
San Jose State University San Jose State University 

SJSU ScholarWorks SJSU ScholarWorks 

Master's Projects Master's Theses and Graduate Research 

Spring 5-24-2021 

Using Oracle to Solve ZooKeeper on Two-Replica Problems Using Oracle to Solve ZooKeeper on Two-Replica Problems 

Ching-Chan Lee 

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_projects 

 Part of the Databases and Information Systems Commons, and the OS and Networks Commons 

https://scholarworks.sjsu.edu/
https://scholarworks.sjsu.edu/etd_projects
https://scholarworks.sjsu.edu/etd
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F997&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F997&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/149?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F997&utm_medium=PDF&utm_campaign=PDFCoverPages


Using Oracle to Solve ZooKeeper on Two-Replica Problems

A Project

Presented to

The Faculty of the Department of Computer Science

San José State University

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

by

Ching-Chan Lee

May 2021



© 2021

Ching-Chan Lee

ALL RIGHTS RESERVED



The Designated Project Committee Approves the Project Titled

by

Ching-Chan Lee

APPROVED FOR THE DEPARTMENT OF COMPUTER SCIENCE

SAN JOSÉ STATE UNIVERSITY

May 2021

Benjamin Reed, Ph.D. Department of Computer Science

Navrati Saxena, Ph.D. Department of Computer Science

Pramod Srinivasan, M.S. Juniper Networks, Inc.



ABSTRACT

USING ORACLE TO SOLVE ZOOKEEPER ON TWO-REPLICA PROBLEMS

by Ching-Chan Lee

The project introduces an Oracle, a failure detector, in Apache ZooKeeper and makes

it fault-tolerant in a two-node system. The project demonstrates the Oracle authorizes the

primary process to maintain the liveness when the majority’s rule becomes an obstacle to

continue Apache ZooKeeper service. In addition to the property of accuracy and

completeness from Chandra et al.’s research, the project proposes the property of see to

avoid losing transactions and the property of mutual exclusion to avoid split-brain issues.

The hybrid properties render not only more sounder flexibility in the implementation but

also stronger guarantees on safety. Thus, the Oracle complements Apache ZooKeeper’s

availability.



ACKNOWLEDGMENTS

I cannot begin to express my sincere appreciation to the advisor, Dr. Benjamin Reed,

who renders me professional guidance to conduct this project as well as his strong

academic research experience to enhance the theoretical background of this project. As

one of the authors of Apache ZooKeeper, Dr. Reed demonstrates his passion and

understanding of distributed computing, which motivates me in this study and often works

as signs that suggest the right path. I want to extend my sincere thanks to Mr. Pramod

Srinivasan for not only providing the original idea of the Oracle but also his distinct

insights based on the professional experience at Juniper Networks Inc. His practical

perspectives make this project go beyond theories but a practical solution in the industry. I

also had the great pleasure of working with Mr. Srinivasan at Juniper Network Inc. during

summertime in 2020. This precious experience is inseparable from this project and is

another gift that cannot be overemphasized. Last but not least, I would like to thank Dr.

Navrati Saxena as one of the committee members and the original authors of Apache

ZooKeeper, Dr. Alexander Shraer and Dr. Flavio Junqueira. While Dr. Saxena is a senior

researcher and professor in computer networking, her constructive advice extends the

project’s vision to another level; Dr. Alexander Shraer and Dr. Flavio Junqueira provide

insightful suggestions to complement this project undoubtedly.

Finally, I am deeply indebted to my family. As an international student from Taiwan,

my family gives me strong support financially and mentally. Without their support, I

could not have an opportunity to study at San José State University, one of the best

computer science programs in the world, or learn so much from this project.

v



TABLE OF CONTENTS

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.1 ZooKeeper with Distributed Computing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.1 Background. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.1.2 Ordering event based on ”The Happened Before Relation” . . . . . . 5
2.1.3 Consensus based on Paxos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.4 Consistency. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.5 Fault-Tolerance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Solve Consensus with Failure Detectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.1 The begin of failure detectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.2 Failure detectors with consensus algorithms . . . . . . . . . . . . . . . . . . . . . . 15
2.2.3 Failure detectors in practical . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 Using Oracle to Solve ZooKeeper on Two-Replica Problem. . . . . . . . . . . . . . . . . . . 17
3.1 Asynchronous distributed system model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.1.1 Asynchronous distributed system with crash failures . . . . . . . . . . . . . 17
3.1.2 ZooKeeper atomic broadcast protocol, ZAB . . . . . . . . . . . . . . . . . . . . . . 19
3.1.3 Unreliable failure detector, the Oracle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2.1 Review on ZAB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2.2 Properties of ZAB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.3 Solving consensus with the Oracle as a failure detector . . . . . . . . . . . . . . . 27
3.3.1 Leader election . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.3.2 Discovery phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.3.3 Synchronization phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.3.4 Broadcast phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.3.5 Revalidation on outstanding proposals . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.3.6 Property of See . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.4 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.4.1 Liveness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.4.2 Termination. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.4.3 Consistency. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4 Deployment Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

vi



4.1 An Implementation of hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.2 An Implementation of software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.3 Use USB devices as the Oracle to maintain progress . . . . . . . . . . . . . . . . . . 38

5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.2 Variables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.3 The Oracle makes mistakes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.4 The switch of the primary resource leads to split-brain . . . . . . . . . . . . . . . . 43
5.5 The coordination between hardware and software . . . . . . . . . . . . . . . . . . . . . . 44

6 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

Literature Cited . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

vii



viii

LIST OF TABLES



ix

LIST OF FIGURES

Fig. 1. Problem Overview - Loss of Liveness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Fig. 2. Solution Overview - The Oracle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

Fig. 3. The hierarchy of failure detectors from [1] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

Fig. 4. System model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

Fig. 5. Strong completeness, On-time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

Fig. 6. Strong completeness, Eventually . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

Fig. 7. Eventual Weak Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

Fig. 8. Discovery phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

Fig. 9. Synchronization phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

Fig. 10. Broadcast phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

Fig. 11. Leader election . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

Fig. 12. Leader election with the Oracle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

Fig. 13. Discovery phase the Oracle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

Fig. 14. Synchronization phase the Oracle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

Fig. 15. Broadcast phase the Oracle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

Fig. 16. The loss of data happens on transaction 0x01. . . . . . . . . . . . . . . . . . . . . . . . . . . 32

Fig. 17. Using Oracle to maintain the Liveness, Leader Case . . . . . . . . . . . . . . . . . . . 34

Fig. 18. A Violation of Mutual exclusion, Split-Brain . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

Fig. 19. The result of Evaluation. Time is measured by Apache ZooKeeper
clients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

Fig. 20. The switch of the primary resource leads to split-brain . . . . . . . . . . . . . . . . 44



Fig. 1: Problem Overview - Loss of Liveness

1 INTRODUCTION

Apache ZooKeeper is fault-tolerant when the majority of the computing nodes are

healthy because the ZooKeeper Atomic Broadcast protocol, ZAB, uses the concept of

quorums. It means that it is not fault-tolerant in a two-node system because the majority

of a quorum of 2 is still 2. The project proposes using a failure detector as an Oracle in a

two-node system to solve the problem while ensuring Apache ZooKeeper’s guarantees.

Apache ZooKeeper is a distributed coordination application widely used in large-scale

distributed systems, and critical service to the whole system is often. Besides the systems

that comprise many computing nodes, deploying Apache ZooKeeper in a standalone

mode or a two-node system is not rare. However, the two-node system design often serves

as a solution to achieve high availability, e.g., active-passive pattern [2] [3], but this

design does not fit with the concept of quorums, Fig. 1. As a result, the failure of Apache

ZooKeeper likely becomes an obstacle to maintain high availability in two-node systems.

1



Fig. 2: Solution Overview - The Oracle

The project is inspired by the design which allocates two identical computing nodes

into the same chassis, and there exists an external hardware device as a failure detector,

the Oracle. This hardware failure inevitably cause one of Apache ZooKeeper service to

leave the cluster, and further introduces a service interruption. However, with the

integration of the existed failure detector, the Oracle, the proposed method can eliminate

the period of the service interruption, Fig. 2. In this work, the project discloses the Oracle

requirements to solve the consensus problem with ZAB, ZooKeeper Atomic Broadcast

protocol. The project surveys the practical implementation and analysis of a failure

detector in Park’s research and others [4] [5] [6] [7]. The project reveals the properties of

completeness and accuracy from the former research regarding the failure detectors by

Chandra et al. [1] [8] [9] Also, the project proposes other two properties of see and

mutual exclusion to enhance our proposed failure detector and address two concerns,

lost transaction and split-brain. The combination of these four properties renders

sounder flexibility in practical implementation.

2



This project is written in the following structure. In Section 2, it presents a literature

reviews on two topics. It starts with the relation of Apache ZooKeeper and distributed

computing, and then the failure detectors with the consensus algorithms.

In section 3, it discloses the proposed method which is using Oracle to solve

ZooKeeper on two-replica problem. In section 4, three possible deployment models are

introduced. In section 5, the section presents an evaluation of the service downtime on a

product of Juniper Networks Inc, Fig. 1 and Fig. 2. In section 6 and 7, contains the

thoughts regarding the next steps on the project the conclusions. The major contributions

of the project are the following:

• Proposing the second-weakest failure detector is capable of making a two-node

system fault-tolerate with a quorum-based consensus algorithm.

