𝑡ℎ row and 𝑗𝑡ℎ column as well as the 𝑗𝑡ℎ row and 𝑖𝑡ℎ column of

the matrix if the direction of link is not specified. In the adjacency list, each

node in the graph has a separate list that specifies the nodes it is connected

with. The adjacency matrix for the graph depicted in figure 1 is:⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 1 0 1 1

0 0 0 0 1 1

1 0 0 1 0 0

0 0 1 0 0 0

1 1 0 0 0 1

1 1 0 0 1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
The adjacency list of the graph can be represented as:

0 : 2 −→ 4 −→ 5

1 : 4 −→ 5

6

2 : 0 −→ 3

3 : 2

4 : 0 −→ 1 −→ 5

5 : 0 −→ 1 −→ 4

Figure 1: Sample Undirected Graph

• Temporal Graphs: Temporal graphs can be defined as the graphs that are

not complete at any given time instance and the relationships and entities in

the graphs evolve i.e. new relationships or nodes being added as time progresses

[16]. In temporal graphs, new nodes and edges can be added and the graph is

always evolving. Temporal graphs can be used to depict dynamic systems where

the data evolves or changes over a course of time. Figure 2 depict a temporal

graph where the graph structure evolves over time instances 𝑡1, 𝑡2 . . . 𝑡𝑛.

• Higher-order Structure in Graphs: Interaction between three or more nodes

in a graph can be visualized as a sub-graph of the original graph and is known

as a higher-order structure [17]. In figure 2, the time instances 𝑡1, 𝑡2, 𝑡5, and, 𝑡8

represent higher-order structures since there are three or more nodes interacting

7

Figure 2: Temporal Graph [1] [2]

with each other at a single instance.

• Simplex: In terms of a graph, a simplex can be defined as a set of nodes

interacting with each other. For temporal graphs, a set of nodes appearing

together at a time instance can be considered a simplex. In figure 2, the nodes

1, 2, 3, 4 appearing at time instance 𝑡1 form a 4-node simplex.

• Open Triangle: For temporal graphs, an open triangle can be defined as a

sub-graph of three nodes where every pair of the three nodes have co-appeared

at a single time instance in a simplex but none of the time instances contain all

the three nodes together [1]. In figure 2, the nodes 1, 5, 8 forms an open triangle

since the pairs of nodes appear in the time instances 𝑡2, 𝑡5 and 𝑡7, while none of

the time instances have all the three nodes.

• Closed Triangle: A closed triangle in temporal graphs is a higher-order

structure of three nodes where all the three nodes appear together in at least

one of the simplices [1]. In figure 2, the nodes 1, 3, 5 form a closed triangle since

all the three nodes appear together in the time instance 𝑡2.

• Simplicial Closure: Simplicial closure can be defined as a time instance where

a subset of nodes in the graph, co-appear together thus forming a closed simplex.

8

In figure 2, a simplicial closure event occurs for nodes 1, 2, 6 at time instance 𝑡8

since all the nodes appear together.

• Simplicial Complex: A simplicial complex can be defined as a type of graph

where the nodes of the graph are replaced by higher-order simplices i.e. edges,

triangles, tetrahedrons, etc. If simplicial complex (X) consists of multiple higher-

order simplices 𝑆1, 𝑆2, 𝑆3...𝑆𝑛 then each of the subsets of the simplices must also

be a part of the simplicial complex [18]. In simple terms, a simplicial complex is

a graph with higher-order simplex representing the node. Figure 3 represents a

simplicial complex as well as the different simplices that are used to form the

simplicial complex.

Figure 3: Simplices of different orders and simplicial complex [3]

• Node Embedding: Node embedding consists of a vector that is used to

represent the node of a graph in a lower-dimensional space. Figure 4 represents

a high-level diagram depicting node embedding in a graph.

• Random Walk: A random walk can be defined as a finite sequence of nodes

that is formed by selected a random node in the graph and traversing the

neighbors of the node up to a finite length [19]. Random walks are used to

extract information from the network about a node and its neighbors. Figure 5

shows a sample random walk on the graph starting from node 1.

• Hasse Diagram: A Hasse diagram can be defined as a directed acyclic graph

9

Figure 4: Embedding nodes of a graph [4]

Figure 5: Sample Random Walk on a graph

representing the ordering relationships between the elements of a partial-ordered

set. The Hasse Diagram will contain an edge between two elements (X and Y)

directed from X to Y if x is a subset of Y and there is no other path from X

to Y [20], [21]. For the two elements i.e., X and Y, the edge would be directed

upward from X to Y.

For simplicial complexes, the Hasse Diagram is used to represent the ordering

relationships between the simplices of different orders. The simplices in a

simplicial complex are represented as nodes in the Hasse Diagram [21]. The

Hasse diagram will have an edge from the (k-1) simplex to k-simplex if the (k-1)

10

Figure 6: A Simplicial Complex and it’s corresponding Hasse diagram [5]

simplex is a subset of the k-simplex. The figure 6 shows a Hasse diagram created

for a graph (simplicial complex) created using simplices.

11

CHAPTER 3

Related Work

This chapter describes the previous research that is done for generating node

embeddings and triangle embeddings for a graph as well as the technique used for

higher-order link prediction. Global vectors for node representation [9] presents an

approach for calculating node embeddings while preserving the global context of a

node. Simplex2Vec [5] proposes a technique for generating embeddings for simplices or

subgraphs using the word2vec algorithm. The section further discusses the technique

used for higher-order link prediction in [2].

3.1 Global Vectors for Node Representations (GloVeNoR)

Global vectors for node representation (GloVeNoR) proposes a node embedding

technique that can be used for generating embeddings for the nodes in a graph using

the local as well as the global context of the node. [9]. The intuition behind GloVeNoR

[2] for generating node embeddings, is based on the technique called Global Vectors

for word representations (GloVe) [22] that is used for generating vector embeddings

for the words in a corpus. The GloVe word embedding technique was developed for

natural language processing (NLP) to represent words in the form of vectors and find

similar words [9], [22]. The GloVe algorithm uses an unsupervised regression model

that incorporates both the local context well as the global context similarity of the

words for computing their corresponding embeddings.

GloVe uses word-to-word co-occurrence statistics that could reveal the similarities

between words appearing throughout the corpus since it considers the global context

using the context window [22]. Based on this intuition, the authors of GloVeNoR tried

to integrate the technique in graphs to generating embeddings for nodes that would

have similar characteristics in the graph. For GloVeNoR, the corpus for calculating

the co-occurrence statistics as well as for incorporating global context is generating

12

using second-order random walks on the graph.

GloVe [22] is an unsupervised regression model that uses the local context as

well as the global context window similarity for computing word embeddings, [9].

The intuition behind this technique is that it uses the global co-occurrence matrix

to extract information about word similarities. GloVeNoR uses the same embedding

technique for community detection problems since GloVe performs well for tasks that

involve finding word similarities since communities in the graph are viewed as a group

of nodes that are semantically similar.

The corpus for GloVeNoR is generated using second-order random walks on

the graph. The author state that second-order random walks provide flexibility of

neighborhood exploration and the random walks can be sampled between breadth-first

search (BFS) and depth-first search (DFS) by setting the value of their parameters

i.e. p and q as 1 [9]. The cost function used by the model is a function of weighted

least squares and for dealing with outliers and co-occurrences that are sparse, the

model uses a weight function [9]. The objective function for the model can be stated

mathematically as:

𝐽 =
𝑉∑︁

𝑖,𝑗=1

𝑓(𝑋𝑖𝑗)(𝑤
𝑇
𝑖 · 𝑤𝑗 + 𝑏𝑖 + 𝑏𝑗 − 𝑙𝑜𝑔𝑋𝑖𝑗)

2 (1)

where:

𝑖 = main word

𝑗 = context word

𝑤𝑖 = main word vector

𝑤𝑗 = context word vector

𝑋 = co-occurrence matrix

𝑏𝑖, 𝑏𝑗 = bias vectors

𝑉 = vocabulary size i.e. corpus

13

𝑓(𝑋𝑖𝑗) = Weight function

Algorithm 4 describes the approach used for calculating node embeddings using

global vectors. Since GloVe uses a corpus for calculating the local and global context

statistics, a similar corpus for the graph is created using second-order random walks or

biased random walks. The second-order random walks use the in-out hyper-parameter

(p) and return hyper-parameter (q). The values of these hyper-parameters are used

to sample the random walks and perform BFS or DFS based on their values. If the

value of the return parameter i.e. q is low then the random walk performs a BFS-like

walk and if the value of the in-out parameter i.e. p is low, then it performs a DFS

like walk.

