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Abstract 

 

Machine learning has been trending in the domain of computer science for quite some 

time. Newer and newer models and techniques are being developed every day. The 

adoption of cloud computing has only expedited the process of training machine learning. 

With its variety of services, cloud computing provides many options for training machine 

learning models. Leveraging these services is up to the user. Serverless computing is an 

important service offered by cloud service providers. It is useful for short tasks that are 

event-driven or periodic. Machine learning training can be divided into short tasks or 

batches to take advantage of this. Due to the nature of serverless computing, there are 

certain limitations imposed by the cloud service provider such as execution time and 

memory. This research proposes standalone solutions to overcome the challenges faced 

by serverless computing in training machine learning models. The research further 

combines these individual solutions and proposes a system for leveraging serverless 

computing for training a machine learning model that incorporates distributed machine 

learning.   
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1. Introduction 

  Machine learning and artificial intelligence have been the latest trend in 

computer science for some time. Machine learning enables computers to learn trends 

and patterns in data that are provided during the training phase. Computers are 

trained to make decisions on new incoming data based on past data. These decisions 

are made without having to explicitly code for the decision-making process and are 

based only on the knowledge gained by the computer during the training. The training 

process is time consuming and resource intensive. Resources such as GPU, RAM, 

and CPU are the main components that are needed for resource intensive training. 

Owning these resources individually is expensive.  

  Cloud computing has become a viable solution to tackle this problem. Cloud 

computing allows users to use resources for a fraction of the cost by leasing them for 

the required duration. As the adoption of cloud computing increases, more and more 

models are being trained on the cloud. As a result, researchers and developers are 

using more and more cloud instances that require constant monitoring and upkeep. 

It is also important to note that the cloud service provider is only responsible for the 

underlying hardware in such services. The operating system management, updates, 

patches, and other software responsibilities belong to the user. This also includes 

managing the libraries and their versions. Serverless computing is a type of service 

that allows the user to focus their efforts on developing solutions. Cloud service 

providers abstract the details of underlying hardware and software infrastructure and 

provide the user with a handful of options that are relatively easy to fine tune 

according to the need. This becomes useful for the developer as they can invest more 
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of their time into focusing on the problem rather than solving redundant problems 

related to the server. Additionally, serverless computing can be done in isolated 

environments. This can be leveraged to test multiple hypothesis in parallel which 

becomes an advantage for the developer.  

 

1.1  Problem Statement 

  The goal of this project is to develop a solution to train a machine learning 

model using serverless computing. Using serverless computing sounds compelling 

but comes with its own set of challenges. Firstly, since the underlying hardware and 

software is the responsibility of the cloud service provider, the execution time of the 

code is capped at a few minutes. This adds challenges for training that exceed this 

time limit. Secondly, the amount of storage that this service provides is limited to 

Megabytes (MB). This makes the use of libraries such as PyTorch and TensorFlow, 

which are well known for machine learning and artificial intelligence, difficult to use 

as they occupy space that can be used for other purposes. Another problem that 

limited storage creates is that the trained model size can exceed the memory limit. 

Thus, solving these challenges is critical in the adoption of serverless computing to 

train machine learning models.  
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2. Motivation 

  Machine learning has been part of almost all possible applications involving 

computers. It has helped in forecasting prices of commodities [1] as well as predicting 

the possibility of cancer in a medical body scan [2]. These kinds of applications 

require sophisticated machine learning models that can accurately fulfill their desired 

goal. Not doing so can result in a big financial loss or lead to a loss of human life. As 

a result, developers and researchers who train these models must train and choose 

multiple models to identify the best performing model. Training multiple models 

requires compute resources that are expensive to purchase. The recurring cost of 

electricity and maintenance is costly too. As a result, it becomes difficult to test 

multiple hypotheses with such restrictions. Cloud service providers that own and 

manage these resources offer them in a variety of forms at a fraction of the original 

cost. The services offered by the cloud service providers vary in the responsibility 

distribution between them and the user. These services can be grouped under three 

categories namely, Infrastructure as a Service (IaaS), Platform as a Service (PaaS), 

and Software as a Service (SaaS).  

