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ABSTRACT 

 

         Data is an important aspect in any form be it communication, reviews, news articles, social 

media data, machine or real-time data. With the emergence of Covid-19, a pandemic seen like no 

other in recent times, information is being poured in from all directions on the internet. At times it 

is overwhelming to determine which data to read and follow. Another crucial aspect is separating 

factual data from distorted data that is being circulated widely. The title or short description of this 

data can play a key role. Many times, these descriptions can deceive a user with unwanted 

information. The user is then more likely to spread this information with his colleagues/family and 

if they too are unaware, this false piece of information can spread like a forest wildfire. Deep 

machine learning models can play a vital role in automatically encapsulating the description and 

providing an accurate overview. This automated overview can then be used by the end user to 

determine if that piece of information can be consumed or not. This research presents an efficient 

Deep learning model for automating text encapsulation and its comparison with existing systems in 

terms of data, features and their point of failures. It aims at condensing text percepts more 

accurately. 

Keywords: Deep learning, Text Encapsulation, system, dataset, features, automated, model, 

machine learning  
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I. INTRODUCTION 

 
Data is being generated and consumed in order of several terabytes each day. There is a 

dramatic increase in the influx of data sources. For a consumer airline, there is approximately 

half a terabyte of flight data that is generated during a single flight duration. As per research, by 

2025 the number of connected devices is forecasted to reach 75 billion [12]. All these devices 

generate and consume data. A single user consumes approximately 2.9 GB of data per day which 

includes social media, news, scientific articles, banking and navigation data. As per Bloomberg, 

69% of the data that is being consumed by an average user mainly consists of news articles, and 

for tech savvy audiences, this can go up to 87% [10].    

As per New York Times, a user selects a news article to read based on the title or heading 

rather than the content [7]. The content itself can be misleading. For instance, an article 

distributed in the Times Daily under the title “The benefits of ginger for adults” was deluding. 

This article actually referenced that, “The investigation shows that ginger could probably affect 

serotonin and aid in concentration improvement but ginger’s chemical composition can severely 

affect dopamine exclusively due to the presence of phenolic compounds”. The article examines 

the slight possibility of the constructive outcomes of ginger on adults; however, the heading has 

an alternate meaning. A robust deep learning model to encapsulate this content, as well as 

automate the process that captures the exact holistic meaning of this content, becomes a 

necessity. 
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1.1 Research Objective 

The goal of this research is to automate the text encapsulation process by making use of a dual 

LSTM (Long Short-Term Memory) encoder-decoder deep learning model. The current text 

summarizers are naïve and lack accuracy. A significant performance improvement can be 

attained by incorporating new modifications. These modifications include: 

- improving the data pre-processing stage to attain accurate data free from outliers 

- automating the text encapsulation for the entire cleaned dataset 

- incorporating dual long short term memory network in the process pipeline  

- performance comparison of the system developed with existing models 

The intent in using a dual LSTM deep learning system is to encapsulate the text without 

changing the universal interpretation of the entire content. Also, the aim is to automate this task 

of encapsulation and reduce manual effort. 

 

1.2 Motivation 
 
If we take a look at the very fundamental level of computer science, we can find encapsulation in 

object-oriented programming and in object-oriented system design. Encapsulation simply means 

restricting the direct access to some of the object's components without changing the meaning or 

object’s functionality. In the real world too, depicting the exact meaning that the content carries 

are as important as encapsulation in object-oriented system design. Identifying the content and 
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accurately condensing it to form an appropriate heading is a crucial aspect of text encapsulation. 

Preserving the exact meaning of the entire content is of essence.  

The present machine learning models require some amount of manual effort and many of 

these models simply compress the text by removing commonly used words. With the spread of 

covid-19, the blame game of governments has started. This has provided a platform for netizens 

to feed on fake news and irrelevant articles which might not be scientifically true. Among the 

overall audiences, 29% of these consumers include elders and some youth that are not 

scientifically literate and are more prone to spreading false information. With the unregulated 

and free use of social media, people even vent out their frustration on other users due to 

misleading content that is wrongly summarized and lure the users into reading that content.  

 

 

 

 

 

  
 
 
 
 
 
 



AUTOMATING TEXT ENCAPSULATION USING DEEP LEARNING 
 
 
 

 

10 

II. RELATED WORK 
  

Automating the text encapsulation using deep learning is a relatively new concept. There 

isn’t much research performed on this exact NLP problem, but there are related text 

summarization techniques explored over the years. In the year 2001, Nomoto et al. [1] made use 

of the C4.5 decision tree algorithm, generalized by the Concept of Minimal Definition Span 

(MDS) and equated it with unsupervised approaches. The approach had an error rate of 49%. 