• Using the property of see and mutual exclusion to overcome the issues of lost

transaction and split-brain.

3



2 LITERATURE REVIEW

2.1 ZooKeeper with Distributed Computing

2.1.1 Background

Distributed systems have been developed for more than thirty years. From the

beginning of the developments, people realized the potentiality and the robustness of this

technology.

The ultimate goal of distributed systems is using a group of machines to provide a

service that overcomes many problems that a single machine cannot conquer. However,

the basis of distributed computing is consensuses since a distributed system consists of a

number of machines. By gathering the power of each machine, distributed systems

achieve its robustness and reliability while consensuses are the key to trigger this powerful

technology. In other words, the participated machines have to agree on the next task to

process in the first place to have progress. Nevertheless, ordering the events in the system

is one of the prerequisites to develop distributed systems. Also, one of the main goals of

distributed systems is to be fault-tolerant. The systems need to overcome fail-stop failures

and possibly byzantine failures as well. Nevertheless, byzantine failures are often seemed

as a separated study due to its hardness. The literature review covers a few pieces of study

of it, but the project itself does not. Thankfully, with the efforts from the predecessors and

remarkable research, the basic problems have been solved and the people nowadays focus

on developing applications and tools based on distributed computing. Apache ZooKeeper

is one of the most widely-used and important applications.

Since Hunt et al. introduced Apache ZooKeeper to distributed systems, it has been

widely applied in many popular applications [10]. For example, Mesos is a distributed

operating system introduced by Hindman et al [11]. The success of Mesos not only

increases the efficiency of distributed systems but also provides a solution to execute

4



multiple distributed applications on the same system. The key to this success is Apache

ZooKeeper.

This literature review covers the main topics of the ordering of events, achieving of

consensuses, ensuring consistency, and fault-tolerance in distributed systems. It focuses

on the methodologies for each corresponding topic as well as the relationship between the

methodologies and Apache ZooKeeper itself. The literature review addresses a few

questions: How to ordering events in distributed systems? What is the research solving

achieving consensus in distributed systems? How can achieve consistency in distributed

systems? What system architectures are fault-tolerant in distributed systems?

The rest of this literature is organized as the followings: 2.1.2 addresses the research

related to ordering occurred events and the methodology that Apache ZooKeeper applies

in ZAB, a consensus protocol introduced by Reed and Junqueira. 2.1.3 focuses on how

the consensuses are made in distributed systems. After the systems can have consensuses,

consistency among the system is covered by 2.1.4. 2.1.5 addresses the types of failures.

Lastly, the article ends with a conclusion in 2.1.6.

2.1.2 Ordering event based on ”The Happened Before Relation”

Ordering of events is the first problem that people encounter when developing

distributed systems. It is important to have a solution that knows which event happens

before another. When Lamport [12] proposed Logical Clock for ordering events as the

physical time is unreliable due to the theory of relativity, people realized that every total

ordering of events is an arbitrary partial ordering. Lamport used a relation called

“Happened Before” to define which event occurs first. In addition to that relation, Logical

Clock works like a counter that increments the values in certain rules applied and assigns

the value to each corresponding events. With these techniques, the system can obtain a

system-wide ordering of events, but this solution does not address the concurrent events

until Vector Clock was introduced by Fidge [13]. Unlike the fact that Logical Clock

5



proposed by Lamport only maintains a single clock value, Vector Clocks maintain not

only its clock but also other processes’ clock by exchanging messages. In other words,

Fidge [13] implies that Lamport’s algorithm eliminates the possibility of other partial

ordering of the events. Although the ordering generated by applying Vector Clocks is

another arbitrary partial ordering, Vector Clocks provide a way to order concurrent events

by not eliminating the possibility of other partial ordering of events. In these solutions,

the idea of “happened before” relation and logical clock play an important role.

Reed [14] introduces ZAB, a broadcast protocol used by Apache ZooKeeper, to

ensure the ordering of delivering messages which also ensures the ordering of happened

events within the system. Lamport [12] implies that the happened before relation

maintains a causal effect between two events. By ensuring the causal relation in delivering

a message, ZAB achieves a total ordering. However, it does not maintain other

possibilities of partial ordering implied by Fidge [13] when concurrent events occur.

2.1.3 Consensus based on Paxos

Lamport [15] introduced Paxos which provides a solution to have a consensus among

unreliable machines while maintaining certain progress. Paxos is a complicated algorithm

to achieve consensuses and maintain progress simultaneously. There are two major

contributions to this research: Firstly, the uniqueness of each ballot held by quorums to

make agreements, which defines the priority of the ballot. The other is that it is important

that between any two quorums the members must intersect with at least one for the sake

of not only achieving consensuses but also maintaining consistency.

After Paxos is introduced, there are many literatures contributing to its development.

Howard et al. [16] developed a flexible version of Paxos which reduces the requirements

of intersection between any quorums as well as any two ballots while it sacrifices the

ability of fault-tolerance. In Active Disk Paxos introduced by Chockler and Malkhi [17],

the proposed algorithm for achieving a consensus on a value without using any critical

6



section is an application of Paxos that utilizes the uniqueness of ballots. Nevertheless, in

FLP, a research paper of Fischer et al. [18], it is proven that there does not exist a protocol

that can ensure progress with a faulty machine involving the process of having consensus

in distributed systems.

In Apache ZooKeeper [10] cluster, there is a machine called leader machine which is

responsible for executing the requests from the clients and coordinating other machines.

The way that Apache ZooKeeper generates the leader is based on quorums from Paxos

and its applications.

2.1.4 Consistency

In the distributed systems, the tasks and the data are handled distributively for better

performance as well as higher availability. Having consistency in the system regardless of

the aspect of data or states is critical. The aforementioned concepts of ordering of events

and consensus are inseparable from achieving consistency.

When it comes to consistency in distributed system, the concept of state machines

cannot be overemphasized. The definition of state machine is addressed in Lamport’s

paper when introducing logical clock [12]. The paper addresses the definition of a state

machine as follows: A state machine consists of a set of states, a set of commands, and a

function that executes the given command which triggers a changing from the initial state

to a new state.

An important note of state machines is determinism. In Logical Clock, Lamport [12]

implies that the purpose of achieving totally ordering of events is to make sure that every

machine in the system executes the given commands in the same arbitrary order, and

every machine is synchronized because of the determinism of each operational machine.

The applications of state machines take an important role in many literatures related

to distributed systems. In Viewstamped Replication [19], the system built upon the

proposed theory is an application of state machines. In the paper, there is a leader

7



machine that is responsible for handling the requests from clients, and then it propagates

the required commands to other servers. Since other machines execute the commands in

the same predefined order, the results of each machine are going to be the same. On the

other hand, besides the direct usage of state machines, using the concept of state

machines to prove the proposed theorem is another kind of application. In FLP [18], the

author uses state machines to prove the theorem that there does not exist a protocol that

can always achieve consensuses and progress with at least a faulty machine.

However, although the concept of state machines is widely adopted by many pieces of

research as either the fundamental prerequisites of the proposed

algorithms [10] [14] [19] [20] [21] or a tool to prove the proposed theorem [18], there are

a few issues to discuss in the research community. Schneider [20] proposes a distributed

system architecture to overcome failures by using the concept of state machines as well,

but he also points out that the drawback of state machines. Thus, when the operations of

the given task are not independent of the previous operation, executing this task cannot

ensure that the state machine is deterministic. Once the system loses the determinism, the

system cannot ensure consistency anymore. On the other hand, Budhiraja et al. [22], using

the proposed architecture, primary backup, can solve the aforementioned problem. In this

architecture, only one machine interacts with the clients; therefore, there does not exist

the problem of synchronization; thus, although the task will cause the machine to execute

in a non-deterministic manner, it does not affect the system.

The consistency of data is ensuring every request from the clients get the latest data.

Besides the application of state machines that achieve consistency in data, there is other

research regarding achieving consistency in data without applying the concept of state

machines. Attiya, Bar-Noy, and Dolev [23] proposed an algorithm that can implement a

shared-memory system in a message-passing system. With the proposed algorithm, the

data in a distributed system can be treated like a single machine. The algorithm is based

8



on the agreement of the majority of the participated machines. It ensures that a later read

operation issued by the client will not receive a value that is older than a previous read

operation. Therefore, the read values are up to date and consistent among the system.

Moreover, Active Disk Paxos [17] addresses the same guarantee that a new read operation

would not get a value that is older than the one that a previous read operation got in

another earlier time. The method proposed combines the concept of Paxos [15] and

Logical Clock [12]. It utilizes the rank register which has the uniqueness of the ballots in

Paxos as well as the timestamp-likeness in Logical Clock. The rank register provides not

only the aforementioned guarantee but also the property of wait-free.