The corpus created using the random walks is then used to compute the co-

occurrence matrix of size |N| x |N| where N is the number of nodes in the graph

[9]. The co-occurrence matrix values for two nodes i and j i.e. the (𝑖, 𝑗)𝑡ℎ entry is

calculated by iterating over the corpus for a window size of w and the value is the

inverse of the distance between the two nodes i and j [9]. Thus, the value in the

co-occurrence matrix for two nodes x and y would be higher if the two nodes appear

together with a large number of times in the corpus in the given window size.

Using the co-occurrence matrix, the GloVe [22] model is trained to generate

embeddings for the nodes in the graph. Initially, the node vector is initialized with

random vectors. The object function in equation 1 is optimized using the gradient

descent while generating the node embeddings of size ’d’ in the GloVe algorithm.

The model returns the node list as output with the calculated embeddings for all the

nodes in the corpus. The embeddings are then used for detecting communities in the

graph using the K-means clustering algorithm. Based on the results mentioned in [9],

GloVeNoR algorithm outperforms node2vec [4] and DeepWalk [11] node embedding

14

Figure 7: Node Embedding using node2vec [6]

algorithms in calculating the modularity scores.

3.2 Simplex2Vec embeddings for community detection

Simplex2Vec proposes an advanced technique for generating embeddings for the

nodes as well as the higher-order structures in a graph while capturing the higher-order

interactions from the graph [5]. The resultant embeddings are used as input for the

clustering algorithms to perform community detection in the graph. Simplex2Vec

incorporates Hasse Diagrams [21] for representing the simplicial complex structure of

a graph. The Hasse diagram integrates the simplices of different order into a directed

acyclic graph (DAG) structure to preserve the topological structure of the graph.

Using the Hasse diagram of a simplicial complex as the based, the algorithm

performs random walks on the Hasse Diagram i.e., the directed acyclic graph and

ignores the directions for more flexibility [5]. The results of the random walks act

as the corpus for the word2vec model that produces the resultant embeddings. The

node embeddings are used as the input data for hierarchical clustering to find the

communities in the graph. One major differentiating factor between the existing node

embeddings algorithms like node2vec [4] and DeepWalk [11] and Simplex2Vec is, the

former algorithms perform random walks on the graph structure while Simplex2Vec

performs random walks on the Hasse Diagram thus integrating the information about

15

the higher-order interactions of the nodes into the walks.

Similar to the previous embedding algorithms like node2vec, DeepWalk, and

GloVeNoR, Simplex2Vec uses the word2vec algorithm for computing the embeddings.

Since the word2vec algorithm requires a corpus representing the elements for whom the

embedding is calculated, Simplex2Vec also uses random walks for creating the corpus.

For generating embeddings of higher-order structures in the simplicial complex, the

Simplex2Vec algorithm performs random walks on the Hasse diagram of the simplicial

complex. Since the random walks are performed on the Hasse diagram, the symbolic

sequences incorporate the higher-order strictures as well as preserve the higher-order

interactions of the simplicial complex [5]. Simplex2vec limits the order of the simplicial

complex to 3 nodes i.e. 2-simplex. Figure 12 depicts a sample random walk on the

Hasse diagram.

Simplex2Vec performs experiments using both biased as well as unbiased random

walks [5]. For a biased random walk, the random walk selects the next node based on

the hyper-parameters and the hyper-parameters ensure that for each time step the

selected simplex is of a higher-order than the current node. As illustrated in figure 12,

the biased random walk uses the edge weight as the hyper-parameter for selected

the next node and the value would be higher for the simplices above the current

simplex order. The biased random walk ensures that all the higher-order interactions

of the simplicial complex are captured in each of the symbolic sequences [5]. Since

the symbolic sequences preserve the higher-order structures, the word2vec model also

computes the embeddings for the simplices of higher-order. The resultant embeddings

from the word2vec model are used for finding communities in the simplicial complex

using the clustering algorithms [5].

Figure 11 summarizes the workflow of the Simplex2Vec algorithm. From the input

graph or list of simplices, the algorithm first creates a simplicial complex structure.

16

The simplicial complex structure is used to compute the Hasse diagram [21] where

the nodes comprise of the simplices and the edges denote the interaction between a

lower order simplex to a higher-order simplex. The green dotted lines in figure 11(b)

represent a sample biased random walk performed on the Hasse diagram. The simplices

in the random walk are encoded into symbols to generate a symbolic sequence where

each symbol is mapped to a simplex in the Hasse diagram. The symbolic sequences

are used as a corpus for the word2vec model [5] that computes the embeddings for

the simplices.

Simplex2Vec performs community detection experiments on the datasets con-

sisting of face-to-face interactions between teachers and students in high school and

primary school [5]. Based on the graphs and the results obtained on these experi-

ments, the authors infer that inclusion of the higher-order structures in the symbolic

sequences for generating the embeddings has a strong influence on differentiating the

communities in the two datasets [5]. Thus, incorporating higher-order interactions in

the corpus for the word2vec model would produce more accurate embeddings for the

simplices.

3.3 Higher-order Link Prediction using Triangle Embeddings

Higher-order Link Prediction using triangle embeddings [2], presents two new

approaches for computing triangle embeddings i.e. interactions between three nodes

in a graph and uses the embeddings to predict the probability of a set of three nodes

would appear together in a simplex in the future. The authors propose to use node2vec

[4] embedding algorithm with different mathematical operators to generate triangle

embeddings for the nodes comprising a triangle. The second approach comprises

computing the embeddings for three nodes in a triangle using the 1-hop subgraphs and

embedding the subgraphs using the graph2vec algorithm and graph neural networks

17

[2]. The input data used for generating the embeddings is in the form of timestamped

simplices i.e. a set consisting of the node interacting together at a particular time

instance. The simplices are represented as 𝑆𝑖 = {𝑛1, 𝑛2, 𝑛3, ..., 𝑛𝑗} where 𝑆𝑖 represents

the set of nodes interacting in the 𝑖𝑡ℎ simplex.

In [2], the authors define closed triangle as a set of three nodes that appear

together in a simplex and open triangle for a set of three nodes that appear in pairs

in different simplices but never appear in a simplex together. The implementation of

both the embedding approaches involves the following three steps: the first step is to

list the open and close triangles in the training and test data, the second step involves

computing the node and triangle embeddings and the third step predicts the closure

of open triangles in the test dataset [2]. The paper limits the higher-order structures

up to three nodes [2].

For the approach using the node2vec [4], the link prediction algorithm first

computes the node embeddings for each node in the graph. Using the node embeddings,

the triangle embeddings for a set of three nodes in the training and test data is computed

using mathematical operators like average, Hadamard, weighted l1 and weighted l2.

The resultant triangle embeddings act as input for the binary classifier i.e. logistic

regression model to train the model using embeddings for training data and predict

the probability of triangle closure using the embeddings of the test data [2]. The

node2vec algorithm using the graph structure as input for generating random walks

that acts as the corpus for the skip-gram model. Figure 7 illustrates the workflow of

the node2vec algorithm [4].

For the approach using graph2vec and graph neural networks for computing the

triangle embeddings for a set of three nodes directly, the first step is to extract the

one-hop subgraphs for the nodes present in the triangle. For extracting the one-hop

subgraph, the immediate neighbors of the three nodes in the triangle are first visited

18

and a fixed number of these neighboring nodes are then randomly extracted, forming

a subgraph with the nodes of the triangle [2]. If the number of neighboring nodes

exceeds the set limit, then neighboring nodes are randomly sampled and only nodes

up to the limit are selected for the subgraph. The limit for a fixed number of nodes is

kept to ensure that the graph does not exceed beyond a limit since the nodes could

contain a large number of neighboring nodes.

The one-hop subgraphs are extracted for each triangle in the training and test

data and act as input for the graph2vec algorithm. The graph2vec algorithm [23]

uses the back-propagation algorithm with stochastic gradient descent to compute the

triangle embeddings using their corresponding one-hop subgraphs [23]. The output of

the graph2vec algorithm comprises a list of vector embeddings for each triangle in the

training and test data. Using the triangle embeddings, the binary classifier predicts

the probability of triangle closure in the future.

For the approach using graph neural networks, the paper makes use of the Deep

Graph Convolutional Neural Network (DGCNN) since it generates the graph objects

for the triangle and these graph objects are then used to predict the probability of

triangle closures [2]. In DGCNN, the extracted one-hop subgraphs are first labeled to

separate the nodes in the triangle from their neighbors. Using the labeled subgraphs,

the DGCNN model is trained to obtain the graph objects for training data and test

data. Using the graph objects, a graph neural network can be trained using the

training graph objects for predicting the probability of triangle closure in the future

[2].

The differentiating factor between the node embedding technique used in [2] and

the node embedding technique i.e. GloVeNoR [9] that is used in this project is: the

node2vec algorithm [4] does not consider the global context of the node in the graph

i.e. the algorithm generates embeddings for the nodes based on their local context and

19

interactions with the neighboring nodes only. Thus, the project tries to understand

the impact the global context of a node has on higher-order link prediction.