This results in a distorted sentence sequence which is vaguely different in meaning than the 

actual content. The researcher Shuhua Liu, in a 2005 IEEE conference [2] suggested a two-phase 

topic guided text condensation technique. In the first phase, passages are extracted from a public 

file, and in the second phase, text comprehension and merging of data is performed. This 

merging is assisted by syntactic and semantic tools to form a meaningful description. This paper 

provides better accuracy for a single keyword extraction but performs at 57% accuracy for key 

phrase extraction and summarization.  

Zhang et al [3] describe a three-step approach for text summarization in the 2009 IEEE 

CSIT conference. They first grouped the sequences in the text; then measured the total statistical 

correlation on every group depending on the multi-feature set; and finally picked the subject 

phrase by following their established guidelines. The researchers performed their experiment on 

the DUC2003 document dataset. Nomoto et al. [1] attained an F1 measure of 0.432 and Zhang et 

al [3] achieved a score of 0.475. This means that this approach [3] can retain the meaning of 

summarized text with 21% higher accuracy than the approach described by Nomoto [1]. Thakkar 
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et al. [4] take a graph-based approach for summarizing text. The researchers suggest the use of a 

shortest path algorithm as it creates a seamless text snippet as opposed to keyword scoring 

algorithms from the previous approaches. 

Another graph-based approach for text summarization is discussed by Reategui et al. [5]. 

This approach uses a text mining tool named Sobek that is developed using an N-simple version 

of an interval network. This network consists of nodes that include key words given in the text, 

and the edges represent data regarding adjacency. Sobek tool counts the total occurrences of each 

word, assigns a weight to those words and generates a summary that is somewhat in line with the 

content. On the other hand, in 2014, Ferreira et al. [6] suggested combining the sentence scoring 

methods for summarizing text. The two approaches for consolidating the sentence scoring 

techniques discussed in the paper include: (I) By Ranking: Every assistance chooses the primary 

text sequence and the client consolidates it in some way or another; (II) By Accentuation: The 

administration scores every text sequence and returns one sequence with refreshed scores. The 

accuracy for this approach wherein the expected output matches the actual output is 78%.   

One of the other approaches to solving the problem of text summarization is an extractive 

summarization. Moratanch et al. [7] perform a survey on all the extractive summarization 

methods and put forward their results. The basic principle behind the working of extractive 

summarization is that it depends on the retrieval of multiple sections from a sequence of text, 

such as sentence sequences and its dependent phrases, and combine everything with each other to 

create a short description.  



AUTOMATING TEXT ENCAPSULATION USING DEEP LEARNING 
 
 
 

 

12 

For example, given a text sequence: Covid-19 has spawned multiple global health crisis 

some have dubbed coronasomnia -- an inability to fall asleep or get good quality sleep 

during the pandemic. Along with this, there are multiple levels of stress associated with 

the pandemic – financial, health care related and social isolation. All these damage 

mental health, threaten health and quality of life for upto 45% of world’s population. 

(source CNN news dataset) 

Extractive summary:  ‘Coronasomnia’ -- an inability to fall asleep 

The terms have been derived and merged to generate a description as seen above, but the 

interpretation can be syntactically and grammatically odd.  

2.1 Scoring Sentences based on the Word-Frequency 

This technique assigns weights to every single word that occurs in the text. For example, if the 

word ‘research’ appears 5 times in the text body, a weight of 5 is assigned to the word. Similarly, 

a holistic score based on the word appearance is assigned to every sentence that occurs in the text 

body. The sentences that have a higher score are then picked up and displayed as summarized 

text. 

2.2 Universal Sentence Encoder for Text Ranking 

Text Ranking is similar to PageRank used by Google. PageRank creates a matrix of pages that 

will be most likely visited next by the user. Similarly, TextRank uses cosine function to 

determine the similarity of 2 sentences to each other. This cosine linear similarity matrix is then 
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used to build a tree. The PageRank rating equation is then added to the tree in order to determine 

rankings for each statement. 

2.3 Unsupervised Learning using K-means Clustering 
 
Every text has some central theme around which the content revolves. This theme word appears 

multiple times in the text and helps understand what the text is about. This word is taken as a 

center, weight is assigned to it and the nearest K-words are chosen from the clusters. These K-

words are then displayed as summarized text. This method has high error rate as the training data 

is unlabeled.  

 

Figure 1: Unsupervised Learning using K-means 
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III. DATASET 
 
 

Two datasets that include the CNN News Dataset and the Amazon reviews dataset, provide an 

accurate set of input data required to train the model. Here are their descriptions: 

3.1 Amazon Reviews Dataset 
The researchers from the Department of Computer Science at the University of California, 

Berkeley have created a text summarization dataset in 2020. During the covid-19 pandemic, 

purchase of essentials such as toilet papers, tissues, eateries skyrocketed due to public induced 

fear of lockdown. This is a reason why it can provide a good source of most recent data from 

public, news houses and scientists about the products used by them daily. This dataset contains 

Amazon ratings and reviews of all the stated essentials purchased during the covid pandemic. 

