
San Jose State University San Jose State University

SJSU ScholarWorks SJSU ScholarWorks

Master's Projects Master's Theses and Graduate Research

Spring 5-25-2021

Fake malware opcodes generation using HMM and different GAN Fake malware opcodes generation using HMM and different GAN

algorithms algorithms

Harshit Trehan

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_projects

 Part of the Information Security Commons

https://scholarworks.sjsu.edu/
https://scholarworks.sjsu.edu/etd_projects
https://scholarworks.sjsu.edu/etd
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F1001&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1247?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F1001&utm_medium=PDF&utm_campaign=PDFCoverPages

Fake malware opcodes generation using HMM and different GAN algorithms

A Project

Presented to

The Faculty of the Department of Computer Science

San José State University

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

by

Harshit Trehan

May 2021

© 2021

Harshit Trehan

ALL RIGHTS RESERVED

The Designated Project Committee Approves the Project Titled

Fake malware opcodes generation using HMM and different GAN algorithms

by

Harshit Trehan

APPROVED FOR THE DEPARTMENT OF COMPUTER SCIENCE

SAN JOSÉ STATE UNIVERSITY

May 2021

Dr. Fabio Di Troia Department of Computer Science

Dr. Katerina Potika Department of Computer Science

Dr. Nada Attar Department of Computer Science

ABSTRACT

Fake malware opcodes generation using HMM and different GAN algorithms

by Harshit Trehan

Malware, or malicious software, is a program that is intended to harm systems.

In the past decade, the number of malware attacks have grown and, more importantly,

evolved. Many researchers have successfully integrated cutting edge Machine Learning

techniques to combat this ever present and growing threat to cyber and information

security. One big challenge faced by many researchers is the lack of enough data

to train machine learning models and specifically deep neural networks properly.

Generative modelling has proven to be very efficient at generating synthesized data

that can match the actual data distribution.

In this project, we aim to generate malware samples as opcode sequences and

attempt to differentiate between the fake and real samples. We use different Generative

Adversarial Networks (GAN) algorithms and Hidden Markov Models (HMM) to

generate fake samples.

ACKNOWLEDGMENTS

I would like to thank my advisor, Dr. Fabio Di Troia who has helped me

immensely throughout my research project and guided me through the challenges of

this research. He has patiently answered all my questions and encouraged me to keep

trying hard and face the tough challenges.

I would also like to thank my committee members, Dr. Katerina Potika and Dr.

Nada Attar who have given me their valuable time and feedback.

Finally, I would like to thank all my professors and family members who have

believed in me and provided me the support I needed every step of the way. I am

eternally indebted to them for always expecting the best from me and pushing me to

give my best.

v

TABLE OF CONTENTS

CHAPTER

1 Introduction . 1

2 Background . 4

2.1 Background and Related Work 4

2.2 Hidden Markov Models . 5

2.2.1 HMM Introduction and Working 6

2.3 Generative Adversarial Networks 8

2.3.1 GAN Working and Architecture 8

2.3.2 GAN Training . 10

2.3.3 GAN Limitations . 10

2.4 Wasserstein GAN . 11

2.4.1 WGAN working . 11

2.4.2 WGAN Training . 13

2.4.3 WGAN limitations . 14

2.5 WGAN with Gradient Penalty . 15

2.6 k -Nearest Neighbor . 17

2.7 Support Vector Machines . 17

2.8 Naïve Bayes Classifier . 19

2.9 Random Forest . 19

3 Methodology . 21

3.1 Fake Malware using HMM . 21

vi

vii

3.2 Fake Malware using GAN . 22

3.3 Feature Extraction . 22

3.4 Evaluation . 23

3.4.1 HMM Evaluation . 23

3.4.2 GAN Evaluation . 24

3.4.3 Accuracy, Precision and Recall 25

4 Implementation . 26

4.1 Dataset . 26

4.2 HMM Implementation . 27

4.3 GAN Implementation . 31

4.3.1 GAN Stabilizing Techniques 33

4.4 WGAN Implementation . 34

4.4.1 Wasserstein Distance . 37

4.5 WGAN with Gradient Penalty Implementation 37

5 Results and Discussion . 41

5.1 HMM Results . 41

5.1.1 Optimum M and HMM Training Results 41

5.1.2 HMM Classification Results 43

5.2 GAN Results . 46

5.2.1 Best GAN Generative Model 46

5.2.2 GAN Classification Results 47

5.3 WGAN Results . 49

5.3.1 Convergence and Loss Values 49

viii

5.3.2 WGAN Classification Results 50

5.4 Wasserstein GAN with Gradient Penalty 53

5.4.1 Convergence and Loss Curves 54

5.4.2 WGAN-GP Classification Results 55

6 Conclusion and Future Work . 59

6.1 Future Work . 61

LIST OF REFERENCES . 62

APPENDIX

A ROC Curves and bar plots for optimum M. 66

B Loss curves for different GAN architectures. 74

B.1 GAN Loss Curves . 74

B.2 WGAN Loss Curves . 76

B.3 WGAN with Gradient Penalty Loss Curves 77

C Code snippets . 79

C.1 Wasserstein Loss . 79

C.2 Gradient Penalty . 79

LIST OF TABLES

1 HMM notation. 6

2 GAN notation. 9

3 Dataset summary . 27

4 Unique Opcodes in observation sequences for each family 28

5 Best value of M for each family 41

6 Best 2 models for fake samples from each family. 43

7 SVM-HMM scores for each feature. 44

8 Naïve Bayes-HMM scores for each feature. 44

9 Random Forest-HMM scores for each feature. 45

10 kNN-HMM scores for each feature. 45

11 Best GAN generative model for each family 46

12 SVM-GAN scores for each feature. 47

13 Naïve Bayes-GAN scores for each feature. 48

14 Random Forest-GAN scores for each feature. 48

15 kNN-GAN scores for each feature. 49

16 Best WGAN generative model for each family. 51

17 SVM-WGAN scores for each feature. 52

18 Naïve Bayes-WGAN scores for each feature. 52

19 Random Forest-WGAN scores for each feature. 53

20 kNN-WGAN scores for each feature. 53

21 Best WGAN-GP generative model for each family. 56

ix

x

22 SVM-WGAN with Gradient Penalty scores for each feature. . . . 56

23 Naïve Bayes-WGAN with Gradient Penalty scores for each feature. 56

24 Random Forest-WGAN with Gradient Penalty scores for each
feature. 57

25 kNN-WGAN with Gradient Penalty scores for each feature. . . . 57

LIST OF FIGURES

1 GAN training pipeline [25]. 10

2 kNN classification example. [31] 18

3 Possible hyperplanes [33]. 18

4 Optimal hyperplane [33]. 18

5 Example usage of objdump. 26

6 Top 20 opcodes from the observation sequences and the number of
families they are present in. 29

7 Top 40 opcodes from the observation sequences and the number of
families they are present in. 30

8 GAN Discriminator Architecture. 32

9 GAN Generator Architecture. 32

10 WGAN Critic and Generator Architecture. 36

11 WGAN-GP Critic Architecture. 38

12 WGAN-GP Generator Architecture. 40

13 WinWebSec 22× 22 models. 42

14 Zbot 20× 20 models. 42

15 Renos 22× 22 models. 42

16 OnLineGames 22× 22 models. 42

17 VBInject 25× 25 models. 42

18 WinWebSec WGAN critic loss. 50

19 WinWebSec WGAN generator loss. 51

20 WinWebSec WGAN-GP critic loss. 54

xi

xii

21 WinWebSec WGAN-GP generator loss. 55

A.22 AUC scores for different M values for WinWebSec. 66

A.23 AUC scores for different M values for Zbot. 66

A.24 AUC scores for different M values for Renos. 67

A.25 AUC scores for different M values for OnLineGames. 67

A.26 AUC scores for different M values for VBInject. 68

A.27 ROC curves for different M values for WinWebSec. 69

A.28 ROC curves for different M values for Zbot. 70

A.29 ROC curves for different M values for Renos. 71

A.30 ROC curves for different M values for OnLineGames. 72

A.31 ROC curves for different M values for VBInject. 73

B.32 WWS GAN discriminator loss. 74

B.33 WWS GAN generator loss. 74

B.34 Zbot GAN discriminator loss. 74

B.35 Zbot GAN generator loss. 74

B.36 Renos GAN discriminator loss. 75

B.37 Renos GAN generator loss. 75

B.38 OLG GAN discriminator loss. 75

B.39 OLG GAN generator loss. 75

B.40 VBInject GAN discriminator loss. 75

B.41 VBInject GAN generator loss. 75

B.42 Zbot WGAN critic loss. 76

B.43 Zbot WGAN generator loss. 76

xiii

B.44 Renos WGAN critic loss. 76

B.45 Renos WGAN generator loss. 76

B.46 OLG WGAN critic loss. 76

B.47 OLG WGAN generator loss. 76

B.48 VBInject WGAN critic loss. 77

B.49 VBInject WGAN generator loss. 77

B.50 Zbot WGAN-GP critic loss. 77

B.51 Zbot WGAN-GP generator loss. 77

B.52 Renos WGAN-GP critic loss. 77

B.53 Renos WGAN-GP generator loss. 77

B.54 OLG WGAN-GP critic loss. 78

B.55 OLG WGAN-GP generator loss. 78

B.56 VBInject WGAN-GP critic loss. 78

B.57 VBInject WGAN-GP generator loss. 78

CHAPTER 1

Introduction

Malicious software, or Malware in short, is a software that is specifically designed

to harm computer systems by affecting devices, tampering with/stealing data and even

harming people. Thus, protection of computer systems from malware is an integral

component of information security and malware research plays an important role in

securing computer systems.

Due to the exponential increase in the number of technological devices such as

smart phones, laptops, tablets and many other devices encapsulated by ‘‘Internet of

Things (IoT)’’, the number of malware attacks has grown rapidly. According to data

collected by SonicWall, there were a total of 9.9 billion [1] malware attacks worldwide

in 2019 alone.

Traditional malware classification and detection techniques can be broadly divided

into 3 categories: behavior/anomaly-based detection, signature-based detection and

heuristics-based detection [2].

In anomaly-based techniques, a detector requires prior knowledge of what ‘‘nor-

mal’’ behavior should be and uses that knowledge to decide whether the program being

inspected is harmful or not. This involves 2 phases: training phase and monitoring

phase. In the training/learning phase, the detector learns the system’s healthy/normal

behavior. In the monitoring phase, the detector flags programs that alter the behavior

of the system. One big drawback of these techniques is the alarmingly high false

positive rate [3].

In signature-based techniques, the detector is required to know the signature of a

malicious program and can decide whether the current program is malicious or not [2]

based on its signature. The signature is extracted from a set of contiguous bytes in

the program. On identifying the signature as malware, the signature is stored in a

1

database. Although most commercial anti-viruses still use signature-based malware

detection techniques, they have a major drawback that they can only identify known

malware. This means that ‘‘zero-day’’ malware, which haven’t been identified yet are

very hard to catch.

In heuristics-based techniques, the suspected malicious file is either executed in

a virtual environment and the set of instructions is observed (dynamic analysis) or

decompiled before executing it and the code is examined (static analysis) [4]. Heuristics

based analysis can help discover some zero-day attacks but their drawback is that

they are unable to detect malware that use different or newer techniques to harm

systems.

To combat these disadvantages, machine learning techniques have been researched

and developed. During dynamic and static analysis of malicious files, features such

as opcode sequences, API calls, bytes vectors and many other [5, 6, 7] are extracted.

Machine Learning models are trained on these features and tested against potential

malware files.

Although machine learning techniques have shown promising results, there are

still some challenges to this technique. In recent years, malware authors have evolved

even more and developed methods that make malware detection even harder even

for machine learning based techniques. Methods such as malware obfuscation [8] in

which the code of a malicious file is convoluted with dead code and some random

code is inserted from benign files makes it hard to detect a particular file as malicious.

Some other challenges to machine learning based techniques include the availability,

or lack there of, of large public datasets for research purposes [9] and new techniques

employed by malware authors such as Adversarial machine learning [10] to throw off

machine learning models.

In this project, we use mnemonic opcodes extracted from malware executables

2

belonging to 5 different malware families. We focus on generating realistic fake malware

samples by solving Problem 2 of Hidden Markov Models (HMM) (see Chapter 2) and

thereby estimating the hidden states to get the opcodes sequence. In addition to using

HMM to generate opcode sequence, we use Generative Adversarial Networks(GAN) [11]

to generate fake opcodes sequence.

We use multiple machine learning classification techniques: Support Vector Ma-

chines, k -Nearest Neighbor, Random Forest and Naïve Bayes Classifier to differentiate

between fake and real samples and compare the 2 techniques (HMM and GAN) based

on their performance. The main goal of this project is to develop practical use cases for

fake malware opcode sequences and serve as a ‘‘proof-of-concept’’ for using generative

modelling to synthesize mnemonic opcode sequences.

In Chapter 2, we go over some previous and related work. We also give a brief

summary of the techniques and concepts we are using for this project. In Chapter 3

we explain our workflow and give a description of our malware generation pipeline.

In Chapter 4 we go over the actual implementation and our experimental setup. In

Chapter 5 we provide the results of our experiments and finally in Chapter 6 we

conclude the project and discuss the future directions for our project.

3

CHAPTER 2

Background

In this chapter, we discuss the background of malware classification and use of

generative modelling for the same. We lay out some of the drawbacks of malware as

images classification and highlight the gap in the literature with respect to generat-

ed/synthetic malware opcode samples.

We also give a brief introduction to Hidden Markov Models, Generative Adversarial

Networks and the Machine Learning techniques used to evaluate our results.