For subgraph embedding using the graph2vec [23] and the approach used in this

project i.e. Simplex2Vec, the differentiating factor [5] is that Simplex2Vec generates

the embeddings by taking into account the higher-order interactions of the nodes in

the simplicial complex and integrating the higher-order structures in the embedding

algorithm corpus. One-hop subgraphs on the other hand only carry information about

the local structure and ignore the interaction with higher-order structures in the graph.

20

CHAPTER 4

Methodology

This chapter describes in detail the problem under consideration and presents

a formal definition of the problem. The further sections provide details about the

implementation workflow and the later sections discuss in detail each step of the

implementation plan along with the respective pseudo-code.

4.1 Higher-order link prediction in temporal graphs

Given a dataset with timestamped simplices representing a graph G = {𝑆𝑖, 𝑡𝑖}

where 𝑆𝑖 represents the simplex observed at time 𝑡𝑖. 𝑆𝑖 is a set consisting of all the nodes

(𝑛1, 𝑛2, 𝑛3, ...𝑛𝑗) interacting with each other in the 𝑖𝑡ℎ simplex i.e. 𝑆𝑖 = {𝑛1, 𝑛2, ...𝑛𝑗}

[2]. This represents a temporal graph that grows over time and captures all of the

higher-order interactions. As described in Chapter 2, higher-order link prediction

involves predicting the occurrence of three or more nodes simultaneously in a simplex.

For the scope of this project, the problem is narrowed down to predicting the occurrence

of three nodes together in a simplex. This subset of three nodes can be referred to

as an open triangle if the three nodes do not appear together in a simplex but occur

in pairs in different simplices. When the group of three nodes appears together in a

simplex, the subset can be referred to as closed triangle since the three nodes interact

with each other at the same time.

The problem can be stated as given a graph G {𝑆𝑖, 𝑡𝑖} with timestamped simplices,

predict the occurrence of triangle closure i.e., the probability of given three nodes

appearing together in a simplex in the future, and label the triangle as a closed triangle

[2]. The implementation is split into four phases - process the input dataset and

extract graph information, enumerate the open triangles and close triangles for all the

timestamped simplices and split the data for training and testing, generate embeddings

for the nodes or the triangle i.e three nodes together, train a binary classification

21

model to predict the probability of triangle closure.

4.2 Workflow for higher-order link prediction

The implementation workflow for the project comprises multiple stages from data

cleansing and preprocessing to generating embeddings and predicting triadic closure.

Figure 8 depicts a high-level implementation workflow followed while developing the

algorithm. The various modules of the workflow are:

1. The first module involves data preprocessing, which accepts a graph dataset

consisting of timestamped simplices as input and constructs the graph using

the simplices and extract the node dictionary that maps the nodes with their

corresponding labels.

2. The second module aims at generating the labeled data that would be used by

the subsequent modules for generating embeddings. This module splits the data

for training and testing and enumerates the open and closed triangles i.e. set of

three nodes appearing together in a simplex or not.

3. The node embedding approach (Approach 1) uses GloVeNoR [9] module to

utilize the graph generated in the first module to generate random walks for

each node and use the extracted random walks data as a corpus for generating

node embeddings using the GloVe algorithm [22]. Further, the individual node

embeddings are combined for creating triangle embeddings, using the embedding

operators like Hadamard, Average, Weighted L1 distance, Weighted L2 distance.

4. The subgraph embedding approach (Approach 2) uses the Simplex2Vec algo-

rithm [5] that uses the constructed graph to create a Hasse diagram [20] from

the simplicial structure of the graph. The algorithm uses the Hasse Diagram

to extract random walks for simplices from 0𝑡𝑜2𝑛𝑑 order i.e. 2-simplex and

22

using the random walks as corpus, generates embeddings for all of the simplices

present in the Hasse diagram.

5. The final step in the implementation is to train the binary classifies and use it

to predict the probability of triangle closure for open triangles in the test data.

A logistic regression model is trained using the training data for the current

implementation.

Figure 8: Implementation Workflow

23

4.3 Data Preprocessing

The graph information for each dataset used in the project consists of three files

i.e. timestamp of the simplices, the number of vertices/nodes in each simplex, and

the labels of the nodes present in a simplex. To represent, the given information into

a graph, the data preprocessing stage iterates over the list of simplices, and for all the

pairs of nodes in a simplex, add the nodes to the graph and assigns an edge to the

pair of nodes.

The data preprocessing stage generates the graph for the dataset using the

information from the simplices. For the graph created using the simplices, it also

creates a dictionary that maps the node to its corresponding label. Algorithm 1

describes the implementation used to build the graph using the input dataset. The

node dictionary can be extracted from the graph object. The graph object is then

exported into a file.

4.4 Enumerating Triangles

Higher-order link prediction for three nodes involves predicting whether a set of

three nodes would appear together in a 2-simplex i.e. triangle [1]. Since the datasets

contain information of the simplices in a graph occurring at a given time, the data

can be used to label the open triangles and the closed triangles i.e. the triangles that

appear together in a simplex. Figure 9 depicts the triangle of closure of three nodes in

a graph. Initially, none of the nodes in the figure are connected. With the occurrence

of timestamped simplex 𝑡1, the nodes 1, 2, 3, 6 of the graph would have an edge

between them since they interact in the simplex.

After the timestamped simplex 𝑡3, the nodes 1, 2, 4 of the graph form a triangle

where all the edges are connected, however, since the three have never appeared

together in a simplex, this triangle is labeled as an open triangle. After the simplex 𝑡4,

24

Algorithm 1: Generate graph and node dictionary
Function : build_graph (simplices, number_of_vertices)
Input : simplices : List of nodes present in each simplex

number_of_vertices : List containing the number of vertices
present in each simplex

Output : graph: A graph object consisting of the nodes and edges
represented by the simplices

// Create an empty graph object
1 graph_object: New Graph Object;
2 index = 0;
// Iterate over each simplex

3 for current_number_of_vertices in number_of_vertices do
// Fetch nodes of the current simplex

4 𝑛𝑜𝑑𝑒𝑠← 𝑠𝑖𝑚𝑝𝑙𝑖𝑐𝑒𝑠[𝑖𝑛𝑑𝑒𝑥 : 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑛𝑢𝑚𝑏𝑒𝑟_𝑜𝑓_𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠];
5 𝑖𝑛𝑑𝑒𝑥 = 𝑖𝑛𝑑𝑒𝑥+ 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑛𝑢𝑚𝑏𝑒𝑟_𝑜𝑓_𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠;

// Add the nodes from current simplex to the graph
6 𝑔𝑟𝑎𝑝ℎ← 𝑎𝑑𝑑_𝑛𝑜𝑑𝑒𝑠(𝑛𝑜𝑑𝑒𝑠);

// Iterate over all pairs of nodes in the current set and
add the edge in the graph

7 foreach combination in current_list_of_vertices do
8 𝑔𝑟𝑎𝑝ℎ← 𝑎𝑑𝑑_𝑒𝑑𝑔𝑒(𝑛𝑜𝑑𝑒_1, 𝑛𝑜𝑑𝑒_2);
9 end

10 end
11 return graph;

the three nodes 1, 2, 4 appeared together in the current simplex and since all the edges

between them are connected, the triangle can now be labeled as a closed triangle. As

seen in the figure, the datasets used for experiments consist of such triangles that are

open initially and are eventually closed. This module focuses on finding such triangles

in the dataset and splitting the dataset into training data and test data wherein the

open and closed triangles are labeled as 0 (open) and 1 (closed).

4.5 Embedding Algorithms

The embedding algorithms used for generating vectors represent the nodes or the

higher-order structures in the graph in a lower-dimensional space. These embedding

vectors can be used for applying machine learning algorithms to study graph data.

25

Figure 9: Triadic closure over time [2]

The GloVeNoR algorithm (Approach 1) [9] generates the embeddings for each node

in the graph and the Simplex2Vec algorithm (Approach 2) [5] generates embeddings

for nodes, pair of nodes, and the triangles in the graph.

4.5.1 Approach 1: Node Embedding using GloVeNoR

The global vectors for node representation (GloVeNoR) [9] algorithm incorporates

the local as well as the global context of a node for generating node embeddings. The

graph generated in algorithm 1 is used as an input for the algorithm 4 to generate the

node embeddings. Using the node embeddings of the individual nodes, the triangles

embeddings for each triangle in the dataset are calculated using the different operators

like average, Hadamard, weighted L1, weighted L2. The algorithm 5 is used for

calculating the triangle embeddings for all the triangles using their respective node

embeddings. Figure 10 depicts the process followed while calculating the triangle

embeddings using the node embeddings of all the nodes in the triangle.