Additionally, the dataset includes data that spans more than a decade, with all 1 million reviews 

up to October 2012 included. Product and usage stats, scores, and a simple text summary are also 

used in reviews. It also contains ratings from all of Amazon's other categories.  

The following are some of the characteristics of this dataset that make it suitable for this project: 

• The dataset is sufficiently broad for the algorithm to be efficiently trained. A model's 

performance improves when it is exposed to heterogenous data. 

• The model’s encapsulation will improve as the dataset contains unrelated user data and 

reviews. 

• The reviews are simple text, meaning that most scripting frameworks can tokenize them. 
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Figure 2: Amazon reviews Dataset (Row Headers: ProductId, UserId, Score, Time, Summary, Text) 

 

3.2 CNN News Dataset 
This is a custom dataset that has been created by scrapping news data from CNN using a python 

script. The url used to scrape data (https://www.cnn.com/specials/world/coronavirus-outbreak-

intl-hnk) contains most recent world news related to Covid-19 pandemic. The dataset comprises 

of over 10,000 records, with an average of 400 words per record. The characteristics of this 

dataset that make it suitable for this project include: 

• Large number of words per record that helps test the performance of model as the dataset 

size increases. 

• A combination of news data from different categories that include covid-19 pandemic, 

national news, sports and lifestyle news. 
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IV. DATA PREPARATION 
 

4.1 Data Quality Issues 

4.1.1 Manual Data Entry Errors 

People are prone to making mistakes, and a simple set of data containing manually entered data is 

likely to produce errors. Typos, data entered in the incorrect sector, missing entries, and other 

mistakes are almost unavoidable. 

4.1.2 Lack of complete information 

There can be some records in the dataset with missing fields. For example, in a dataset containing 

the username and reviews posted by that user, the reviews or username might be missing which 

makes the dataset lack vital information. These fields can be filled with null values or the entire 

record can be removed. 

4.2 Contraction Mapping 

The news articles and reviews are raw thoughts expressed by the writer. This is why it can have 

slangs and words like isn’t, needn’t, shan’t and so on. The root words are required to have a well-

trained model. As a result, these slangs and compressed words must be mapped to actual words. 

For example, isn’t   is not, needn’t  need not, shan’t  shall not and so on.    

4.3 Outlier Identification 

An outlier is a particular occurrence that tends to differ significantly from the rest of the data. The 

following are some of the reasons why finding possible outliers is crucial. An outlier may be a 

sign of skewed results. For instance, data may have been wrongly interpreted, or a text could 

contain numbers and special characters. 
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4.4 Remove Duplicates and Filter Stopwords 

Drop_duplicates() and dropna() functions help eliminate duplicates. Natural language toolkit 

contains stop words such as commonly occurring pronouns which get filtered out. Converting all 

text to lowercase, splitting individual strings to aid tokenization are some methods that are used 

to prepare data before training the model. 
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V. ALGORITHMS 
 

5.1 Naïve Bayes 
 
Naive bayes algorithm is based on the rule that all features of each category are independent.  

The stages involved in Naïve Bayes summarization include: 

1. Extract features  

2. Count the number of features  

3. Calculate probability  

4. Generate Summary 

Each individual sentence is a feature in each category. It calculates the number of features in each 

category and records this amount. A weight is then assigned to each sentence. Each Key is an 

independent sentence, and value is the number of times that sentence occurs in the text. 

For example, {“sentence_1”, 2} means that “sentence_1” appears 2 times in the whole 

text and is assigned more weight. 

Next it calculates the probability of feature occurrence in each category. Based on this relative 

probability, a summarization for a piece of text is generated. 

 

5.2 Extractive Summarization using BERT 
 
The job of extractive summarization is a daunting one which has gradually emerged as feasible. 

One explanation for this development, as with many items in NLP, is the advanced mappings 
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provided by converter templates like BERT. Using BERT sentence encoding and two supervised 

models, this method builds an extractive summarizer. Only encodings and their variations are 

considered in the first model. This is consistent with an intuition that a strong parser could parse 

context and can pick sentences solely based on the article's inner core. Another model uses data 

patterns and builds on the popular Lead3 phenomenon, which is unique to newspaper corpora. 

The Lead3 phenomenon is based on the concept that the first three sentences of an essay usually 

summarize it well. Most authors, in reality, implement this technique directly. 