Another way to achieve consistency is by limiting the number of machines that are

responsible for handling requests from clients. There are several pieces of research

regarding this approach. Budhiraja [22] introduces the primary backup system achieving

consistency in data and states by building a system that only the primary machine handles

the requests from the client and then broadcasts the change to the backup machines. Since

there is only a machine to handle the request, the consistency is easy to achieve. In

contrast to a single machine handling the requests, Renesse [21] proposes the chain

replication which features the fact that there are two machines serve the client requests in

the system. The system propagates the updates in the manner of one machine by one

machine like a chain. This architecture defines the role of each machine. The first

machine in the chain is called the head which is responsible for receiving the requests

related to changing values and executing the operations. The last machine in the chain is

called the tail which is responsible for replying to the requests related to retrieving values

from the clients. As for the other machines, they serve as backups.

The approach that Apache ZooKeeper keep its consistency is an application of state

machines. The mechanism shares the same concept that is used by Budhiraja [22] in the

proposed system. Additionally, other replicas also handle the requests from clients in the

9



manner which [21] applies, despite there is a leader machine in Apache ZooKeeper. The

other replicas will forward the requests to the leader machine and reply to the client with

the location of the leader. It is clear that Apache ZooKeeper takes a hybrid method

combining [24] and [21].

2.1.5 Fault-Tolerance

Budhiraja [22] explicitly indicates there are two major kinds of failures that occur in

distributed systems: fail-stop failures and byzantine failures. The requirements for

overcoming each combination of failures are different. Besides the failures of the

machines themselves, network failure, for example the network-partitioned, are also

addressed by Budhiraja [22]. Although Budhiraja’s research provides the solution to

overcome possible failures with ensuring consistency in the system, and so do other

literature [15] [16] [19] [20] [24] [23] [21]. Gilbert et al [25] proves that there does not

exist a system that can achieve consistency, availability, and partition-tolerance at the

same time and without compromising any of them.

fail-stop failure is addressed in many proposed

architecture [15] [16] [19] [20] [24] [23] [21] and it also serves as a motivation behind

these research group. In [20], this kind of failure is explicitly defined. This failure means

once the machine becomes faulty, it will automatically stop. Thus, the faulty machines

will not continue to participate in the service.

In the literature relating to achieving consensuses in distributed systems, many

researchers assume the environment consists of unreliable machines. In [15], the proposed

algorithm is designed to overcome this failure by using quorums and ballots. Moreover,

the requirements of intersections between quorums and ballots are the key to solve this

problem and guarantee progress. In [16], the flexible version of Paxos makes a trade-off

between flexibility and fault-tolerance. It focuses on which machine fails instead of the

number of faulty machines.

10



Not only the aforementioned works of literatures address this issue, but they also

relate to the consistency. In [22], Budhiraja et al. provides many examples to show that

the proposed system tolerates different types and numbers of failure models without

losing its consistency. For instance, the author points out what the exactly minimum

number of machines in the system is to overcome not only fail-stop failures as well as the

issues of network partitioned.

The literature below addresses this kind of failures by focusing on the actions needed

to perform when a specific machine becoming faulty. In [19], besides the concept of state

machine, the research focuses on the actions between each machines when there is a

faulty machine. In the proposed system, there is a leader machine acts likes the one in

Primary Backup [24]. When the leader becomes faulty, the new leader will be generated

from the remained machines and it will perform an action called “View Changed.” This

action makes the system recovery from a faulty machine and the service can be provided.

In [20], the purpose of having replicas of machines is for the availability of the system.

By using the concept of state machine, the system keeps the consistency among the

replicas. When the leader machine becomes faulty, a new leader machine will be elected

from the remains replicas. Chain replication [21] deals with fail-stop over in the way of

combining [19] and [20]. The algorithm keeps propagating states in the chain. When one

of the machine becomes faulty and the latest state cannot propagate to the tail, the head

and other machines will resent the state. In cases of head and tail become faulty, the

system acts like primary backup, there will be a new head to replace the faulty one as

well as a new tail to replace the faulty tail if needed.

On the other hand, ABD [23] addresses the fail-stop failures in a different manner that

is focusing on the number of faulty machines. ABD provides an algorithm to keep the

consistency of data although the minority of the machines becomes faulty. The reason is

because the decided value is based on the majority of the machines. When every time the

11



client makes a request for changing the value, the algorithm makes sure that the new

value is known by the majority of the machines. In this case, although some machines

become faulty and do not receive the new value, they would not affect the system.

Byzantine failure is harder to deal with compared to fail-stop failure because when a

faulty machine that is byzantine failure, it means the machine is faulty but it is not aware

of this fact. In other words, the machine would keep operating and be likely to produce

incorrect data. Compared to the number of literature dealing with fail-stop failures, there

are relatively a few pieces focusing on Byzantine failure. In replicate state machine [20],

the solution to overcome this failure in distributed system is use the majority of non-faulty

machines. As long as the majority of the machines work properly like the way that

ABD [23] does, the system guarantees the consistency of the state and the data. Although

the aforementioned research makes the system capable of recovering system from this

kind of failures, they do not cover the problem of security. Gilbert et al. [25] propose

another system architecture to address the issue of security. It separates the system as

three groups of machines, the agreement cluster based on Paxos [15], the execution cluster,

and the firewall cluster. Conclusively, this design improves the ability of fault-tolerance of

the system while the firewall cluster is the key to overcome byzantine failures.

The approaches in [15] [16] [19] [20] [24] [23] [21] will not work since these are

designed based on the concept of replacement the faulty machine when failures occur.

However, it goes without saying that in order to replace a faulty machine, the system must

know the machine is faulty in the first place, which is explicitly contradicting the

definition of byzantine failures.

The ability of fault-tolerance in Apache ZooKeeper can only ensure the system

overcomes fail-stop failures. They are addressed by using the method in Primary

Backup [24] and the concept of the majority. Regarding byzantine failures, unfortunately,

there does not exist a validation mechanism in Apache ZooKeeper to possibly identify

12



faulty machines when the faulty machines are the majority. That is being said that Apache

ZooKeeper recognize the correctness based on the majority of machines, but it cannot

know if the majority is actually faulty since the byzantine faulty machines are faulty but

being up based on the definition given in [26]. Also, the limitation of fault-tolerance is

number of machines consisting Apache ZooKeeper. Currently, Apache ZooKeeper follows

the limitations of the majority rule.

2.1.6 Conclusion

This literature review covers the remarkable works in distributed systems and explores

the relations with Apache ZooKeeper. The concept of “happened before” [12] plays an

important role in the development of distributed system given that it is the prerequisite of

utilizing state machines and is the fundamental assumption in [10] [14] [18] [19] [20] [21].

Also, the introduction of Paxos [15] renders a fundamental concept of having consensuses

in a group of unreliable machines with the fact that its applications [14], [16], and [17], to

name a few. The core of Apache ZooKeeper, ZAB broadcast protocol [14], combines the

methodology of Lamport [12] [15] and other predecessors’ remarkable works [19] to

ensure the consistency of the system. The high availability of Apache ZooKeeper is

achieved by a hybrid method consisted of primary backup [24] and chain replication [21].

The concept of majority [23] is utilized in Apache ZooKeeper for overcoming fail-stop

failures, but it also becomes a limitation to Apache ZooKeeper regarding the minimum

numbers to host Apache ZooKeeper service.

2.2 Solve Consensus with Failure Detectors

2.2.1 The begin of failure detectors

The study of using failure detectors to solve consensus problems systematically

started before Paxos is widely reviewed to our best knowledge. As FLP [18] brings the

problem of achieving consensus in an asynchronous distributed system with at least a

13



single failure. Many start looking for solutions for addressing this problem. Chandra et

al. [1] [8] introduce the way of using failure detectors to solve consensus and provide the

requirements for implementing such failure detectors. Those requirements are known as

property completeness and the property of accuracy. However, the study focuses on

solving the consensus in which the majority of processes are not failed, but it also

discloses the requirement for different scenarios; for instance, the majority of processes

are faulty. The study reveals that to address different levels of consensus problems, a set

of various failure detectors is required. By combining different level of completeness and

accuracy, they introduce a hierarchy of failure detectors, Fig. 3. Moreover, they prove the

Fig. 3: The hierarchy of failure detectors from [1]

failure detectors are reducible by using the proposed algorithm. For example, in the study,

it is proved that with the given algorithm, a weak failure detector acquired with weak

completeness and weak accuracy is reducible to a strong failure detector that is acquired

with strong completeness and weak accuracy. This fact further affects a later study to

14



show that in the proposed hierarchy of the failure detectors, there exists a weakest failure

detector [9].

2.2.2 Failure detectors with consensus algorithms

The introduction of failure detectors renders another possibility to solve the consensus

problem. While many solutions are addressing the problem of f < n
2 , such as Paxos, Raft,

and ZAB [15] [27] [14], and those algorithms do not cooperate with failure detectors,

there are also a few studies focusing on solving the consensus problem in two-node

systems, f ≤ n
2 . In [28] and [29], the use of the failure detectors are similar to the origins

by presenting a list of suspected processes. The studies also provide how strong the

failure detectors should be to solve the consensus problem in a two-node system. In the

proposals, both studies demonstrate that a Strong failure detector and even an eventually

strong failure detector can solve such a problem. Yet, neither [28] nor [29] addresses the

problem of the possibility of transaction overwritten which is discussed with the property

of See. We consider that the problem of losing data happens in the multiple transitions of

leadership. Given that the proposed algorithms in both [28] and [29] do not explicitly

involve in the primary-backup paradigm, it is reasonable to consider that the property of

see is not necessary. With the former theoretical foundations, the acquisition of the Oracle

in Apache ZooKeeper improves two-node systems’ availability. The former studies

provide clues regarding the definition of the Oracle, but also disclose a possible

inconsistency in the system.