2.1 Background and Related Work

A recent trend in malware research is creating images from malware executable

files and using them to perform malware detection and classification. This gives the

opportunity to use image-analysis techniques and allows for the use of powerful deep

neural networks which perform exceptionally well with images. For example, in [12] S.

Yajamanam et al. extract features from malware images known as gist-descriptors and

classified malware samples using these features with k-Nearest Neighbors algorithm.

Then they compare the performance of gist-descriptors versus deep neural networks.

In both cases they received excellent results, with over 90% accuracy. In [13], the

authors classified malware images using a Convolutional Neural Network (CNN) and

achieved excellent classification results with 100% accuracy for 14 out 25 malware

families that they considered.

The examples above show clear advantages of using deep learning techniques

with image-based data. In terms of generative modelling, many researchers have used

malware images to generate malware samples as that gives the advantage of boosting

the dataset and even performing data augmentation to real samples so that they

conform to some obfuscated malware samples. In [14], the authors used Variational

Auto Encoder (VAE) and GANs to boost malware dataset and saw a 2% increase in

4

accuracy in case of VAE and 6% increase in case of GAN. They also used malware as

images. A very similar research is [15] where the authors used GAN and observed a

6% increase in accuracy using the benchmark ResNet-18 model trained on malware

data.

Data augmentation or boosting using malware as images and generative modelling

techniques is becoming increasingly popular. But the drawback of this technique

is that converting malware files to images is computationally expensive. Moreover,

training deep convolutional networks is also computationally expensive and it takes a

long time to train and test the models. Using GANs with images has similar overheads.

In [16], Weiwei Hu and Ying Tan propose a GAN based model that is able to

bypass black-box malware detection systems which almost 0 detection rate. They

used API features extracted from the malware samples as they are executed in a

virtual environment such as a sandbox. This model is called ‘‘MalGAN’’ and certainly

performed very well. But executing malware in sandbox environment to get the API

features is again an overhead.

There is a gap in the literature when it comes generating malware samples using

non-image features or representations of malware. So we explore this gap by utilizing

mnemonic opcodes extracted from malware files and generating mnemonic opcode

samples using HMM and 3 different GAN architectures (see Section 2.3, 2.4, 2.5).

2.2 Hidden Markov Models

Hidden Markov Model (HMM) is a machine learning technique which is widely and

effectively used for statistical analysis of timeseries or sequential data. They have been

successfully used in speech analysis and recognition [17], malware classification [18]

and genes sequence analysis [19].

5

Table 1: HMM notation.

Symbol Description
𝑀 Number of distinct observation symbols
𝑁 Number of hidden states
𝑇 Length of the observation sequence
𝒪 Observation sequence
𝑄 Set of distinct states
𝑉 Set of all possible observations
𝐴 State transition probability matrix
𝐵 State-Observation probability matrix
𝜋 Initial state probability matrix

2.2.1 HMM Introduction and Working

A Markov model is defined as a statistical model which has states and the

transition probabilities from one state to another is known [20]. In a Markov Model,

the states are known to an observer. On the other hand, in an HMM the underlying

states are not known to the observer. The state transition probability between states

is known and the probability distribution of observing a set of observation symbols

for each state is know [20].

Some notations required to understand HMM are given in Table 1. From Table 1

we see that 𝑉 is the set of possible observations and 𝑀 is the total number of

unique observation symbols. In other words, |𝑉 | = 𝑀 and 𝑉 = {0, 1, ...,𝑀 − 1}.

Additionally, observation sequence, 𝒪, of length 𝑇 is comprised of 𝑉 , i.e., 𝒪𝑖 ∈

𝑉, for 𝑖 = 0, 1, .., 𝑇 − 1.

6

An HMM model is denoted by 𝜆. It is characterized by the matrices 𝐴,𝐵 and 𝜋.

The matrix 𝐴 denotes the state transition probability between 2 states. It’s dimensions

are 𝑁 ×𝑁 .
𝑎𝑖𝑗 = 𝑃 (𝑠𝑡𝑎𝑡𝑒 𝑞𝑗 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡+ 1 | 𝑠𝑡𝑎𝑡𝑒 𝑞𝑖 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡)

where, 𝐴 = {𝑎𝑖𝑗}. The B matrix, 𝐵 = {𝑏𝑗(𝑘)} is of dimension 𝑁 ×𝑀 and denotes

the probability of observing a symbol 𝒪𝑘 at time 𝑡 when in state 𝑞𝑖:

𝑏𝑗(𝑘) = 𝑃 (𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 𝑘 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡 | 𝑠𝑡𝑎𝑡𝑒 𝑞𝑗 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡)

We can use HMM to solve 3 Problems:

1. Problem 1: Given an observation sequence, 𝒪, and a model 𝜆, we can find

𝑃 (𝒪|𝜆). This means that we can compute a score for the sequence 𝒪 w.r.t.

𝜆 [20].

2. Problem 2: Given a model 𝜆 and an observation sequence 𝒪, we can determine

the hidden states of the Hidden Markov Model. That is, we can uncover the

Markov process underneath [20].

3. Problem 3: Given an observation sequence 𝒪 and dimensions 𝑁 and 𝑀 , we can

find the model 𝜆 of the given dimensions that best represents 𝒪. This basically

means we are training the model to match the observation sequence [20].

The solution to these problems is implemented via the Baum-Welch algorithm [21]. It

uses a forward and backward algorithm to find the unknown parameters of the Hidden

Markov Model, or in other words, to train the model (Problem 3). Additionally, the

forward algorithm is used to solve Problem 1 and the backward algorithm is used to

solve Problem 2. The 𝛾 matrix from the Baum-Welch algorithm contains a probability

value for each state at time 𝑡, where 𝑡 ∈ {0, 1, .., 𝑇 − 1}. So its dimensions are 𝑇 ×𝑁 .

7

We find the most likely hidden state sequence by finding the states 𝑄𝑖 at 𝑡 with the

highest probability. So this gives us most likely state sequence of length 𝑇 .

In our case, we need to solve all 3 of the problems. More details on why we need

to solve all 3 problems are given in Chapter 4, Section 4.2.

HMM is a hill climb algorithm, that means that it finds the local maxima on

the parameter space 𝐴,𝐵 and 𝜋. To ensure a global maximum, we need to train the

model multiple times and each time with a random initialization of the parameters

𝐴,𝐵 and 𝜋. This is the concept of ‘‘random restarts’’ in HMM [20].

2.3 Generative Adversarial Networks

Generative Adversarial Network(GAN) is one the most exciting topic in the field

of generative modelling and Machine Learning right now. GAN was introduced by Ian

J. Goodfellow et al. [11] in 2014. The GAN model consists of 2 neural networks: the

discriminator and the generator which participate in a zero-sum game to achieve Nash

equilibrium. The objective of the 2 networks is different from each other but the overall

objective of the network is to generate data samples that conform to a probability

distribution 𝑝𝑔 which is similar to the true data’s probability distribution 𝑝𝑡𝑟𝑢𝑒. The

generator tries to fool the discriminator by getting it to classify the generated samples

as real and the discriminator tries to identify the samples as fake or real.

2.3.1 GAN Working and Architecture

Table 2 shows the notation used in defining the GAN Architecture. The discrimi-

nator, 𝐷, is trained such that on seeing a true sample, 𝑥∼𝑝𝑡, it classifies it accurately

as a real sample by maximizing the log likelihood of 𝐷(𝑥). Conversely, 𝐷 is trained

such that on seeing a fake sample 𝑧∼𝑝𝑔, it classifies it as fake giving a probability as

close to 0 as possible. This is achieved by maximizing the log likelihood of 1−𝐷(𝐺(𝑧)):

max
𝐷

E𝑥∼𝑝𝑡 [log𝐷(𝑥)] + E𝑧∼𝑝𝑧 [log 1−𝐷(𝐺(𝑧))] (1)

8

Table 2: GAN notation.

Symbol Description
𝐺 Generator
𝐷 Discriminator
𝑧 Random noise belonging to probability distribution 𝑝𝑧

𝑝𝑡 Probability distribution of true data samples
𝑝𝑔 Probability distribution of 𝐺’s output 𝐺(𝑧)

𝐷(.) Output of 𝐷 for any input .
𝐺(.) Output of 𝐺 for any input .

𝑉 (𝐷,𝐺) Cost function for the GAN

On the other hand, the generator, 𝐺, is trained such that 𝐷, on seeing a fake

sample, 𝐺(𝑧), classifies it as real. This is achieved by minimizing the log likelihood of

1−𝐷(𝐺(𝑧)):
min
𝐺

E𝑧∼𝑝𝑧 [log 1−𝐷(𝐺(𝑧))] (2)

Since the Generator’s objective is independent of the Discriminator’s predictions on

true data sampled from 𝑝𝑡, we can combine (1) and (2). We get a combined cost

function 𝑉 (𝐷,𝐺):

min
𝐺

max
𝐷

𝑉 (𝐷,𝐺) = E𝑥∼𝑝𝑡 [log𝐷(𝑥)] + E𝑧∼𝑝𝑧 [log 1−𝐷(𝐺(𝑧))] (3)

This is the minimax game that the Generator and Discriminator play. The authors of

the original paper showed that once the Generator is trained to optimum, 𝑝𝑔 gets very

close to 𝑝𝑡 and consequently, 𝐷 becomes very close to 1/2. Equation (3) is essentially

finding the divergence between the probability distribution 𝑝𝑔 and 𝑝𝑡 minimizing the

Jensen-Shannon(JS) divergence between these 2 probability distributions as shown in

Theorem 1 in [11] and [22].

9

Figure 1: GAN training pipeline [25].

2.3.2 GAN Training

When actually training the model, the loss function used is Binary Crossen-

tropy [23] which calculates the difference in the probability distribution of true

samples, labelled 1, and false samples labelled as 0. The weights of both models are

updated independently of each other using 2 loss functions on the models parame-

terized by their weights: 𝐺(𝑧 : 𝜃𝑔) and 𝐷(𝑥 : 𝜃𝑑). The formal algorithm for GAN

training is given in Algorithm 1. Figure 1 shows the training steps graphically.

The authors of the paper mentioned that we can use any optimizer to update the

weights of both the models. They suggested that momentum based optimizers, like

Adam [24], with low learning rate (1𝑒− 3 ∼ 1𝑒− 5) work well as they allow for faster

convergence of both the networks.

2.3.3 GAN Limitations

Although GANs excel in learning complex data distributions, there exist major

challenges in training of GANs such as mode collapse, vanishing gradient, internal

covariate shift, failure mode etc. To overcome these challenges, several novel variants

and architectures of GANs have been researched and implemented. [26] and [27]

provide a comprehensive analysis of the challenges in GAN training and pros and cons

of various GAN architectures.

10

Algorithm 1 GAN Training [11].
Require:
𝐺: generator, 𝐷: discriminator, 𝑚: mini-batch size, 𝑥𝑖: real samples belonging to
𝑝𝑡, 𝑧𝑖: noise samples from known distribution 𝑝𝑧
for number of epochs do

Sample a minibatch of size 𝑚 from real data: {𝑥1, 𝑥2, ..., 𝑥𝑚} belonging to 𝑝𝑡
Sample a minibatch of noise of size 𝑚 : {𝑧1, 𝑧2, ..., 𝑧𝑚} belonging to 𝑝𝑧
Generate fake samples using 𝑧𝑖, 𝑖 ∈ {1, ..,𝑚}: {𝐺(𝑧1), ..., 𝐺(𝑧𝑚)}
Feed 𝑥𝑖 and 𝐺(𝑧𝑖) to 𝐷 and updates it’s weights using stochastic gradient ascent

∇𝜃𝑑

1

𝑚

𝑚∑︁
𝑖=1

[log𝐷(𝑥𝑖) + log (1−𝐷(𝐺(𝑧𝑖)))]

Sample a minibatch of noise of size 𝑚 : {𝑧1, 𝑧2, ..., 𝑧𝑚} belonging to 𝑝𝑧
Update Generator’s weight by stochastic gradient descent on 𝐺(𝑧𝑖 : 𝜃𝑔)

∇𝜃𝑔

1

𝑚

𝑚∑︁
𝑖=1

[log (1−𝐷(𝐺(𝑧𝑖)))]

end for

2.4 Wasserstein GAN

Wasserstein GAN (WGAN) [28] was first proposed in 2017 by M. Arjovsky et

al. as an improvement over the vanilla GAN. They first published a paper [22]

highlighting the important theoretical implications of GAN training as proposed by

Ian J. Goodfellow et al. [11] and laid out the mathematical reasoning and proofs for

some of the issues surrounding GAN training, as explained in Section 2.3.3.

2.4.1 WGAN working

The main idea of the WGAN is that instead of optimizing the JS Divergence

between 2 probability distributions 𝑝𝜃 and 𝑝𝑡, use of a different distance metric

as the loss function is proposed which is called the Wasserstein distance or Earth-

Mover distance is proposed (in this section we represent the generator’s probability

distribution with 𝑝𝜃 instead of 𝑝𝑔 to conform to the notations used by the authors). The

Wasserstein distance is a measure of distance between 2 probability distributions. It is

11

referred to as the Earth-Mover distance because it can be thought of as the minimum

amount of energy cost required to transform the shape of a pile of dirt representing a

probability distribution into the shape of another. The dirt is ‘‘transported’’ from one

pile to another and the cost is calculated as the mass moved times the distance.

