
San Jose State University San Jose State University

SJSU ScholarWorks SJSU ScholarWorks

Master's Projects Master's Theses and Graduate Research

Spring 5-24-2021

AUTOMATING TEXT ENCAPSULATION USING DEEP LEARNING AUTOMATING TEXT ENCAPSULATION USING DEEP LEARNING

Anket Sah

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_projects

 Part of the Artificial Intelligence and Robotics Commons

https://scholarworks.sjsu.edu/
https://scholarworks.sjsu.edu/etd_projects
https://scholarworks.sjsu.edu/etd
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F995&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/143?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F995&utm_medium=PDF&utm_campaign=PDFCoverPages

AUTOMATING TEXT ENCAPSULATION USING DEEP LEARNING

AUTOMATING TEXT ENCAPSULATION USING DEEP
LEARNING

A PROJECT

Presented to

The Faculty of the Department of Computer Science

San Jose State University

In Partial Fulfillment

Of the Requirements for the Degree

Master of Science

by

Anket Sah

May, 2021

AUTOMATING TEXT ENCAPSULATION USING DEEP LEARNING

© 2021

Anket Sah

ALL RIGHTS RESERVED

AUTOMATING TEXT ENCAPSULATION USING DEEP LEARNING

The Designated Project Committee Approves the Project Titled

AUTOMATING TEXT ENCAPSULATION USING DEEP

LEARNING

by
Anket Sah

APPROVED FOR THE DEPARTMENT OF COMPUTER
SCIENCE

San Jose State University

May 2021

Dr. Robert Chun Department of Computer Science
Dr. Navrati Saxena Department of Computer Science
Mr. Mayur Barge Software Engineer, Cisco

AUTOMATING TEXT ENCAPSULATION USING DEEP LEARNING

1

ABSTRACT

 Data is an important aspect in any form be it communication, reviews, news articles, social

media data, machine or real-time data. With the emergence of Covid-19, a pandemic seen like no

other in recent times, information is being poured in from all directions on the internet. At times it

is overwhelming to determine which data to read and follow. Another crucial aspect is separating

factual data from distorted data that is being circulated widely. The title or short description of this

data can play a key role. Many times, these descriptions can deceive a user with unwanted

information. The user is then more likely to spread this information with his colleagues/family and

if they too are unaware, this false piece of information can spread like a forest wildfire. Deep

machine learning models can play a vital role in automatically encapsulating the description and

providing an accurate overview. This automated overview can then be used by the end user to

determine if that piece of information can be consumed or not. This research presents an efficient

Deep learning model for automating text encapsulation and its comparison with existing systems in

terms of data, features and their point of failures. It aims at condensing text percepts more

accurately.

Keywords: Deep learning, Text Encapsulation, system, dataset, features, automated, model,

machine learning

AUTOMATING TEXT ENCAPSULATION USING DEEP LEARNING

2

ACKNOWLEDGEMENTS

I would like to thank Dr. Robert Chun for his constant support and guidance throughout the
research and implementation of this project. I would also like to thank my committee members Dr.
Navrati Saxena and Mr. Mayur Barge for their inputs and valuable feedback on the project.

Lastly, I would like to thank my family and friends for their endless support and motivation along
the way.

AUTOMATING TEXT ENCAPSULATION USING DEEP LEARNING

3

TABLE OF CONTENTS

I. Introduction .. 7

1.1 Research Objective .. 8

1.2 Motivation .. 8

II. RELATED WORK .. 10

2.1 Scoring Sentences based on the Word-Frequency ... 12

2.2 Universal Sentence Encoder for Text Ranking .. 12

2.3 Unsupervised Learning using K-means Clustering ... 13

III. DATASET ... 14

3.1 Amazon Reviews Dataset .. 14

3.2 CNN News Dataset .. 15

IV. DATA PREPARATION .. 16

4.1 Data Quality Issues .. 16

4.1.1 Manual Data Entry Errors ... 16

4.1.2 Lack of complete information ... 16

4.2 Contraction Mapping ... 16

4.3 Outlier Identification .. 16

4.4 Remove Duplicates and Filter Stopwords.. 17

V. ALGORITHMS ... 18

5.1 Naïve Bayes ... 18

5.2 Extractive Summarization using BERT ... 18

5.3 TF-IDF ... 19

5.4 Latent Semantic Analysis .. 19

VI. EVALUATION .. 21

6.1 Evaluation Metrics ... 21

AUTOMATING TEXT ENCAPSULATION USING DEEP LEARNING

4

VII. IMPLEMENTATION .. 23

7.1 Choosing the Corpus of Data ... 23

7.2 Preprocessing / Data Cleaning ... 24

7.3 Data Splitting ... 25

7.4 Deep learning model .. 25

7.4.1 The Encoder .. 26

7.4.2 The Intermediate Vector ... 26

7.4.3 The Decoder .. 26

7.5 Encapsulator ... 27

7.5.1 Global Content Aware Consciousness .. 28

7.5.2 Local Content Aware Consciousness.. 28

VIII. RESULTS AND OBSERVATIONS .. 33

8.1 Approach 1 – Scoring Sentences based on the Word-Frequency .. 34

8.2 Approach 2 – Universal Sentence Encoder for Text Ranking ... 36

8.3 Approach 3 – Dual bi-directional LSTM ... 37

8.4 Model Training and Validation Loss ... 42

8.5 Run-Time Analysis .. 44

8.6 Comparison of the Results ... 45

IX. CONCLUSION AND FUTURE WORK ... 48

References .. 49

AUTOMATING TEXT ENCAPSULATION USING DEEP LEARNING

5

LIST OF TABLES

Table 1: Cosine Similarity Matrix 37

Table 2: Training and Validation Loss per Epoch for Scoring Sentences (Approach 1) 42

Table 3: Training and Validation Loss per Epoch for Text Ranking (Approach 2) 43

Table 4: Training and Validation Loss per Epoch for Dual LSTM (Approach 3) 43

Table 5: Run-time analysis 45

Table 6: Comparison between Three Approaches 46

AUTOMATING TEXT ENCAPSULATION USING DEEP LEARNING

6

LIST OF FIGURES

Figure 1: Unsupervised Learning using K-means 13

Figure 2: Amazon reviews Dataset (Headers: ProductId, UserId, Score, Time, Summary, Text) 15

Figure 3: CNN news dataset (Headers: Published Date, Author, Text, Source) 23

Figure 4: Deep Learning Model Architecture 25

Figure 5: System Depicting Encoder, Internal State and Decoder 30

Figure 6: Data flow in Encoder 30

Figure 7: Data Flow in Decoder 31

Figure 8: Deep Learning Model Network 32

Figure 9: Distribution of text length for Amazon Reviews Dataset 39

Figure 10: Distribution of text length for CNN Reviews Dataset 39

AUTOMATING TEXT ENCAPSULATION USING DEEP LEARNING

7

I. INTRODUCTION

Data is being generated and consumed in order of several terabytes each day. There is a

dramatic increase in the influx of data sources. For a consumer airline, there is approximately

half a terabyte of flight data that is generated during a single flight duration. As per research, by

2025 the number of connected devices is forecasted to reach 75 billion [12]. All these devices

generate and consume data. A single user consumes approximately 2.9 GB of data per day which

includes social media, news, scientific articles, banking and navigation data. As per Bloomberg,

69% of the data that is being consumed by an average user mainly consists of news articles, and

for tech savvy audiences, this can go up to 87% [10].