2.2.3 Failure detectors in practical

On the other hand, some debates exist on how strong the failure detectors need to be

to solve the problem and what failure detectors are implementable. Park believes that the

perfect failure detector is required to solve the consensus problem [4]. Compared to other

works, the study treats the fact that the election problem differs from the consensus

problem. Garg et al. believe the weakest failure detectors is not weak enough to be

15



implemented in practice [6]. Instead, they introduce another kind of failure detectors

which is acquired a weaker accuracy guarantee so that they are implementable in practice.

Although the weakest failure detectors cannot be used to solve the consensus problem as

expected, they are suitable for other applications similar to our two-node system. In

Fetzer’s work, the study introduces a hardware-based perfect failure detector called

watchdog. Watchdog does not make mistakes in suspecting correct processes faulty

because it makes processes faulty proactively before reporting the failure [7].

16



3 USING ORACLE TO SOLVE ZOOKEEPER ON TWO-REPLICA PROBLEM

In this section, the proposed method is introduced. This section is structured in four

subsections as the following. In Section 3.1, the project defines our system models, ZAB,

and the Oracle. In section 3.2, the project explains how each process communicates in

different phases of ZAB and introduces the properties of ZAB that our proposed method

will still maintain. In section 3.3, the project not only demonstrates how the Oracle

participates in different phases of ZAB to maintain the liveness while one of the two

processes fails, but also discloses the issue of transaction overwritten which is not

discussed in previous two-node consensus algorithms. In section 3.4, the project discusses

the proposed approach in three fundamental questions, Liveness, Termination, and

Consistency. The project shows that the property of strong completeness provides the

Liveness and Termination while the property of mutual exclusion eliminates the case of

split-brain.

3.1 Asynchronous distributed system model

The system model is a hybrid of the one proposed by Chandra et al. in [1], [8],

and [9] and the one proposed by Junqueira et al. in [26]. A formal definition of the failure

detectors is from [1] and [8]. An asynchronous distributed system, generally, is a system

in which the system’s processes communicate with each other by sending messages, and

the time for sending messages is finite but unbounded.

3.1.1 Asynchronous distributed system with crash failures

We have an asynchronous distributed system consisting of two processes p1 and p2,

and they have dedicated reliable failure detectors o1 and o2, Fig 4. Processes

communicate with each other using ZAB [26], and the transmission delay is unbounded.

The failure detectors, noted as Ω = {0,1}, guarantee the following statements informally:

• Completeness If p j fails, oi eventually indicates the failure, and vice versa.

17



Fig. 4: System model

• Accuracy oi may indicate p j fails incorrectly for infinite times, and vice versa.

• Mutual Exclusion For oi and o j, oi = 1 and o j = 1 is impossible at any given time.

• See oi see a transaction, τ , if oi participates in τ .

The two processes communicate with each other in iterations and follow the atomic

broadcast protocol, ZAB, according to [26] and [14]. The processes can crash and recover

an infinite number of times. We define a process is up if it is not crash and down

otherwise. In the case that a process is recovering, we say the process is up. The

processes which satisfy the described properties are ∏. A quorum Q is formed by up

processes ∈∏, in which the processes are capable to communicate with each other in

only ZAB. For maintaining progress, the system needs to satisfy either one of the two

following statements. We consider the system to maintain progress if:

• there are two up processes for a sufficient amount of time to form a quorum Q.

• there is at least one process pi is up and oi = 1 where pi ∈∏ and oi ∈Ω.

However, for any two Q and Q′, there exists at least a process pi ∈∏ where pi ∈ Q and

pi ∈ Q′.

18



3.1.2 ZooKeeper atomic broadcast protocol, ZAB

In the system model, each process communicates with the other by sending messages

in iterations. According to [12], it is known that the order of the event is one of the

critical factors to solve the consensus problem. ZAB is theoretically proven to provide

sufficient properties for asynchronous distributed systems and to be a practical atomic

broadcast protocol used by modem applications [10] [30] [31]. The core of ZAB is a

variant of the famous quorum-based consensus algorithm, Paxos, introduced by

Lamport [15]. The majority of the correct processes ensure the Liveness( we use Liveness

and Progress interchangeably) and the Safety ( we use Safety, Consistency, and

Agreement interchangeably) of the system. ZooKeeper uses ZAB to maintain the core

properties, including the guarantee of the total ordering of events and uses the

primary-back paradigm [22] to lead the cluster and serve the clients [26].

ZAB uses the primary-back paradigm to execute requests and propagate the states of

the system. It is necessary to clearly state the relation between primary processes and how

iterations work in the system. According to [26], the following statements exist.

According to the primary-backup paradigm, it is clear that, at any given time, there

exists at most a primary process ρn which leads the cluster as the n-th primary process

where ρn ∈∏. Therefore, we can have an unbounded sequence to present the primary

processes’ history as ρ1ρ2ρ3...ρnρn+1 where ρn ∈∏. With this sequence, we say that a

primary process ρn is an earlier primary process of ρn′, ρn ≺ ρn′, if n < n′. Due to the

recoverability of ρn ∈∏, ρn and ρn′ may be the same process.

We consider that the iteration that causes a change in the system’s state is a transaction

τ = 〈v,z〉 as 〈value,zxid(transaction identifier)〉. z contains two facts of the system. The

first one is the current epoch of the system presented by epoch(z), and the other one is the

counter value of z presented by counter(z). While the value of epoch(z) is incremented

upon the change of the primary process, the value of counter(z) is incremented upon the

19



creation of a new transaction. With these two facts, we can define the relations between

transactions. We say a transaction τ = 〈v,z〉 precedes τ ′= 〈v′,z′〉, τ ≺ τ ′, if

• epoch(z)< epoch(z′), or

• epoch(z) = epoch(z′) and counter(z)< counter(z′)

Also, τ � τ ′ is either τ ≺ τ ′ or τ = τ ′

Nevertheless, ZAB is a protocol for communicating. We consider to have a reliable

transmission median, the channel, which satisfies the following properties as stated

in [26]:

• Integrity For any two processes pi, p j ∈∏, pi receives a message m if and only if

p j has sent m.

• Prefix For any two processes pi, p j ∈∏, if pi receives message m′ at iteration z and

message m′ at iteration z′ where z′< z, then p j receives m′ before m.

• Single iteration The channel oi j used by pi, p j ∈∏ only contains messages for at

most a single iteration.

One can think of TCP as a possible transmission median that satisfies these properties.

Given the aforementioned facts, in our system model, ZAB is adapted as our basic

algorithm when the processes communicate with each other, and is applied with a failure

detector to solve the proposed consensus problem with proves.

3.1.3 Unreliable failure detector, the Oracle

In [1], Chandra et al. define two major properties of a failure detector. Completeness

property limits what kinds of mistakes that a failure detector can make while Accuracy

property limits the number of times that a failure detector can occur. Informally, the

properties are defined as the following:

• Weak Completeness: Eventually, every process that crashes is permanently

suspected by some correct processes.

20



• Eventual Weak Accuracy: There is a time after which some correct processes are

never suspected by any processes.

Additionally, a failure detector, F , which satisfies the aforementioned properties, has been

proved as the weakest failure detector to solve the consensus problem with a reliable

broadcast protocol in [9].

However, in the asynchronous distributed system defined in [9], it is proved that such

a failure detector can only solve the consensus problem where f < n
2 . We say f is the

maximum failure that can occur at the time and n is the number of total processes in the

system. In our system, n = 2. In order to solve the consensus problem where f ≤ n
2 in the

same system model, the failure detector must be stronger than F . Therefore, we consider

a kind of failure detector stronger than F and follows the following desired properties

from [9].

• Strong Completeness: Eventually, every process that crashes is permanently

suspected by every correct processes.

• Eventual Weak Accuracy: Eventually, some correct processes are never

suspected by any processes.

In [32], this kind of failure detectors has been proved that it is capable of solving the

consensus problem where f ≤ n
2 . In the case of f ≤ n

2 , it also means in the system model

which we present, the consensus problem can be solved when either p1 or p2 fails.

According to [1], [8], [9], and [32], all of the mentioned failure detectors always

present a list of suspected faulty processes. We consider the failure detector to present in

another way, which only contains Boolean values. The failure detector’s expected

outcome is to provide the information to maintain the system’s Liveness without losing

Safety. The basis of the problem in asynchronous distributed systems is the hardness of

distinguishing a process is faulty or is running slowly.

21



Fig. 5: Strong completeness, On-time

Fig. 6: Strong completeness, Eventually

Fig. 7: Eventual Weak Accuracy

To maintain Safety, avoiding lost transaction, we consider the failure detector can see

the latest transaction τ in the light of the concept of witness in [24]. We say a failure

detector see τ if the failure detector participates in creating τ . Thus, when the system, the

leader process ρi, creates a transaction τ where oi = 1, the Oracle sees τ . With the ability

to see, the Oracle can only authorize a later τ ′ where τ ≺ τ ′ if it sees τ .