In [28], the authors explain why using JS Divergence, or some other distance

metrics, such as KL Divergence is not conducive to optimally training the discriminator,

In fact, they give an example, Example 1 in [28] which shows that in come cases

the value of JS Divergence goes to 0 and hence, when the discriminator is trained to

optimality, i.e., when it can perfectly classify fake vs real data samples, then the value

of loss function in Equation (3) provides no meaningful feedback to the generator. No

learning takes place from there on as the model saturates.

Equation (4) represents the formula for Wasserstein distance between 2 probability

distributions in a continuous probability domain.

𝑊 (𝑝𝑡, 𝑝𝜃) = inf
𝛾∈

∏︀
(𝑝𝑡,𝑝𝜃)

E(𝑥,𝑦)∼𝛾[‖𝑥− 𝑦‖] (4)

In Equation (4),
∏︀
(𝑝𝑡, 𝑝𝜃) represents the set of all possible join probability distributions

between 𝑝𝑡 and 𝑝𝜃 and 𝛾 ∈
∏︀
(𝑝𝑡, 𝑝𝜃) indicates one out of many ‘‘dirt’’ transport plans.

Finally, 𝛾(𝑥, 𝑦) indicates the amount of ‘‘mass’’ to be moved from 𝑥 to 𝑦 in order to

transform 𝑝𝑡 to 𝑝𝜃. The EM distance is the infimum or the smallest value of ‘‘cost’’

out of all the plans.

Exhausting all join distributions between 𝑝𝑡 and 𝑝𝜃 is intractable. So, the authors

applied a smart transformation to the formula in (4) using the Kantorovich-Rubinstein

duality to get:

𝑊 (𝑝𝑡, 𝑝𝜃) =
1

𝐾
sup

‖𝑓‖𝐿≤𝐾

E𝑥∼𝑝𝑡 [𝑓(𝑥)]− E𝑥∼𝑝𝜃 [𝑓(𝑥)] (5)

where the infimum is replaced with the supremum, which means the maximum

value and 𝑝𝜃 is the probability distribution for generator’s outputs. The condition

12

‖𝑓‖𝐿 ≤ 𝐾 implies that the function 𝑓 is K-Lipschitz continuous. A function 𝑓 : R→ R

is K-Lipschitz continuous if there exists a real number 𝐾 ≥ 0, s.t., ∀(𝑥1, 𝑥2) ∈ R:

| 𝑓(𝑥1)− 𝑓(𝑥2) |≤ 𝐾 | 𝑥1 − 𝑥2 |

where K is known as the Lipschitz constant for function 𝑓 . Now, suppose there is a

family of functions {𝑓𝑤}𝑤∈𝒲 where they are all K-Lipschitz continuous and 𝑤 is the

set of optimal weights and 𝒲 is the set of possible weights, then the problem to solve

i.e. the loss function, becomes:

𝐿(𝑝𝑡, 𝑝𝜃) = 𝑊 (𝑝𝑡, 𝑝𝜃) = max
𝑤∈𝒲

E𝑥∼𝑝𝑡 [𝑓𝑤(𝑥)]− E𝑧∼𝑝𝑧 [𝑓𝑤(𝐺𝜃(𝑧))] (6)

where 𝑝𝑧 is the noise distribution from which 𝑧 is sampled, 𝐺𝜃 represents the generator

parameterized by the weights 𝜃 and the ‘‘discriminator’’ is parameterized by the

optimal set of weights 𝑤 ∈ 𝒲 .

The ‘‘discrimiantor’’ is no longer predicting whether a sample is fake or real, it is

simply trying to learn a K-Lipschitz continuous function that will help in calculating

the Wasserstein distance between 𝑝𝑡 and 𝑝𝜃. Due to this, the authors of the paper call

this model the ‘‘critic’’ instead of discriminator.

Since we already know that neural networks are designed to learn functions, we

can train the neural network to learn the K-Lipschitz continuous function {𝑓𝑤}𝑤∈𝒲

and train the critic to optimal. This will allow for an estimation of the Wasserstein

distance up to a multiplicative constant (𝐾). In the next section, we explain how the

training of a WGAN works.

2.4.2 WGAN Training

We need to first understand how the generator, 𝑔𝜃, updates its weights. We can

get the gradient for 𝜃 using Equation (6) as:

∇𝜃𝑊 (𝑝𝑡, 𝑝𝜃) = ∇𝜃(E𝑥∈𝑝𝑡 [𝑓𝑤(𝑥)]− E𝑧∈𝑝𝑧 [𝑓𝑤(𝐺𝜃(𝑧))])

13

which gives
∇𝜃𝑊 (𝑝𝑡, 𝑝𝜃) = −E𝑧∈𝑝𝑧 [∇𝜃𝑓𝑤(𝐺𝜃(𝑧))]) (7)

To train a WGAN we need to find the optimal 𝑓𝑤. To do this, for a fixed value of 𝑔𝜃,

we try to train the critic to optimality and obtain the optimal 𝑓𝑤 for the Wasserstein

distance. Once we have an optimal 𝑓𝑤, we update the generator’s weights, 𝜃, through

back propagation as given in Equation (7). This process involves training the critic

more times than the generator since our goal is to train the critic to optimality

(formally, we have 𝑛𝑐𝑟𝑖𝑡𝑖𝑐 iterations per generator iteration and the authors recommend

a value between 5 and 10). This way the gradient information that will be back

propagated through the network will be very efficient and the generator can update

it’s weights effectively. The authors state the use of RMSProp optimizer instead of

Adam [24] citing higher stability and better performance.

However, there is 1 constraint in the training algorithm which is to ensure that

𝑓𝑤 is K-Lipschitz continuous throughout the training. To achieve this, the authors

use a very simple but effective trick: The value of the weights, 𝑤, is clamped within

a compact space 𝒲 such as [−0.01, 0.01]. This way, 𝑓𝑤 receives an upper and lower

bound and is Lipschitz continuous in this space. The formal algorithm for WGAN

training is given in Algorithm 2

2.4.3 WGAN limitations

The main drawback of the WGAN algorithm is the way K-Lipschitz continuity

is enforced. Clipping the weights into a compact space [−𝑐, 𝑐] is not a very good way

to enforce this constraint. It can lead to the model failing to learn more complex

distributions and even saturating before reaching optimality. To quote the authors of

the paper themselves: ‘‘Weight clipping is a clearly terrible way to enforce a Lipschitz

constraint. If the clipping parameter is large, then it can take a long time for any

weights to reach their limit, thereby making it harder to train the critic till optimality.

14

Algorithm 2 WGAN Training [28]. Default parameter values are: 𝛼 = 0.00005,
𝑛𝑐𝑟𝑖𝑡𝑖𝑐 = 5 and 𝑐 = 0.01

Require:
𝛼: learning rate, 𝑚: mini-batch size, 𝑐: clipping size, 𝑛𝑐𝑟𝑖𝑡𝑖𝑐: number of critic
iterations per generator iteration, 𝐶𝑤: critic parameterized by weights 𝑤, 𝐺𝜃:
generator parameterized by weights 𝜃.
while 𝜃 has not converged do

for t = 0, 1,.., 𝑛𝑐𝑟𝑖𝑡𝑖𝑐 do
Sample a minibatch of size 𝑚 from real data: {𝑥1, 𝑥2, ..., 𝑥𝑚} belonging to 𝑝𝑡
Sample a minibatch of noise of size 𝑚 : {𝑧1, 𝑧2, ..., 𝑧𝑚} belonging to 𝑝𝑧
𝐶𝑤 ← ∇𝑥[

1
𝑚

∑︀𝑚
𝑖=1 𝑓𝑤(𝑥𝑖)− 1

𝑚

∑︀𝑚
𝑖=1 𝑓𝑤(𝐺𝜃(𝑧𝑖))]

𝑤 ← 𝑤 + 𝛼 · RMSProp(𝑤,𝐶𝑤)
𝑤 ← 𝑐𝑙𝑖𝑝(𝑤,−𝑐, 𝑐)

end for
Sample a minibatch of noise of size 𝑚 : {𝑧1, 𝑧2, ..., 𝑧𝑚} belonging to 𝑝𝑧
𝐺𝜃 ← −∇𝜃

1
𝑚

∑︀𝑚
𝑖=1 𝑓𝑤(𝐺𝜃(𝑧𝑖))

𝜃 ← 𝜃 − 𝛼 ·𝑅𝑀𝑆𝑃𝑟𝑜𝑝(𝜃,𝐺𝜃)
end while

If the clipping is small, this can easily lead to vanishing gradients when the number

of layers is big, or batch normalization is not used (such as in RNNs).’’

2.5 WGAN with Gradient Penalty

Wasserstein GAN with Gradient Penalty (WGAN-GP) [29] was first introduced

in 2017 by Ishaan Gulrajani et al. The main objective of this architecture is to

overcome the drawback of WGAN which is the way Lipschitz continuity is enforced.

As mentioned in Section 2.4.1, the value of the weights 𝑤 is clamped in a compact

space 𝒲 so that 𝑓𝑤 is bound and K-Lipschitz continuous in this range. This is a clear

limitation in WGAN (see Section 2.4.3).

To overcome this, the authors in [29] propose an improved WGAN training

method. They present Corollary 1 in [29] which claims that the optimal critic in

WGAN has gradient norm equal to 1 and it is 1-Lipschitz continuous. Using this

fact, a ‘‘penalty’’ is imposed on the critic if it’s gradient’s norm deviates from 1. The

15

objective function of WGAN-GP now changes to:

𝐿(𝑝𝑡, 𝑝𝜃) = E𝑥∈𝑝𝑡 [𝑓𝑤(𝑥)]− E𝑧∈𝑝𝑧 [𝑓𝑤(𝐺𝜃(𝑧))] + 𝜆E𝑥̂∈𝑝𝑥̂ [(‖∇𝑥̂𝑓𝑤(𝑥̂)‖2 − 1)2] (8)

The last term on the right side is the gradient penalty. 𝜆 is the penalty coefficient

and is set to 10 [29].

In Equation 8, the distribution 𝑝𝑥̂ is defined implicitly as sampling uniformly

from straight lines formed by pair of points belonging to 𝑝𝑡 and 𝑝𝜃, where 𝑝𝜃 is

the generator’s distribution as defined by 𝐺𝜃(𝑧). When actually implementing the

algorithm, 𝑥̂ is estimated by taking a weighted average between pair of data samples

(𝑥, 𝑦) such that 𝑥 ∈ 𝑝𝑡 and 𝑦 ∈ 𝑝𝜃 or 𝐺𝜃(𝑧). Usually 𝑥̂ is known as the interpolated

sample. The authors also suggested the use of Adam optimizer instead of RMSProp

as it performed better. The formal algorithm is given in Algorithm 3.

Algorithm 3 WGAN with Gradient Penalty Training [29]. Default parameter values
are: 𝜆 = 10, 𝑛𝑐𝑟𝑖𝑡𝑖𝑐 = 5, 𝛼 = 0.0001, 𝛽1 = 0 and 𝛽2 = 0.9

Require:
𝑚: mini-batch size, 𝜆: penalty coefficient, 𝑛𝑐𝑟𝑖𝑡𝑖𝑐: number of critic iterations per
generator iteration, 𝛼, 𝛽1, 𝛽2: Adam parameters, 𝐶𝑤: critic parameterized by weights
𝑤, 𝐺𝜃: generator parameterized by weights 𝜃.
while 𝜃 has not converged do

for t = 0, 1,.., 𝑛𝑐𝑟𝑖𝑡𝑖𝑐 do
for i=1, 2,..., m do

Sample 𝑥 ∈ 𝑝𝑡, 𝑧 ∈ 𝑝𝑧 and random number 𝜖 ∈ 𝑈 [0, 1]
𝑥̃← 𝐺𝜃(𝑧)
Interpolated sample: 𝑥̂ = 𝜖𝑥+ (1− 𝜖)𝑥̃
𝐿𝑖 = 𝑓𝑤(𝑥̃)− 𝑓𝑤(𝑥) + 𝜆(‖∇𝑥̂𝑓𝑤(𝑥̂)‖2 − 1)2

end for
𝐶𝑤 ← ∇𝑤

1
𝑚

∑︀𝑚
𝑖=1 𝐿𝑖

𝑤 ← Adam(𝑤,𝐶𝑤, 𝛼, 𝛽1, 𝛽2)
end for
Sample a minibatch of noise of size 𝑚 : {𝑧1, 𝑧2, ..., 𝑧𝑚} belonging to 𝑝𝑧
𝐺𝜃 ← −∇𝜃

1
𝑚

∑︀𝑚
𝑖=1 𝑓𝑤(𝐺𝜃(𝑧𝑖))

𝜃 ← Adam(𝜃,𝐺𝜃, 𝛼, 𝛽1, 𝛽2)
end while

16

Algorithm 3 is very similar to WGAN’s algorithm (Algorithm 2) minus the weight

clipping part and the addition of the gradient penalty.

2.6 k-Nearest Neighbor

k -Nearest Neighbor (kNN) is a supervised classification algorithm. The k in

kNN stands for the number of neighbors to consider. To classify an input, say 𝑥, the

algorithm considers ‘‘k ’’ points from the given training data such that the k points

are nearest to 𝑥. Then a class is assigned to 𝑥 depending on the majority of classes in

the 𝑘 neighbors. The distance metric used to calculate the distance between points

can be Euclidean, Manhattan, Minkowski etc [30]. The most widely used metric is

Euclidean distance.

An advantage of kNN algorithm is that there is no training or model fitting to

be done. The labelled training data is just used to calculate the distance between

input points and assign classes thereafter. The disadvantage is that although there is

no training, testing data can take a long time especially with large datasets of high

dimensions.