As per New York Times, a user selects a news article to read based on the title or heading

rather than the content [7]. The content itself can be misleading. For instance, an article

distributed in the Times Daily under the title “The benefits of ginger for adults” was deluding.

This article actually referenced that, “The investigation shows that ginger could probably affect

serotonin and aid in concentration improvement but ginger’s chemical composition can severely

affect dopamine exclusively due to the presence of phenolic compounds”. The article examines

the slight possibility of the constructive outcomes of ginger on adults; however, the heading has

an alternate meaning. A robust deep learning model to encapsulate this content, as well as

automate the process that captures the exact holistic meaning of this content, becomes a

necessity.

AUTOMATING TEXT ENCAPSULATION USING DEEP LEARNING

8

1.1 Research Objective

The goal of this research is to automate the text encapsulation process by making use of a dual

LSTM (Long Short-Term Memory) encoder-decoder deep learning model. The current text

summarizers are naïve and lack accuracy. A significant performance improvement can be

attained by incorporating new modifications. These modifications include:

- improving the data pre-processing stage to attain accurate data free from outliers

- automating the text encapsulation for the entire cleaned dataset

- incorporating dual long short term memory network in the process pipeline

- performance comparison of the system developed with existing models

The intent in using a dual LSTM deep learning system is to encapsulate the text without

changing the universal interpretation of the entire content. Also, the aim is to automate this task

of encapsulation and reduce manual effort.

1.2 Motivation

If we take a look at the very fundamental level of computer science, we can find encapsulation in

object-oriented programming and in object-oriented system design. Encapsulation simply means

restricting the direct access to some of the object's components without changing the meaning or

object’s functionality. In the real world too, depicting the exact meaning that the content carries

are as important as encapsulation in object-oriented system design. Identifying the content and

AUTOMATING TEXT ENCAPSULATION USING DEEP LEARNING

9

accurately condensing it to form an appropriate heading is a crucial aspect of text encapsulation.

Preserving the exact meaning of the entire content is of essence.

The present machine learning models require some amount of manual effort and many of

these models simply compress the text by removing commonly used words. With the spread of

covid-19, the blame game of governments has started. This has provided a platform for netizens

to feed on fake news and irrelevant articles which might not be scientifically true. Among the

overall audiences, 29% of these consumers include elders and some youth that are not

scientifically literate and are more prone to spreading false information. With the unregulated

and free use of social media, people even vent out their frustration on other users due to

misleading content that is wrongly summarized and lure the users into reading that content.

AUTOMATING TEXT ENCAPSULATION USING DEEP LEARNING

10

II. RELATED WORK

Automating the text encapsulation using deep learning is a relatively new concept. There

isn’t much research performed on this exact NLP problem, but there are related text

summarization techniques explored over the years. In the year 2001, Nomoto et al. [1] made use

of the C4.5 decision tree algorithm, generalized by the Concept of Minimal Definition Span

(MDS) and equated it with unsupervised approaches. The approach had an error rate of 49%.

This results in a distorted sentence sequence which is vaguely different in meaning than the

actual content. The researcher Shuhua Liu, in a 2005 IEEE conference [2] suggested a two-phase

topic guided text condensation technique. In the first phase, passages are extracted from a public

file, and in the second phase, text comprehension and merging of data is performed. This

merging is assisted by syntactic and semantic tools to form a meaningful description. This paper

provides better accuracy for a single keyword extraction but performs at 57% accuracy for key

phrase extraction and summarization.

Zhang et al [3] describe a three-step approach for text summarization in the 2009 IEEE

CSIT conference. They first grouped the sequences in the text; then measured the total statistical

correlation on every group depending on the multi-feature set; and finally picked the subject

phrase by following their established guidelines. The researchers performed their experiment on

the DUC2003 document dataset. Nomoto et al. [1] attained an F1 measure of 0.432 and Zhang et

al [3] achieved a score of 0.475. This means that this approach [3] can retain the meaning of

summarized text with 21% higher accuracy than the approach described by Nomoto [1]. Thakkar

AUTOMATING TEXT ENCAPSULATION USING DEEP LEARNING

11

et al. [4] take a graph-based approach for summarizing text. The researchers suggest the use of a

shortest path algorithm as it creates a seamless text snippet as opposed to keyword scoring

algorithms from the previous approaches.

Another graph-based approach for text summarization is discussed by Reategui et al. [5].

This approach uses a text mining tool named Sobek that is developed using an N-simple version

of an interval network. This network consists of nodes that include key words given in the text,

and the edges represent data regarding adjacency. Sobek tool counts the total occurrences of each

word, assigns a weight to those words and generates a summary that is somewhat in line with the

content. On the other hand, in 2014, Ferreira et al. [6] suggested combining the sentence scoring

methods for summarizing text. The two approaches for consolidating the sentence scoring

techniques discussed in the paper include: (I) By Ranking: Every assistance chooses the primary

text sequence and the client consolidates it in some way or another; (II) By Accentuation: The

administration scores every text sequence and returns one sequence with refreshed scores. The

accuracy for this approach wherein the expected output matches the actual output is 78%.

One of the other approaches to solving the problem of text summarization is an extractive

summarization. Moratanch et al. [7] perform a survey on all the extractive summarization

methods and put forward their results. The basic principle behind the working of extractive

summarization is that it depends on the retrieval of multiple sections from a sequence of text,

such as sentence sequences and its dependent phrases, and combine everything with each other to

create a short description.

AUTOMATING TEXT ENCAPSULATION USING DEEP LEARNING

12

For example, given a text sequence: Covid-19 has spawned multiple global health crisis

some have dubbed coronasomnia -- an inability to fall asleep or get good quality sleep

during the pandemic. Along with this, there are multiple levels of stress associated with

the pandemic – financial, health care related and social isolation. All these damage

mental health, threaten health and quality of life for upto 45% of world’s population.

(source CNN news dataset)

Extractive summary: ‘Coronasomnia’ -- an inability to fall asleep

The terms have been derived and merged to generate a description as seen above, but the

interpretation can be syntactically and grammatically odd.