4.5.2 Approach 2: Subgraph Embedding using Simplex2Vec

The Simplex2Vec algorithm [5] can be used for generating node embeddings as

well as embeddings for higher-order simplices by setting the maximum order of the

26

Algorithm 2: Enumerating Open Triangles {Similar to [2]}
Function : list_open_triangles (graph, simplices, number_of_vertices,

edges)
Input : graph: The graph object

simplices : List of nodes present in each simplex
number_of_vertices : List containing the number of vertices
present in each simplex
edges : List of edges in the graph

Output : open_triangles_list : List consisting of set of triangles that are
still open

// Get triangles that are already closed
1 𝑐𝑙𝑜𝑠𝑒𝑑_𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒𝑠← 𝑔𝑒𝑡_𝑐𝑙𝑜𝑠𝑒𝑑_𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒𝑠();
2 𝑜𝑝𝑒𝑛_𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒𝑠← 𝑠𝑒𝑡();
// Iterate over the edges in the graph

3 for {node_1, node_2} in edges do
// Iterate over all the other nodes to find triangles

4 for node in graph do
5 if ℎ𝑎𝑠_𝑒𝑑𝑔𝑒(𝑛𝑜𝑑𝑒_1, 𝑛𝑜𝑑𝑒) and ℎ𝑎𝑠_𝑒𝑑𝑔𝑒(𝑛𝑜𝑑𝑒_2, 𝑛𝑜𝑑𝑒) then
6 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒← 𝑙𝑖𝑠𝑡(𝑛𝑜𝑑𝑒_1, 𝑛𝑜𝑑𝑒_2, 𝑛𝑜𝑑𝑒);

// Check if the triangle is not already closed
7 if current_triangle not in closed_triangles then
8 𝑜𝑝𝑒𝑛_𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒𝑠.𝑎𝑑𝑑(𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒);
9 end

10 end
11 end
12 end
13 return open_triangles;

Figure 10: Approach 1: Generating Triangle Embeddings using GloVeNoR [2]

Hasse diagram. For the current implementation since 2-simplex is under consideration,

the maximum order of the Hasse diagram is therefore set to 2. Thus, the Simplex2Vec

27

Algorithm 3: Enumerate New Closures {Similar to [2]}
Function : get_new_closures (graph, old_simplices,

old_number_of_vertices, new_simplices,
new_number_of_vertices)

Input : graph: The graph object
old_simplices : List of nodes present in the old simplices based on
timestamp
old_number_of_vertices : List containing the number of vertices
present in the old simplices
new_simplices : List of nodes present in the new simplices based
on timestamp
new_number_of_vertices : List containing the number of vertices
present in the new simplices

Output : new_triangles_list : List consisting of set of triangles that were
closed in the new simplices

// Get triangles that are already closed
1 𝑐𝑙𝑜𝑠𝑒𝑑_𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒𝑠← 𝑔𝑒𝑡_𝑐𝑙𝑜𝑠𝑒𝑑_𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒𝑠();
2 𝑢𝑛𝑖𝑞𝑢𝑒_𝑛𝑜𝑑𝑒𝑠← {set of nodes from old simplices} ;
3 𝑛𝑒𝑤_𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒𝑠← 𝑠𝑒𝑡();
4 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑖𝑛𝑑𝑒𝑥← 0;
// Iterate over the new simplices

5 for number_of_vertices in new_number_of_vertices do
6 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑠𝑖𝑚𝑝𝑙𝑒𝑥← 𝑛𝑒𝑤_𝑠𝑖𝑚𝑝𝑙𝑖𝑐𝑒𝑠[𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑖𝑛𝑑𝑒𝑥 :

𝑛𝑢𝑚𝑏𝑒𝑟_𝑜𝑓_𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠];
7 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑖𝑛𝑑𝑒𝑥 = 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑖𝑛𝑑𝑒𝑥+ 𝑛𝑢𝑚𝑏𝑒𝑟_𝑜𝑓_𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠;
8 if number_of_vertices >= 3 then
9 foreach combination of 3 nodes in current_simplex do

10 if all nodes are unique and triangle not already closed then
11 new_triangles_list.add(current_combination);
12 end
13 end
14 end
15 end
16 return new_triangles_list;

approach generates embeddings for 0-simplex (node), 1-simplex(pair of nodes), 2-

simplex(triangles i.e. 3 nodes together). The algorithm 6 is used for generating the

embeddings with the netwrokx graph object build in algorithm 1 as input.

For the different experiments, the size of walks, the walk length, and the size

28

Algorithm 4: Approach 1: GloVeNoR Embedding Algorithm {Similar to
[9]}

Function : glovenor (G, w, d, l, k, p, q, i)
Input :G: Input graph object

w : Length of context window
d : Size of embeddings
l : Length of random walks
k : Number of random walks for a node
p: In-out hyper-parameters (walk away parameter)
q : Return hyper-parameter
i : Number of training iterations

Output : node_vectors: List of vectors representing the embedding of each
node in the graph

1 𝑔𝑟𝑎𝑝ℎ_𝑐𝑜𝑟𝑝𝑢𝑠←− generate_biased_walks(G, k, p, q, l);
2 𝑐𝑜𝑜𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑒_𝑚𝑎𝑡𝑟𝑖𝑥←− build_cooccurr(graph_corpus, w);
3 𝑛𝑜𝑑𝑒_𝑣𝑒𝑐𝑡𝑜𝑟𝑠←− initiate_random_vectors();
4 train_word2vec_model(cooccurrence_matrix, node_vectors, i);
5 return node_vectors;

Figure 11: Approach 2: Simplex2Vec algorithm work flow [5]

of embeddings are changed with the values from table 3. The Hasse diagram for

each dataset is extracted and save to avoid recomputing the Hasse diagram for the

29

Algorithm 5: Approach 1: Compute triangle embeddings using GloVeNoR
Function : glovenor_triangle_embeddings(graph, triangles,

node_dictionary, dimension, number_of_iterations, operator)
Input : graph: The graph object

triangles : List of triangles i.e. sub graph of three nodes
node_dictionary : Dictionary that maps the nodes to their labels
dimension: Size of the embeddings/vectors
number_of_iterations : Number of iterations while training the
GloVe model for generating embeddings
operator : Operator to be used for triangle embedding

Output : triangle_embedding_list : List consisting of embeddings for each
triangle in the triangles list

1 𝑟𝑎𝑛𝑑𝑜𝑚_𝑤𝑎𝑙𝑘𝑠← generate_random_walk(graph);
2 𝑐𝑜𝑜𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑒_𝑚𝑎𝑡𝑟𝑖𝑥← generate_cooccurrence_matrix(graph,

random_walks);
3 𝑛𝑜𝑑𝑒_𝑒𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔𝑠← glove_model(graph, cooccurrence_matrix);
4 𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒_𝑒𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔_𝑙𝑖𝑠𝑡← [];
5 for set(x, y, z) in triangles do
6 𝑥𝑣𝑒𝑐 ← node_embeddings(x);
7 𝑦𝑣𝑒𝑐 ← node_embeddings(y);
8 𝑧𝑣𝑒𝑐 ← node_embeddings(z);
9 if operator == "Average" then

10 𝑣𝑎𝑙𝑢𝑒 = ((𝑥𝑣𝑒𝑐 + 𝑦𝑣𝑒𝑐 + 𝑧𝑣𝑒𝑐)/3);
11 triangle_embedding_list.append(value);
12 end
13 else if operator == "Hadamard" then
14 𝑣𝑎𝑙𝑢𝑒 = (𝑥𝑣𝑒𝑐 * 𝑦𝑣𝑒𝑐 * 𝑧𝑣𝑒𝑐);
15 triangle_embedding_list.append(value);
16 end
17 else if operator == "L1" then
18 𝑣𝑎𝑙𝑢𝑒 = (𝑎𝑏𝑠(𝑥𝑣𝑒𝑐 − 𝑦𝑣𝑒𝑐) + 𝑎𝑏𝑠(𝑦𝑣𝑒𝑐 − 𝑧𝑣𝑒𝑐) + 𝑎𝑏𝑠(𝑧𝑣𝑒𝑐 − 𝑥𝑣𝑒𝑐))/3;
19 triangle_embedding_list.append(value);
20 end
21 else if operator == "L2" then
22 𝑣𝑎𝑙𝑢𝑒 = (𝑎𝑏𝑠(𝑥𝑣𝑒𝑐 − 𝑦𝑣𝑒𝑐)

2 + 𝑎𝑏𝑠(𝑦𝑣𝑒𝑐 − 𝑧𝑣𝑒𝑐)
2 + 𝑎𝑏𝑠(𝑧𝑣𝑒𝑐 − 𝑥𝑣𝑒𝑐)

2)/3;
23 triangle_embedding_list.append(value);
24 end
25 end
26 return triangle_embedding_list;

30

Algorithm 6: Approach 2: Generate Embeddings using Simplex2Vec
Function : Simplex2Vec (G, max_order, num_of_walks, walk_length,

size_of_embeddings)
Input :G: Networkx object of the input graph

max_order: Maximum simplex order up to which the hasse
diagram must be constructed
num_of_walks: Number of random walks to be performed for
each node in the Hasse Diagram
walk_length: Length of the random walk performed on the Hasse
Diagram
size_of_embeddings: Dimension of the embeddings to be
computed by the word2vec model

Output : embedding_list: Map consisting of the key representing the
simplex and a vector containing the embedding of the
corresponding simplex

// Generate Hasse Diagram from graph object
1 ℎ𝑎𝑠𝑠𝑒_𝑑𝑖𝑎𝑔𝑟𝑎𝑚←− generate_hasse_diagram(G);
2 𝑤𝑎𝑙𝑘𝑠←− compute_random_walks(G, hasse_diagram, num_of_walks,

walk_length);
3 𝑚𝑜𝑑𝑒𝑙←− word2vec(walks, size_of_embeddings);
// Training the word2vec model

4 model.fit();
5 𝑒𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔_𝑙𝑖𝑠𝑡←− model.vectors();
6 return embedding_list;

Figure 12: Approach 2: Random Walks on Simplicial Complexes [5]

experiments. For all the following experiments, the Hasse Diagram is read as input

instead of constructing it again thus reducing the time required by the algorithm. The

31

embeddings for each triangle in the training and test data are fetched using the labels

of the triangles and used for higher-order link prediction.