An example of kNN algorithm is given in Figure 2. There are 2 classes of data,

class A (yellow) and class B (pink). When a new input, red, is to be classified and

the value of k=3, then 3 nearest neighbors to red are calculated. We can see that 2 of

the 3 belong to class B and 1 belongs to class A. So the red input will be assigned

class B. On the other hand, when k=6, 4 of the nearest neighbors belong to class A

and only 2 belong to B. In that case, the red input will be assigned to class A.

2.7 Support Vector Machines

Support Vector Machine (SVM) [32] is a supervised machine learning algorithm

that tries to generate a decision boundary between 2 classes of data, known as the

hyperplane. It is a binary classifier that can be extended for multi-class classification

17

Figure 2: kNN classification example. [31]

by utilizing techniques such as One-vs-Rest. The main idea behind SVM is to find a

hyperplane such that the distance between the hyperplane and the closest point from

the 2 classes is maximized. This distance is called the margin. The hyperplane with

the maximum margin is the optimal solution. Figure 3 shows the possible separation

hyper-planes between the data points belonging to 2 different classes and Figure 4

shows the optimal hyperplane such that the margin is maximum. Sometimes when a

Figure 3: Possible hyperplanes [33]. Figure 4: Optimal hyperplane [33].

clean hyperplane cannot be found, the data is projected into a higher dimension so

that a clean separation boundary is possible, but this increases the complexity and

18

may make it intractable. In 1992, a new technique known as the kernel trick [34] was

invented which allows SVM to work efficiently for higher dimensional data.

2.8 Naïve Bayes Classifier

Naïve Bayes Classifier [35] is a supervised learning algorithm that uses Bayes

theorem to compute the probability of an observation belonging to a particular class.

The Bayes theorem or formula is:

𝑃 (𝐵|𝐴) = 𝑝(𝐴|𝐵) 𝑝(𝐵)

𝑝(𝐴)
(9)

where, 𝑃 (𝐵|𝐴) is the posterior probability, meaning the probability of hypothesis 𝐵

given data 𝐴, 𝑝(𝐴|𝐵) is the probability of data 𝐴 given hypothesis 𝐵 is true, 𝑝(𝐵) is

called the prior probability, meaning the probability of 𝐵, 𝑝(𝐴) is the probability of

data 𝐴.

The algorithm is called ‘‘Naïve’’ because it makes an assumption that the input

features are independent of each other. During training, probability of observing

a feature is calculated for each class using Equation (9). For classification, the

probability of an input belonging to every class is calculated and the class with the

highest probability is assigned to the input vector.

2.9 Random Forest

Random Forest is a supervised machine learning algorithm. It is an ensemble

technique which means that it utilizes existing classification techniques and combines

them to produce a stronger classifier.

The underlying principle behind Random Forest is decision tree. Random Forest

consists of multiple decision trees which are created when fitting the training data.

During testing, each decision tree outputs a prediction and the majority of these

outputs is selected as the final class output by the Random Forest classifier. Each

individual decision tree is built or grown as follows:

19

1. Select a subset of training data.

2. Select a set of features randomly from the subset of the data and start splitting

the tree node.

3. The node is split into 2 child nodes so as to maximize the difference between

the features of 2 new groups and minimize the difference between features inside

a group.

4. Nodes are split until perfect groups are obtained or until the specified maximum

depth is reached.

A combination of multiple decision trees each trained as explained above with a

random subset of training data makes up the Random Forest classifier.

20

CHAPTER 3

Methodology

In this chapter, we detail our fake malware generation pipeline, feature extraction

for fake sample evaluation and the machine learning pipeline for our experiments.

3.1 Fake Malware using HMM

The methodology adopted for generating fake malware samples using HMM is

explained below:

1. Create observation sequence, 𝒪, of length 𝑇 = 30, 000 for each family.

2. Train 21 HMM models for each malware family with 𝑇 = 30, 000, 𝑁 = 2 and

𝑀 ∈ {20, 21, ..., 40}, where 𝑀 is taken as top 𝑀 − 1 most frequent opcodes and

every opcode not present in top 𝑀 − 1 was marked as ‘‘other’’, or 𝑀 . Chapter 4

explains why we chose these values for 𝑀 .

3. Score these 21 HMM models for each family by testing them against samples

from the other 4 families and benign dataset.

4. Select the best value of 𝑀 , say 𝑀 ′, from these models for each family and train

10 HMM models be setting 𝑁 = 𝑀 = 𝑀 ′.

5. Score the 10 models for each family.

6. Select the 2 highest scoring models from Step 4 and use their 𝛾 matrix to find

out the most likely state sequence of the HMM model.

7. The most likely state sequence represents the fake samples. Score and evaluate

these fake samples as explained in Section 3.4.

21

3.2 Fake Malware using GAN

The methodology adopted for generating fake malware samples using GANs is

explained below:

1. We use 3 different GAN architectures to generate fake samples: Vanilla GAN

(or just GAN), Wasserstein GAN and Wasserstein GAN with Gradient Penalty.

2. Train GAN models for each family and save generator models at an interval of

200 epochs for GAN and 500 for WGAN and WGAN with gradient penalty.

3. Generate fake samples in batches of 32 using the saved generative models.

4. Evaluate them against real data samples by simply testing the integer vectors

(see 3.3) representing real samples and fake samples.

5. Repeat Step 4 5 times and the average the results.

6. Select the best scoring model as the final generative model for each family, giving

a total of 5 generator models per architecture.

7. The models selected in Step 6 are used to generate fake samples for each family

and the samples are evaluated as explained in Section 3.4.

8. Repeat Steps 2-6 for WGAN and WGAN-GP architectures.

This process is explained in more detail in Section 3.4.2.

3.3 Feature Extraction

In this section we explain our feature extraction process and the types of features

used for evaluation. We extract 3 different features from the real and fake samples to

train our machine learning models.

• Normal integer vector conversion of opcodes: We simply map the

mnemonic opcodes to integers.

22

• Word2Vec: We treat the real samples as our corpus and create Word2Vec

embedding of length 100 for each opcode. We use this embedding to create a

vector for each data sample by simply summing up the embedding vector of

each opcode in a given sample and normalizing it by the length of the sample.

• n-grams: We create bigrams (n=2) from the real dataset and find the top 20

bigrams based on the frequency. Then, a vector of length 20 is created for each

data sample which contains the frequency count of these 20 bigrams. We treat

these vectors as our bigram features.

3.4 Evaluation

We evaluate all the HMM models by creating the Receiver Operating Character-

istic (ROC) curve for each model and calculating the AUC.

3.4.1 HMM Evaluation

HMM scores represent the log likelihood value of an observation sequence belong-

ing to the trained model. An ROC curve is created to show the classification status of

a model at different thresholds. A threshold value is defined for probabilistic models

such that values above a threshold are considered belonging to class A and values

below the threshold are considered belonging to class B (or class NOT A).

Fixing a threshold is not good practice since it doesn’t always lead to accurate

classification. Instead, different values of threshold are considered one by one and

the True Positive Rate (TPR) and False Positive Rate (FPR) are calculated for each

threshold value. An ROC curve plots the TPR vs. FPR.

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (𝑇𝑃) = classified as true and are actually true.

𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 (𝑇𝑁) = classified as false and are actually false.

𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (𝐹𝑃) = classified as true but are actually false.

𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 (𝑇𝑁) = classified as false but are actually true.

23

TPR and FPR are defined as follows:

𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃 + 𝑇𝑁

Area Under the Curve (AUC) is simply the area under the ROC curve. It provides

an overall measure of the classification performance. AUC is in range [0, 1] and a

larger AUC value means better classification with 0 meaning all predictions were

wrong and 1 meaning all predictions were right.

3.4.2 GAN Evaluation

The most common application for GANs is in the image domain. Most researches

use benchmark datasets such as MNIST, CIFAR10, ImageNet etc to evaluate the

performance of their GANs. A batch of generated images is saved every few hundred

epochs, like 200, and they are visually inspected. There are 2 common metrics used to

evaluate the quality of generated images: Inception Score [36] and Fréchet Inception

Distance (FID) [37].

In our case, we are generating opcode sequences and which can’t be inspected

visually and Inception Score and FID scores are defined only for images. So to evaluate

our GAN models, we saved the generative model at every 200 epochs for GAN and 500

epochs for WGAN and WGAN with gradient penalty. From all the saved generative

models we generated fake samples and classified them against real samples using

Random Forest classifier. The model, identified by the epoch number (0, 200, 500

and so on), that gave the lowest classification results is chosen as the best generative

model from that architecture. The best model is then used for evaluation as explained

in the next section.

24

3.4.3 Accuracy, Precision and Recall

To score and evaluate the quality of the fake samples (HMM and GANs), we

trained 4 machine learning models and calculated the Accuracy, Precision and Recall

for each model with each feature.

• Randomly sample 100 real data data samples and take 100 fake samples.

• Extract features from real and fake samples as mentioned in Section 3.3.

• Fit 4 different models; SVM, Random Forest, Naive Bayes classifier and k -

Nearest Neighbor; on the training data using 5-fold cross validation.

• Calculate the accuracy, precision and recall for each split done by 5-fold cross

validation and use the average as the final result.

Accuracy

Accuracy is a measure of correct predictions vs total predictions made. For binary

classification, it can be represented using TP, TN, FP and FN:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

Precision

Precision is a measure of the data samples classified correctly as positive vs all samples

classified as positive. In other words, in measures how ‘‘precise’’ the model is.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

Recall

Recall is a measure of the data samples classified correctly as positive vs all the

actually positive samples. In other words, it measures how many positive data samples

the model was able to ‘‘recall’’. It is the same as TPR.

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

25

CHAPTER 4

Implementation

In this chapter, we give a detailed explanation of our dataset, the configuration

of our HMM models, the different GAN architectures used and the machine learning

techniques used for evaluation of our fake samples.

4.1 Dataset

Out dataset consists of 5 malware families and a benign dataset. Each malware

family has over 1000 samples and the benign dataset has over 700 samples containing

mnemonic opcode sequences. We began with the Malicia dataset [38] which has over

50 malware families with already extracted opcodes and selected WinWebSec and

Zbot since these 2 families had more than 1000 samples each. The rest of the 3

families were collected from a huge dataset using VirusShare [39]. The dataset has

over 120,000 malware executable and is around 100 Gigabytes in size. We selected

Renos, VBInject and OnLineGames from this dataset.

We used objdump which is a command line program part of the GNU Binary Utilities

library for Unix-like operating systems. It is used to disassemble executables into

Assembly code and hence extract the mnemonic opcodes. An example of how this is

used is shown in Figure 5.

For the sake of the example we limit the output to 5 opcodes using head -n 5

argument. We ran a Python script which recursively extracted up to 8000 opcodes

from every file belonging to the 3 families. A summary of our dataset along with each

Figure 5: Example usage of objdump.

26

Table 3: Dataset summary

Malware Family Type Samples
Benign Benign samples 706
OnLineGames Password Stealer 1513
Renos Trojan Downloader 1568
VBInject Worm 2694
WinWebSec Rogue 4360
Zbot Password Stealer 2136

malware family’s type is given in Table 3.

4.2 HMM Implementation

We needed to solve all 3 HMM problems for our tasks. The solution to problem

3 allowed us to train an HMM model so that it represents our observation sequence,

which is opcodes from each family. The solution to problem 1 allowed us to score

data samples and evaluate the quality of our model. Finally, the solution to problem

2 allowed us to use the 𝛾 matrix so that we can find the hidden state sequence.

The HMM algorithm was implemented as per the algorithm given in [20]. We

wrote the code in C++ since training HMM is an expensive task and high-level

programming languages such as Python are slow compared to C++. We wrote a

Python script to preprocess our data and create our observation sequence, 𝒪, of length

𝑇 = 30, 000. We concatenated the mnemonic opcodes from different samples of a

family until we reached a length of 30, 000. This was done for all 5 families in our

dataset.

Table 4 shows the number of unique opcodes in each observation sequence. The

number of unique opcodes for each family is very high and setting 𝑀 to such large

values makes training of HMM models computationally infeasible. So we experimented

27

with selecting the top 𝑛 most frequent opcodes from the observation sequence, where,

𝑛 ∈ {20, 21, ..., 40}. Figure 6 shows the top 20 opcodes from our combined observation

Table 4: Unique Opcodes in observation sequences for each family

Malware Family Unique Opcodes
OnLineGames 284

Renos 208
VBInject 365

WinWebSec 122
Zbot 175

sequences and the number of families a particular opcode is present in. As we can see,

out of the top 20 opcodes, 19 of them are present in all 5 families. Similarly, Figure 7

shows this distribution for the top 40 opcodes. Out of the top 40 opcodes, 26 of them

are present in all 5 families. So we decided that the range for 𝑀 ∈ {20, 21, ..., 40} is

the best choice.

Next, we converted the mnemonic opcodes to integers so that we can use them

to solve Problem 3 of HMM, which is training the model to best fit the observation

sequence. For each value of 𝑀 as described above, we took the 𝑀 − 1 most frequent

opcodes and mapped them to integer {0, 1, ..,𝑀 − 2}. Every other opcode which is

not present in the top 𝑀 − 1 was labelled as ‘‘other’’, i.e., 𝑀 − 1. For example, when

𝑀 = 20, we mapped the top 19 opcodes to integers {0, 1, .., 18} and then the opcodes

not present in the top 19 were marked as 19. This gives us 20 unique observation

symbols ∈ {0, 1, .., 19}.