Conclusively, we consider the failure detectors to provide the authorizations of

whether the owner process can proceed without waiting for faulty processes identified by

the failure detectors to the response. Fig. 6 and Fig. 7 show the property of strong

completeness and accuracy. Note that the nature of distributed systems is every process

22



runs at a different speed, although the figures seem to be synchronous. We do not consider

p1, p2, o1, and o2 are always synchronous.

We denote this kind of failure detector as Ω.

3.2 Problem Statement

ZooKeeper atomic broadcast protocol provides the desired properties of Apache

ZooKeeper [26]. These properties have been proven that the consensus problem where

f < n
2 is solvable. We consider that after the introduction of Ω, ZAB is capable of

providing the same desired properties of Apache ZooKeeper to solve the consensus

problem where f ≤ n
2 . That is the system of p1 and p2 can maintain the progress when

either one process fails.

3.2.1 Review on ZAB

In this section, we refer to the algorithm of ZAB protocol in [26]. In ZAB, there are

three phases of states. They are discovery, synchronization, and broadcast. In every

state, the behaviors of each process differ from each other based on the role of the process.

They are leaders, followers, and observers. A leader process is a primary process in the

primary-backup paradigm, and we denote a leader process as l ∈∏. A follower process is

a process that is not a primary process, and we denote a follower process as f ∈∏. An

observer process is a special follower process that does not participate in the process of

decision. We consider covering the behaviors of l and f in different phases, given that Ω

does not interact with observers.

In the discovery phase, Fig. 8, l shall receive CEPOCH(e) from a quorum Q so that it

could establish a new epoch e′, and asking ACKs from Q by sending NEWEPOCH(e′). A

potential l finishes the first phase when it receives the sufficient ACKs from Q, and then

moves to the second phase, the synchronization phase.

In the synchronization phase, Fig. 9, the primary goal is to ensure the consistency in

the system. The discovery phase makes the followers recognize that there is a leader in

23



Fig. 8: Discovery phase

Fig. 9: Synchronization phase

the system. l proposes NEWLEADER(e′, He′) which contains the new epoch e′ and a

history of transactions He′ to every process in Q. During these communications, the

followers communicate with l to determine the best actions to synchronize the data; for

examples, overwriting the whole data and concatenating missing parts of data. Upon

receiving enough ACKs from Q, l is able to lead the cluster. It means the followers now

have the same data as l.

In the broadcast phase, Fig. 10, this is when the service starts to serve the clients. l

receives the requests which cause a change in the states, e.g., a write request, either from

the client directly or from other f . Upon receiving a request, l creates a proposal

24



Fig. 10: Broadcast phase

〈e′,〈v,z〉〉 where epoch(z) = e′, and proposes it to Q. Q commits a proposal when it

receives enough ACKs from Q.

In our case, there are only two processes. It turns out that l must receive the ACK

from the other process which must be f to maintain the progress in any phases. It is

obvious that any failure which occurs in the system stalls the progress. To address the

issue, we introduce the Oracle to have the system maintain the progress without losing

any guarantees.

3.2.2 Properties of ZAB

The following summarizes the desired properties of Apache ZooKeeper, which are

maintained by ZAB in [26]. There are two transactions τ = 〈v,z〉 and τ ′= 〈v′,z′〉.

For satisfying the safety, three properties are described:

• Integrity If some process delivers τ , there exists some process pi ∈∏ has broadcast

τ .

• Total order If some process delivers τ before τ ′ where τ ≺ τ ′, then any process

which delivers τ ′ must has delivered τ before delivering τ ′.

• Agreement If some process pi delivers τ and some process p j delivers τ ′, then

either pi delivers τ ′ or p j delivers τ .

25



These three properties ensure the order of messages. According to the state machines,

we know that a process in a state S executes a command C which changes its state from S

to S′. In order to achieve S′ by executing C, the process must be in S before executing C.

As every process receives and applies the transactions to the states in the same order, they

are deterministic. Nevertheless, these properties are not strong enough to ensure the

determinism of the system when the primary processes changes in the run time. Therefore,

ZAB needs one more property to ensure there is no missed transactions even if a change

in primary processes happens; otherwise, the processes are not deterministic. The

guarantee of this property also implies that when a skipped transaction causes the

inconsistency, then all dependent states based on the skipped transaction shall also be

skipped. In [26], this property is called primary older which is considered as two parts as

the following:

• Local primary order If a primary process broadcasts τ before it broadcasts τ ′, then

a process that delivers τ ′ must also deliver τ before τ ′, where τ ≺ τ ′.

• Global primary order Let τ and τ ′ satisfy the following: Considering two primary

process ρi and ρ j in which ρi ≺ ρ j,

– ρi broadcast τ , and

– ρ j broadcast τ ′.

If a process pi ∈∏ delivers both τ and τ ′, then pi must deliver τ before τ ′.

Because of the primary-backup paradigm, the primary process needs to ensure the

changes in the states are consistent with other followed processes. Therefore, a primary

process shall begin broadcasting in a newly established epoch after delivering the

transactions left from the previous epoch. The property to make a primary process capable

is primary integrity. We believe this property becomes more significant after the

introduction of Ω.

26



• Primary integrity If a primary process ρ broadcasts τ and some other process

delivers τ ′ such that τ ′ has broadcast by a predecessor primary process ρ ′ where

τ ′ ≺ τ given that ρ ′ ≺ ρ , then ρ must deliver τ ′ before broadcast τ .

When this property is not maintained, the system is expected to lose its liveness.

3.3 Solving consensus with the Oracle as a failure detector

The idea of using oracle to solve consensus is simple. Using the authorization from

the Oracle to override the decision from the quorums is the fundamental idea of the

proposed method. In this section, we show how the Oracle is introduced to different

phases of ZAB, and solves the consensus problem.

3.3.1 Leader election

The current version of the leader election algorithm which is a variant of Paxos, in

Apache ZooKeeper relies on the decision of Q. That is to have a potential leader, a

process needs to collect the majority of votes from Q. Once a potential leader is generated

by the algorithm, the assemble moves to the discovery phase. The algorithm is described

below in the perspective of pi, Fig. 11.

• Step 1. p1 sends a ballot including zxid to p2 which proposes p1 is the leader.

• Step 2. When p1 receives a ballot from p2, it adds the received ballot to the vote set.

• Step 3. p1 updates its ballot in the vote set if there is another more suitable candidate

in the received ballots based on zxid.

• Step 4. When there is a majority in the vote set, a potential leader is generated. p1

starts its discovery phase as the potential leader. Otherwise, back to Step 1. It is

obvious that Step 4. cannot succeed when a failure happens in the system. The

Oracle takes place in Step 4. to address the failure cases, Fig. 12.

• Step 4o. In either of the two following cases, p1 starts its discovery phase as the

potential leader. Otherwise, back to Step 1.

– When there is a majority in the vote set, a potential leader is generated.

27



Fig. 11: Leader election

– When o1 = 1, p1 is the potential leader.

Fig. 12: Leader election with the Oracle

Note that to avoid the split-brain issues, the mutual exclusion of o1 and o2 is

important. A split brain occurs when o1 = 1 and o2 = 1, which violets the property of Ω.

3.3.2 Discovery phase

The leader election algorithm only guarantees to generate a single the most potential

leader. In the discovery phase, upon the recognition from Q, a potential leader becomes a

28



legal leader. Without assistant from the Oracle, a follower failure results in the system

losing its liveness. Similarly, the Oracle can provide the permission which makes a

potential leader become a legal leader, Fig. 13.

Fig. 13: Discovery phase the Oracle

3.3.3 Synchronization phase

In our two processes system, the failure of the only follower means l does not need to

go over this phase. The system loses its liveness because l cannot ensure that the system

is consistent with every process. In this case, the Oracle can authorize l, indicating that

the consistency is ensured, Fig. 14.

Fig. 14: Synchronization phase the Oracle

29



3.3.4 Broadcast phase

In the system, l receives request either from the clients directly or from other

followers. Once the request is received by l, l creates a proposal, Propose(z), and

broadcasts it in Q. Ideally, the followers reply ACKs, Ack(z), based on the total order. l

can commit the proposal once it has the majority of ACKs from Q. However, the majority

is never achieved in our two processes system when the only follower fails. In this case,

the Oracle can authorize l, indicating that l can move system forward. Thus, even though

the majority is not maintained, the proposal can be committed, Fig. 15.

Fig. 15: Broadcast phase the Oracle

3.3.5 Revalidation on outstanding proposals

Outstanding proposals are blocking the progress because of the validation mechanism.

We consider the outstanding proposals are the proposals which are broadcast in the

quorum, but they are not yet to be committed due to insufficient ACKs. In Fig. 15,

proposal(z) is actually an outstanding proposal. After it is proposed by l, the only

follower fails and could not reply with an ACK. In the current implementation of Apache

ZooKeeper, every proposal is processed in a pipeline manner for the sake of the efficiency.

l validates a proposal to be committed once it receives an ACK from the quorum

30



including the ACK from itself. The validation is event-driven. In other words, if there is

no ACK arrives at l, there is no validation either. l performs two validations when it

receives ACKs after the introduction of the Oracle. One is to validate whether the number

of received ACKs satisfies the majority, and the other is to query the Oracle for the

permission. However, the progress still cannot maintained, even though the Oracle

authorizes to form the quorum. The reasons for blocking the progress are Strong

Completeness of the Oracle and Primary integrity of ZAB.