2.1 Scoring Sentences based on the Word-Frequency

This technique assigns weights to every single word that occurs in the text. For example, if the

word ‘research’ appears 5 times in the text body, a weight of 5 is assigned to the word. Similarly,

a holistic score based on the word appearance is assigned to every sentence that occurs in the text

body. The sentences that have a higher score are then picked up and displayed as summarized

text.

2.2 Universal Sentence Encoder for Text Ranking

Text Ranking is similar to PageRank used by Google. PageRank creates a matrix of pages that

will be most likely visited next by the user. Similarly, TextRank uses cosine function to

determine the similarity of 2 sentences to each other. This cosine linear similarity matrix is then

AUTOMATING TEXT ENCAPSULATION USING DEEP LEARNING

13

used to build a tree. The PageRank rating equation is then added to the tree in order to determine

rankings for each statement.

2.3 Unsupervised Learning using K-means Clustering

Every text has some central theme around which the content revolves. This theme word appears

multiple times in the text and helps understand what the text is about. This word is taken as a

center, weight is assigned to it and the nearest K-words are chosen from the clusters. These K-

words are then displayed as summarized text. This method has high error rate as the training data

is unlabeled.

Figure 1: Unsupervised Learning using K-means

AUTOMATING TEXT ENCAPSULATION USING DEEP LEARNING

14

III. DATASET

Two datasets that include the CNN News Dataset and the Amazon reviews dataset, provide an

accurate set of input data required to train the model. Here are their descriptions:

3.1 Amazon Reviews Dataset
The researchers from the Department of Computer Science at the University of California,

Berkeley have created a text summarization dataset in 2020. During the covid-19 pandemic,

purchase of essentials such as toilet papers, tissues, eateries skyrocketed due to public induced

fear of lockdown. This is a reason why it can provide a good source of most recent data from

public, news houses and scientists about the products used by them daily. This dataset contains

Amazon ratings and reviews of all the stated essentials purchased during the covid pandemic.

Additionally, the dataset includes data that spans more than a decade, with all 1 million reviews

up to October 2012 included. Product and usage stats, scores, and a simple text summary are also

used in reviews. It also contains ratings from all of Amazon's other categories.

The following are some of the characteristics of this dataset that make it suitable for this project:

• The dataset is sufficiently broad for the algorithm to be efficiently trained. A model's

performance improves when it is exposed to heterogenous data.

• The model’s encapsulation will improve as the dataset contains unrelated user data and

reviews.

• The reviews are simple text, meaning that most scripting frameworks can tokenize them.

AUTOMATING TEXT ENCAPSULATION USING DEEP LEARNING

15

Figure 2: Amazon reviews Dataset (Row Headers: ProductId, UserId, Score, Time, Summary, Text)

3.2 CNN News Dataset
This is a custom dataset that has been created by scrapping news data from CNN using a python

script. The url used to scrape data (https://www.cnn.com/specials/world/coronavirus-outbreak-

intl-hnk) contains most recent world news related to Covid-19 pandemic. The dataset comprises

of over 10,000 records, with an average of 400 words per record. The characteristics of this

dataset that make it suitable for this project include:

• Large number of words per record that helps test the performance of model as the dataset

size increases.

• A combination of news data from different categories that include covid-19 pandemic,

national news, sports and lifestyle news.

AUTOMATING TEXT ENCAPSULATION USING DEEP LEARNING

16

IV. DATA PREPARATION

4.1 Data Quality Issues

4.1.1 Manual Data Entry Errors

People are prone to making mistakes, and a simple set of data containing manually entered data is

likely to produce errors. Typos, data entered in the incorrect sector, missing entries, and other

mistakes are almost unavoidable.

4.1.2 Lack of complete information

There can be some records in the dataset with missing fields. For example, in a dataset containing

the username and reviews posted by that user, the reviews or username might be missing which

makes the dataset lack vital information. These fields can be filled with null values or the entire

record can be removed.

4.2 Contraction Mapping

The news articles and reviews are raw thoughts expressed by the writer. This is why it can have

slangs and words like isn’t, needn’t, shan’t and so on. The root words are required to have a well-

trained model. As a result, these slangs and compressed words must be mapped to actual words.

For example, isn’t is not, needn’t need not, shan’t shall not and so on.

4.3 Outlier Identification

An outlier is a particular occurrence that tends to differ significantly from the rest of the data. The

following are some of the reasons why finding possible outliers is crucial. An outlier may be a

sign of skewed results. For instance, data may have been wrongly interpreted, or a text could

contain numbers and special characters.

AUTOMATING TEXT ENCAPSULATION USING DEEP LEARNING

17

4.4 Remove Duplicates and Filter Stopwords

Drop_duplicates() and dropna() functions help eliminate duplicates. Natural language toolkit

contains stop words such as commonly occurring pronouns which get filtered out. Converting all

text to lowercase, splitting individual strings to aid tokenization are some methods that are used

to prepare data before training the model.

AUTOMATING TEXT ENCAPSULATION USING DEEP LEARNING

18

V. ALGORITHMS

5.1 Naïve Bayes

Naive bayes algorithm is based on the rule that all features of each category are independent.

The stages involved in Naïve Bayes summarization include:

1. Extract features

2. Count the number of features

3. Calculate probability

4. Generate Summary

Each individual sentence is a feature in each category. It calculates the number of features in each

category and records this amount. A weight is then assigned to each sentence. Each Key is an

independent sentence, and value is the number of times that sentence occurs in the text.

For example, {“sentence_1”, 2} means that “sentence_1” appears 2 times in the whole

text and is assigned more weight.

Next it calculates the probability of feature occurrence in each category. Based on this relative

probability, a summarization for a piece of text is generated.

5.2 Extractive Summarization using BERT

The job of extractive summarization is a daunting one which has gradually emerged as feasible.

One explanation for this development, as with many items in NLP, is the advanced mappings

AUTOMATING TEXT ENCAPSULATION USING DEEP LEARNING

19

provided by converter templates like BERT. Using BERT sentence encoding and two supervised

models, this method builds an extractive summarizer. Only encodings and their variations are

considered in the first model. This is consistent with an intuition that a strong parser could parse

context and can pick sentences solely based on the article's inner core. Another model uses data

patterns and builds on the popular Lead3 phenomenon, which is unique to newspaper corpora.

The Lead3 phenomenon is based on the concept that the first three sentences of an essay usually

summarize it well. Most authors, in reality, implement this technique directly.

5.3 TF-IDF

TF-IDF stands for Term Frequency – Inverse Document Frequency. This algorithm summarizes

articles and text based on the weight assigned to each word in the document. It weighs down

commonly occurring words like he, the, they, them and all the pronouns and weighs up less

frequently occurring words. Based on the weights of each of the words, top weighted words are

chosen and a summary is generated by using those words. This summary is more focussed on the

keyword extraction rather than capturing the holistic meaning of the text. This is why the

summary generated can be very vague in meaning as compared to the original text.