We set the value of 𝑁 = 2 for our initial experiments which were to figure out the

best value of 𝑀 . Now, we have different values of 𝑀 ∈ {20, 21, ..., 40} and value of

𝑁 = 2. For each family, this gives us 21 different HMM models of different dimensions

28

Figure 6: Top 20 opcodes from the observation sequences and the number of families
they are present in.

for each family. The models were trained with 50000 random restarts so that we can

maximize the chance of finding the global maxima. After training the models for a

family, we tested them as follows:

• We sampled 500 malware samples (their extracted opcode sequences) from the

family that the HMM model belongs to. These are the true samples so we

labelled them as +1.

• We sampled 100 samples each from the rest of the 4 families, giving us a total

of 400 samples. These are the false samples so we labelled them as -1.

• We sampled 100 samples from the benign dataset and labelled them as -1 as

well.

• Finally, we have 500 true samples (labelled 1) and 500 false samples (labelled

-1), giving a total of 1000 samples to score. Every sample consisting of opcode

29

Figure 7: Top 40 opcodes from the observation sequences and the number of families
they are present in.

sequences was truncated to a length of 1200 because each sequence has a different

length.

• We calculated the log likelihood of each sample belonging to a model and plotted

the ROC curve. Finally, the AUC was calculated from these ROC curves.

• The model with the highest AUC was chosen and the value of 𝑀 , say 𝑀 ′, from

that model was used for the rest of the experiments.

The above steps were repeated for each family. The optimum of 𝑀 for each family

30

served as the dimensions of our HMM model in the next set of experiments: 𝑁 =

𝑀 = 𝑀 ′.

Our next experiments were to solve Problem 2 of HMM so that we can find the

most likely state sequence which will act as our fake malware samples generated using

HMM. For each family, our model dimensions were: 𝑁 ×𝑀 , where 𝑁 = 𝑀 = 𝑀 ′

and 𝑀 ′ is the best value of 𝑀 for each individual family.

We trained 10 different HMM models, each with 5000 random restarts for each

malware family. All 10 of these models were scored the same way as explained above,

using 500 true samples and 500 false samples. Out of these 10 models, we selected the

2 best models with the highest AUC value. The 𝛾 matrix from these 2 models was

used to find the most likely hidden state sequence. Each model gives us a sequence of

30,000 length. We divided this sequence into 50 ‘‘fake’’ samples of length 600 each.

This gives us a total of 100 fake samples per family.

4.3 GAN Implementation

We implemented all 3 GAN architectures in Python using TensorFlow and Keras

with TensorFlow backend. For vanilla GAN or just GAN, we used Adam optimizer

with the following parameters:

𝐴𝑑𝑎𝑚(𝑙𝑟 = 0.0003, 𝛽1 = 0.5, 𝛽2 = 0.99)

These parameters gave the best results so they were chosen. The loss function used

was Binary Crossentropy as it is equivalent to the loss function for GAN as given in

Equation (3). The models were trained for 10000 epochs.

For GANs the use of Batch Normalization [40] layer is recommended as the

training is done using minibatches of data. The variance in the input data implicitly

caused by minibatches slows down training and requires the use of very small learning

rates otherwise the gradients and weights of layers may change drastically from

31

Figure 8: GAN Discriminator Architecture.

Figure 9: GAN Generator Architecture.

minibatch to minibatch. The overall architecture of our discriminator and generator

models is given in Figures 8 and 9.

For the discriminator we have 1 input layer, 2 fully connected hidden layers and

32

an output layer with just 1 neuron. The activation function for the output layer

is Sigmoid since we are using Binary Crossentropy loss and Sigmoid gives a value

between [0, 1] which is interpreted as the score for a sample or the probability. The

activation function for the hidden layers is LeakyReLU. LeakyReLU is recommended

over ReLU because ReLU outputs 0 for all negative inputs which causes vanishing

gradients problem. LeakReLU has a hyperparameter called alpha which is used to

scale negative outputs. We used 𝛼 = 0.2 for our experiments. LeakyReLU activation

function is:

𝑓(𝑥) =

⎧⎪⎪⎨⎪⎪⎩
𝑥, 𝑥 ≥ 0

𝛼𝑥, 𝑥 < 0

The generator has 1 input layer, 3 fully connected hidden layers with a batch

normalization layer after every hidden layer and finally an output layer with 600

neurons, which is the length of the opcode sequence we want to generate. The

activation function for hidden layers is again, LeakyReLU and for the output layer we

used TanH. We scale all of our inputs between [−1, 1] and TanH also gives an output

between that range, which is what we want from the generator. We experimented

with different layers for both the networks including Convolutional 1D layers and

fully connected Dense layers had the best performance.

4.3.1 GAN Stabilizing Techniques

We further utilized stabilizing techniques to improve GAN training. All the

techniques are discussed in [36] which was published in 2016 by some of the co-authors

of the original 2014 paper on GANs [11]. The techniques were:

1. Minibatch Discrimination: In minibatch discrimination, instead of training

the discriminator on a batch of real and fake samples combined, the training is

split into 2 steps where 1st we train the discriminator on a batch of real samples

only and then on a batch of fake samples only. This techniques helps to prevent

33

the generator from collapsing.

2. Label Smoothing: Instead of using just ‘‘1’’ as the ground truth labels for

real samples, labels are scaled between a range close to 1, for example between

[0.7, 1.2]. This is a common technique now days for deep neural network training

since it prevents over fitting of data.

3. Label Switching: In label switching, after every few epochs the labels for

real and fake samples are swapped for 1 epoch and then swapped back to

normal. This helps to keep the discriminator from becoming too confident. If

the discriminator is over confident, then the loss dips to 0 and generator stops

receiving any feedback to update it’s weights. This is known as failure mode.

4.4 WGAN Implementation

For WGAN, we used RMSProp optimizer. RMSProp is recommended by the

paper authors because the training was more stable for RMSProp as compared to

Adam which is momentum based. The learning rate chosen is also a small value:

𝑅𝑀𝑆𝑃𝑟𝑜𝑝(𝑙𝑟 = 0.00001)

The architecture of our WGAN is the same for the critic and the generator, except

the input and output layers. Figure 10 shows the architecture for both the critic and

generator. We trained each WGAN model for 100000 epochs using minibatches of

data.

The actual models are compiled and trained separately for the critic and generator.

They are together in the figure just to show the architecture. For the generator we have

the same activation function for hidden layers (LeakyReLU) and output layer (TanH).

For the critic, however, we used no activation function or used linear activation in the

output layer. This is done so that the loss function in Equation (6) can be computed

34

easily when implementing the WGAN algorithm given in Algorithm 2. These layers

and networks gave the best result so we chose these as our final networks.

35

Figure 10: WGAN Critic and Generator Architecture.

36

4.4.1 Wasserstein Distance

The loss function or the Wasserstein distance between real and fake samples

given in Equation (6) can be written as follows:

Critic loss = critic’s avg. real samples score - critic’s avg. fake samples score

Generator loss = - critic’s avg. fake samples score

This interpretation is correct because we want the critic network to learn the K-

Lipschitz function that will calculate the Wasserstein distance. We are only concerned

with the output of the function and not actually knowing the function. Assuming

the network has learnt the correct function, then we can interpret the Wasserstein

distance as the loss given above.

Since neural networks use stochastic gradient descent they seek to minimize the

loss values. For the generator, minimizing the loss value will mean that the critic will

be encouraged to score the fake samples higher. For example, a score of 5 on fake

samples will mean -5 loss for the generator and a score of 10 will mean -10 loss. For

the critic, in order to minimize the loss the score for real samples will be encouraged

to be small. This will maximize the distance between the generated and fake samples

(Equation (6)) and at the same time minimize both losses.

This is implemented simply by using no activation function in the output layer

for the critic and using -1 label for fake samples and +1 for fake samples. The code

snippet for this implementation can be found in Appendix C.

4.5 WGAN with Gradient Penalty Implementation

For WGAN with Gradient Penalty, we used Adam optimizer. Unlike WGAN,

momentum based optimizers seem to work well for WGAN-GP. The parameters for

the optimizer were:

𝐴𝑑𝑎𝑚(𝑙𝑟 = 0.0001, 𝛽1 = 0.5, 𝛽2 = 0.9)

37

Figure 11: WGAN-GP Critic Architecture.

We trained each WGAN-GP model using minibatches for 100000 epochs. The

architectures for the critic and generator model are given in Figures 11 and 12. We

decided to use Convolutional 1D layers for the models because using fully connected

Dense layers had worse performance as compared to Conv1D layers. In the critic

network we used 3 hidden Conv1D layers with 64, 128 and 256 filters and filter size

3. In the generator network also we used 3 Conv1D layers with 64, 32 and 16 filters

and filter size 3. The activation functions for the hidden Conv1D layers is again

LeakyReLU.

The output layer of the generator is a fully connected Dense layer 600 neurons

and the activation function is again TanH. Similar to WGAN, the output layer of

38

the critic network has no activation function because we still need to calculate the

Wasserstein loss/distance. Calculating the Wasserstein loss is part of the WGAN-GP

loss function given in Equation (8). The first 2 operands on the right hand side are the

Wasserstein distances which are calculated the same way as mentioned in Section 4.4.1.

The last or the 3rd operand on the right side is the actual gradient penalty.

In the actual implementation, the calculation of the penalty is very straightforward.

Using Keras backend ops we get the gradients for the critic network with respect to

the averaged/interpolated image. Then we calculate the Euclidean norm or L2-norm

of these gradients. Finally, the penalty is calculated: (1− 𝐿2_𝑛𝑜𝑟𝑚)2. Appendix C

has the code snippet which shows the actual implementation of the gradient penalty

loss in Python using TensorFlow and Keras.

Finally, the authors advised against the use of Batch Normalization in the critic

network. They suggested that if required, Layer Normalization layer could be used.

We experimented with Layer Normalization layer but the performance degraded so

we decided not to use it. For the generator we still used Batch Normalization layer.

We used 𝜆 = 10, that is, the penalty coefficient and n_critic = 7. Additionally,

after every 500 epochs, we trained the critic for 100 iterations and then updated the

generator. This is a common practice and is done so that the critic is trained to

optimal value which is the aim for WGAN and WGAN-GP. This allows for exact

Wasserstein distance calculation instead of approximation and therefor generator gets

the correct gradient updates to converge properly.

39

Figure 12: WGAN-GP Generator Architecture.

40

CHAPTER 5

Results and Discussion

In this chapter, we give the results of our experiments.

5.1 HMM Results

The first set of experiments were conducted to determine the optimum value of

𝑀 for each family. Then next set of experiments were conducted to train the best

HMM models which were used to generate fake malware samples.

5.1.1 Optimum M and HMM Training Results

The summary of the results and the best value of 𝑀 chosen for each family is

given in Table 5. Appendix A contains ROC curves for each value of 𝑀 for each

family and also bar plots comparing the AUC scores of the 21 models from each family.

Table 5: Best value of M for each family

Malware Family AUC Score Best value of M
WinWebSec 0.911 22
Zbot 0.840 20
Renos 0.815 22
OnLineGames 0.867 22
VBInject 0.889 25

We fixed these values of 𝑀 for the rest of our experiments. For HMM models

to generate fake samples by solving Problem 2, we fixed the dimensions as 𝑁 = 𝑀 ,

where 𝑀 is the best value for each family as listed in Table 5.

Our next experiments were to train 10 different HMM models with dimensions

as mentioned above and choose the 2 best models out of 10. Figures 13, 14, 15, 16

and 17 show the AUC scores for 10 models from each family. The models chosen

41

Figure 13: WinWebSec 22× 22 models. Figure 14: Zbot 20× 20 models.

Figure 15: Renos 22× 22 models. Figure 16: OnLineGames 22×22 models.

Figure 17: VBInject 25× 25 models.

and their AUC scores are summarized in Table 6. We chose the 2 highest scoring

models and calculated their most likely hidden state sequence using the 𝛾 matrix from

the models. After breaking the 2 𝛾 matrices of 30,000 length each into 100 samples

of length 600 each, we tested these fake samples against real samples as explained

in Sections 3.3, 3.4. Low accuracy, precision and recall scores mean that the model

42

Table 6: Best 2 models for fake samples from each family.

Malware Family
Models

Model# AUC Model# AUC
WinWebSec F 0.875 H 0.816
Zbot B 0.856 I 0.827
Renos C 0.877 D 0.828
OnLineGames A 0.844 J 0.873
VBInject E 0.873 G 0.879

isn’t able to differentiate between real and fake samples. Results from each of the 4

algorithms are given in the following section.

5.1.2 HMM Classification Results

We first performed hyperparameter tuning for the 4 machine learning algorithms

and fixed the best parameters for the rest of the experiments.

1. SVM: Grid search on values of 𝐶, kernel and degree with values: 𝐶 ∈

{1, 2, . . . , 10}, 𝑘𝑒𝑟𝑛𝑒𝑙 ∈ {𝑟𝑏𝑓, 𝑝𝑜𝑙𝑦, 𝑙𝑖𝑛𝑒𝑎𝑟} and 𝑑𝑒𝑔𝑟𝑒𝑒 ∈ {2, 3, 4, 5}. We found

that polynomial kernels were overfitting the data so the final parameters for

SVM were: 𝐶 = 5 and kernel=𝑟𝑏𝑓 .

2. Naïve Bayes: No hyperparameter tuning required for Naïve Bayes classifier.

3. Random Forest: Grid search on number of decision trees to use and maximum

depth of trees with values: number of trees ∈ {10, 20, . . . , 80} and max depth of

trees ∈ {2, 3, . . . , 10}. We found that using 50 decision trees with max depth of

5 performed best without overfitting the real malware samples.

4. k-NN: Grid search on number of neighbors to consider, 𝑘, with values: 𝑘 ∈

{4, 5, . . . , 20}. 𝑘 = 8 worked well and the distance metric chosen was Euclidean.