  The services that fall under IaaS allow greater flexibility as the user has a 

wide variety of customization options that can be chosen. Leveraging the full potential 

of these services for practical applications is the responsibility of the users. Creating 

a virtual machine in the cloud is an example of IaaS. User has the option to choose 

the operating system, the disk space, CPU, and RAM size among other settings. 

PaaS allows the users to focus more on the application rather than the underlying 

infrastructure. The choices offered to the users are restricted to the language and the 
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compute capacity required to run the application. The cloud service provider 

manages the remaining infrastructure. An example of this service can be hosting 

services that allow the users to host websites on their infrastructure. The users 

provide the code required to run the application and the remaining part is handled by 

the hosting service. SaaS offers readymade software for the users to use. Users do 

not have to write any code or manage any infrastructure. Gmail is an example of 

SaaS where the users do not have to manage any mail servers, nor do they have to 

manage any infrastructure. They can directly send and receive emails through their 

accounts. 

  Serverless computing, or Function as a Service (FaaS), is a service that 

was designed for short-running tasks. These tasks would have been periodic, or 

event driven to be able to trigger the code. An application of serverless computing is 

the backend of a web application [3]. Web requests are event-driven and short-lived 

and perfect for such a use case. With serverless computing, one can integrate other 

cloud services and provide a robust application for users. However, the advantage of 

serverless computing is that it hides the server management from the user and allows 

them to focus on the task at hand like PaaS. This advantage is beneficial to 

developers who can focus on the application without worrying about server 

management. Bringing this event-driven property of serverless computing to training 

machine learning models is challenging. As discussed above, serverless computing 

brings time and memory challenges that need to be tackled, but otherwise seems to 

be a viable alternative to the mainstream training process. 
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3. Related Work 

  Ishakian et al. [4] have already tested the idea of using serverless 

computing in machine learning. Their approach used serverless computing only in 

the inference phase. Since the inference phase uses less computation power than 

the training phase, their study finds it is suitable to use serverless computing for 

serving inference requests although it faces the issue of cold start. Serverless 

computing services run in a container and usually have a latency associated with 

starting the container which is called cold start. Subsequent requests of the task 

reuse the same container reducing the latency and speeding up the process. 

  Feng et al. [5] have used serverless computing for training a neural network. 

Their approach uses a data-parallel approach to serverless computing. They divide 

up the data into multiple chunks and each serverless instance works on the set of 

data and updates the parameters accordingly. Their approach only involves training 

models that go beyond the time constraints of serverless computing. [6] shows the 

model that they chose. They train a Convolution Neural Network to classify images. 

The size of the model turns out to be only a few megabytes which is not a storage 

challenge even for serverless computing. Their approach uses a parameter server 

which is a serverless instance of its own that serves the parameters of the model to 

the worker serverless instances. To reduce the number of transfers of parameters, 

the authors combine some of the worker nodes to be the parameter server. However, 

in case one of the instances is a parameter server and exceeds the time of training 

then the remaining workers might not be able to send their updated values. This might 

result in a model that was not trained.  
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Fig 1. Understanding the approach of Feng et al [5] 

 

  Fig. 1 shows the approach taken by the authors. Here, W1, W2, W3, W4 

are worker serverless instances that perform the computation on their respective 

datasets. After the computation is done, W2 and W4 act as the parameter server and 

accept updated parameters from W1 and W3, respectively. Once they receive the 

updated parameters, they update the parameters with the ones that they have 

calculated. Following this, W4 acts as the parameter server and W2 sends the 

updated parameters of W1 and W2 to W4 which has the updated values of W3 and 

W4(itself). After receiving the parameters, W4 updates the parameters and we have 

the updated parameters from all worker nodes. However, in this case, if either of the 

parameter server instances fails, the work will have to be done again leading to extra 

efforts.  
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4. Methodology 

  Successfully training a machine learning model using serverless computing 

will involve overcoming the challenges of memory and time constraints. These are 

the main challenges faced by serverless computing apart from which there is 

compute capacity. For this project, we will focus on solving this challenge on AWS 

Lambda [7] which is the serverless computing service offered by Amazon Web 

Services. The compute capacity of AWS Lambda increases with an increase in its 

memory configuration. Hence, having a higher memory serverless function might 

benefit from the higher compute power at its disposal. We address the service AWS 

Lambda as Lambda, with an uppercase L, and the individual functions in the service 

as lambda, with a lowercase L. 