5.4 Latent Semantic Analysis

Latent semantic examination (LSA) is an algorithm for extracting a portrayal of text articles

dependent on the noticed words. The initial step is to construct a term-sentence grid, where each

line is a word from the data (n words) and every segment is a sentence. Every passage of the grid

AUTOMATING TEXT ENCAPSULATION USING DEEP LEARNING

20

is the heaviness of the word i in sentence j processed by the TFIDF method. Now, Solitary Val

Decomposition (SVD) is utilized on the grid that changes the underlying grid into three grids: a

term-theme grid having loads of words, a corner-to-corner grid where each column relates to the

heaviness of a subject, and a point sentence grid. By increasing the corner-to-corner grid with

loads and the subject sentence network, the outcome will portray how much a sentence represents

a theme, in other words, the heaviness of the topic i in sentence j.

AUTOMATING TEXT ENCAPSULATION USING DEEP LEARNING

21

VI. EVALUATION

6.1 Evaluation Metrics

One of the difficulties in evaluating encapsulated text is that it needs the presence of a collection

of reference, or short descriptions. These aren't typically accessible for many of these articles,

which is why analysis is dominated by newspaper texts and academic articles. Research journals

have manuscripts, whereas media outlets typically use roundups or banners for their pages. To

evaluate the performance of the system developed, a combination of bleu measures to measure

the preciseness and rouge measures to measure recall can be used.

Bleu measures precision: how many terms (n-grams) from the computer-generated

encapsulations are present in the human description summaries

Rouge measures recall: how many terms (n-grams) from the human description

summaries are present in the computer-generated encapsulations

These outputs closely accompany each other. If there are multiple n-grams from the computer

output present in the human summaries, the Bleu is high. If there are multiple n-grams from the

human summaries present in the computer output, the Rouge is high.

To address this, there is a concept named brevity penalty that can be added to Bleu

implementations. It imposes a penalty on computer outcomes that are less than a reference's

average length. This is in comparison to the n-gram parameter method, which incentivizes

longer than reference outcomes by increasing the denominator as the computer results gets

longer.

AUTOMATING TEXT ENCAPSULATION USING DEEP LEARNING

22

Finally, to make the metrics work together, an F1 measure is calculated given by the formula:

F1 = 2 x (Bleu x Rouge) / (Bleu + Rouge)

An alternative evaluation method can use the number of sentences against the total number of

sentences to validate results, for example,

Precision = Number of important sentences / Total number of sentences summarized.

Recall = Total number of important sentences Retrieved / Total number of important

sentences present.

F1 Score = 2 x (Precision x Recall / Precision + Recall)

Compressed Rate = Total number of words in the summary / Total number of words in

original document.

AUTOMATING TEXT ENCAPSULATION USING DEEP LEARNING

23

VII. IMPLEMENTATION

7.1 Choosing the Corpus of Data

Choosing the right data set is a crucial step in creating a consistent deep learning system. The very

first step is to consolidate data from different sources. These include Amazon reviews dataset and

a CNN news dataset. The CNN news dataset is created by scrapping news with the help of a

python script. This dataset contains world news pertaining to the topic of Covid-19. These 2

datasets are ideal for testing the model as they contain most recent data that is entered by users,

journalists, and writers. It covers covid news and reviews of products used by people during lock-

downs. As this data covers a wide range of topics, it is heterogeneous and can test the developed

model well.

Figure 3: CNN news dataset (Row Headers: Published Date, Author, Text, Source)

AUTOMATING TEXT ENCAPSULATION USING DEEP LEARNING

24

7.2 Preprocessing / Data Cleaning

This is a very important step in creating a fault-tolerant deep learning system which is mostly

ignored by professionals. The price paid is a deep learning model that considers outliers such as

blank spaces and special characters as important aspects and keeps including them in the output

(which should not be included in the ideal output). This is why it is of utmost importance to

eliminate the blank spaces and special characters. To clean the content, the following steps are

involved that include:

 Eliminating additional void areas

 Expanding Contractions

 Eliminating special characters and uncommon strings

 Converting all characters to lowercase

This data pre-processing can be performed using some pre-existing tools such as openrefine or

weka. However, these tools fail to perform well in case of the dataset used in this system.

Openrefine and weka tools can handle small datasets and fail in case of large datasets. These

tools throw an outOfMemoryError() when the dataset size increases beyond kilobytes. The

developed system makes use of NLP toolkit that consists of stop words and a custom coded

function. The NLP toolkit removes pronouns and commonly occurring repeated words as it

encounters them. The custom coded function converts all uppercase letters to lowercase,

eliminates blank spaces and deletes special characters on parsing the input.

AUTOMATING TEXT ENCAPSULATION USING DEEP LEARNING

25

7.3 Data Splitting

Preprocessing provides a dataset that is free from outliers. This data can now be divided into 2

sets:

 Training data set

 Test data set

The dataset division is done in such a manner that 75% of input data is chosen as training dataset

and the remaining 25% dataset is chosen as the test dataset. If we use the entire dataset that is

100% as a training dataset, then there can be a problem of overfitting. Overfitting happens when

a function is prepared too well on a restricted arrangement of information. At that point, when a

model gets trained with so much information, it begins learning from the noise and inaccurate

information. For example, consider a model that is trained to detect animals. But if this model is

trained only on the images of cats and dogs and we pass an image of black bear during

evaluation, the model will classify that bear as a dog.

7.4 Deep learning model

The deep learning model developed, consists of an encoder-decoder architecture at its heart.

Fig. 4: Deep Learning Model Architecture

This model comprises three fundamental components that include: the encoder, an intermediate

vector and the decoder.

AUTOMATING TEXT ENCAPSULATION USING DEEP LEARNING

26

7.4.1 The Encoder
The encoder essentially includes a sequence of stacked neurons from LSTM. The training set is

taken by the encoder and this data is summarized into internal state sequences. The decoder then

utilizes the sources of the encoder and the series of inner states. The input data is a list of all the

keywords from the content that must be condensed in our text encapsulation system. Each

keyword is portrayed as ki where the order of this keyword is i.

7.4.2 The Intermediate Vector
This is the actual concealed state created from the model's encoder. It is processed utilizing the

equation (1) given below. In efforts to support the decoder to make valid inferences, this variable

(vector) attempts to summarize the data for all input components. It functions as the initial

concealed portion of the model that makes up the decoder.

7.4.3 The Decoder
The decoder consists of a multi-recurrent system array where each array calculates a value yt at

time phase t. Each multi-recurrent unit embraces a concealed state and outputs a result along with

its own concealed state from the previous module. The result stream is a list of all the keywords

from the condensed content in the developed encapsulation system. Each keyword is denoted as

yi, where the order of this keyword is i.