 

5.3 TF-IDF 
 
TF-IDF stands for Term Frequency – Inverse Document Frequency. This algorithm summarizes 

articles and text based on the weight assigned to each word in the document. It weighs down 

commonly occurring words like he, the, they, them and all the pronouns and weighs up less 

frequently occurring words. Based on the weights of each of the words, top weighted words are 

chosen and a summary is generated by using those words. This summary is more focussed on the 

keyword extraction rather than capturing the holistic meaning of the text. This is why the 

summary generated can be very vague in meaning as compared to the original text. 

 

5.4 Latent Semantic Analysis 
 
Latent semantic examination (LSA) is an algorithm for extracting a portrayal of text articles 

dependent on the noticed words. The initial step is to construct a term-sentence grid, where each 

line is a word from the data (n words) and every segment is a sentence. Every passage of the grid 
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is the heaviness of the word i in sentence j processed by the TFIDF method. Now, Solitary Val 

Decomposition (SVD) is utilized on the grid that changes the underlying grid into three grids: a 

term-theme grid having loads of words, a corner-to-corner grid where each column relates to the 

heaviness of a subject, and a point sentence grid. By increasing the corner-to-corner grid with 

loads and the subject sentence network, the outcome will portray how much a sentence represents 

a theme, in other words, the heaviness of the topic i in sentence j. 

 

 

 

 

 

 

 

 

 

 

 

 

 



AUTOMATING TEXT ENCAPSULATION USING DEEP LEARNING 
 
 
 

 

21 

VI. EVALUATION 
 
 

6.1 Evaluation Metrics 
 

One of the difficulties in evaluating encapsulated text is that it needs the presence of a collection 

of reference, or short descriptions. These aren't typically accessible for many of these articles, 

which is why analysis is dominated by newspaper texts and academic articles. Research journals 

have manuscripts, whereas media outlets typically use roundups or banners for their pages. To 

evaluate the performance of the system developed, a combination of bleu measures to measure 

the preciseness and rouge measures to measure recall can be used. 

Bleu measures precision: how many terms (n-grams) from the computer-generated 

encapsulations are present in the human description summaries 

Rouge measures recall: how many terms (n-grams) from the human description 

summaries are present in the computer-generated encapsulations 

These outputs closely accompany each other. If there are multiple n-grams from the computer 

output present in the human summaries, the Bleu is high. If there are multiple n-grams from the 

human summaries present in the computer output, the Rouge is high. 

To address this, there is a concept named brevity penalty that can be added to Bleu 

implementations. It imposes a penalty on computer outcomes that are less than a reference's 

average length. This is in comparison to the n-gram parameter method, which incentivizes 

longer than reference outcomes by increasing the denominator as the computer results gets 

longer. 
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Finally, to make the metrics work together, an F1 measure is calculated given by the formula: 

F1 = 2 x (Bleu x Rouge) / (Bleu + Rouge) 

An alternative evaluation method can use the number of sentences against the total number of 

sentences to validate results, for example, 

Precision = Number of important sentences / Total number of sentences summarized.  

Recall = Total number of important sentences Retrieved / Total number of important 

sentences present. 

F1 Score = 2 x (Precision x Recall / Precision + Recall)  

Compressed Rate = Total number of words in the summary / Total number of words in 

original document. 
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VII. IMPLEMENTATION 
 

7.1 Choosing the Corpus of Data 
 
Choosing the right data set is a crucial step in creating a consistent deep learning system. The very 

first step is to consolidate data from different sources. These include Amazon reviews dataset and 

a CNN news dataset. The CNN news dataset is created by scrapping news with the help of a 

python script. This dataset contains world news pertaining to the topic of Covid-19. These 2 

datasets are ideal for testing the model as they contain most recent data that is entered by users, 

journalists, and writers. It covers covid news and reviews of products used by people during lock-

downs. As this data covers a wide range of topics, it is heterogeneous and can test the developed 

model well.   

Figure 3: CNN news dataset (Row Headers: Published Date, Author, Text, Source)  
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7.2 Preprocessing / Data Cleaning 
 
This is a very important step in creating a fault-tolerant deep learning system which is mostly 

ignored by professionals. The price paid is a deep learning model that considers outliers such as 

blank spaces and special characters as important aspects and keeps including them in the output 

(which should not be included in the ideal output). This is why it is of utmost importance to 

eliminate the blank spaces and special characters. To clean the content, the following steps are 

involved that include: 

 Eliminating additional void areas  

 Expanding Contractions  

 Eliminating special characters and uncommon strings  

 Converting all characters to lowercase 

This data pre-processing can be performed using some pre-existing tools such as openrefine or 

weka. However, these tools fail to perform well in case of the dataset used in this system. 