 

4.1  Storage 

  The challenge of storage arises from the fact that AWS Lambda only has 

512 MB of non-persistent memory during runtime in the “/tmp” directory. Any data 

stored during runtime will not be available during subsequent executions. As a result, 

it becomes impossible to dynamically load the libraries such as PyTorch [8] or 

TensorFlow [9] during runtime.  

 

4.1.1  Customizing AWS Lambda 

  Perez et al. [10] propose a solution to custom create a Docker image and 

upload it to AWS Lambda. This method allows us to load the required library and, if 

needed, the dataset in the image. This reduces the time and latency in fetching the 
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data as the data is locally available. However, with this approach, we also must add 

the AWS Software Development Kit (SDK) as well as the library that we will use for 

training. This also required the use of an AWS owned repository for container images 

called Elastic Container Registry (ECR) [11]. AWS ECR is like Docker Hub [12] in the 

sense that it hosts the container images created by the user. 

  Another approach we can take is adding layers to AWS Lambda. Layers 

are zip files that are added to the lambda function. The layers can hold the libraries 

in the layer. The contents of the layers are then available in the “/opt” directory from 

where we can use the libraries. With this approach, we can quickly develop the code 

and make minor changes without uploading large amounts of data for small changes. 

 

4.1.2  AWS Simple Storage Service 

  Another approach will be to access AWS Simple Storage Service, more 

commonly known as S3[13]. It allows object storage which can be easily accessed 

by using AWS SDK. AWS SDK’s are readily available in all AWS Lambda runtimes. 

We can store the dataset in an S3 bucket and then retrieve it as and when needed. 

This allows us to free the space for the dataset. S3 also supports byte streaming 

which can be used to store the model. However, we will need to create a file or object 

for every worker and then have additional workers combine those files. This adds 

overhead to the process. S3 does not allow object locking where one process can 

update the model. Hence it becomes difficult to use the same object amongst all 

workers. 
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4.1.3  AWS Elastic File Storage 

  Alternatively, rather than having external storage, we can leverage the 

services offered by AWS to solve the issue of storage. As pointed out by Sindi et al. 

[14], we can extend the storage by using Elastic File Storage (EFS) [15] which is a 

network file system that can be mounted in AWS Lambda. EFS is fully managed by 

AWS and is scalable meaning that it is serverless and can grow and shrink according 

to the need of the user. AWS Lambda uses a mount point in EFS to allow the file 

system to be mounted. This gives lambda the required additional storage for the 

model training. EFS also supports file locking including both shared and exclusive 

locks. This allows multiple workers to update the file, while locking, without having to 

worry about the consistency of the file. As a result, we can update the contents of the 

model without having the overhead of combining multiple files into one. 

 

4.2  Time  

  Another major factor affecting the adoption of serverless computing is the 

time constraint on the execution of code. Since the user is not managing the 

underlying server, the user does not have access to configure the time for which the 

code should run. This is done for security purposes such that any malicious code 

cannot run for long durations on cloud service provider managed servers. The cloud 

service provider, AWS in this case, does allow the user to configure the maximum 

time the code can be executed. However, that is limited to a maximum of 15 minutes.  
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4.2.1  Sequential Execution 

  We can use serverless instances to call one another and pass the current 

state of training. The caller instances pass the parameters of the model as an event 

and the called instance receives them and continues training from that point. Once 

the caller has successfully called the other function, it can be terminated. The called 

instance now has the responsibility of continuing the training. This can be continued 

till the result is achieved. This means that we will be training in serial fashion meaning 

one instance after another. As a result, we will take similar or more time depending 

on the overhead of calling instances successively. Fig 2. shows sequential execution 

of lambdas for machine learning. 