For computing any initial concealed state hi, the formula in [13] is used:

 (1)

AUTOMATING TEXT ENCAPSULATION USING DEEP LEARNING

27

Here, it is evident that a prior concealed state is used to calculate the next one.

The output yt at a time instant t can be calculated using the formula in [13]:

 (2)

The result is then computed by utilizing the concealed state at the present time phase along with

the associated weight Ws. Softmax is utilized to generate a likelihood vector which will assist us

in deciding the final result (for example, a single keyword answer in the question-answering

problem).

7.5 Encapsulator

The DL model then generates an encapsulator that is capable of condensing the content without

changing the exact meaning of the text. Its performance can be tested using the test dataset. The

encapsulator generated has a content aware consciousness that plays a key role in keeping the

meaning of the text intact.

Content Aware Consciousness (CAC): The key idea behind this mechanism is how much focus

should be kept on every phrase in the input data so as to create a keyword at time phase t. For

example:

Question: What are the factors that have impacted mental health during the pandemic?

Answer: Covid-19 has spawned multiple global health crisis some have dubbed

coronasomnia -- an inability to fall asleep or get good quality sleep during the pandemic.

Along with this, there are multiple levels of stress associated with the pandemic –

AUTOMATING TEXT ENCAPSULATION USING DEEP LEARNING

28

financial, health care related and social isolation. All these damage mental health,

threaten health and quality of life for upto 45% of world’s population. (source CNN news)

In the inquiry above, the 12th word ‘pandemic’ is related to ‘Covid-19’ and the 4th word

‘factors’ is related to ‘Coronasomnia’, ‘financial’, ‘health’, ‘social isolation’.

In this way, rather than taking a gander at all the keywords in the input arrangement, the

significance of explicit pieces of the text can be emphasized that generate the ideal result. This is

the fundamental idea behind the Content Aware Consciousness.

Based on the manner in which the background variable is extracted, there are 2 distinct classes of

consciousness:

7.5.1 Global Content Aware Consciousness

The emphasis is laid on all the positions (all sentences) of the source. In other terms, for extracting

the supported context variable, all the concealed states of the encoder are taken into account. The

system uses this global content aware consciousness.

7.5.2 Local Content Aware Consciousness

The emphasis is laid on only a few positions (2-5 crucial sentences) of the source. For extracting

the supported context variable, only a few concealed states of the encoder are taken into account.

This is how the CAC works:

 The encoder generates the concealed state (hj) for each time phase j in the source series

 Likewise, the decoder generates the concealed state (si) for each time phase i in the target

series

AUTOMATING TEXT ENCAPSULATION USING DEEP LEARNING

29

 The arrangement score (eij) is calculated based on the source series which is aligned with

the target series using a function for score estimation. The arrangement score is calculated

from the source concealed state hj and target concealed state si using the score function,

which is given by:

 eij = score(si, hj)

where eij indicates the arrangement score for target time phase i and source time phase j

 The arrangement scores are then normalized by using the softmax function to extract the

CAC weights (aij):

 Now the CAC context variable (Ci) is calculated from the summation of CAC weights and

concealed states of encoder hj

 The concealed variable Vi is generated by integrating the CAC context variable and the

concealed state of the decoder at time phase i:

Vi = integrate(si, Ci)

 To create the final output yi, the concealed variable Vi is further loaded into the deep

network,

yi = deepNet(Vi)

AUTOMATING TEXT ENCAPSULATION USING DEEP LEARNING

30

Figure 5: System Depicting Encoder, Internal State and Decoder

With the aid of an example, let's comprehend the above-mentioned CAC process. Consider [x1,

x2, x3, x4] as the input content and [y1, y2] as the output encapsulated text.

 For each time phase t, the encoder scans the complete input series and produces a set of

concealed states h1, h2, h3, h4

Figure 6: Data Flow in Encoder

 The decoder scans one time phase offset of the complete target series, and produces the

concealed state for each time phase s1, s2, s3

AUTOMATING TEXT ENCAPSULATION USING DEEP LEARNING

31

Figure 7: Data Flow in Decoder

 The arrangement scores e1j are determined using the score function from the concealed

input state hi and target concealed state s1:

e11 = score(s1, h1)

e12 = score(s1, h2)

e13 = score(s1, h3)

e14 = score(s1, h4)

 The arrangement scores are then normalized by using the softmax function to extract the

CAC weights (aij):

a11 = ee11 / (ee11 + ee12 + ee13 + ee14)

a12 = ee12 / (ee11 + ee12 + ee13 + ee14)

a13 = ee13 / (ee11 + ee12 + ee13 + ee14)

a14 = ee14 / (ee11 + ee12 + ee13 + ee14)

 Now the CAC context variable (Ci) is calculated from the multiplication of CAC weights

aij and concealed states of encoder hj

 C2 = h1*a21 + h2*a22 + h3*a23 + h4*a24

AUTOMATING TEXT ENCAPSULATION USING DEEP LEARNING

32

 Concealed variable Vi is generated by integrating the CAC C2 variable and the concealed

state s2

 V2 = integrate([s2; C2])

 The concealed variable V2 is further loaded into the deep network to generate output y2

y2 = deepNet(V2)

y3, y4 and so on are calculated in a similar fashion as shown below.

Figure 8: Deep Learning Model network

AUTOMATING TEXT ENCAPSULATION USING DEEP LEARNING

33

VIII. RESULTS AND OBSERVATIONS

To evaluate the output of each of the approaches, a recent news snippet is chosen with over 1250

words, related to Covid-19 as shown below:

AUTOMATING TEXT ENCAPSULATION USING DEEP LEARNING

34

Original Title: No vaccine for younger adults despite of excessively produced number of doses

8.1 Approach 1 – Scoring Sentences based on the Word-Frequency

This technique assigns weights to every single word that occurs in the text. For example, if the

word ‘research’ appears 5 times in the text body, a weight of 5 is assigned to the word. Similarly,

a holistic score based on the word appearance is assigned to every sentence that occurs in the text

body. The sentences that have a higher weight are then picked up and used to summarize the text.

AUTOMATING TEXT ENCAPSULATION USING DEEP LEARNING

35

As shown in the snippet above, the words are tokenized, weights are assigned to all the words and

the sentence score is computed. To generate the overview, we'll take the top N statements which

have a score higher than all the other statements. These statements are then chosen to generate the

encapsulations.

AUTOMATING TEXT ENCAPSULATION USING DEEP LEARNING

36

The generated encapsulated text:

8.2 Approach 2 – Universal Sentence Encoder for Text Ranking

Text Ranking is similar to PageRank used by Google. PageRank creates a matrix of pages that

will be most likely be visited next by the user. Similarly, TextRank uses cosine function to

determine the similarity of 2 sentences to each other. This cosine linear similarity matrix is then

used to build a tree. The PageRank rating equation is then added to the tree in order to determine

rankings for each statement.