Openrefine and weka tools can handle small datasets and fail in case of large datasets. These 

tools throw an outOfMemoryError() when the dataset size increases beyond kilobytes. The 

developed system makes use of NLP toolkit that consists of stop words and a custom coded 

function. The NLP toolkit removes pronouns and commonly occurring repeated words as it 

encounters them. The custom coded function converts all uppercase letters to lowercase, 

eliminates blank spaces and deletes special characters on parsing the input. 
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7.3 Data Splitting 
 
Preprocessing provides a dataset that is free from outliers. This data can now be divided into 2 

sets: 

 Training data set 

 Test data set 

The dataset division is done in such a manner that 75% of input data is chosen as training dataset 

and the remaining 25% dataset is chosen as the test dataset. If we use the entire dataset that is 

100% as a training dataset, then there can be a problem of overfitting. Overfitting happens when 

a function is prepared too well on a restricted arrangement of information. At that point, when a 

model gets trained with so much information, it begins learning from the noise and inaccurate 

information. For example, consider a model that is trained to detect animals. But if this model is 

trained only on the images of cats and dogs and we pass an image of black bear during 

evaluation, the model will classify that bear as a dog. 

7.4 Deep learning model  
 

The deep learning model developed, consists of an encoder-decoder architecture at its heart.

 
Fig. 4: Deep Learning Model Architecture 

This model comprises three fundamental components that include: the encoder, an intermediate 

vector and the decoder. 
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7.4.1 The Encoder 
The encoder essentially includes a sequence of stacked neurons from LSTM. The training set is 

taken by the encoder and this data is summarized into internal state sequences. The decoder then 

utilizes the sources of the encoder and the series of inner states. The input data is a list of all the 

keywords from the content that must be condensed in our text encapsulation system. Each 

keyword is portrayed as ki where the order of this keyword is i. 

 

7.4.2 The Intermediate Vector 
This is the actual concealed state created from the model's encoder. It is processed utilizing the 

equation (1) given below. In efforts to support the decoder to make valid inferences, this variable 

(vector) attempts to summarize the data for all input components. It functions as the initial 

concealed portion of the model that makes up the decoder. 

 

7.4.3 The Decoder 
The decoder consists of a multi-recurrent system array where each array calculates a value yt at 

time phase t. Each multi-recurrent unit embraces a concealed state and outputs a result along with 

its own concealed state from the previous module. The result stream is a list of all the keywords 

from the condensed content in the developed encapsulation system. Each keyword is denoted as 

yi, where the order of this keyword is i. 

For computing any initial concealed state hi, the formula in [13] is used: 

         (1)  
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Here, it is evident that a prior concealed state is used to calculate the next one. 

The output yt at a time instant t can be calculated using the formula in [13]: 

          (2) 

The result is then computed by utilizing the concealed state at the present time phase along with 

the associated weight Ws. Softmax is utilized to generate a likelihood vector which will assist us 

in deciding the final result (for example, a single keyword answer in the question-answering 

problem). 

7.5 Encapsulator 
 
The DL model then generates an encapsulator that is capable of condensing the content without 

changing the exact meaning of the text. Its performance can be tested using the test dataset. The 

encapsulator generated has a content aware consciousness that plays a key role in keeping the 

meaning of the text intact. 

Content Aware Consciousness (CAC): The key idea behind this mechanism is how much focus 

should be kept on every phrase in the input data so as to create a keyword at time phase t. For 

example: 

Question: What are the factors that have impacted mental health during the pandemic? 

Answer: Covid-19 has spawned multiple global health crisis some have dubbed 

coronasomnia -- an inability to fall asleep or get good quality sleep during the pandemic. 

Along with this, there are multiple levels of stress associated with the pandemic – 



AUTOMATING TEXT ENCAPSULATION USING DEEP LEARNING 
 
 
 

 

28 

financial, health care related and social isolation. All these damage mental health, 

threaten health and quality of life for upto 45% of world’s population. (source CNN news) 

In the inquiry above, the 12th word ‘pandemic’ is related to ‘Covid-19’ and the 4th word 

‘factors’ is related to ‘Coronasomnia’, ‘financial’, ‘health’, ‘social isolation’. 

In this way, rather than taking a gander at all the keywords in the input arrangement, the 

significance of explicit pieces of the text can be emphasized that generate the ideal result. This is 

the fundamental idea behind the Content Aware Consciousness. 

Based on the manner in which the background variable is extracted, there are 2 distinct classes of 

consciousness: 

7.5.1 Global Content Aware Consciousness 

The emphasis is laid on all the positions (all sentences) of the source. In other terms, for extracting 

the supported context variable, all the concealed states of the encoder are taken into account. The 

system uses this global content aware consciousness. 

7.5.2 Local Content Aware Consciousness 

The emphasis is laid on only a few positions (2-5 crucial sentences) of the source. For extracting 

the supported context variable, only a few concealed states of the encoder are taken into account. 