Strong Completeness allow the Oracle not to response a failure immediately after a

failure takes place. This property results in that l cannot pass the validation when it

receives the ACK from itself, given that neither the received ACKs are insufficient or the

Oracle does not authorize. Because the validation process is event-driven, after the only

follower fails, l will not receive another ACK or another validation process takes places.

Consequently, the outstanding proposals are never committed although the Oracle

responses to the failure eventually. These never-committed outstanding proposals block

the progress due to Primary integrity. The idea of Primary integrity is simple, ZAB

cannot allow a missed transaction in the system because the missed transaction could

eventually lead to an inconsistency. Thus, we states that a proposal(z) is proposed, but it

is not committed. Even though a later proposal(z′) satisfies the conditions to be

committed, proposal(z′) is still blocked.

A practical fix for this issue is the revalidation. l needs to eventually check the

outstanding proposals in arbitrary ways during the run-time. The Oracle can authorize l to

commit the outstanding proposals when the majority is never achieved. Thus, the system

can maintain the progress without violating Primary integrity.

3.3.6 Property of See

The property of See ensures that there will not be a data loss when multiple leader

transitions takes places with different processes and oracles. Fig. 16 shows a typical

31



Fig. 16: The loss of data happens on transaction 0x01.

example of data loss which apparently breaks the safety when the Oracle does not have

the property of See. Initially, p1 receives the leadership and start the service. After an

arbitrary period of time, p2 fails and o1 detects the failure, indicating the failure within the

guarantees. p1 queries o1 for committing the outstanding proposal, transaction 0x01, given

that a revalidation process exists. o1 authorizes the query as a result of the proper reaction

from the failure of p2. p1 is able to maintain the progress and commit other transactions

later on, transaction 0x02. At a moment, p1 fails unexpectedly. This failure also makes

the service unavailable because there does not exist an up process. p2 recovers back from

the previous failure. Since p1 failed, p2 receives this information from o2, and becomes

the new leader as a result. The service is maintained and p2 is able to make system

forward. p2 queries the authorization for transaction 0x01. o2 authorizes the query, and p2

commit it. Thus, a duplicated transaction is made with 0x01. It not only causes the loss of

the original data, but also makes processes decide differently on the same transaction.

To avoid this case from happening, the design shall limit the behavior of the Oracle.

The property of See requires the Oracle to be aware of the most up-to-date transaction.

Recall that the Oracle can see a transaction if it participates in the transaction. Thus, o1

should record that transaction 0x01 is authorized after p1 queries for the authorization

because o1 participates in transaction 0x01. Also, o2 shall be aware of that the most

32



up-to-date transaction is 0x01. Given the above facts, after p2 recovers back from the

failure, p2 shall not become the leader because it does not have the most up-to-date

information. Apparently, the progress is not maintained.

3.4 Analysis

In this section, we address three fundamental questions of the consensus problem. We

first show how the Oracle improves the Liveness of Apache ZooKeeper when the quorum

is not maintainable. Also, we show the algorithm itself does not lose its Termination after

introducing the Oracle. Lastly, we demonstrate that the Oracle requires both the property

of mutual exclusion and the property of see to maintain the Consistency.

3.4.1 Liveness

Section 3.1.2 states that the system relies on the majority of up processes to form a

quorum and maintain the Liveness. However, in a two-node system, even a single failure

is not tolerable. For tolerating that single failure, the Oracle is introduced. In order to

show how the Oracle improves the Liveness of Apache ZooKeeper, two perspectives need

to be taken into account, the leader’s perspective, and the follower’s perspective.

Fig. 17 shows the steps for a leader to maintain its leadership when the only follower

process becomes faulty and cannot maintain the quorum. Once the follower process does

not respond to a heartbeat within the timeout, the follower gets dropped from the quorum.

As a result, the leader process knows the quorum is not maintainable. Initially, the leader

process abandons its leadership and start another round of the leader election. It may

seem that the leader election will never end due to the insufficient up processes, which is

the loss of the Liveness. With the introduction of the Oracle, the leader process has a

chance to query the Oracle to maintain its leadership after the failure of the quorum is

known. However, due to the strong accuracy, the Oracle does not guarantee that the faulty

process can be detected within the predefined timeout. If the Oracle does not respond on

33



Fig. 17: Using Oracle to maintain the Liveness, Leader Case

time, the leader process abandons its leadership and starts the leader election algorithm to

obtain the leadership again, Fig. 12.

On the other hand, the follower case is straight-forward. The remaining process

simply starts the leader election as expected and later obtains the leadership through

authorization from the Oracle.

The three cases above reveal a common question on the strong accuracy that why we

do not need the Oracle to respond immediately. Every faulty process can recover, but the

time for the recovery is not defined. The Oracle can detect the faulty process within a

period of time. We argue that the comparison between the recovery time and the detection

time is meaningless. The discussion shall involve with the uncertainty and certainty. With

the Oracle, the two-node system can maintain its Liveness even when there is only a

single up process. The reason behind this fact is that the Oracle can detect the faulty

process eventually. On the other hand, without the Oracle, the two-node system cannot

34



maintain its Liveness when there is only an up process. The system needs to halt for an

indefinite period of time until the faulty process is recovered. The ”Eventually” of the

strong accuracy is a certainty, while the recovery of a faulty process is an uncertainty.

Therefore, we consider that the Oracle needs to satisfy the strong accuracy at least to

maintain the Liveness.

3.4.2 Termination

We will show that the Termination is still maintained from two perspectives, the

original ZAB protocol and the Oracle. After the introduction of the Oracle, the ZAB

protocol itself is not changed when the majority of the processes are up. In section 3.3, it

is apparent that the Oracle is a secondary validation. It is only used when the quorum is

not maintainable. Thus, in the usual context, ZAB maintains the Termination even after

the introduction of the Oracle. When the Oracle participates in the protocol, the

Termination is still maintained. We already show how the Oracle maintains the Liveness

when the only follower becomes faulty. We also explain why the Oracle must at least

satisfy the strong accuracy, which makes the Oracle eventually indicate the faulty process.

The strong accuracy implies that the algorithm eventually decides. As a result, the

Termination is maintained.

3.4.3 Consistency

One of the critical requirements in distributed systems is the fact that gives any two

processes; they will not decide differently on the same transaction. Regardless of the

original Paxos algorithm or ZAB, the Consistency is ensured by both the quorums and the

intersected process. However, in a two-node system, things become different. Losing one

node in such a system fails the quorum. In order to maintain the Consistency, the system

drops the Liveness instead, which is a typical trade-off. In the previous section, we

demonstrate how the introduction of the Oracle makes this trade-off unnecessary. Here we

introduce two possible issues with the Oracle, the split-brain issue and the transaction

35



Fig. 18: A Violation of Mutual exclusion, Split-Brain

overwritten issue. They are both addressed by the property of mutual exclusion and

the property of See respectively.

We use the property of mutual exclusion to avoid the split-brain issue. This property

prevents the leader election algorithm generates two leaders. Fig. 12 shows how a process

becomes a leader under the Oracle’s authorization. The example reveals the robustness

and strong dependency of the Oracle to elect a leader. As long as the Oracle authorizes, a

process can become a leader even without the quorum’s support at all. The strong

completeness only guarantees that a failure process can be detected, but the eventual weak

accuracy allows the Oracle to make mistakes on correct processes infinitely. Thus, these

two facts are not powerful enough to restrict the Oracle’s behavior and prevent the

split-brain issue. Recall the definition of the Oracle that:

• Mutual Exclusion For oi and o j, oi = 1 and o j = 1 is impossible at any given time.

Fig. 18 is an example of the violation of the mutual exclusion. Given that the eventual

weak accuracy allows mistakes on correct processes, o1 and o2 are possible to make

mistakes simultaneously. The strong dependency of the Oracle is another factor to cause

this unexpected result. Needless to say, the existence of two leaders within a system

36



eventually breaks the Consistency. As a result, the property of mutual exclusion is

desirable and needed. The system does not concern which process becomes the leader

eventually. It concerns there is a leader, and it must be the only one. Although another

possible way to solve the split-brain issue is to enhance the eventual weak accuracy to a

stronger guarantee, this approach reduces the flexibility of the Oracle’s implementation.

In previous section 3.3, it demonstrates an example of transaction overwritten

because of the Oracle is not aware of the latest transaction even though the three

properties are maintained. It emphasizes that although o1 and o2 are independently

serving their distinct processes as representatives of the Oracle, o1 and o2 need to have a

way to recognize the up-to-date transaction and share such information.

37



4 DEPLOYMENT EXAMPLES

One should consider that the failure detector’s outcome is to authorize the querying

ZooKeeper instance whether it has the right to move the system forward without waiting

for the faulty instance, which is identified by the failure detector.

4.1 An Implementation of hardware

Suppose two dedicated pieces of hardware, HW1 and HW2, can host ZooKeeper

instances, ZK1 and ZK2, respectively, and form a cluster. A hardware device is attached to

both of the hardware, and it is capable of determining whether the hardware is power on

or not. So, when HW1 is not power on, the ZK1 is undoubtedly faulty. Therefore, the

hardware device updates the Oracle file on HW2 to 1, which indicates that ZK1 is faulty

and authorizes ZK2 to move the system forwards.