AUTOMATING TEXT ENCAPSULATION USING DEEP LEARNING

37

The table below shows the cosine matrix which is used to build a tree for the PageRank algorithm:

TABLE 1: COSINE SIMILARITY MATRIX

The generated encapsulated text:

8.3 Approach 3 – Dual bi-directional LSTM

From the previous 2 approaches we can infer that no new text is generated but simply sentences

are chosen based on the assigned weights and ranks. The sentences are then displayed as output.

However, these sentences do not capture the essence of the input text and sound vaguely odd

when read by the user. This is where the developed system beats all the existing systems. This is

due to use of three lstm layers out of which two are bidirectional and all the layers are interlinked

to each other. The input text is given to LSTM layer 1 which generates intermediate return

sequences along with the return state. This is then fed to LSTM layer 2 which generates a new set

of sequences and state and is then parsed by the LSTM layer 3. The LSTM layer 3’s output is then

AUTOMATING TEXT ENCAPSULATION USING DEEP LEARNING

38

used as input by decoder that uses SoftMax activation function along with CAC and generates

new text that captures the holistic meaning of the entire input text.

The generated encapsulated output:

AUTOMATING TEXT ENCAPSULATION USING DEEP LEARNING

39

To understand how the model performs on both the datasets, analysis of distribution of text length

is performed and a graph is plotted using matplot. Y-axis represents the total number of

statements X-axis represents the number of words.

Figure 9: Distribution of text length for Amazon Reviews Dataset

As seen in figure 9, the average length of reviews ranges from 200 – 400 words per review.

Figure 10: Distribution of text length for CNN News Dataset

As seen in figure 10, the average length of news articles ranges from 1000 – 2500 words per

article.

AUTOMATING TEXT ENCAPSULATION USING DEEP LEARNING

40

Sample outputs generated for Amazon Reviews dataset with the help of approach 3:

AUTOMATING TEXT ENCAPSULATION USING DEEP LEARNING

41

Sample outputs generated from CNN news Dataset:

As seen from the output above, the original titles and summaries may not depict the exact

information that the text carries. The encapsulation that is generated using the deep learning

model captures the holistic meaning of the text. Some outputs generated with this approach may

not be precise or some might be blank. This is due to the loss encountered during the model

training and validation phases.

AUTOMATING TEXT ENCAPSULATION USING DEEP LEARNING

42

8.4 Model Training and Validation Loss

The observations from experiments provide a deep insight into the results. There is a

notable performance difference between the 3 approaches. The first methodology generates

moderate results with a marginal score of 67 percent using Word-frequency as a measure, the

second methodology performed better with the Text Ranking algorithm with a good accuracy of

78 percent, and the third method has a 93 percent accuracy using the proposed LSTM network.

The training and test phase losses for each of the models decreases gradually as we move

from Epoch 1 to Epoch 10. An insight into losses for each of these models helps better understand

why the approach 3 has high accuracy. For approach 1 and 2, a significant change in validation

loss even after 10 epochs cannot be seen.

TABLE 2: Training and Validation Loss per Epoch for Scoring Sentences (Approach 1)

EPOCHS TRAINING LOSS VALIDATION LOSS

1/10 8.933 8.900

2/10 7.297 7.013

3/10 6.662 6.190

4/10 6.288 6.121

5/10 6.088 5.759

6/10 5.407 5.366

7/10 5.328 5.049

8/10 5.076 5.003

9/10 4.891 4.558

10/10 4.322 4.219

AUTOMATING TEXT ENCAPSULATION USING DEEP LEARNING

43

TABLE 3: Training and Validation Loss per Epoch for Text Ranking (Approach 2)

EPOCHS TRAINING LOSS VALIDATION LOSS

1/10 8.323 8.157

2/10 8.091 8.073

3/10 7.866 7.739

4/10 7.600 7.577

5/10 4.945 4.825

6/10 4.507 4.447

7/10 4.226 4.140

8/10 3.505 3.428

9/10 3.110 3.107

10/10 3.086 3.079

TABLE 4: Training and Validation Loss per Epoch for Dual LSTM (Approach 3)

EPOCHS TRAINING LOSS VALIDATION LOSS

1/10 6.913 6.125

2/10 6.856 5.751

3/10 4.909 3.297

4/10 3.485 2.741

5/10 3.143 2.729

6/10 3.077 2.620

7/10 2.971 2.594

8/10 2.950 2.524

9/10 2.854 2.405

10/10 2.831 2.463

AUTOMATING TEXT ENCAPSULATION USING DEEP LEARNING

44

8.5 Run-Time Analysis

 The model training sequence is the most time consuming step as the model is being trained

to read unknown sequences of text and generate a precise output. For the first approach that

involves scoring sentences based on the word frequency, the time required for model training and

evaluation is the least. This is why it has the least accurate output. For the covid news snippet with

over 1250 words, end to end run with the approach 1 takes approximately 25 seconds to generate

output. Approach 2 which uses text ranking, performs better in terms of generating a precise

output but its model training and evaluation requires more time as compared to the first approach.

For the news snippet above, end to end run with the approach 2 takes approximately 30 seconds to

generate output text.

 For approach 3, in the very first training phase, the developed system requires the largest

amount of time to train and evaluate the model. In this first phase, the model training and

evaluation takes approximately 42 seconds on a small Amazon reviews dataset with over 1300

records. From the second phase onwards, the run-time decreases as the model gets trained on

more new data. This model training and evaluation takes approximately 16 seconds to complete in

the second run. The larger Amazon dataset is over 300MB in size and consists of 100,000

reviews. The model training and validation on this dataset takes approximately 22 minutes.

Although the time required to train the model is more, it generates a precise output. For the covid

news snippet above, the approach 3 takes approximately 2 milliseconds to generate the

encapsulated text. The table 2 displays the runtime analysis information for all the approaches.

AUTOMATING TEXT ENCAPSULATION USING DEEP LEARNING

45

TABLE 5: Run-time Analysis

Input Data Approach Total Run-time for
Model Training and

Evaluation
[Time elapsed

(hh:mm:ss.ms)]

Time to generate
Output

(Seconds)

 Scoring Sentences
based on the Word-
Frequency

 0:00:24.746911 24.746911

News Snippet Universal Sentence
Encoder for Text
Ranking

 0:00:30.07571 30.07571

 Dual bi-directional
LSTM

 0:00:30.07571 2.097957

Amazon Reviews
Dataset 1

Dual bi-directional
LSTM

0:00:42.349841 1.086803

Amazon Reviews
Dataset 2

Dual bi-directional
LSTM

0:22:46.944088 12.744386

CNN News Dataset Dual bi-directional
LSTM

 0:03:48.934982 1.097957

8.6 Comparison of the Results

 All the above approaches performed differently with different algorithms used in each

implementation. The accuracy is a good measure for evaluating the models, along with the F1

scores that can be used for comparison. The comparisons of accuracy and F1 scores from the

results of each approach, led to insightful conclusions. Scoring Sentences based on the Word-

Frequency in approach 1 has a low performance and accuracy of 67%. In the second approach,

Universal Sentence Embeddings have a slightly higher performance as compared to approach 1

AUTOMATING TEXT ENCAPSULATION USING DEEP LEARNING

46

with an accuracy of 78%. The LSTM model in approach 3 performed the best as it closely

resembles a human summary and has the highest accuracy of 93% with high F1 scores.