This is how the CAC works: 

 The encoder generates the concealed state (hj) for each time phase j in the source series 

 Likewise, the decoder generates the concealed state (si) for each time phase i in the target 

series 
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 The arrangement score (eij) is calculated based on the source series which is aligned with 

the target series using a function for score estimation. The arrangement score is calculated 

from the source concealed state hj and target concealed state si using the score function, 

which is given by: 

 eij = score(si, hj) 

where eij indicates the arrangement score for target time phase i and source time phase j 

 The arrangement scores are then normalized by using the softmax function to extract the 

CAC weights (aij): 

 

 Now the CAC context variable (Ci) is calculated from the summation of CAC weights and 

concealed states of encoder hj 

 

 The concealed variable Vi is generated by integrating the CAC context variable and the 

concealed state of the decoder at time phase i: 

Vi = integrate(si, Ci) 

 To create the final output yi, the concealed variable Vi is further loaded into the deep 

network,  

yi = deepNet(Vi) 
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Figure 5: System Depicting Encoder, Internal State and Decoder 
 

With the aid of an example, let's comprehend the above-mentioned CAC process. Consider [x1, 

x2, x3, x4] as the input content and [y1, y2] as the output encapsulated text. 

 For each time phase t, the encoder scans the complete input series and produces a set of 

concealed states h1, h2, h3, h4 

 

Figure 6: Data Flow in Encoder 
 
 The decoder scans one time phase offset of the complete target series, and produces the 

concealed state for each time phase s1, s2, s3 
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Figure 7: Data Flow in Decoder 
 

 The arrangement scores e1j are determined using the score function from the concealed 

input state hi and target concealed state s1: 

e11 = score(s1, h1) 

e12 = score(s1, h2) 

e13 = score(s1, h3) 

e14 = score(s1, h4) 

 The arrangement scores are then normalized by using the softmax function to extract the 

CAC weights (aij): 

a11 = ee11 / (ee11 + ee12 + ee13 + ee14) 

a12 = ee12 / (ee11 + ee12 + ee13 + ee14) 

a13 = ee13 / (ee11 + ee12 + ee13 + ee14) 

a14 = ee14 / (ee11 + ee12 + ee13 + ee14) 

 Now the CAC context variable (Ci) is calculated from the multiplication of CAC weights 

aij and concealed states of encoder hj 

 C2 = h1*a21 + h2*a22 + h3*a23 + h4*a24 
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 Concealed variable Vi is generated by integrating the CAC C2 variable and the concealed 

state s2 

 V2 = integrate([s2; C2]) 

 The concealed variable V2 is further loaded into the deep network to generate output y2 

y2 = deepNet(V2) 

y3, y4 and so on are calculated in a similar fashion as shown below. 

 

Figure 8: Deep Learning Model network 
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VIII. RESULTS AND OBSERVATIONS 
 
To evaluate the output of each of the approaches, a recent news snippet is chosen with over 1250 

words, related to Covid-19 as shown below: 
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Original Title: No vaccine for younger adults despite of excessively produced number of doses  

8.1 Approach 1 – Scoring Sentences based on the Word-Frequency  
 
This technique assigns weights to every single word that occurs in the text. For example, if the 

word ‘research’ appears 5 times in the text body, a weight of 5 is assigned to the word. Similarly, 

a holistic score based on the word appearance is assigned to every sentence that occurs in the text 

body. The sentences that have a higher weight are then picked up and used to summarize the text. 
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As shown in the snippet above, the words are tokenized, weights are assigned to all the words and 

the sentence score is computed. To generate the overview, we'll take the top N statements which 

have a score higher than all the other statements. These statements are then chosen to generate the 

encapsulations. 
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The generated encapsulated text: 

 

8.2 Approach 2 – Universal Sentence Encoder for Text Ranking 
 
Text Ranking is similar to PageRank used by Google. PageRank creates a matrix of pages that 

will be most likely be visited next by the user. Similarly, TextRank uses cosine function to 

determine the similarity of 2 sentences to each other. This cosine linear similarity matrix is then 

used to build a tree. The PageRank rating equation is then added to the tree in order to determine 

rankings for each statement. 
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The table below shows the cosine matrix which is used to build a tree for the PageRank algorithm: 

TABLE 1: COSINE SIMILARITY MATRIX 

 

The generated encapsulated text:  

8.3 Approach 3 – Dual bi-directional LSTM  
 
From the previous 2 approaches we can infer that no new text is generated but simply sentences 

are chosen based on the assigned weights and ranks. The sentences are then displayed as output. 

However, these sentences do not capture the essence of the input text and sound vaguely odd 

when read by the user. This is where the developed system beats all the existing systems. This is 

due to use of three lstm layers out of which two are bidirectional and all the layers are interlinked 

to each other. The input text is given to LSTM layer 1 which generates intermediate return 

sequences along with the return state. This is then fed to LSTM layer 2 which generates a new set 

of sequences and state and is then parsed by the LSTM layer 3. The LSTM layer 3’s output is then 
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used as input by decoder that uses SoftMax activation function along with CAC and generates 

new text that captures the holistic meaning of the entire input text. 