 

Fig 2. Demonstrating the sequential execution method  

 

4.2.2  Orchestrated workflow 

  Orchestration systems build orchestrated workflows based on business 

logic. These workflows control the execution of FaaS services provided by the cloud 

service provider. AWS has an orchestration system called AWS Step Functions [16]. 

AWS Step Functions allows conditional execution as well as parallel execution of 
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AWS Lambda based on certain conditions. Lopez et al [17] compare the different 

orchestration systems for FaaS by their respective cloud service providers. Their 

study also finds that state can be transferred between instances up to 32KB. Models 

cannot be passed in such short memory constraints. However, we can store the 

model into an S3 bucket or EFS as discussed in section 4.1.2 and section 4.1.3 

respectively. We can then send the location of the model while transferring the state. 

This can be achieved with the 32KB limit. Another point to be noted here is that the 

charges for using AWS Step functions might be steep when training large models. 

 

4.3  Training Methodologies 

  Selecting the appropriate methodology for training is key to getting the result 

faster. Serverless computing poses challenges to traditional training methods. 

Traditionally, training a model involves all the data and required model attributes 

available to the training process. With serverless computing, based on the computing 

method, when the computing transitions from one instance to another, these 

attributes need to be replicated for the training to proceed. This poses a challenge to 

the serial mode of execution discussed in section 4.2.1. Also, the serverless 

computing instances are stateless, meaning that no information about the current 

execution will be retained by the next execution. Taking advantage of this property, 

we can focus on the distributed training of the model.  

 

4.3.1  Distributed Training 

  Training of the model involves iterating over the dataset and updating the 
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weights of the model. The frequency at which the weights are updated depends on 

the algorithm that we are using to update the weights. Gradient descent is a popular 

choice for such problems. Gradient descent has three variants, namely Batch 

Gradient Descent (BGD) [18], Stochastic Gradient Descent (SGD) [19], and 

Minibatch Gradient Descent (mini BGD) [20].  

  BGD iterates over the entire dataset to update the weights of the model. It 

considers all the data points available in the given dataset before adjusting the 

weights. For large datasets having millions of data points, it takes a long time for one 

iteration. This process must be repeated over and over each time on all the data 

points to reach the desired result. As a result, this process is time-consuming. 

Considering the time challenge on serverless computing, the process of batch 

gradient descent might go beyond the permissible execution time.  

  SGD provides a faster way of updating the weights. In contrast to BGD, it 

considers each data point as a whole dataset and updates the weight after each data 

point. This gives instant feedback to the developer. It may seem like this approach is 

the best since it gives instant feedback and tunes the weights based on individual 

data points, but that is not the case. Since it is considering all the data points equally, 

it is also considering the outliers. Outliers are the data points that do not follow the 

general trend of the entire dataset. This allows outliers to distort the weights of the 

model and can harm the training process. Although SGD gives instant feedback, the 

outcome of BGD is better than SGD. SGD also proves to be difficult to implement in 

a distributed environment. Every update requires locks for updating the parameters 

which lead to overhead. It is found that the process of updating parameters with locks 
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slows down the process as processes end up waiting for the lock rather than doing 

actual computation. If a serverless instance ends up waiting for a lock, then it might 

cross the maximum permissible time and we might have to repeat the process. This 

adds extra work for computing and wastes resources. 

  Mini BGD takes the best of both worlds and combines them into one 

algorithm. It randomly samples the dataset into smaller groups. It can be noted that 

each smaller group will represent the entire dataset when divided at random. Each 

batch will now be processed as an entire dataset, and the weights will be updated 

after one batch rather than the entire dataset. The process, however, involves 

iterating over the entire dataset. This process helps reduce the memory requirements 

of AWS Lambda. The entire dataset does not have to be in the memory. Only the 

smaller batch that is currently being used can be in RAM while others can be in 

persistent storage. This allows serverless instances to work only on part of the data 

and can be executed within the permissible time limit. However, choosing the correct 

size for the mini batches becomes a trivial problem.  