4.6 Triangle Closure Prediction

For predicting the triangles that would eventually close in the graph, a logistic

regression binary classification model is used. The model is used to predict the

probability of whether a given set of three nodes would form a closed triangle denoted

with the label 1 or would remain open denoted by 0. The binary classifier predicts the

label for the triangles that are open in the training data. The logistic regression model

is trained using the triangle embeddings for the triangles listed while generating the

labeled dataset. Algorithm 7 describes the implementation for training and classifying

the triangles using the logistic regression model. The accuracy of the model can be

examined by comparing the actual labels with the labels predicted by the model for

test data.

For training the logistic regression model and for testing the trained model, the

timestamped simplices in the dataset are split into training and test data. The data is

split using the timestamp of the simplices. The logic for splitting the data into train

and test as well as labeling the triangles are open or closed is based on the approach

followed in [2]. For training data, the open triangles from 0 to 60 percent of the

dataset based on the timestamp are considered. The triangles are labeled based on

whether they get closed or remain open in the data ranging from 60 to 80 percent. If

the triangle is closed in the 60 to 80 percent time frame, then it is labeled as one i.e.

closed else it is labeled zero i.e. open. A similar approach is followed for test data

where the triangles are labeled if they go through closure in the 80 to 100 percentile

timestamps.

32

Algorithm 7: Predicting Triangle Closure
Function : classify_data (dataset_name, operator_type, solver)
Input : dataset_name: Name of dataset to read labelled data

operator_type: Type of operator used for triangle embedding
(only for GloVeNoR)
solver : Type of solver to be used in logistic regression model

Output : predicted_labels : Prediction labels for the testing data.
1 train_triangles, train_labels← read_labelled_data(dataset_name, range);
2 test_triangles, test_labels← read_labelled_data(dataset_name, range);
// Get triangle embeddings for training and test data

3 𝑥_𝑡𝑟𝑎𝑖𝑛← feature_matrix(train_triangles, operator_type);
4 𝑥_𝑡𝑒𝑠𝑡← feature_matrix(test_triangles, operator_type);
// Initialize logistic regression model

5 𝑚𝑜𝑑𝑒𝑙← logistic_regression();
// Train model using training data

6 𝑚𝑜𝑑𝑒𝑙.𝑓𝑖𝑡(𝑡𝑟𝑎𝑖𝑛_𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒𝑠, 𝑡𝑟𝑎𝑖𝑛_𝑙𝑎𝑏𝑒𝑙𝑠);
// Predict labels for test data

7 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑_𝑙𝑎𝑏𝑒𝑙𝑠← model.predict(x_test);
// Compute accuracy of the model by comparing predicted labels

with actual labels
8 𝑎𝑣𝑒𝑟𝑎𝑔𝑒_𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛_𝑠𝑐𝑜𝑟𝑒(𝑡𝑒𝑠𝑡_𝑙𝑎𝑏𝑒𝑙𝑠, 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑_𝑙𝑎𝑏𝑒𝑙𝑠);
9 return predicted_labels

33

CHAPTER 5

Datasets and Experiments

This chapter gives information about the dataset used for the approaches men-

tioned in the previous chapters as well as discusses the different experiments that were

carried out while examining the accuracy of the proposed approaches. The chapter

discusses, in brief, the evaluation metric that is used for comparing the performance

of the proposed approach using the results of the previous experiments.

5.1 Datasets

The datasets used for the experiments in this project consist of graph data repre-

senting the interactions between different entities that are defined using timestamped

simplices [1]. The timestamped simplices consist of a set of nodes from the graph that

interact together at a given time instance. For example, the dataset contact-primary-

school contains data of the students in contact with each other in the primary school.

The nodes in the dataset represent the students and the timestamped simplices give

information about the students interacting in a given time duration [1].

Table 1 provides information about the number of nodes, edges, and the number

of timestamped simplices available for each of the datasets under consideration for

this project. Each dataset consists of the following three files:

• dataset-name-nverts.txt : Contains a list of integers where each integer represents

the number of nodes within a simplex.

• dataset-name-simplices.txt : The file contains a contiguous list of integers that

represent the nodes present in the simplices [1].

• dataset-name-times.txt : The list of integers in the file represents the timestamp

of the simplices present in the dataset-name-nverts.txt file.

The datasets used for the experiments from various domains are:

• Email networks: The datasets Email-Eu [1] [24] [25] and Email-Enron [1] are

34

networks that represent the email communication between people. The nodes in

the graph are the email addresses of the people and the simplices of the graph

represent the sender as well as the multiple recipients for an email sent at a

particular time. Thus the simplices represent the communication between a

sender and multiple recipients via email [1].

• School Interaction Networks: The datasets contact-primary-school [1] [26]

and contact-high-school [1] [27] represent the interactions between the people at

school that was recorded using sensors. The simplices in the dataset represent

the interactions between people in a time frame of 20 seconds, recorded using

the sensors. The nodes in the graph represent the people at the school.

• National Drug Code (NDC) Directory Networks: The datasets NDC-

classes [1] and NDC-substances [1] represent the class labels and substances

used to make the drugs as the nodes. The simplices in NDC-classes dataset

represents the drug and the class labels represent the nodes that are applied for

a particular drug [1]. For NDC-substances, the simplices represent the drug and

the nodes in a simplex are the substances that are used to prepare the drug [1].

• Question Tags Network: The datasets tags-ask-ubuntu [1] and tags-math-sx

[1] represent the relationship between the tags and the questions asked on the

forum. The simplices in both the datasets represent questions and the nodes

in a simplex represent the tags associated with the question [1]. The simplices

thus provide information about the number of nodes i.e. tags that co-appear for

different questions i.e simplices.

5.2 Experiments

The results in Chapter 6 are based on the different experiments that were

performed using the embedding algorithms and the binary classifier. The experiments

35

Dataset Name Number of Nodes Number of Edges Number of simplices

email-Enron 143 1,800 10,883
email-Eu 998 29,299 234,760

contact-primary-school 242 8,317 106,879
contact-high-school 327 5,818 172,035

NDC-classes 1,161 6,222 49,724
NDC-substances 5,311 88,268 112,405
tags-ask-ubuntu 3,029 132,703 271,233

tags-math-sx 1,629 91,685 822,059

Table 1: Information about datasets [1] [2]

differ in the size of embeddings that are generated using the embeddings algorithms,

tweaking the parameters of the embedding algorithms used for reading the graph data,

the solvers used in label prediction, and the operators used for generating triangle

embeddings.

Table 2 and 3 present the different parameters that are used for the experiments

performed using Approach 1 i.e. GloVeNoR and Approach 2 i.e. Simplex2Vec embed-

ding algorithms. The experiments were performed for all the possible combinations

from the table 2 and 3 for majority of the datasets. The objective behind performing

multiple experiments using different parameters was to understand the impact of each

of the parameters on the result. Performing the experiments on large datasets was

computationally expensive thus, the experiments on large datasets were performed

using the best performing parameters on the small dataset.