43

The classification results for each feature for each machine learning technique are

given below. We used 5-fold cross validation and the scores given are the average

scores from 5-fold cross validation. Table 7 gives the classification results for SVM.

Table 8 gives the classification results for Naïve Bayes. Table 9 gives the classification

results for Random Forest. Table 10 gives the classification results for k -NN.

Table 7: SVM-HMM scores for each feature.

Malware Family
Features

Word2Vec Bigrams Integer Vectors
Acc. Prec. Recall Acc. Prec. Recall Acc. Prec. Recall

WinWebSec 1.00 1.00 1.00 0.99 1.00 0.98 0.99 1.00 0.99
Zbot 0.97 0.99 0.95 0.98 1.00 0.97 0.93 0.95 0.91
Renos 1.00 1.00 1.00 0.98 0.99 0.98 0.97 0.97 0.97
OnLineGame 1.00 1.00 1.00 0.99 1.00 0.99 0.99 0.99 1.00
VBInject 1.00 1.00 1.00 0.98 0.98 0.98 0.96 0.93 0.99

Table 8: Naïve Bayes-HMM scores for each feature.

Malware Family
Features

Word2Vec Bigrams Integer Vectors
Acc. Prec. Recall Acc. Prec. Recall Acc. Prec. Recall

WinWebSec 0.99 1.00 0.98 0.99 0.99 1.00 0.99 1.00 0.98
Zbot 0.79 0.80 0.73 0.99 0.98 1.00 0.72 0.77 0.63
Renos 0.97 0.99 0.94 0.97 0.97 0.96 0.78 0.82 0.72
OnLineGame 0.87 0.97 0.76 0.96 0.93 0.99 0.93 0.92 0.94
VBInject 0.99 1.00 0.98 0.96 0.96 0.97 0.94 0.90 1.00

Using Word2Vec features, SVM, Random Forest and k -NN classifiers were able

to differentiate between real and fake samples efficiently. However, Naïve Bayes

classifier had low recall rates for Zbot (73%) and OnLineGames (76%). We attribute

44

Table 9: Random Forest-HMM scores for each feature.

Malware Family
Features

Word2Vec Bigrams Integer Vectors
Acc. Prec. Recall Acc. Prec. Recall Acc. Prec. Recall

WinWebSec 0.99 1.00 0.99 1.00 1.00 1.00 0.99 1.00 0.99
Zbot 0.97 0.96 0.99 0.99 1.00 0.99 0.92 0.95 0.88
Renos 0.98 0.98 0.99 0.98 1.00 0.97 0.95 0.95 0.96
OnLineGame 0.99 1.00 0.98 0.99 1.00 0.99 0.96 1.00 0.91
VBInject 1.00 1.00 1.00 0.99 0.99 1.00 0.93 0.96 0.89

Table 10: kNN-HMM scores for each feature.

Malware Family
Features

Word2Vec Bigrams Integer Vectors
Acc. Prec. Recall Acc. Prec. Recall Acc. Prec. Recall

WinWebSec 1.00 1.00 1.00 1.00 1.00 1.00 0.99 1.00 0.98
Zbot 0.92 0.91 0.93 0.96 0.95 0.97 0.82 0.95 0.69
Renos 1.00 1.00 1.00 0.97 0.95 1.00 0.71 1.00 0.42
OnLineGame 0.97 1.00 0.95 0.96 0.93 1.00 0.68 1.00 0.36
VBInject 1.00 1.00 1.00 0.97 0.96 0.99 0.59 1.00 0.19

this result to the ineffectiveness of the classifier rather than the quality of fake samples

because the other 3 algorithms were able to differentiate very well.

Using Bigram features, all 4 classifiers were able to differentiate between real and

fake samples very effectively with high precision and recall.

Using integer vectors, SVM and Random Forest precision and recall rates dipped

a little but they were still able to classify real and fake samples effectively. Naïve

Bayes and k -NN scores were quite low. As we have seen, Naïve Bayes is a weak

classifier as compared to the other 3 and we attribute these low scores to integer

45

vectors being a weaker feature representation for the data. The low recall rates for

k -NN and Naïve Bayes means that a lot of real samples were classified as fake (high

false negative). On the other hand, the high precision rates for these 2 classifiers

means that very few fake samples were classified as real (low false positive).

5.2 GAN Results

We experimented with the stabilizing techniques mentioned in Section 4.3.1.

Although the training stabilized across all 5 families using these techniques, the

results improved for Zbot, Renos and VBInject but got worse for WinWebSec and

OnLineGames. This is a common phenomenon when training GANs. The loss values

for the discriminator and generator don’t necessarily indicate or correspond to the

model’s performance or quality of the generated samples. The discriminator and

generator loss for GAN for each family are given in Appendix B.

5.2.1 Best GAN Generative Model

We used a subset of the techniques for each family to get the best results in

generating fake samples. Minibatch discrimination was used for all 5 families. Label

smoothing and label switching were only used for Zbot, Renos and VBInject. The best

generative model was chosen for each family as discussed in Section 3.4.2. Table 11

summarizes the model chosen identified by the epoch number for each family.

Table 11: Best GAN generative model for each family

Malware Family Epoch Number
WinWebSec 1000
Zbot 400
Renos 1800
OnLineGames 200
VBInject 200

46

5.2.2 GAN Classification Results

Fake samples were generated using the chosen models in Table 11 in batches of

32 since that was the batch size during training. Generating samples in same batch

sizes as the training size generally gives better results.

We used the same hyperparameters as discussed in HMM results section (Sec-

tion 5.1.2) and tested the fake samples using all 3 features mentioned above. Table 12

gives the results for SVM model. Table 13 gives the results for Naïve Bayes model.

Table 14 gives the results for Random Forest model. Table 15 gives the results for

k -NN model.

Table 12: SVM-GAN scores for each feature.

Malware Family
Features

Word2Vec Bigrams Integer Vectors
Acc. Prec. Recall Acc. Prec. Recall Acc. Prec. Recall

WinWebSec 1.00 1.00 1.00 1.00 1.00 1.00 0.80 0.82 0.81
Zbot 1.00 1.00 1.00 0.91 0.91 0.94 0.83 0.91 0.77
Renos 0.98 1.00 0.97 1.00 1.00 1.00 0.89 0.82 0.94
OnLineGame 1.00 1.00 1.00 0.95 0.97 0.93 0.73 0.89 0.62
VBInject 0.98 1.00 0.97 0.97 0.95 1.00 0.75 0.79 0.72

Using Word2Vec and Bigram features, the scores for all 4 families dipped a little

as compared to the HMM results. SVM and Random Forest have accuracy, precision

and recall all above 90% for these 2 features, except for OnLineGames with 88%

precision with Random Forest. Low precision rate means high false positive rate which

is the most desirable result for us. Naïve Bayes has low overall scores for Word2Vec

and Bigram features on account of it being a weaker classifier. Interestingly, k -NN

has the lowest overall scores for these 2 features. This can be attributed to the way

k -NN algorithm works and that the generated data’s distribution is slightly closer to

47

Table 13: Naïve Bayes-GAN scores for each feature.

Malware Family
Features

Word2Vec Bigrams Integer Vectors
Acc. Prec. Recall Acc. Prec. Recall Acc. Prec. Recall

WinWebSec 0.87 0.86 0.92 0.98 0.96 1.00 0.69 0.70 0.66
Zbot 0.98 0.96 1.00 0.83 0.81 0.84 0.70 0.71 0.65
Renos 0.98 1.00 0.97 0.92 0.88 0.98 0.75 0.73 0.73
OnLineGame 0.97 1.00 0.94 0.89 1.00 0.80 0.50 0.53 0.57
VBInject 0.95 0.91 1.00 0.84 0.93 0.75 0.73 0.77 0.72

Table 14: Random Forest-GAN scores for each feature.

Malware Family
Features

Word2Vec Bigrams Integer Vectors
Acc. Prec. Recall Acc. Prec. Recall Acc. Prec. Recall

WinWebSec 0.97 0.96 1.00 0.98 1.00 0.96 0.67 0.68 0.63
Zbot 1.00 1.00 1.00 0.95 0.96 0.97 0.86 0.91 0.80
Renos 0.98 1.00 0.96 0.97 0.93 1.00 0.92 0.93 0.92
OnLineGame 1.00 1.00 1.00 0.98 0.97 1.00 0.85 0.84 0.84
VBInject 1.00 1.00 1.00 0.92 0.88 0.98 0.89 0.93 0.84

the real data’s distribution as compared to HMM fake samples.

For integer vectors, we see that all 4 classifiers were not able to differentiate

very well between real and fake samples. As seen with HMM, integer vectors are

a weaker feature representation but the difference in results between HMM integer

vector classification and GAN integer vector classification does suggest that the GAN

models were able to perform better than HMM. For k -NN and Renos, the precision

and recall are 0% which means that the model isn’t able to distinguish between fake

and real at all based on just the integer vectors.

48

Table 15: kNN-GAN scores for each feature.

Malware Family
Features

Word2Vec Bigrams Integer Vectors
Acc. Prec. Recall Acc. Prec. Recall Acc. Prec. Recall

WinWebSec 0.88 0.90 0.79 0.97 1.00 0.95 0.61 0.80 0.24
Zbot 0.94 0.97 0.93 0.89 0.90 0.90 0.77 0.96 0.59
Renos 0.97 1.00 0.92 0.92 0.96 0.89 0.50 0.00 0.00
OnLineGame 0.94 1.00 0.87 0.94 0.91 0.98 0.65 0.83 0.40
VBInject 1.00 1.00 1.00 0.88 0.82 0.92 0.64 1.00 0.28

5.3 WGAN Results

Unlike vanilla GAN, the loss values when training WGAN give reliable information

about the model’s progress and convergence. So for WGAN and WGAN with Gradient

Penalty we first discuss the loss curves and convergence and then give the classification

results for the 4 machine learning techniques.

5.3.1 Convergence and Loss Values

The loss values for all 5 WGAN models that we trained; 1 for each family; were

interesting. Figures 18 and 19 show the critic and generator loss curves respectively

for WinWeSec. Appendix B contains the loss curves for the rest of the 4 families.

The loss value for the critic and the generator converges very fast, in the first few

epochs and then stays same for the rest of the 100k epochs. We tried a lot of different

hyperparameters, such as changing the value of ‘‘n_critic’’, that is the number of

critic iterations per generator iteration, different clipping value and different learning

rates. Even changing the networks entirely and using Convolutional 1D instead of

fully connected Dense layers didn’t help. The value of loss didn’t change after the

first few epochs. This shows that clipping the weights is a major drawback in WGAN

(Section 2.4.3) as it saturates the model, and the weights don’t update after a point.

49

Figure 18: WinWebSec WGAN critic loss.

Any change in weight is nullified by the clipping step. Interestingly, all 4 families

converge to the same loss value for the critic and generator. The clipping step stops

the training since the weights can’t change beyond the clipping range and don’t

respond to the gradient updates that are back propagated through the network.

5.3.2 WGAN Classification Results

The best generative model from WGANs was chosen for each family as discussed

in Section 3.4.2. Table 16 summarizes the best model chosen for each family. The

classification results for the fake samples generated by the selected WGAN models

are given below. We used the same hyperparameters as discussed in the HMM results

section (Section 5.1.2) and tested the fake samples using all 3 features in batches of

32. Table 17 gives the results for SVM model. Table 18 gives the results for Naïve

Bayes model. Table 19 gives the results for Random Forest model. Table 20 gives the

50

Figure 19: WinWebSec WGAN generator loss.

results for k -NN model.

Table 16: Best WGAN generative model for each family.

Malware Family Epoch Number
WinWebSec 19000
Zbot 29500
Renos 97000
OnLineGames 11500
VBInject 45000

Using Word2Vec and Bigram features SVM and Random Forest were able to

very effectively differentiate between real and fake samples generated by WGAN.

Interestingly, even Naïve Bayes and k -NN performed very well and we have seen from

previous results that they are the 2 weaker classifiers. This means that the WGAN

51

Table 17: SVM-WGAN scores for each feature.

Malware Family
Features

Word2Vec Bigrams Integer Vectors
Acc. Prec. Recall Acc. Prec. Recall Acc. Prec. Recall

WinWebSec 1.00 1.00 1.00 0.98 1.00 0.97 0.97 1.00 0.94
Zbot 1.00 1.00 1.00 0.98 0.98 1.00 0.86 1.00 0.72
Renos 0.98 1.00 0.96 0.98 0.97 1.00 0.98 1.00 0.97
OnLineGame 1.00 1.00 1.00 0.97 1.00 0.94 1.00 1.00 1.00
VBInject 1.00 1.00 1.00 1.00 1.00 1.00 0.95 0.96 0.96

Table 18: Naïve Bayes-WGAN scores for each feature.

Malware Family
Features

Word2Vec Bigrams Integer Vectors
Acc. Prec. Recall Acc. Prec. Recall Acc. Prec. Recall

WinWebSec 1.00 1.00 1.00 0.97 1.00 0.93 0.95 1.00 0.91
Zbot 1.00 1.00 1.00 0.98 1.00 0.98 0.84 1.00 0.73
Renos 1.00 1.00 1.00 0.98 1.00 0.95 0.95 1.00 0.88
OnLineGame 1.00 1.00 1.00 0.98 1.00 0.97 0.97 0.93 1.00
VBInject 0.94 0.96 0.93 0.98 0.97 1.00 0.62 1.00 0.25

fake samples are of inferior quality compared to HMM and GAN.

Using integer vectors, the results for SVM and Random Forest were very high.