 

The generated encapsulated output: 
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To understand how the model performs on both the datasets, analysis of distribution of text length 

is performed and a graph is plotted using matplot. Y-axis represents the total number of 

statements X-axis represents the number of words. 

 

 

 

 

 

 

 

 

Figure 9:  Distribution of text length for Amazon Reviews Dataset  

As seen in figure 9, the average length of reviews ranges from 200 – 400 words per review. 

 

 

 

 

 

 

 

Figure 10:  Distribution of text length for CNN News Dataset 

As seen in figure 10, the average length of news articles ranges from 1000 – 2500 words per 

article. 
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Sample outputs generated for Amazon Reviews dataset with the help of approach 3: 
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Sample outputs generated from CNN news Dataset: 

 

 

As seen from the output above, the original titles and summaries may not depict the exact 

information that the text carries. The encapsulation that is generated using the deep learning 

model captures the holistic meaning of the text. Some outputs generated with this approach may 

not be precise or some might be blank. This is due to the loss encountered during the model 

training and validation phases. 
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8.4 Model Training and Validation Loss  
 

The observations from experiments provide a deep insight into the results. There is a 

notable performance difference between the 3 approaches. The first methodology generates 

moderate results with a marginal score of 67 percent using Word-frequency as a measure, the 

second methodology performed better with the Text Ranking algorithm with a good accuracy of 

78 percent, and the third method has a 93 percent accuracy using the proposed LSTM network. 

The training and test phase losses for each of the models decreases gradually as we move 

from Epoch 1 to Epoch 10. An insight into losses for each of these models helps better understand 

why the approach 3 has high accuracy. For approach 1 and 2, a significant change in validation 

loss even after 10 epochs cannot be seen. 

TABLE 2: Training and Validation Loss per Epoch for Scoring Sentences (Approach 1) 

EPOCHS TRAINING LOSS VALIDATION LOSS 

1/10 8.933 8.900 

2/10 7.297 7.013 

3/10 6.662 6.190 

4/10 6.288 6.121 

5/10 6.088 5.759 

6/10 5.407 5.366 

7/10 5.328 5.049 

8/10 5.076 5.003 

9/10 4.891 4.558 

10/10 4.322 4.219 
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TABLE 3: Training and Validation Loss per Epoch for Text Ranking (Approach 2) 

EPOCHS TRAINING LOSS VALIDATION LOSS 

1/10 8.323 8.157 

2/10 8.091 8.073 

3/10 7.866 7.739 

4/10 7.600 7.577 

5/10 4.945 4.825 

6/10 4.507 4.447 

7/10 4.226 4.140 

8/10 3.505 3.428 

9/10 3.110 3.107 

10/10 3.086 3.079 

 

TABLE 4: Training and Validation Loss per Epoch for Dual LSTM (Approach 3) 

EPOCHS TRAINING LOSS VALIDATION LOSS 

1/10 6.913 6.125 

2/10 6.856 5.751 

3/10 4.909 3.297 

4/10 3.485 2.741 

5/10 3.143 2.729 

6/10 3.077 2.620 

7/10 2.971 2.594 

8/10 2.950 2.524 

9/10 2.854 2.405 

10/10 2.831 2.463 
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8.5 Run-Time Analysis 
 
  The model training sequence is the most time consuming step as the model is being trained 

to read unknown sequences of text and generate a precise output. For the first approach that 

involves scoring sentences based on the word frequency, the time required for model training and 

evaluation is the least. This is why it has the least accurate output. For the covid news snippet with 

over 1250 words, end to end run with the approach 1 takes approximately 25 seconds to generate 

output. Approach 2 which uses text ranking, performs better in terms of generating a precise 

output but its model training and evaluation requires more time as compared to the first approach.  

For the news snippet above, end to end run with the approach 2 takes approximately 30 seconds to 

generate output text. 

  For approach 3, in the very first training phase, the developed system requires the largest 

amount of time to train and evaluate the model. In this first phase, the model training and 

evaluation takes approximately 42 seconds on a small Amazon reviews dataset with over 1300 

records. From the second phase onwards, the run-time decreases as the model gets trained on 

more new data. This model training and evaluation takes approximately 16 seconds to complete in 

the second run. The larger Amazon dataset is over 300MB in size and consists of 100,000 

reviews. The model training and validation on this dataset takes approximately 22 minutes. 