Parameter name Values for the parameter

Number of Iterations 10, 20, 50, 100, 200
Size of Embeddings 10, 20, 32, 50, 64, 128, 256, 512, 1024, 2048

Triangle Embedding Operator Average, Hadamard, Weighted L1, Weighted L2
Solver (Logistic Regression) liblinear, newton-cg, lbfgs, sag, saga

Table 2: Parameters for experiments using Approach 1 (refer 4.5.1)

36

Parameter name Values for the parameter

Number of Random Walks 5, 10, 20
Length of Random Walk 10, 20, 32, 48

Size of Embeddings 10, 32, 50, 64, 128, 200, 256, 512, 1024, 2048
Solver (Logistic Regression) liblinear, newton-cg, lbfgs, sag, saga

Table 3: Parameters for experiments using Approach 2 (refer 4.5.2)

5.3 Evaluation Metric

To compare and contrast the results of the project with the results in [2] and

[1], the evaluation metric used is similar to the metric specified in [2]. Area under

the precision-recall curve (AUC-PR) relative to the random baseline [1] [2] is used

for evaluating the accuracy of the predicted data. The evaluation metric gives

information about the number of triangles that would undergo closure, which was

correctly predicted by the classifier. The random baseline for the dataset is calculated

using the number of triangles that undergo closure in test data divided by the total

number of triangles in the test data. The formula for calculating random baseline is:

random_baseline =
number of triangles that underwent closure in test data

total number of triangles in test data

The formula for calculating the performance of the model on a given dataset is [2]:

performance =
AUC-PR

random_baseline

5.4 Experimental Setup

The algorithms mentioned in chapter 4 are implemented in Python. The automa-

tion script used to perform all the steps from data preprocessing to triangle closure

prediction along with all the different experimental parameters is implemented in

Python. The python libraries used for the implementation are:

• Graph Processing: networkx, python-igraph

• Generating embeddings: numpy, pandas, ray, pickle, joblib, networkx

37

• Label Prediction: numpy, pickle, sklearn

The experiments on large datasets were performed using AWS Deep Learning AMI

using 36 vCPUs and 75 Gb memory. Initial testing while preparing the automation

script and testing the implementation of the project was done on a local machine with

16 Gb memory.

38

CHAPTER 6

Inference and Results

This chapter presents the results for the different experiments conducted using the

two approaches [5]. The experiments were performed on several real-life datasets from

different domains discussed in section 5.1. The results from approach 1 (GloVeNoR

node embedding) are compared with the results of the node2vec embedding algorithm

from [2]. And the results for approach 2 (Simplex2Vec subgraph embedding) are

compared with the results obtained for the graph2vec and graph neural network

approaches from [2].

This chapter is divided into three sections: the first section discusses the results

obtained for higher-order link prediction using the first approach i.e., node embedding

using the GloVeNoR algorithm. The second section provides results of using the second

approach i.e., subgraph embedding using the Simplex2Vec algorithm. The third section

compares and contrasts the results from the previously conducted experiments with

the results of the current two approaches. The metric used for analyzing throughout

this section is the area under the precision-recall curve (AUC-PR) relative to the

random baseline (refer section 5.3) [2]. The evaluation metric in the graphs and tables

is referred to as Performance.

6.1 Results for Approach 1 (Node Embedding)

For the first approach using the node embedding algorithm GloVeNoR, many

experiments were performed by varying the size of the embeddings, using different

operators for calculating the triangle embeddings, and using the different number of

iterations for training the word2vec model used for computing the resultant embeddings.

Table 4 presents the best results obtained for all the datasets used for higher-order link

prediction using approach 1 (section 4.5.1). The binary classifier used for predicting

the probability of triangle closure is the logistic regression model with a maximum of

39

1000 iterations used for converging the solver [2].

Dataset name Result (AUC-PR relative to random baseline)

email-Enron 4
email-Eu 1.7

contact-primary-school 1.5
contact-high-school 1.9

NDC-classes 1.6
NDC-substances 1.2

tags-math-sx 1.45
tags-ask-ubuntu 4.2

Table 4: Best results for prediction using Approach 1 (GloVeNoR Node Embedding)

Table 5 presents the best results obtained for the different datasets while varying

the size of the node embeddings computed using the GloVeNoR algorithm. The

binary classifier performs better with a lower number of embeddings when the number

of simplices in the dataset is less. This can be attributed to the fact that with a

lower number of simplices in the dataset, the number of triangles would be less thus,

increasing the size of embeddings would not provide a more global context since the

number of interacting triangles would be less.

Dataset Name Size of vector embeddings
10 20 32 50 64 128 256 512 1024 2048

email-Enron 1.5 3 2.91 4 3.05 3.1 3.4 1.8 1.73 1.6
email-Eu 1.57 1.6 1.41 1.7 1.4 1.46 1.54 1.47 1.38 1.34

contact-primary-school 1.18 1.44 1.35 1.5 1.34 1.38 1.27 1.35 1.25 1.28
contact-high-school 1.45 1.9 1.48 1.44 1.66 1.65 1.55 1.41 1.25 1.35

NDC-classes 1.6 1.3 1.34 1.32 1.24 1.39 1.42 1.23 1.19 1.21
NDC-substances 1.07 1.09 1.18 1.2 1.15 1.08 1.21 1.16 1.13 1.12

tags-math-sx 1.31 1.36 1.38 1.3 1.4 1.45 1.37 1.31 1.39 1.32
tags-ask-ubuntu 1.26 1.2 1.37 1.4 1.35 1.43 1.34 1.28 2.6 4.2

Table 5: Results (AUC-PR relative to random baseline) for different embedding vector
sizes using Approach 1 (GloVeNoR Node Embedding)

Table 6 lists the results obtained while training the word2vec model with varying

40

number of iterations. Based on the table it can be seen that with an increase in the

number of training iterations, there is an increase in the performance of the algorithm

for all the datasets. Increasing the training iterations for the word2vec model would

mean that the model converges more and compute more accurate embeddings for the

nodes with lesser context data. Also, increasing the iterations would mean that the

embeddings generating using the model represent the node embeddings better than

the embeddings generated with a less trained model. Thus the number of training

iterations is a parameter that has a direct impact on the performance of the approach.

Dataset Name Number of training iterations
10 20 50 100 200

email-Enron 2.08 1.81 3 4 2.52
email-Eu 1.28 1.42 1.48 1.54 1.7

contact-primary-school 1.44 1.31 1.35 1.5 1.35
contact-high-school 1.64 1.62 1.47 1.47 1.9

NDC-classes 1.37 1.42 1.28 1.31 1.6
NDC-substances 1.08 1.09 1.16 1.2 1.18

Table 6: Results (AUC-PR relative to random baseline) for different number of
training iterations using Approach 1 (GloVeNoR Node Embedding)

Table 7 outlines the performance of the triangle embedding operators used

in Approach 1 for representing the triangles in the graph using vectors from the

individual node embeddings. Based on the results, it can be inferred that the average

and Hadamard operators outperform the other operators for the task of higher-order

link prediction. However, a single operator cannot be narrowed down to have the

highest impact since the performance of all the operators for the large datasets seems

to be near equal suggesting that the operators do not have a major impact on the

performance of the algorithm.

41

Dataset Name Triangle Embedding Operators
Average Hadamard Weighted L1 Weighted L2

email-Enron 4 3 1.67 1.7
email-Eu 1.7 1.22 1.46 1.47

contact-primary-school 1.5 1.33 1.35 1.3
contact-high-school 1.64 1.65 1.9 1.57

NDC-classes 1.37 1.6 1.3 1.25
NDC-substances 1.2 1.07 1.05 1.05

Table 7: Results (AUC-PR relative to random baseline) for different triangle embed-
ding operators using Approach 1 (GloVeNoR Node Embedding)

6.2 Results for Approach 2 (Subgraph Embedding)

For approach 2 i.e., the subgraph embedding algorithm, table 8 summarizes the

best results obtained for higher-order link prediction using the logistic regression model

as the binary classifier. The results depict that the algorithm performs consistently on

all the datasets thus implying that the performance of the algorithm is not affected by

the size of the dataset and can be used for both small as well as large datasets. This

highlights that incorporating higher-order interaction of the graph into the embeddings

helps in computing embeddings that could perform better for predicting the other

higher-order interactions.

Dataset name Result (AUC-PR relative to random baseline)

email-Enron 2.5
email-Eu 2.2

contact-primary-school 2.7
contact-high-school 2.5

NDC-classes 2

Table 8: Best results for prediction using Approach 2 (Simplex2Vec subgraph Embed-
ding)

Table 9 presents the performance of the model for varying size of the embeddings

vectors. Based on the table, the results of the algorithm seem to be better for medium-

42

sized embedding vectors. The results for higher embeddings vectors are competitive

however, for very small embedding size, the results are very poor for all the datasets.

One reason for lower size embeddings performing poorly could be accounted for

the fact that with small embeddings, the higher-order structure information that

would be integrated into the embeddings is far less as compared to the medium-sized

embeddings.