Again, integer vectors have proven to be weak feature representations that make

classification hard but in the case of WGAN even they are easily differentiable. For

k -NN and Naiïve Bayes with integer vectors, we see extremely low recall rates for

some families such as 25% for VBInject, 37% for OnLineGames and 53% for Renos.

But these low recall rates are accompanied by high precision rates, almost 100% across

the board for all families.

52

Table 19: Random Forest-WGAN scores for each feature.

Malware Family
Features

Word2Vec Bigrams Integer Vectors
Acc. Prec. Recall Acc. Prec. Recall Acc. Prec. Recall

WinWebSec 1.00 1.00 1.00 1.00 1.00 1.00 0.98 1.00 0.96
Zbot 1.00 1.00 1.00 0.95 0.97 0.94 0.94 1.00 0.85
Renos 0.97 1.00 0.96 0.92 0.92 1.00 0.92 1.00 0.85
OnLineGame 0.98 1.00 0.97 0.98 1.00 0.96 0.97 1.00 0.93
VBInject 1.00 1.00 1.00 0.94 0.91 0.98 0.97 1.00 0.93

Table 20: kNN-WGAN scores for each feature.

Malware Family
Features

Word2Vec Bigrams Integer Vectors
Acc. Prec. Recall Acc. Prec. Recall Acc. Prec. Recall

WinWebSec 1.00 1.00 1.00 0.89 0.88 0.92 1.00 1.00 1.00
Zbot 0.97 1.00 0.94 0.98 1.00 0.96 0.81 1.00 0.65
Renos 0.98 1.00 0.97 0.94 0.92 0.98 0.75 1.00 0.53
OnLineGame 0.97 1.00 0.93 1.00 1.00 1.00 0.67 1.00 0.37
VBInject 0.98 1.00 0.96 0.98 0.98 1.00 0.62 1.00 0.25

5.4 Wasserstein GAN with Gradient Penalty

As with WGAN, the critic’s loss value helps monitor the model’s performance for

WGAN with gradient penalties. The WGAN-GP paper mentions that the the critic’s

loss (negative of it) should start at a large number and then converge towards 0. The

generator’s loss is not very insightful and can fluctuate. So, first we discuss the loss

curves and then give the classification results.

53

Figure 20: WinWebSec WGAN-GP critic loss.

5.4.1 Convergence and Loss Curves

The loss curves for all 5 families have a similar shape. Figures 20 and 21 show

the loss curves for WinWebSec critic and generator respectively. Appendix B contains

the loss curves for the rest of the 4 families.

We can see that the loss curve for the critic starts at around -28 and then slowly

converges to around -4. This is the expected behavior and means that our model

is training properly. Usually WGAN with Gradient Penalty take a long time to

train, around 200k-300k epochs. We trained till 100k epochs since we were training 5

different models, 1 for each family.

The critic loss curves for the other 4 families (Appendix B) also have similar

shapes but with slightly different values of convergence. Training the models for more

epochs, around 200k-300k would be ideal for full convergence.

54

Figure 21: WinWebSec WGAN-GP generator loss.

The loss curve for the generator is not very informative about the model’s

performance and training and we can see that the loss values oscillate.

5.4.2 WGAN-GP Classification Results

The best generative model from WGAN-GPs was chosen for each family as

discussed in Section 3.4.2. Table 21 summarizes the best model chosen for each family.

The classification results for the fake samples generated by the selected WGAN-GP

models are given below. We used the same hyperparameters as discussed in the

HMM results section (Section 5.1.2) and tested the fake samples using all 3 features

in batches of 32. Table 22 gives the results for SVM model. Table 23 gives the results

for Naïve Bayes model. Table 24 gives the results for Random Forest model. Table 25

gives the results for k -NN model.

Using Word2Vec and Bigram features all 4 machine learning techniques weren’t

55

Table 21: Best WGAN-GP generative model for each family.

Malware Family Epoch Number
WinWebSec 86000
Zbot 77000
Renos 64000
OnLineGames 66000
VBInject 29000

Table 22: SVM-WGAN with Gradient Penalty scores for each feature.

Malware Family
Features

Word2Vec Bigrams Integer Vectors
Acc. Prec. Recall Acc. Prec. Recall Acc. Prec. Recall

WinWebSec 0.88 1.00 0.81 0.78 0.71 0.93 0.58 0.62 0.46
Zbot 0.84 1.00 0.70 0.89 1.00 0.79 0.69 0.71 0.64
Renos 0.88 1.00 0.81 0.94 0.91 0.98 0.41 0.38 0.42
OnLineGame 0.86 0.97 0.79 0.77 0.77 0.88 0.48 0.49 0.50
VBInject 0.81 0.89 0.76 0.84 0.77 .97 0.44 0.37 0.37

Table 23: Naïve Bayes-WGAN with Gradient Penalty scores for each feature.

Malware Family
Features

Word2Vec Bigrams Integer Vectors
Acc. Prec. Recall Acc. Prec. Recall Acc. Prec. Recall

WinWebSec 0.81 0.83 0.86 0.95 1.00 0.91 0.42 0.48 0.45
Zbot 0.79 0.89 0.73 0.92 0.93 0.91 0.35 0.35 0.34
Renos 0.81 0.91 0.76 0.89 0.93 0.88 0.34 0.37 0.47
OnLineGame 0.76 0.81 0.73 0.89 0.86 0.94 0.62 0.63 0.68
VBInject 0.83 0.90 0.79 0.81 0.80 0.80 0.44 0.47 0.53

56

Table 24: Random Forest-WGAN with Gradient Penalty scores for each feature.

Malware Family
Features

Word2Vec Bigrams Integer Vectors
Acc. Prec. Recall Acc. Prec. Recall Acc. Prec. Recall

WinWebSec 0.82 0.85 0.85 0.81 0.86 0.79 0.72 0.73 0.72
Zbot 0.77 0.84 0.75 0.81 0.87 0.79 0.78 0.79 0.77
Renos 0.78 0.84 0.76 0.83 0.87 0.85 0.72 0.73 0.70
OnLineGame 0.81 0.87 0.79 0.74 0.78 0.81 0.63 0.63 0.73
VBInject 0.74 0.75 0.82 0.82 0.81 0.85 0.60 0.71 0.54

Table 25: kNN-WGAN with Gradient Penalty scores for each feature.

Malware Family
Features

Word2Vec Bigrams Integer Vectors
Acc. Prec. Recall Acc. Prec. Recall Acc. Prec. Recall

WinWebSec 0.68 0.84 0.56 0.79 0.96 0.65 0.50 0.00 0.00
Zbot 0.79 0.97 0.64 0.82 0.91 0.78 0.55 0.60 0.9
Renos 0.86 1.00 0.74 0.75 0.82 0.71 0.57 0.53 0.18
OnLineGame 0.81 0.89 0.78 0.82 0.87 0.81 0.70 0.90 0.48
VBInject 0.86 1.00 0.74 0.77 0.97 0.61 0.49 0.27 0.10

able to give very good classification results. Compared to WGAN and GAN the

accuracy, precision and recall rates are much lower. This means that the quality

of fake samples generated by WGAN-GP generative models is better as compared

to WGAN and GAN. The most surprising result is the dip in Random Forest’s

classification. Random Forest is one of the better classifiers out of the 4 classifiers we

used. For Zbot, Renos and VBInject the accuracy for Random Forest is low ∼ 70%.

For WinWebSec and OnLineGames the accuracy is also low at 82% and 81% for

Word2Vec and even lower for Bigram at 81% and 74%. This is a promising result

57

since we have seen that classifying real vs fake samples using these 2 features has been

very effective and we have gotten high accuracy and precision scores previously.

Using integer vector features the scores for SVM, Naïve Bayes and k -NN classifiers

are very low. Basically these 3 models are not able to distinguish between real and fake

samples just based on the integer representation. This is confirmed by accuracy scores

in range of 50%-60% and even lower for Naïve Bayes at less than 50% for WinWebSec,

Zbot, Renos and VBInject families. Random Forest did a better job as compared to

the other 3 techniques but still the accuracy is around 70% for WinWebSec, Zbot,

Renos and around 60% for OnLineGames and VBInject. This again shows that the

quality of fake samples generated by WGAN-GP generative model is much better

than the other GAN architectures and HMM.

58

CHAPTER 6

Conclusion and Future Work

In this project, we aimed at utilizing different generative modelling techniques to

generate fake malware mnemonic opcode sequences. We utilized 4 different techniques:

Hidden Markov Models, Generative Adversarial Networks, Wasserstein Generative

Adversarial Networks and Wasserstein Generative Adversarial Networks with Gradient

Penalty.

Previous work has shown that using malware as images, GANs can be utilized

successfully to generate fake malware images but there is a gap in the literature when

it comes to generating malware opcode sequences. Converting malware to images and

training GANs on images has an exceeded overhead as converting malware files to

images and training GANs on images is computationally expensive. Opcode sequences

provide a much simpler representation of the data.

We used 3 different feature extractions from malware opcode sequences:

Word2Vec, Bigram and Integer Vectors. Classification results showed that Word2Vec

and Bigram features give a very good representation of the malware data since for

all 4 generative models the classification results were very high when tested with

these 2 extracted features. Integer vectors, on the other hand are not a very good

representation since they don’t capture the true distribution of the real malware

samples. This is confirmed by the comparatively lower classification scores when

tested using integer vectors.

Fake samples generated by HMM were quite effectively distinguishable by SVM,

Random Forest and k -NN classifiers. Using Word2Vec and Bigram features these 3

classifiers had accuracy well above 90% for all 5 of the families. For integer vector

features, the accuracy was slightly lower. Naïve Bayes classifier, on the other hand

had much lower scores for all 3 features. This implies that Naïve Bayes is a weaker

59

classifier comparatively for malware classification using opcode sequences.

Using generative models from GAN we saw an improvement in the results as it

was difficult for the classifiers to tell apart real and fake samples indicated by slightly

lower classification scores. For WGAN on the other hand, the results were worse

as compared to GAN. This is attributed to the weight clipping step in the WGAN

algorithm. Weight clippings inhibits the critic network’s ability to properly learn the

real data’s representation.

For WGAN with gradient penalty algorithm, we got the best results. We saw

that the classification results for Word2Vec and Bigram features were the worst as

compared to the other 3 generative models. For all 4 classifiers we got accuracy

around 70%-80% with Word2Vec and Bigram features. From previous results we

know that HMM, GAN and WGAN generative models were not able to properly

learn the true data’s distribution especially the Word2Vec and Bigram features. But

WGAN-GP clearly performed better. For integer vectors the results were even better

as the accuracy score dipped to 50%-60%. SVM classifier had accuracy of 41%, 48%

and 44% for Renos, OnlineGames and VBInject families.

So, we conclude that we can use WGAN with Gradient Penalty algorithm to

successfully generate fake malware opcode sequences such that they are close to the

real data’s distribution. This serves as a ‘‘proof of concept’’ that different GAN

algorithms can be successfully applied to generate malware opcode sequences and that

GANs are not succesful only for image data. The generative models can be used to

boost malware datasets for some families that have very few data samples. Moreover,

testing the quality of fake samples with Word2Vec and Bigram features is a better

option as compared to integer vectors.

60

6.1 Future Work

We have shown that we can utilize GAN algorithms to generate malware opcode

sequences. There are a lot of different directions that this research project can be

expanded to:

• We experimented with 5 malware families: WinWebSec, Renos, Zbot, On-

LineGames and VBInject. The dataset can be expanded and the experiments

can be done on more malware families.

• We trained individual GAN models for each family. We can experiment with

multi-class generative models.

• Trained generative models can be used to boost or augment the datasets for

families that have less data samples. Lack of large datasets sufficient for deep

neural networks is a common obstacle in malware research. Classifying malware

families using existing datasets and comparing the results after classifying

malware families with boosted datasets is a natural next step for this project.

This will give insights to the actual effectiveness and provide an important use

case for generated malware opcodes.

• Malware obfuscation is a pressing issue and the fake samples generated from

our WGAN-GP algorithm can be treated as obfuscated malware because of the

presence of noise in the generated opcode sequence. We can also add opcodes

from benign samples into the generated samples and then experiment with actual

obfuscated malware samples to boost the detection rate.

• Experiments with LSTM-GAN can be conducted since stateful networks can

provide better results.

61

LIST OF REFERENCES

[1] SonicWall, ‘‘Sonicwall 2020 Cyber Threat Report,’’ https://www.sonicwall.com/
news/2020-sonicwall-cyber-threat-report, 2020.

[2] N. Idika and A. Mathur, ‘‘A survey of malware detection techniques,’’ Purdue
University, 03 2007.

[3] K. Pal and J. Verma, ‘‘A survey on anomaly based malware detection and
demolition in false alarm rate,’’ 2015.

[4] A. K. Lab, ‘‘Heuristics Analysis,’’ https://usa.kaspersky.com/resource-center/
definitions/heuristic-analysis, 2020.

[5] M. Ahmadi, D. Ulyanov, S. Semenov, M. Trofimov, and G. Giacinto, ‘‘Novel
feature extraction, selection and fusion for effective malware family classification,’’
in Proceedings of the sixth ACM conference on data and application security
and privacy, 2016, pp. 183--194.

[6] I. Santos, Y. K. Penya, J. Devesa, and P. G. Bringas, ‘‘N-grams-based file
signatures for malware detection.’’ ICEIS (2), vol. 9, pp. 317--320, 2009.

[7] Z. Sun, Z. Rao, J. Chen, R. Xu, D. He, H. Yang, and J. Liu, ‘‘An opcode sequences
analysis method for unknown malware detection,’’ ser. ICGDA 2019. Association
for Computing Machinery, 2019, p. 15–19.