 

4.3.2  Parameter Server 

  Li et al. [21] have discussed the idea of having a centralized update and 

distribution of the model weights by using a parameter server. This server is 

responsible for updating the parameters when new parameters are received from the 

worker nodes and distributing the parameters when the worker nodes ask for them. 

Each server maintains a master copy of the parameters that it is responsible for and 

then also maintains duplicates of the parameters from other servers for fault 
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tolerance. In the context of serverless computing, we can have a serverless 

computing instance act as the parameter server and update and distribute the values 

of the updated weights. However, this approach means that we will always have a 

serverless instance running for that purpose. Instead, we can distribute the 

responsibility of updating parameters to the individual serverless instances. The 

instances do not have to propagate the weights as all the updates will occur on a 

central copy of weights that can be done via locks. The instances will read the 

parameters and then work on updating the parameter and update the parameters 

when the computation is done. While it is computing, it will release the locks and 

allow other instances to read or update the parameters.  

  Contrary to the general intuition of not allowing updates while working on 

the current data that is currently being processed, it is safe to allow updates to the 

model weights in machine learning. Niu et al [22] propose a novel idea of parallelizing 

SGD while not having locks when updating the weights. Their research shows that 

most updates to the weights of the model are sparse. The update only changes a set 

of parameters. As a result, their algorithm, called Hogwild, achieves results like the 

serial version of execution. Fig 3. explains their approach of using parameter server 

for training models. 

 

Fig 3. Explanation of training using parameter server. 
Source: Niu et al. [22] 
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5. Proposed System 

5.1  Architecture 

  Looking at the different approaches mentioned in section 4, we can see that 

some options are well suited for certain tasks, whereas other options are well suited 

for other sets of tasks. By combining the required properties of each approach that 

suit our tasks, we can achieve a system that is well suited for achieving the desired 

result. To tackle the issue of storage, we can create a system with a combination of 

EFS and Lambda. We eliminate the use of S3 as it adds an extra overhead of 

managing multiple workers. Additionally, S3 follows a mechanism of write once read 

many (WORM) meaning that data can only be written once. For making changes to 

the file, the entire file must be over-written. As a result, for solving the issue of 

storage, we will use a combination of customizing the lambda and adding storage 

using EFS. We will store the dataset, libraries, and model on EFS.  

  For tackling the time constraints, we can make use of a combination of serial 

and distributed workers. Initially, we start with a set of workers working parallelly in a 

distributed fashion. Each of them will work on their own set of data. Once the training 

process is done, the workers will store the gradients in a directory in the EFS. These 

gradients will then be picked up by the lambda function that combines the gradients 

and updates the weight. Once the weight is updated, the combining lambda again 

invokes the workers, and the process continues. The number of workers working in 

parallel will be decided by parameter values that we will pass at the start of training.  

  For the training methodology, we will be using a distributed training 

approach using minibatch gradient descent (mini BGD). We will distribute the dataset 
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amongst the number of worker nodes and each node will process and update the 

weight of the model. We plan to incorporate the portion of the parameter server into 

each worker node thereby eliminating the need for a standalone server. This reduces 

the networking overhead of passing and retrieving parameters and can be directly 

fetched from the mounted storage.  

 

 

Fig 4 (a). Architecture for starting the training process. 
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Fig 4 (b). Architecture for combining the gradients. 

 

  Fig 4 (a) and (b) show the architecture of the proposed system. Fig 4 (a) 

focuses on the architecture for initiation of the training process. Fig 4 (b) focuses on 

the architecture for combining phase and continuing the training process. The 

architecture consists of an AWS Elastic File System, Lambda, and DynamoDB. EFS 

stores the libraries used for machine learning, the data set required for training, the 

gradients, and the model while the training is in progress. The entire code for the 

lambda is written in the same lambda function. The same lambda function is re-used 

as a parameter server for calculating the gradient and combining the gradients once 

the calculation step finishes. Each lambda function updates the DynamoDB table to 

give updates to the user. Users can track the current state of the training process 

through the data inserted into DynamoDB.  
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5.1.1  Training 

 To start the training process, we need to invoke the lambda for the first time. 