Dataset Name Size of vector embedding
10 32 50 64 128 200 256 512 1024 2048

email-Enron 1.79 2 2.5 1.97 1.88 2.14 1.78 1.34 1.51 1.54
contact-primary-school 1.57 2.7 2.12 2.22 1.73 2.14 2.5 2.09 2.1 2.23

contact-high-school 1.18 1.76 1.71 1.73 2.03 2.5 1.7 2.21 1.81 1.78
NDC-classes 1.45 1.63 1.76 1.76 1.88 1.91 2 1.75 1.65 1.6

Table 9: Results (AUC-PR relative to random baseline) for different embedding vector
sizes using Approach 2 (Simplex2Vec subgraph Embedding)

The random walks in approach 2 are performed on the Hasse Diagram created for

the input dataset using the simplicial complex structure of the graph. The table 10

presents the results for the performance of the subgraph embeddings approach while

varying the number of random walks i.e. the number of symbolic sequences used

for computing the embeddings. As seen from the table, it can be concluded that

increasing the number of random walks helps to improve the performance of the model.

By increasing the number of random walks performed on the Hasse diagram, the

corpus used as input for the word2vec model becomes richer with the information

about the higher-order interactions. Thus, more random walks provide better context

for each node and the triangles in the graph, resulting in the computation of optimal

embeddings.

The length of the random walk specifies how big the symbolic sequence would

be for a simplex in the graph. The table 11 represents the results obtained for the

43

Dataset Name Number of random walks
5 10 20

email-Enron 1.46 2.23 2.5
email-Eu 2.07 2.1 2.2

contact-primary-school 1.65 1.9 2.7
contact-high-school 1.31 1.72 2.5

NDC-classes 1.61 1.9 2

Table 10: Results (AUC-PR relative to random baseline) for different number of
random walks using Approach 2 (Simplex2Vec subgraph Embedding)

different datasets while varying the length of the random walk. The assumption here

is that with a larger random walk length, the symbolic sequence would incorporate a

higher number of interactions in a single context window. Based on the results, it

can be seen that while a bigger length of random walk performs better, the length of

the random walk would perform better for an optimal value. For a small dataset, the

number of nodes in the Hasse diagram would be low thus resulting in duplication of

the symbolic sequence.

Dataset Name Length of random walk
10 20 32 48

email-Enron 1.82 1.87 2.14 2.5
email-Eu 2.13 2.12 2.2 2.1

contact-primary-school 1.6 2.12 2.7 2.5
contact-high-school 1.42 2.21 2.5 2.1

NDC-classes 1.8 1.91 2 1.85

Table 11: Results (AUC-PR relative to random baseline) for different lengths of
random walks using Approach 2 (Simplex2Vec subgraph Embedding)

6.3 Results using different binary classifiers

Another experiment performed using the computed node and triangle embeddings

was to check the performance of different binary classifiers for the task of higher-order

link prediction. The binary classifiers used for performing the comparative study

44

Figure 13: Comparison of the best results obtained using Approach 1 (Node Embed-
ding) with the results of node2vec embedding algorithm in [2]

Figure 14: Comparison of the best results obtained using Approach 2 (Subgraph
Embedding) with the results of graph neural networks in [2]

are logistic regression, support vector machine (SVM), decision tree classifier, and

convolutional neural networks (CNNs). Due to the process being computationally

expensive, the experiments were performed on four datasets i.e., email-Enron, contact-

45

Figure 15: Comparison of the best results obtained using Approach 2 (Subgraph
Embedding) with the results of graph2vec and graph neural networks in [2]

high-school, contact-primary-school, and NDC-classes.

Figure 16: Comparison of the performance of different binary classifiers

Figure 16 depicts the results obtained for the datasets under consideration using

46

the different binary classification techniques. Based on the graph, it can be seen that

the CNNs perform much better as compared to the other classifiers. This can be

attributed to the fact that CNNs employ deep learning to extract hidden features

from the embeddings and thus have high performance. On the other hand, CNNs

take a longer time for training and are computationally expensive. Logistic regression

is the next best performer among the other classifiers and is relatively inexpensive to

train computationally. Thus there is a trade-off between computation time and the

performance of the binary classifiers.

6.4 Comparison with existing results

This section encompasses a comparative study of the results obtained using the

experiments performs for the two approaches with the results from the previous

experiments from [2]. Approach 1 in the current project involves generating node em-

beddings using the GloVeNoR model and using the resultant embeddings, calculating

the triangle embeddings using the various operators. The results of approach 1 are

compared with a similar node embedding technique used in [2]. And the results from

approach 2 i.e., subgraph embedding using the Simplex2Vec algorithm are compared

with the results of the graph2vec algorithm and graph neural networks from [2].

Figure 13 depicts the comparison of the results obtained using GloVeNoR and

the results of the node2vec algorithm. It can be seen that the node2vec algorithm

outperforms the GloVeNoR algorithm in some datasets. This attributes that local

context contributed more while computing the embeddings for a node as compared

to the global context of the node. The GloVeNoR performs better for small datasets

since the global context in those datasets would not contribute much to the overall

embedding results.

Figure 14 depicts the comparison of the results obtained using Simplex2Vec

47

subgraph embedding algorithm with the results of the graph neural networks approach

from [2]. Based on the chart, it can be seen that approach 2 used in this project

outperforms the graph neural networks approach. It can be inferred that the Sim-

plex2Vec incorporates higher-order interactions and higher-order simplices into the

random walks thus providing a much better context for the triangles in the train and

test dataset.

Further, as seen in figure 15, it can be seen that Simplex2Vec provides higher

performance compared to the graph2vec algorithm. One major reason for the Sim-

plex2Vec outperforming the graph2vec algorithm is the graph2vec only considers the

immediate neighbors of the nodes in the triangle while computing the embeddings.

On the other hand, Simplex2Vec considers the higher-order simplices into the random

walks for generating the embeddings thus providing a much better context of the

interaction of the triangle inside the graph.

48

CHAPTER 7

Conclusion and Future Work
7.1 Conclusion

The objective of the object was to understand the impact the global context of

a node and higher-order interactions in a graph have on computing the embeddings

as well as on the performance of predicting triangle closure. The project proposes

two approaches i.e., approach 1 for predicting triangle closure using node embed-

ding algorithm (GloVeNoR) and approach 2 uses subgraph embedding algorithm

(Simplex2Vec) for predicting triangle closure. Approach 1 incorporates the global

context of a node along with its local context by computing a co-occurrence matrix

for computing the node embeddings. On the other hand, the subgraph embedding

approach makes use of the Hasse diagram to integrate the higher-order interactions in

the graph for computing the embeddings.

The results for the node embedding approach underperform as compared to the

previous techniques but provide useful insights into the impact global context has on

the performance. The size of embeddings and the higher number of training iterations

for the word2vec model could result in a more improved performance from the model.

Further, experimenting with different binary classifiers would provide more insights

into the embeddings and their impact on higher-order link prediction. The experiments

with different triangle embedding operators didn’t uncover any hidden insights are

the performance was quite consistent throughout the different operators.

The subgraph embedding approach outperformed the results from the previous

experiments that attempt to integrate the higher-order interactions. Using Hasse

diagram for generating symbolic sequences as the corpus for the word2vec provides

the model with the necessary insights about the higher-order interactions and ex-

tracts the features of the higher-order structures into the random walks. Achieving a

49

much-improved performance by increasing the number of random walks and having

an optimal walk length have a huge impact on the performance of the computed em-

beddings. Subgraph embedding using Hasse diagram thus could prove a breakthrough

for predicting the higher-order interactions in large networks and could be used in

social networks.

7.2 Future Work

Based on the results obtained in the project, it is evident that using Hasse

diagrams for performing random walks helps to extract the higher-order interactions

from the graph. Though generating Hasse diagram from graphs or simplicial complexes

is computationally expensive and time-consuming. The approaches discussed in the

project have more room for improvements and would increase the performance for

higher-order link prediction. Performing binary classification using neural networks,

integrating the current approaches with BERT, experimenting with other classification

approaches like random forests, etc could be the next steps to research further. From

the embedding perspective, integrating the global context of the node along with the

higher-order interactions would help to integrate the more impact features from the

network into the embeddings.

50

LIST OF REFERENCES

[1] A. R. Benson, R. Abebe, M. T. Schaub, A. Jadbabaie, and J. Kleinberg,
‘‘Simplicial closure and higher-order link prediction,’’ Proceedings of the National
Academy of Sciences, vol. 115, no. 48, p. E11221–E11230, Nov 2018. [Online].
Available: http://dx.doi.org/10.1073/pnas.1800683115

[2] N. Chavan and K. Potika, ‘‘Higher-order link prediction using triangle embed-
dings,’’ in 2020 IEEE International Conference on Big Data (Big Data), 2020,
pp. 4535--4544.

[3] M. Zhang, W. Kalies, S. Kelso, and E. Tognoli, ‘‘Topological portraits of multiscale
coordination dynamics,’’ Journal of Neuroscience Methods, vol. 339, p. 108672,
06 2020.