Although the time required to train the model is more, it generates a precise output. For the covid 

news snippet above, the approach 3 takes approximately 2 milliseconds to generate the 

encapsulated text. The table 2 displays the runtime analysis information for all the approaches. 
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TABLE 5: Run-time Analysis  

Input Data Approach Total Run-time for 
Model Training and 

Evaluation  
[Time elapsed 

(hh:mm:ss.ms)] 

Time to generate 
Output  

(Seconds) 

    

 Scoring Sentences 
based on the Word-
Frequency 

 0:00:24.746911 24.746911 

News Snippet Universal Sentence 
Encoder for Text 
Ranking 

 0:00:30.07571 30.07571 

 Dual bi-directional 
LSTM 
 

 0:00:30.07571 2.097957 

    

Amazon Reviews 
Dataset 1 

Dual bi-directional 
LSTM 

0:00:42.349841 1.086803 

Amazon Reviews 
Dataset 2 
 

Dual bi-directional 
LSTM 

0:22:46.944088 12.744386 

    

CNN News Dataset Dual bi-directional 
LSTM 

 0:03:48.934982 1.097957 

 

8.6 Comparison of the Results 
 
  All the above approaches performed differently with different algorithms used in each 

implementation. The accuracy is a good measure for evaluating the models, along with the F1 

scores that can be used for comparison. The comparisons of accuracy and F1 scores from the 

results of each approach, led to insightful conclusions. Scoring Sentences based on the Word-

Frequency in approach 1 has a low performance and accuracy of 67%. In the second approach, 

Universal Sentence Embeddings have a slightly higher performance as compared to approach 1 
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with an accuracy of 78%. The LSTM model in approach 3 performed the best as it closely 

resembles a human summary and has the highest accuracy of 93% with high F1 scores. 

TABLE 6: Comparison between Three Approaches 

 Accuracy Precision Recall F1 

Scoring Sentences 
based on the Word-
Frequency 

67% (+/- 0.537) 65% 61% 66% 

Universal Sentence 
Encoder for Text 
Ranking 

78% (+/- 0.029) 77% 75% 76% 

Dual bi-directional 
LSTM  

93% (+/- 1.046) 92% 91% 93% 

 

The following remarks can be drawn from the findings: 

Remark 1: The first approach simply scores all the sentences and selects the highest weighted 

sentences to display as summarized output. We can infer from Table 2 that since the training and 

validation phase losses are high, this model has an average precision score of 65%. The holistic 

meaning of the text might not be captured by this method. Even though it has a good F1 score, the 

recall is pretty poor for this approach. 

 

Remark 2: The second approach has a good accuracy of 78% due to moderate training and test 

phase losses during the 10 Epochs. This is mainly because of the Text Ranking grid matrix. Text 

Ranking uses cosine function to determine the similarity of 2 sentences to each other. This cosine 
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linear similarity matrix is then used to build a tree. The PageRank rating equation is then added to 

the tree in order to determine rankings for each statement. The summaries generated by this 

approach has low recall but high precision and F1 scores of 77% and 76% respectively.  

 

Remark 3: The proposed approach as demonstrated in the experiments, has the highest accuracy 

out of the 3 approaches. This is because it has the lowest training and validation phase losses 

during the 10 epochs. This approach generates sentences based on the natural language 

understanding with the help of SoftMax and CAC. This approach more closely resembles a 

human approach rather than a machine generated approach. This is why it has a high precision of 

92% and F1 score of 93%. Even though the recall is less, the overall accuracy of the approach 

turns out to be greater than 93%. 
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IX. CONCLUSION AND FUTURE WORK 
 
 

The modern age of innovation has begun as a result of the rapid advancement in the realms 

of deep learning. Most of these innovations are automated and require little to no human 

intervention in generating precise output. Text encapsulation means capturing the meaning of the 

sequence of text rather than just summarizing the text. Existing text summarization systems like 

approaches 1 and 2 simply remove pronouns, some random words and summarize the articles 

based on sentence weights. These summarizations can be completely different in meaning when 

compared with the original article. The developed model captures the exact meaning of the entire 

text by parsing the input data through multiple LSTM layers and generates its own encapsulated 

text. Since this model has high precision of 92% and F1 score of 93%, the generated text closely 

resembles a human generated one or in some cases even better than the human generated ones. 

 
In a world where pandemic is prevalent for a long time and news with mis represented 

headings lure people into disappointment, it is more important than ever to have a robust text 

encapsulation system. The developed model can be further refined by using a large dataset in 

combination with a quadri-bidirectional LSTM network. By making use of the beam scanning 

technique, this model can be further improved, loss can be reduced and higher output accuracy 

can be attained. The developed system’s applications can be extended to academia as well where 

it can be used by budding researchers to encapsulate brief articles into some well-structured short 

descriptions or titles. This research project provides an overview on existing systems and proposes 

an approach to automate the text encapsulation process. The series of tests performed on the 

developed model using heterogeneous datasets make it robust, consistent and highly efficient as 

compared to existing systems. 
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