4.2 An Implementation of software

Suppose two dedicated pieces of hardware, HW1 and HW2, can host ZooKeeper

instances, ZK1 and ZK2, respectively, and form a cluster. One can have two more services,

o1 and o2, on HW1 and HW2, respectively. The job of o1 and o2 are detecting the other

hardware is alive or not. For example, o1 can constantly ping HW2 to determine if HW2 is

power on or not. When o1 cannot ping HW2, o1 identifies that HW2 is faulty and then

update the Oracle file of ZK1 to 1, which indicates that ZK2 is faulty and authorizes ZK1

to move the system forwards.

4.3 Use USB devices as the Oracle to maintain progress

In macOS,10.15.7 (19H2), the external storage devices are mounted under

/Volumes. Thus, we can insert a USB device which contains the required information

as the Oracle. When the device is connected, the Oracle authorizes the leader to move

system forward, which also means the other instance fails. There are SIX steps to

reproduce this stimulation.

38



1) Firstly, insert a USB device named Oracle, and then we can expect that

/Volumes/Oracle is accessible.

2) Secondly, we create a file contains 1 under /Volumes/Oracle named

mastership. Now we can access /Volumes/Oracle/mastership, and so

does the zookeeper instances to see whether it has the right to move the system

forward. The file can easily be generated by the following command:

$echo 1 > mastership

3) Thirdly, you shall have a zoo.cfg like the example below:

dataDir=/data

dataLogDir=/datalog

tickTime=2000

initLimit=5

syncLimit=2

autopurge.snapRetainCount=3

autopurge.purgeInterval=0

maxClientCnxns=60

standaloneEnabled=true

admin.enableServer=true

oraclePath=/Volumes/Oracle/mastership

server.1=0.0.0.0:2888:3888;2181

server.2=HW1:2888:3888;2181

39



(NOTE) The split brain issues will not occur because there is only a SINGLE USB

device in this stimulation. Thus, the guarantee of mutual exclusion Additionally,

mastership should not be shared by multiple instances.

4) Fourthly, start the cluster, and it is expected it forms a quorum normally.

5) Fifthly, terminate the instance either without attaching to a USB device or

mastership contains 0. There are two scenarios to expect:

a) A leader failure occurs, and the remained instance finishes the leader election on

its own due to the Oracle.

b) The quorum is still maintained due to the Oracle.

6) Lastly, when the USB device is removed, /Volumes/Oracle/mastership

becomes unavailable. Therefore, according to the current implementation, whenever

the Leader queries the Oracle, the Oracle throws an exception and return FALSE.

Repeat the fifth step, and then it is expected that either the system cannot recover

from a leader failure ,or the leader loses the quorum. In either case, the service is

interrupted.

With these steps, we can show and practice how the Oracle works with two-instance

systems with ease.

40



Fig. 19: The result of Evaluation. Time is measured by Apache ZooKeeper clients

5 EVALUATION

5.1 Overview

The implementation of the proposed method is tested on a product of Juniper

Networks Inc. As Apache ZooKeeper is one of the critical services within the operating

system that the product uses, the failure of ZooKeeper inevitably brings a service

interruption to the product. Recall that the deployment context mentioned in section 1 and

Fig. 1. two identical computing resources, p1 and p2, are set in the same chassis. There is

a dedicated hardware device working as the Oracle, Ω, in the chassis. The representatives,

o1 and o2, serves p1 and p2 respectively.

The primary goal of this implementation is to improve service availability by reducing

system downtime. The evaluation is proceeded by stimulating possible failure cases with

internal commands and using Apache ZooKeeper clients to evaluate system downtime.

The Fig. 19 shows the recovering time and the improvements in different cases. There

are twelve cases in total, separated by two types, PL and PF. While PL means the

primary computing resource is the leader process in Apache ZooKeeper, PF means the

41



primary computing resource is the follower process in Apache ZooKeeper. Besides the

two types of cases, the combinations of leader failures and follower failures with different

stop-over failures are also taken into account.

5.2 Variables

However, in this evaluation, three variables deserve our attention.

1) TO, the timeout, affects the system downtime significantly by referring to No.1 and

No.3. This is the predefined timeout that is configured by the users when setting up

the Apache ZooKeeper cluster. The shorter the timeout is, the shorter the system

downtime time will be. This timeout halts both the leader process and the follower

process to wait for each other if necessary. For instance, they wait for the

transmission delay.

2) SNAP, the snapshot time, also halts the system for a short period by referring to

No.2 and No.8. As the transactions go through the leader process, although most of

the data are in-memory processed, Apache ZooKeeper outputs those data to the disk

in batches.

3) P SWIT, the primary switch time, affects the system downtime. This variable has a

strong relation with Strong Completeness of the Oracle. Recall that in section 3.4,

we discuss how the Eventually relates to Liveness. P SWIT is the time to detect

the failure and authorize the remained process to maintain the liveness.

Removing those known variables in this evaluation, presented in column Adj. (ms), it

is apparent that there is at least 40 percent of improvement in the system downtime in

most cases and an average 85 percent of improvements among all of the cases.

5.3 The Oracle makes mistakes

The evaluation experiment covers the case that the Oracle makes mistake infinitely as

the dedicated hardware devices indicates which the primary computing resource is. For

42



example, when p1 is the primary process and the leader process, o1 is always 1, which

means p2 is faulty, No.2 and No.6. However, this does not cause any issues because the

Oracle still maintains the property of mutual exclusion and the property of Eventual

Weak Accuracy allows this to happen. Instead of causing issues, it also eliminates the

time for P SWIT, which benefits the system.

During the evaluation, there is a rare variable, BL, in No.5 and No.11. BL means the

Oracle did not authorize the remaining process to maintain liveness. These cases only

restart Apache ZooKeeper within the operating system. Due to the strong completeness,

we require the Oracle to detect the failure certainly if there is any instead of immediately.

However, the restart of Apache ZooKeeper within the operating system is fast, and is

expected to recover in a short time. In other words, the experimental case which

introduces BL is under management, and is a certainty. Eventually, the Oracle will still

detect the failure and resume the service when the recovery is not expected.

5.4 The switch of the primary resource leads to split-brain

This evaluation shows the possibility of split-brain issue even though the property of

mutual exclusion is introduced and not violated, Fig. 20. In this work, we assume a

boundary on the switch time and frequency of switching of the Oracle. Specifically, there

is no time interval where an Oracle switches back and forth between two resources such

that:

• one process validates that it is the primary process; then,

• a second process validates that it is the primary resource, followed by the first

process validating again that it is the leader.

This boundary prevents the oracle from enabling two processes to act as a leader at the

same time. In previous sections, we have demonstrated how a process goes through a

series of phases and becomes a leader process. It is possible that during each phase, the

Oracle makes a mistake for a very short period and does not violate the proposed

43



Fig. 20: The switch of the primary resource leads to split-brain

properties when a process queries for its authorization. The eventual weak accuracy

only allows the Oracle to make mistakes, but it does not regulate the time between any

two mistakes. We recognize this case is rare but possible to happen.

5.5 The coordination between hardware and software

In the previous section, we argue the liveness from a perspective of uncertainty and

certainty. We recognize that practically the improper coordination between the

user-defined timeout that Apache ZooKeeper uses and the detection time results in the

system’s inefficiency. Failed to detect the faulty process immediately produces more

procedures to maintain the service. For example, the remaining process needs to go

through the leader election again even though it had been the leader when its only

follower went away. The evaluation result also shows that the improvement is still

significant, although there is an inefficient period of waiting for the Oracle. A further

improvement could be conducted by gathering the statics of the detection time of the

Oracle and other timely factors. A proper user-defined timeout can be determined by

referring to that statics information, and the coordination between Apache ZooKeeper and

the Oracle can be improved.

44



6 FUTURE WORK

A possible proposal to continue this project is to introduce user preference on the

leader process in Apache ZooKeeper by extending the idea of the Oracle. In the previous

section, we reveals when the primary computing resource, p1, is the leader process, the

system can recover faster because o1 is always 1. Also, we notice that there is a different

in the downtime by comparing No.2 and No.8 in Fig. 19. When the primary computing

resource is the follower process, an additional time is needed to perform a new round of

the leader election besides the snapshot time. Thus, to minimize system downtime, the

system shall choose the primary computing resource as the leader process at the

beginning of the service.

45



7 CONCLUSIONS

In this research, we show that the introduction of the Oracle, a failure detector,

complements the availability of Apache ZooKeeper in two-node systems. We first review

the essential protocol, ZooKeeper Atomic Broadcast protocol, and briefly reveal the

properties which it maintains. Later, we demonstrate the proposed ways to integrate the

Oracle into the protocol and revise the current leader election algorithm.

We show that the two-node systems are fault-tolerant by using the Oracle. However,

the issues of the split-brain and the transaction overwritten deserve our attention. To

avoid these issues, we disclose the four properties of the Oracle. For the sake of

preserving the flexibility on the implementation, we introduce the eventual weak

accuracy and the mutual exclusion to the Oracle. We allow the Oracle to make

unlimited mistakes on incorrectly indicating a correct process is faulty as long as it

maintains its mutual exclusion. However, when it comes to the Liveness, we ask the

Oracle to detect the faulty process correctly eventually; thus, the strong completeness.