The function takes an event to start, and we can provide this event manually through 

the console. This event is a JSON object and should contain the key “start” to begin 

the training process. Additionally, it should also contain the number of workers that 

need to be used for the training.  

 

Fig 5. Initial invocation event 

 

 Fig 5. shows the invocation event for the training process. Once the lambda 

receives the event, it invokes the required number of workers and assigns each of 

them with a worker ID. Workers IDs are assigned from 0 to N-1 where N is the number 

of workers requested. To start the workers, we create an event in the initial lambda 

itself. The worker lambdas require their worker IDs in the event along with the total 

number of workers in the training process. We also pass the information regarding 

the number of epochs that are done.  

 

Fig 6. Worker invocation event 
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 Fig 6. shows the invocation event for a worker. The worker lambda receives 

this event and starts by loading the data that is saved in the EFS. Initially, it loads the 

weights of the pre-trained model and then starts running the training on the dataset. 

It saves the gradients on the EFS for each step. Before finishing execution, the 

lambda function combines all its gradients to reduce the workload of the combining 

lambda. After the training is complete, only one lambda function initiates the 

combining phase. Each worker checks for the number of gradient files present on 

EFS. If they are equal to the number of workers, then it creates an event for the 

combining phase. 

 

Fig 7. Combining phase invocation event 

 

 Fig 7. shows the event for starting the combine phase. The event phase 

contains the key “combine” to let the lambda function know that it is in the combine 

phase. In this phase, it sums all the gradients generated by the worker lambdas and 

then proceeds to update the weight based on the formula given by Li et al. [21]. The 

combine phase also determines if the training needs to proceed or can be stopped. 

 

5.2  Setup 

  To setup the entire architecture, we use CloudFormation which allows us to 
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create resources in AWS using templates. Users can use the templates to deploy the 

same infrastructure in multiple accounts while ensuring that the architecture remains 

the same. Through the template, we create resources, install libraries and preprocess 

the dataset.  

 

5.2.1  Resources 

  We need to create resources in addition to AWS Lambda and AWS EFS to 

be able to run our experiments. These resources are provided by AWS. While 

creating the resources, we keep security in mind and follow guidelines provided by 

AWS to have a secure environment. We also have Identity and Access Management 

(IAM) roles that permit only selected entities to access the filesystem. Fig 8. shows 

the full architecture diagram which involves other AWS services. The resources 

needed for this experiment are as follows: 

• Virtual Private Cloud (VPC) 

VPC is a logical boundary for isolation of resources in an AWS account. VPC 

acts as a private network for resources to interact. Each user can have their 

VPC and resources inside them to allow independent work or work in the same 

VPC to collaborate. 
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Fig 8. Full architecture diagram 

• Subnet 

Subnets are virtual subnetworks within a VPC. These are smaller logical 

partitions of the VPC and are used by resources to interact. We will need 2 

types of subnets: 

o Public subnet 

Resources in these subnets have access to the internet. 

o Private subnet 

These subnets do not have access to the internet. Internet access can 

be provided by routing the requests through a public subnet. Primarily 

EFS and Lambdas will be deployed in this subnet for security purposes. 
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• NAT Gateway 

Network Address Translation (NAT) Gateway is used to provide internet 

access to private subnet. It forwards the request to the destination while 

masking, or translating, the IP of the resource requesting it.  

• Internet Gateway 

Internet Gateway provides the access to the entire VPC. It allows access to 

public subnets and the NAT Gateway to connect to the internet.  

• Elastic File System 

The filesystem that will be used for storing the dataset, libraries, and the 

model. It will also store the gradients while the training is in progress. 

• Mount target and security groups 

Mount targets are logical mounting points of EFS that allow other resources to 

mount the filesystem.  

Security groups act like firewalls and allow the whitelisted sources while 

denying any other traffic. 