[4] A. Grover and J. Leskovec, ‘‘node2vec: Scalable feature learning
for networks,’’ CoRR, vol. abs/1607.00653, 2016. [Online]. Available:
http://arxiv.org/abs/1607.00653

[5] J. C. W. Billings, M. Hu, G. Lerda, A. N. Medvedev, F. Mottes,
A. Onicas, A. Santoro, and G. Petri, ‘‘Simplex2vec embeddings for
community detection in simplicial complexes,’’ Jun 2019. [Online]. Available:
https://arxiv.org/abs/1906.09068

[6] E. Cohen, ‘‘node2vec: Embeddings for graph data,’’ Apr 2018. [Online].
Available: https://towardsdatascience.com/node2vec-embeddings-for-graph-
data-32a866340fef

[7] W. L. Hamilton, R. Ying, and J. Leskovec, ‘‘Representation learning on graphs:
Methods and applications,’’ CoRR, vol. abs/1709.05584, 2017.

[8] Z. Kurtz, ‘‘The vectors of code: On machine learning for software,’’ Jun 2019.
[Online]. Available: https://insights.sei.cmu.edu/sei_blog/2019/06/vectors-of-
code-on-the-foundations-of-machine-learning-for-software.html

[9] S. Kulkarni, J. K. Katariya, and K. Potika, ‘‘Glovenor: Glove for node repre-
sentations with second order random walks,’’ in 2020 IEEE/ACM International
Conference on Advances in Social Networks Analysis and Mining (ASONAM),
2020, pp. 536--543.

[10] W. L. Hamilton, Graph Representation Learning, ser. Synthesis Lectures on Arti-
ficial Intelligence and Machine Learning. Morgan & Claypool Publishers, 2020.
[Online]. Available: https://doi.org/10.2200/S01045ED1V01Y202009AIM046

51

http://dx.doi.org/10.1073/pnas.1800683115
http://arxiv.org/abs/1607.00653
https://arxiv.org/abs/1906.09068
https://towardsdatascience.com/node2vec-embeddings-for-graph-data-32a866340fef
https://towardsdatascience.com/node2vec-embeddings-for-graph-data-32a866340fef
https://insights.sei.cmu.edu/sei_blog/2019/06/vectors-of-code-on-the-foundations-of-machine-learning-for-software.html
https://insights.sei.cmu.edu/sei_blog/2019/06/vectors-of-code-on-the-foundations-of-machine-learning-for-software.html
https://doi.org/10.2200/S01045ED1V01Y202009AIM046

[11] B. Perozzi, R. Al-Rfou, and S. Skiena, ‘‘Deepwalk,’’ Proceedings of the 20th
ACM SIGKDD international conference on Knowledge discovery and data mining
- KDD ’14, 2014. [Online]. Available: http://dx.doi.org/10.1145/2623330.2623732

[12] R. Brochier, A. Guille, and J. Velcin, ‘‘Global Vectors for Node Representations,’’
The World Wide Web Conference on - WWW ’19, 2019. [Online]. Available:
http://dx.doi.org/10.1145/3308558.3313595

[13] H. Cho and Y. Yu, ‘‘Link prediction for interdisciplinary collaboration via
co-authorship network,’’ Social Network Analysis and Mining, vol. 8, no. 1, Mar.
2018. [Online]. Available: https://doi.org/10.1007/s13278-018-0501-6

[14] Y. Yang and N. V. Chawla, Link Prediction: A Primer. New York,
NY: Springer New York, 2018, pp. 1202--1210. [Online]. Available:
https://doi.org/10.1007/978-1-4939-7131-2_365

[15] G. Lin, ‘‘Top ranked coding school in nyc, la & online: Codesmith,’’ Sep 2019.
[Online]. Available: https://codesmith.io/blog/introduction-to-graphs

[16] O. Michail, ‘‘An introduction to temporal graphs: An algorithmic perspective,’’
in Algorithms, Probability, Networks, and Games. Springer International
Publishing, 2015, pp. 308--343. [Online]. Available: https://doi.org/10.1007/978-
3-319-24024-4_18

[17] M. Kaul and M. Imaizumi, ‘‘Understanding higher-order structures in evolving
graphs: A simplicial complex based kernel estimation approach,’’ arXiv preprint
arXiv:2102.03609, 2021.

[18] M. T. Schaub, A. R. Benson, P. Horn, G. Lippner, and A. Jadbabaie, ‘‘Random
walks on simplicial complexes and the normalized hodge 1-laplacian,’’ SIAM
Review, vol. 62, no. 2, pp. 353--391, 2020.

[19] L. Lovász, ‘‘Random walks on graphs: A survey, combinatorics, paul erdos is
eighty,’’ Bolyai Soc. Math. Stud., vol. 2, 01 1993.

[20] E. W. Weisstein, ‘‘Hasse diagram. From MathWorld---A Wolfram Web
Resource,’’ last visited on 05/04/2021. [Online]. Available: https://mathworld.
wolfram.com/HasseDiagram.html

[21] M. Fattore, ‘‘Hasse diagrams, poset theory and fuzzy poverty measures,’’ Rivista
Internazionale di Scienze Sociali, vol. 116, no. 1, pp. 63--75, 2008. [Online].
Available: http://www.jstor.org/stable/41625201

[22] J. Pennington, R. Socher, and C. D. Manning, ‘‘Glove: Global
vectors for word representation,’’ in Empirical Methods in Natural
Language Processing (EMNLP), 2014, pp. 1532--1543. [Online]. Available:
http://www.aclweb.org/anthology/D14-1162

52

http://dx.doi.org/10.1145/2623330.2623732
http://dx.doi.org/10.1145/3308558.3313595
https://doi.org/10.1007/s13278-018-0501-6
https://doi.org/10.1007/978-1-4939-7131-2_365
https://codesmith.io/blog/introduction-to-graphs
https://doi.org/10.1007/978-3-319-24024-4_18
https://doi.org/10.1007/978-3-319-24024-4_18
https://mathworld.wolfram.com/HasseDiagram.html
https://mathworld.wolfram.com/HasseDiagram.html
http://www.jstor.org/stable/41625201
http://www.aclweb.org/anthology/D14-1162

[23] A. Narayanan, M. Chandramohan, R. Venkatesan, L. Chen, Y. Liu, and
S. Jaiswal, ‘‘graph2vec: Learning distributed representations of graphs,’’ CoRR,
vol. abs/1707.05005, 2017. [Online]. Available: http://arxiv.org/abs/1707.05005

[24] J. Leskovec, J. Kleinberg, and C. Faloutsos, ‘‘Graph evolution: Densification and
shrinking diameters,’’ ACM Transactions on Knowledge Discovery from Data,
vol. 1, no. 1, 2007. [Online]. Available: https://doi.org/10.1145/1217299.1217301

[25] H. Yin, A. R. Benson, J. Leskovec, and D. F. Gleich, ‘‘Local higher-order
graph clustering,’’ in Proceedings of the 23rd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining. ACM Press, 2017.
[Online]. Available: https://doi.org/10.1145/3097983.3098069

[26] R. Mastrandrea, J. Fournet, and A. Barrat, ‘‘Contact patterns in a high school:
A comparison between data collected using wearable sensors, contact diaries and
friendship surveys,’’ PLOS ONE, vol. 10, no. 9, p. e0136497, 2015. [Online].
Available: https://doi.org/10.1371/journal.pone.0136497

[27] J. Stehlé, N. Voirin, A. Barrat, C. Cattuto, L. Isella, J.-F. Pinton,
M. Quaggiotto, W. V. den Broeck, C. Régis, B. Lina, and P. Vanhems,
‘‘High-resolution measurements of face-to-face contact patterns in a primary
school,’’ PLoS ONE, vol. 6, no. 8, p. e23176, 2011. [Online]. Available:
https://doi.org/10.1371/journal.pone.0023176

53

http://arxiv.org/abs/1707.05005
https://doi.org/10.1145/1217299.1217301
https://doi.org/10.1145/3097983.3098069
https://doi.org/10.1371/journal.pone.0136497
https://doi.org/10.1371/journal.pone.0023176

	Higher-order Link Prediction using Node and Subgraph Embeddings
	Introduction
	Node Representation
	Link Prediction
	Motivation and Problem Statement

	Terminology
	Related Work
	Global Vectors for Node Representations (GloVeNoR)
	Simplex2Vec embeddings for community detection
	Higher-order Link Prediction using Triangle Embeddings

	Methodology
	Higher-order link prediction in temporal graphs
	Workflow for higher-order link prediction
	Data Preprocessing
	Enumerating Triangles
	Embedding Algorithms
	Approach 1: Node Embedding using GloVeNoR
	Approach 2: Subgraph Embedding using Simplex2Vec

	Triangle Closure Prediction

	Datasets and Experiments
	Datasets
	Experiments
	Evaluation Metric
	Experimental Setup

	Inference and Results
	Results for Approach 1 (Node Embedding)
	Results for Approach 2 (Subgraph Embedding)
	Results using different binary classifiers
	Comparison with existing results

	Conclusion and Future Work
	Conclusion
	Future Work

	LIST OF REFERENCES