Unlike the previous researches, we reveal the issue of the transaction overwritten.

Using the property of See, we limit the Oracle’s behavior to avoid authorizing an

outdated process as a new leader process.

With our proposed methods, the Oracle does not need to be a perfect failure detector

to solve the consensus problem. We firstly treat the Oracle as a dedicated hardware device

that is attached to two independent computing nodes. Instead of making the Oracle a

perfect failure detector, which is hard, we provide two alternative properties to enhance it

while achieving our goals and solving the consensus problem.

46



Literature Cited

[1] T. D. Chandra and S. Toueg, “Unreliable failure detectors for asynchronous systems
(preliminary version),” in Proceedings of the Tenth Annual ACM Symposium on
Principles of Distributed Computing, PODC ’91, (New York, NY, USA), p. 325–340,
Association for Computing Machinery, 1991.

[2] C. Engelmann, S. L. Scott, C. Leangsuksun, and X. He, “Symmetric active/active
high availability for high-performance computing system services: Accomplishments
and limitations,” in 2008 Eighth IEEE International Symposium on Cluster
Computing and the Grid (CCGRID), pp. 813–818, 2008.

[3] K. S. Ahluwalia and A. Jain, “High availability design patterns,” in Proceedings of
the 2006 Conference on Pattern Languages of Programs, PLoP ’06, (New York, NY,
USA), Association for Computing Machinery, 2006.

[4] S.-H. Park, “About the relationship between election problem and failure detector in
asynchronous distributed systems,” in Computational Science — ICCS 2003 (P. M. A.
Sloot, D. Abramson, A. V. Bogdanov, J. J. Dongarra, A. Y. Zomaya, and Y. E.
Gorbachev, eds.), (Berlin, Heidelberg), pp. 185–193, Springer Berlin Heidelberg,
2003.

[5] A. Schiper, “Failure detection vs group membership in fault-tolerant distributed
systems: Hidden trade-offs,” in Process Algebra and Probabilistic Methods:
Performance Modeling and Verification (H. Hermanns and R. Segala, eds.), (Berlin,
Heidelberg), pp. 1–15, Springer Berlin Heidelberg, 2002.

[6] V. K. Garg and J. R. Mitchell, “Implementable failure detectors in asynchronous
systems,” in Foundations of Software Technology and Theoretical Computer Science
(V. Arvind and S. Ramanujam, eds.), (Berlin, Heidelberg), pp. 158–169, Springer
Berlin Heidelberg, 1998.

[7] C. Fetzer, “Perfect failure detection in timed asynchronous systems,” IEEE
Transactions on Computers, vol. 52, no. 2, pp. 99–112, 2003.

[8] T. D. Chandra and S. Toueg, “Unreliable failure detectors for reliable distributed
systems,” J. ACM, vol. 43, p. 225–267, Mar. 1996.

[9] T. D. Chandra, V. Hadzilacos, and S. Toueg, “The weakest failure detector for solving
consensus,” J. ACM, vol. 43, p. 685–722, July 1996.

47



[10] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed, “Zookeeper: Wait-free coordination
for internet-scale systems,” in Proceedings of the 2010 USENIX Conference on
USENIX Annual Technical Conference, USENIXATC’10, (USA), p. 11, USENIX
Association, 2010.

[11] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D. Joseph, R. Katz,
S. Shenker, and I. Stoica, “Mesos: A platform for fine-grained resource sharing in the
data center,” in Proceedings of the 8th USENIX Conference on Networked Systems
Design and Implementation, NSDI’11, (USA), p. 295–308, USENIX Association,
2011.

[12] L. Lamport, “Time, clocks, and the ordering of events in a distributed system,”
Commun. ACM, vol. 21, p. 558–565, July 1978.

[13] C. Fidge, “Timestamps in message-passing systems that preserve the partial
ordering,” 1988.

[14] B. Reed and F. P. Junqueira, “A simple totally ordered broadcast protocol,” in
Proceedings of the 2nd Workshop on Large-Scale Distributed Systems and
Middleware, LADIS ’08, (New York, NY, USA), Association for Computing
Machinery, 2008.

[15] L. Lamport, “The part-time parliament,” ACM Trans. Comput. Syst., vol. 16,
p. 133–169, May 1998.

[16] H. Howard, D. Malkhi, and A. Spiegelman, “Flexible paxos: Quorum intersection
revisited,” 2016.

[17] G. Chockler and D. Malkhi, “Active disk paxos with infinitely many processes,” in
Proceedings of the Twenty-First Annual Symposium on Principles of Distributed
Computing, PODC ’02, (New York, NY, USA), p. 78–87, Association for Computing
Machinery, 2002.

[18] M. J. Fischer, N. A. Lynch, and M. S. Paterson, “Impossibility of distributed
consensus with one faulty process,” J. ACM, vol. 32, p. 374–382, Apr. 1985.

[19] B. Liskov and J. Cowling, “Viewstamped replication revisited,” Tech. Rep.
MIT-CSAIL-TR-2012-021, MIT, July 2012.

48



[20] F. B. Schneider, “Implementing fault-tolerant services using the state machine
approach: A tutorial,” ACM Comput. Surv., vol. 22, p. 299–319, Dec. 1990.

[21] R. van Renesse and F. B. Schneider, “Chain replication for supporting high
throughput and availability,” in Proceedings of the 6th Conference on Symposium on
Operating Systems Design and Implementation - Volume 6, OSDI’04, (USA), p. 7,
USENIX Association, 2004.

[22] N. Budhiraja, K. Marzullo, F. B. Schneider, and S. Toueg, The Primary-Backup
Approach, p. 199–216. USA: ACM Press/Addison-Wesley Publishing Co., 1993.

[23] H. Attiya, A. Bar-Noy, and D. Dolev, “Sharing memory robustly in message-passing
systems,” J. ACM, vol. 42, p. 124–142, Jan. 1995.

[24] J. Pâris, “Voting with witnesses: A constistency scheme for replicated files,” in
ICDCS, 1986.

[25] S. Gilbert and N. Lynch, “Brewer’s conjecture and the feasibility of consistent,
available, partition-tolerant web services,” SIGACT News, vol. 33, p. 51–59, June
2002.

[26] F. P. Junqueira, B. C. Reed, and M. Serafini, “Zab: High-performance broadcast for
primary-backup systems,” in 2011 IEEE/IFIP 41st International Conference on
Dependable Systems Networks (DSN), pp. 245–256, 2011.

[27] D. Ongaro and J. Ousterhout, “In search of an understandable consensus algorithm,”
in Proceedings of the 2014 USENIX Conference on USENIX Annual Technical
Conference, USENIX ATC’14, (USA), p. 305–320, USENIX Association, 2014.

[28] A. Mostéfaoui and M. Raynal, “Leader-based consensus,” Parallel Processing
Letters, vol. 11, pp. 95–107, 03 2001.

[29] A. Mostéfaoui and M. Raynal, “Solving consensus using chandra-toueg’s unreliable
failure detectors: A general quorum-based approach,” in Proceedings of the 13th
International Symposium on Distributed Computing, (Berlin, Heidelberg), p. 49–63,
Springer-Verlag, 1999.

[30] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica, “Spark:
Cluster computing with working sets,” in Proceedings of the 2nd USENIX

49



Conference on Hot Topics in Cloud Computing, HotCloud’10, (USA), p. 10, USENIX
Association, 2010.

[31] N. N. Jay Kreps and J. Rao, “Kafka : a distributed messaging system for log
processing,” 2011.

[32] A. Mostéfaoui and M. Raynal, “Solving consensus using chandra-toueg’s unreliable
failure detectors: A general quorum-based approach,” in Distributed Computing
(P. Jayanti, ed.), (Berlin, Heidelberg), pp. 49–63, Springer Berlin Heidelberg, 1999.

50


	Using Oracle to Solve ZooKeeper on Two-Replica Problems
	List of Tables
	List of Figures
	Introduction
	Literature Review
	ZooKeeper with Distributed Computing
	Background
	Ordering event based on "The Happened Before Relation"
	Consensus based on Paxos
	Consistency
	Fault-Tolerance
	Conclusion

	Solve Consensus with Failure Detectors
	The begin of failure detectors
	Failure detectors with consensus algorithms
	Failure detectors in practical


	Using Oracle to Solve ZooKeeper on Two-Replica Problem
	Asynchronous distributed system model
	Asynchronous distributed system with crash failures
	ZooKeeper atomic broadcast protocol, ZAB
	Unreliable failure detector, the Oracle

	Problem Statement
	Review on ZAB
	Properties of ZAB

	Solving consensus with the Oracle as a failure detector
	Leader election
	Discovery phase
	Synchronization phase
	Broadcast phase
	Revalidation on outstanding proposals
	Property of See

	Analysis
	Liveness
	Termination
	Consistency


	Deployment Examples
	An Implementation of hardware
	An Implementation of software
	Use USB devices as the Oracle to maintain progress

	Evaluation
	Overview
	Variables
	The Oracle makes mistakes
	The switch of the primary resource leads to split-brain
	The coordination between hardware and software

	Future Work
	Conclusions
	Literature Cited