TABLE 6: Comparison between Three Approaches

 Accuracy Precision Recall F1

Scoring Sentences
based on the Word-
Frequency

67% (+/- 0.537) 65% 61% 66%

Universal Sentence
Encoder for Text
Ranking

78% (+/- 0.029) 77% 75% 76%

Dual bi-directional
LSTM

93% (+/- 1.046) 92% 91% 93%

The following remarks can be drawn from the findings:

Remark 1: The first approach simply scores all the sentences and selects the highest weighted

sentences to display as summarized output. We can infer from Table 2 that since the training and

validation phase losses are high, this model has an average precision score of 65%. The holistic

meaning of the text might not be captured by this method. Even though it has a good F1 score, the

recall is pretty poor for this approach.

Remark 2: The second approach has a good accuracy of 78% due to moderate training and test

phase losses during the 10 Epochs. This is mainly because of the Text Ranking grid matrix. Text

Ranking uses cosine function to determine the similarity of 2 sentences to each other. This cosine

AUTOMATING TEXT ENCAPSULATION USING DEEP LEARNING

47

linear similarity matrix is then used to build a tree. The PageRank rating equation is then added to

the tree in order to determine rankings for each statement. The summaries generated by this

approach has low recall but high precision and F1 scores of 77% and 76% respectively.

Remark 3: The proposed approach as demonstrated in the experiments, has the highest accuracy

out of the 3 approaches. This is because it has the lowest training and validation phase losses

during the 10 epochs. This approach generates sentences based on the natural language

understanding with the help of SoftMax and CAC. This approach more closely resembles a

human approach rather than a machine generated approach. This is why it has a high precision of

92% and F1 score of 93%. Even though the recall is less, the overall accuracy of the approach

turns out to be greater than 93%.

AUTOMATING TEXT ENCAPSULATION USING DEEP LEARNING

48

IX. CONCLUSION AND FUTURE WORK

The modern age of innovation has begun as a result of the rapid advancement in the realms

of deep learning. Most of these innovations are automated and require little to no human

intervention in generating precise output. Text encapsulation means capturing the meaning of the

sequence of text rather than just summarizing the text. Existing text summarization systems like

approaches 1 and 2 simply remove pronouns, some random words and summarize the articles

based on sentence weights. These summarizations can be completely different in meaning when

compared with the original article. The developed model captures the exact meaning of the entire

text by parsing the input data through multiple LSTM layers and generates its own encapsulated

text. Since this model has high precision of 92% and F1 score of 93%, the generated text closely

resembles a human generated one or in some cases even better than the human generated ones.

In a world where pandemic is prevalent for a long time and news with mis represented

headings lure people into disappointment, it is more important than ever to have a robust text

encapsulation system. The developed model can be further refined by using a large dataset in

combination with a quadri-bidirectional LSTM network. By making use of the beam scanning

technique, this model can be further improved, loss can be reduced and higher output accuracy

can be attained. The developed system’s applications can be extended to academia as well where

it can be used by budding researchers to encapsulate brief articles into some well-structured short

descriptions or titles. This research project provides an overview on existing systems and proposes

an approach to automate the text encapsulation process. The series of tests performed on the

developed model using heterogeneous datasets make it robust, consistent and highly efficient as

compared to existing systems.

AUTOMATING TEXT ENCAPSULATION USING DEEP LEARNING

49

REFERENCES

[1] T. Nomoto and Y. Matsumoto, "An experimental comparison of supervised and
unsupervised approaches to text summarization," Proceedings 2001 IEEE
International Conference on Data Mining, San Jose, CA, USA, 2001, pp. 630-632,
doi: 10.1109/ICDM.2001.989585.

[2] Shuhua Liu, "Enhancing e-business-intelligence-service: a topic-guided text
summarization framework," Seventh IEEE International Conference on E-Commerce
Technology (CEC'05), Munich, Germany, 2005, pp. 493-496, doi:
10.1109/ICECT.2005.45.

[3] P. Zhang and C. Li, "Automatic text summarization based on sentences clustering and

extraction," 2009 2nd IEEE International Conference on Computer Science and
Information Technology, Beijing 2009, 167-170, doi:
10.1109/ICCSIT.2009.5234971.

[4] K. S. Thakkar, R. V. Dharaskar and M. B. Chandak, "Graph-Based Algorithms for

Text Summarization," 2010 3rd International Conference on Emerging Trends in
Engineering and Technology, Goa, 2010, pp. 516-519, doi:
10.1109/ICETET.2010.104.

[5] E. Reategui, M. Klemann and M. D. Finco, "Using a Text Mining Tool to Support

Text Summarization," 2012 IEEE 12th International Conference on Advanced
Learning Technologies, Rome, 2012, pp. 607-609, doi: 10.1109/ICALT.2012.51.

[6] R. Ferreira et al., "A Context Based Text Summarization System," 2014 11th IAPR

International Workshop on Document Analysis Systems, Tours, 2014, pp. 66-70, doi:
10.1109/DAS.2014.19.

[7] N. Moratanch and S. Chitrakala, "A survey on extractive text summarization," 2017

International Conference on Computer, Communication and Signal Processing
(ICCCSP), Chennai, 2017, pp. 1-6, doi: 10.1109/ICCCSP.2017.7944061.

[8] M. Afsharizadeh, H. Ebrahimpour-Komleh and A. Bagheri, "Query-oriented text
summarization using sentence extraction technique," 2018 4th International
Conference on Web Research (ICWR), Tehran, 2018, pp. 128-132, doi:
10.1109/ICWR.2018.8387248.

[9] S. Abujar, M. Hasan, M. S. I. Shahin and S. A. Hossain, "A heuristic approach of text
summarization for Bengali documentation," 2017 8th International Conference on
Computing, Communication and Networking Technologies (ICCCNT), Delhi, 2017,
pp. 1-8, doi: 10.1109/ICCCNT.2017.8204166.