[8] P. O’Kane, S. Sezer, and K. McLaughlin, ‘‘Obfuscation: The hidden malware,’’
IEEE Security Privacy, vol. 9, no. 5, pp. 41--47, 2011.

[9] D. Gibert, C. Mateu, and J. Planes, ‘‘The rise of machine learning for
detection and classification of malware: Research developments, trends and
challenges,’’ Journal of Network and Computer Applications, vol. 153, p. 102526,
2020. [Online]. Available: https://www.sciencedirect.com/science/article/pii/
S1084804519303868

[10] L. Huang, A. D. Joseph, B. Nelson, B. I. Rubinstein, and J. D. Tygar, ‘‘Adversarial
machine learning,’’ in Proceedings of the 4th ACM workshop on Security and
artificial intelligence, 2011, pp. 43--58.

[11] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,
A. Courville, and Y. Bengio, ‘‘Generative adversarial networks,’’ 2014.

62

https://www.sonicwall.com/news/2020-sonicwall-cyber-threat-report
https://www.sonicwall.com/news/2020-sonicwall-cyber-threat-report
https://usa.kaspersky.com/resource-center/definitions/heuristic-analysis
https://usa.kaspersky.com/resource-center/definitions/heuristic-analysis
https://www.sciencedirect.com/science/article/pii/S1084804519303868
https://www.sciencedirect.com/science/article/pii/S1084804519303868

[12] S. Yajamanam, V. R. S. Selvin, F. Di Troia, and M. Stamp, ‘‘Deep learning
versus gist descriptors for image-based malware classification.’’ in Icissp, 2018,
pp. 553--561.

[13] M. Jain, ‘‘Image-based malware classification with convolutional neural networks
and extreme learning machines,’’ https://scholarworks.sjsu.edu/etd_projects/
900/, Dec 2019.

[14] R. Burks, K. A. Islam, Y. Lu, and J. Li, ‘‘Data augmentation with generative mod-
els for improved malware detection: A comparative study*,’’ in 2019 IEEE 10th
Annual Ubiquitous Computing, Electronics Mobile Communication Conference
(UEMCON), 2019, pp. 0660--0665.

[15] Y. Lu and J. Li, ‘‘Generative adversarial network for improving deep learning
based malware classification,’’ in 2019 Winter Simulation Conference (WSC),
2019, pp. 584--593.

[16] W. Hu and Y. Tan, ‘‘Generating adversarial malware examples for black-box
attacks based on gan,’’ 2017.

[17] L. Rabiner, ‘‘A tutorial on hidden markov models and selected applications in
speech recognition,’’ Proceedings of the IEEE, vol. 77, no. 2, pp. 257--286, 1989.

[18] C. Annachhatre, T. Austin, and M. Stamp, ‘‘Hidden markov models for malware
classification,’’ Journal of Computer Virology and Hacking Techniques, vol. 11,
05 2014.

[19] A. Krogh, ‘‘An introduction to hidden markov models for biological sequences,’’ in
Computational methods in molecular biology, S. Salzberg, D. Searls, and S. Kasif,
Eds. United Kingdom: Elsevier, 1998, pp. 45--63.

[20] M. Stamp, ‘‘A revealing introduction to hidden markov models,’’ Science, pp.
1--20, 01 2004.

[21] M. Stamp, Introduction to Machine Learning with Applications in Information
Security, 1st ed. Chapman & Hall/CRC, 2017.

[22] M. Arjovsky and L. Bottou, ‘‘Towards principled methods for training generative
adversarial networks,’’ 2017.

[23] S. Mannor, D. Peleg, and R. Rubinstein, ‘‘The cross entropy method for classifica-
tion,’’ in Proceedings of the 22nd International Conference on Machine Learning,
ser. ICML ’05. Association for Computing Machinery, 2005, p. 561–568.

[24] D. P. Kingma and J. Ba, ‘‘Adam: A method for stochastic optimization,’’ 2014.

63

https://scholarworks.sjsu.edu/etd_projects/900/
https://scholarworks.sjsu.edu/etd_projects/900/

[25] J. Hui, ‘‘Gan - what is generative adversarial networks gan?’’ Dec 2019. [Online].
Available: https://jonathan-hui.medium.com/gan-whats-generative-adversarial-
networks-and-its-application-f39ed278ef09

[26] A. Jabbar, X. Li, and B. Omar, ‘‘A survey on generative adversarial networks:
Variants, applications, and training,’’ ArXiv, vol. abs/2006.05132, 2020.

[27] P. M R and P. Jayagopal, ‘‘Generative adversarial networks: a survey on
applications and challenges,’’ International Journal of Multimedia Information
Retrieval, vol. 10, 03 2021.

[28] M. Arjovsky, S. Chintala, and L. Bottou, ‘‘Wasserstein gan,’’ 2017.

[29] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. Courville, ‘‘Improved
training of wasserstein gans,’’ 2017.

[30] ‘‘K Neighbors Classifier,’’ https://scikit-learn.org/stable/modules/generated/
sklearn.neighbors.KNeighborsClassifier.html, Accessed on: (04/20/2021).

[31] ‘‘KNN (K-Nearest Neighbors),’’ https://towardsdatascience.com/knn-k-nearest-
neighbors-1-a4707b24bd1d, Accessed on: (04/20/2021).

[32] C. Cortes and V. Vapnik, ‘‘Support-vector networks,’’ Mach Learn 20, pp.
273--297, 1995. [Online]. Available: https://doi.org/10.1007/BF00994018

[33] R. Gandhi, ‘‘Support vector machine,’’ https://towardsdatascience.com/support-
vector-machine-introduction-to-machine-learning-algorithms-934a444fca47, 2018.

[34] B. E. Boser, I. M. Guyon, and V. N. Vapnik, ‘‘A training algorithm for
optimal margin classifiers,’’ in Proceedings of the Fifth Annual Workshop
on Computational Learning Theory, ser. COLT ’92. New York, NY, USA:
Association for Computing Machinery, 1992, p. 144–152. [Online]. Available:
https://doi.org/10.1145/130385.130401

[35] S. Sawla, ‘‘Introduction to Naiïve Bayes for classification,’’ https://medium.com/
@srishtisawla/introduction-to-naive-bayes-for-classification-baefefb43a2d, 2018.

[36] T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, and X. Chen,
‘‘Improved techniques for training gans,’’ 2016.

[37] M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and S. Hochreiter, ‘‘Gans
trained by a two time-scale update rule converge to a local nash equilibrium,’’
in Proceedings of the 31st International Conference on Neural Information
Processing Systems, ser. NIPS’17. Curran Associates Inc., 2017, p. 6629–6640.

64

https://jonathan-hui.medium.com/gan-whats-generative-adversarial-networks-and-its-application-f39ed278ef09
https://jonathan-hui.medium.com/gan-whats-generative-adversarial-networks-and-its-application-f39ed278ef09
https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html
https://towardsdatascience.com/knn-k-nearest-neighbors-1-a4707b24bd1d
https://towardsdatascience.com/knn-k-nearest-neighbors-1-a4707b24bd1d
https://doi.org/10.1007/BF00994018
https://towardsdatascience.com/support-vector-machine-introduction-to-machine-learning-algorithms-934a444fca47
https://towardsdatascience.com/support-vector-machine-introduction-to-machine-learning-algorithms-934a444fca47
https://doi.org/10.1145/130385.130401
https://medium.com/@srishtisawla/introduction-to-naive-bayes-for-classification-baefefb43a2d
https://medium.com/@srishtisawla/introduction-to-naive-bayes-for-classification-baefefb43a2d

[38] A. Nappa, M. Z. Rafique, and J. Caballero, ‘‘The malicia dataset: identifica-
tion and analysis of drive-by download operations,’’ International Journal of
Information Security, vol. 14, no. 1, pp. 15--33, 2015.

[39] J.-M. Roberts, ‘‘VirusShare.com - Because Sharing is Caring,’’ http://www.
virusshare.com, 2011.

[40] S. Ioffe and C. Szegedy, ‘‘Batch normalization: Accelerating deep network training
by reducing internal covariate shift,’’ 2015.

65

http://www.virusshare.com
http://www.virusshare.com

APPENDIX A

ROC Curves and bar plots for optimum M.

Figure A.22: AUC scores for different M values for WinWebSec.

Figure A.23: AUC scores for different M values for Zbot.

66

Figure A.24: AUC scores for different M values for Renos.

Figure A.25: AUC scores for different M values for OnLineGames.

67

Figure A.26: AUC scores for different M values for VBInject.

68

Figure A.27: ROC curves for different M values for WinWebSec.

69

Figure A.28: ROC curves for different M values for Zbot.

70

Figure A.29: ROC curves for different M values for Renos.

71

Figure A.30: ROC curves for different M values for OnLineGames.

72

Figure A.31: ROC curves for different M values for VBInject.

73

APPENDIX B

Loss curves for different GAN architectures.
B.1 GAN Loss Curves

The loss curves for all 5 families are given here. We can see that the loss values

don’t necessarily correspond to the generative model’s performance. For WinWebSec

and OnLineGames the training is unstable as we see the loss values oscillating. But

the results given in section 5.2 show that the results for all 5 families are almost the

same with sub par quality of fake samples.

Figure B.32: WWS GAN discriminator loss. Figure B.33: WWS GAN generator loss.

Figure B.34: Zbot GAN discriminator loss. Figure B.35: Zbot GAN generator loss.

74

Figure B.36: Renos GAN discriminator loss. Figure B.37: Renos GAN generator loss.

Figure B.38: OLG GAN discriminator loss. Figure B.39: OLG GAN generator loss.

Figure B.40: VBInject GAN discriminator loss. Figure B.41: VBInject GAN generator loss.

75

B.2 WGAN Loss Curves

Figure B.42: Zbot WGAN critic loss. Figure B.43: Zbot WGAN generator loss.

Figure B.44: Renos WGAN critic loss. Figure B.45: Renos WGAN generator loss.

Figure B.46: OLG WGAN critic loss. Figure B.47: OLG WGAN generator loss.

76

Figure B.48: VBInject WGAN critic loss. Figure B.49: VBInject WGAN generator loss.

B.3 WGAN with Gradient Penalty Loss Curves

Figure B.50: Zbot WGAN-GP critic loss. Figure B.51: Zbot WGAN-GP generator loss.

Figure B.52: Renos WGAN-GP critic loss. Figure B.53: Renos WGAN-GP generator loss.

77

Figure B.54: OLG WGAN-GP critic loss. Figure B.55: OLG WGAN-GP generator loss.

Figure B.56: VBInject WGAN-GP critic loss. Figure B.57: VBInject WGAN-GP generator
loss.

78

APPENDIX C

Code snippets

Code snippets for Wasserstein distance and gradient penalty calculation are given

below.

C.1 Wasserstein Loss

Using -1 as ground truth labels for fake images and 1 as ground truth labels for

real images, the Wassersetin loss/distance is calculated as follows:

def wasserstein_distance(y_true , y_pred):

return tensorflow.keras.backend.mean(y_true * y_pred)

C.2 Gradient Penalty

The gradient penalty is implemented as follows:

import tensorflow.keras.backend as kb

def grad_penalty(y_true , y_pred , interpolated_samples):

’’’

L2 norm or Eucledian norm calculation:

1. Square the gradients

2. L2 norm = Sum over rows and take square root

3. Gradient penalty = lambda * (l2_norm - 1)^2

’’’

gradients = kb.gradients(y_pred , interpolated_samples)[0]

grad_squared = kb.square(gradients)

grad_norm = kb.sqrt(kb.sum(grad_squared , axis=np.arange(1, len(

grad_squared.shape))))

grad_penalty = kb.square(1 - grad_norm)

return kb.mean(grad_penalty)

We define lambda in the computational graph for the critic model when defining

the weights for each loss. For Wasserstein loss we assign a weight of 1 and for gradient

79

penalty loss we assign a weight of 10 which is lambda. This is a hyperparameter and

we experimented with different values: {5, 8, 10, 12, 15}

80

	Fake malware opcodes generation using HMM and different GAN algorithms
	Introduction
	Background
	Background and Related Work
	Hidden Markov Models
	HMM Introduction and Working

	Generative Adversarial Networks
	GAN Working and Architecture
	GAN Training
	GAN Limitations

	Wasserstein GAN
	WGAN working
	WGAN Training
	WGAN limitations

	WGAN with Gradient Penalty
	k-Nearest Neighbor
	Support Vector Machines
	Naïve Bayes Classifier
	Random Forest

	Methodology
	Fake Malware using HMM
	Fake Malware using GAN
	Feature Extraction
	Evaluation
	HMM Evaluation
	GAN Evaluation
	Accuracy, Precision and Recall

	Implementation
	Dataset
	HMM Implementation
	GAN Implementation
	GAN Stabilizing Techniques

	WGAN Implementation
	Wasserstein Distance

	WGAN with Gradient Penalty Implementation

	Results and Discussion
	HMM Results
	Optimum M and HMM Training Results
	HMM Classification Results

	GAN Results
	Best GAN Generative Model
	GAN Classification Results

	WGAN Results
	Convergence and Loss Values
	WGAN Classification Results

	Wasserstein GAN with Gradient Penalty
	Convergence and Loss Curves
	WGAN-GP Classification Results

	Conclusion and Future Work
	Future Work

	LIST OF REFERENCES
	ROC Curves and bar plots for optimum M.
	Loss curves for different GAN architectures.
	GAN Loss Curves
	WGAN Loss Curves
	WGAN with Gradient Penalty Loss Curves

	Code snippets
	Wasserstein Loss
	Gradient Penalty