AUTOMATING TEXT ENCAPSULATION USING DEEP LEARNING

50

[10] R. Zhang, W. Li, D. Gao and Y. Ouyang, "Automatic Twitter Topic Summarization

With Speech Acts," in IEEE Transactions on Audio, Speech, and Language
Processing, vol. 21, no. 3, pp. 649-658, March 2013, doi:
10.1109/TASL.2012.2229984.

[11] R. A. García-Hernández and Y. Ledeneva, "Word Sequence Models for Single Text
Summarization," 2009 Second International Conferences on Advances in Computer-
Human Interactions, Cancun, 2009, pp. 44-48, doi: 10.1109/ACHI.2009.58.

[12] Alam, Tanweer, (2018), “A Reliable Communication Framework and Its Use in the
Internet of Things,” (IOT3).

[13] W. Zhao, G. Zhang, G. Yuan, J. Liu, H. Shan and S. Zhang, "The Study on the Text
Classification for Financial News Based on Partial Information," in IEEE Access, vol.
8, pp. 100426-100437, 2020, doi: 10.1109/ACCESS.2020.2997969.

[14] Thu, Ha. (2014). An Optimization Text Summarization Method Based on Naïve

Bayes and Topic Word for Single Syllable Language. Applied Mathematical
Sciences. 8. 10.12988/ams.2014.36319.

[15] Hermann, K. M., Kocisky, T., Grefenstette, E., Espeholt, L., Kay, W., Suleyman, M.,

& Blunsom, P. (2015), Teaching machines to read and comprehend, In Advances in
Neural Information Processing Systems (pp. 1684-1692)

[16] S. Brin, ‘‘Extracting patterns and relations from the world wide web,’’ in Selected

Papers from the International Workshop on The World Wide Web and Databases, ser.
WebDB ’98. London, UK, UK: Springer-Verlag, 1999, pp. 172--183. [Online].
Available: http://dl.acm.org/citation.cfm?id=646543.696220

[17] S. Strassel, A. Mitchell, and S. Huang, ‘‘Multilingual resources for entity

extraction,’’ in Proceedings of the ACL 2003 Workshop on Multilingual and Mixed-
language Named Entity Recognition - Volume 15, ser. MultiNER ’03. Stroudsburg,
PA, USA: Association for Computational Linguistics, 2003, pp. 49--56. [Online].
Available: https://doi.org/10.3115/1119384.1119391

[18] J. N. Madhuri and R. Ganesh Kumar, "Extractive Text Summarization Using

Sentence Ranking," 2019 International Conference on Data Science and
Communication (IconDSC), Bangalore, India, 2019, pp. 1-3, doi:
10.1109/IconDSC.2019.8817040.

[19] C. Lakshmi Devasena and M. Hemalatha, "Automatic Text categorization and

summarization using rule reduction," IEEE-International Conference On Advances In
Engineering, Science And Management (ICAESM -2012), Nagapattinam, India,
2012, pp. 594-598.

http://dl.acm.org/citation.cfm?id=646543.696220
https://doi.org/10.3115/1119384.1119391

AUTOMATING TEXT ENCAPSULATION USING DEEP LEARNING

51

[20] D. Gunawan, S. H. Harahap and R. Fadillah Rahmat, "Multi-document
Summarization by using TextRank and Maximal Marginal Relevance for Text in
Bahasa Indonesia," 2019 International Conference on ICT for Smart Society (ICISS),
Bandung, Indonesia, 2019, pp. 1-5, doi: 10.1109/ICISS48059.2019.8969785.

[21] S. R. Rahimi, A. T. Mozhdehi and M. Abdolahi, "An overview on extractive text

summarization," 2017 IEEE 4th International Conference on Knowledge-Based
Engineering and Innovation (KBEI), Tehran, Iran, 2017, pp. 0054-0062, doi:
10.1109/KBEI.2017.8324874.

[22] C. HARK, T. UÇKAN, E. SEYYARER and A. KARCI, "Graph-Based Suggestion

For Text Summarization," 2018 International Conference on Artificial Intelligence
and Data Processing (IDAP), Malatya, Turkey, 2018, pp. 1-6, doi:
10.1109/IDAP.2018.8620738.

[23] A. R. Mishra, V. K. Panchal and P. Kumar, "Extractive Text Summarization - An

effective approach to extract information from Text," 2019 International Conference
on contemporary Computing and Informatics (IC3I), Singapore, 2019, pp. 252-255,
doi: 10.1109/IC3I46837.2019.9055636.

[24] X. -y. Jiang, X. -Z. Fan, Z. -F. Wang and K. -L. Jia, "Improving the Performance of

Text Categorization Using Automatic Summarization," 2009 International
Conference on Computer Modeling and Simulation, Macau, China, 2009, pp. 347-
351, doi: 10.1109/ICCMS.2009.29.

[25] C. Wang, L. Long and L. Li, "HowNet based evaluation for Chinese text

summarization," 2008 International Conference on Natural Language Processing and
Knowledge Engineering, Beijing, China, 2008, pp. 1-6, doi:
10.1109/NLPKE.2008.4906789.

	AUTOMATING TEXT ENCAPSULATION USING DEEP LEARNING
	I. Introduction
	1.1 Research Objective
	1.2 Motivation

	II. RELATED WORK
	2.1 Scoring Sentences based on the Word-Frequency
	2.2 Universal Sentence Encoder for Text Ranking
	2.3 Unsupervised Learning using K-means Clustering

	III. DATASET
	3.1 Amazon Reviews Dataset
	3.2 CNN News Dataset

	IV. DATA PREPARATION
	4.1 Data Quality Issues
	4.1.1 Manual Data Entry Errors
	4.1.2 Lack of complete information

	4.2 Contraction Mapping
	4.3 Outlier Identification
	4.4 Remove Duplicates and Filter Stopwords

	V. ALGORITHMS
	5.1 Naïve Bayes
	5.2 Extractive Summarization using BERT
	5.3 TF-IDF
	5.4 Latent Semantic Analysis

	VI. EVALUATION
	6.1 Evaluation Metrics

	VII. IMPLEMENTATION
	7.1 Choosing the Corpus of Data
	7.2 Preprocessing / Data Cleaning
	7.3 Data Splitting
	7.4 Deep learning model
	7.4.1 The Encoder
	7.4.2 The Intermediate Vector
	7.4.3 The Decoder

	7.5 Encapsulator
	7.5.1 Global Content Aware Consciousness
	7.5.2 Local Content Aware Consciousness

	VIII. RESULTS AND OBSERVATIONS
	8.1 Approach 1 – Scoring Sentences based on the Word-Frequency
	8.2 Approach 2 – Universal Sentence Encoder for Text Ranking
	8.3 Approach 3 – Dual bi-directional LSTM
	8.4 Model Training and Validation Loss
	8.5 Run-Time Analysis
	8.6 Comparison of the Results

	IX. CONCLUSION AND FUTURE WORK
	References