• DynamoDB Table 

DynamoDB table is used to monitor the progress of the ongoing training 

process. We can store the epoch information as well as the loss values. 

• Lambda and IAM Role 

Lambda is used to train the model. Any lambda that is trying to access the 

filesystem requires permission to do so. IAM role has permissions that allow 

lambda to access the filesystem. To keep the architecture secure, we only 

allow Lambda to assume the role and no other service can use the role. 
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5.2.2  Libraries 

  While setting up the resources, we also install the libraries into the EFS for 

the lambdas to access. We install the libraries onto the EFS which allows us to go 

beyond the 512MB limit of Lambda. We can install popular machine learning libraries 

such as PyTorch [8] and Tensorflow [9]. These libraries can be shared amongst 

multiple developers through the same EFS thereby reducing dependency conflicts. 

All the developers use the same version and have a uniform development 

environment. The libraries installed for this project are mentioned below: 

• Boto3 (v 1.17.39) 

• Keras (v 2.4.3) 

• Matplotlib (v 3.4.0) 

• NumPy (v 1.19.3) 

• Open CV (v 4.5.1) 

• Pandas (v 1.2.3) 

• Pickle (v 0.0.11) 

• Pillow (v 8.1.2) 

• Scikit Learn (v 0.24) 

• SciPy (v 1.6.2) 

• TensorFlow (v 2.4.1) 

• Urllib3 (v 1.26.4) 
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5.2.3  Dataset 

  For this experiment, we use the CIFAR10 dataset [23]. The dataset contains 

60,000 images divided into 10 distinct classes. Each class has 6000 images. The 

dataset is divided into 50,000 images for training and 10,000 images for testing. Fig 

9. shows 30 sample images from the dataset. 

 

Fig. 9 Sample dataset. 
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Fig 10. Preprocessing of the dataset. 

    

  Fig 10. shows the preprocessing of dataset. The dataset is downloaded and 

extracted in tar format to the EFS directly. The extracted data is divided into 6 files: 5 

files for test data and 1 file for validation. These files are stored in pickle format and 

requires the pickle library for reading the data. To save time during each lambda 
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execution, we read all the data during the setup process and preprocess the data. 

Preprocessing includes resizing the images to fit the input of the model as well as 

one-hot encoding the output labels. The train and test images are then converted to 

NumPy arrays for more efficient storage. We then store the data in four separate files. 

One file each for training data, training labels, test data, and test labels. These files 

can be read faster and save time since the lambda must read fewer files each time. 

Table 1. shows the time taken to read files from untarred data and NumPy files. 

 

Table 1. Time delay in reading files 

 UNTARRED DATA (in seconds) NUMPY DATA (in seconds) 

RUN 1 4.07 2.04 

RUN 2 3.43 1.76 

RUN 3 4.80 2.17 

 

 

 

 

 

  



Machine Learning Using Serverless Computing 

27 
 

6. Experiments 

6.1  Requirements 

6.1.1  Hardware Requirements 

 We use 2 different computing machines during the experiments. They are: 

• Machine 1: AWS Lambda (RAM: 1GB – 10GB; 1 GB increments) 

• Machine 2: AWS EC2: t2.xlarge (4 vCPU, 16 GB RAM) 

 

6.1.2  Software Requirements 

  We use python3.7 as the programming language for the experiments. The 

libraries discussed earlier are installed using python’s package installer pip. The 

libraries are installed on EFS and shared amongst all the machines to have identical 

training and testing environments to prevent any undue advantage.  

 

6.2  Model 

  We use VGG19 [23] for experimenting with the proposed system. VGG19 

has a trained model size of 549MB [24]. This size goes beyond the 512MB limit of 

AWS Lambda and is used for this purpose. We decide to perform transfer learning of 

the VGG19 model. Transfer learning takes more than 15 minutes which is the 

maximum permissible runtime of AWS Lambda.  
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Fig 11. VGG19 [23] with new SoftMax layer. 

 

  Fig. 11 show the layers of the VGG19 model with the modified SoftMax 

layer. The input size is an image or array of dimensions (224, 224, 3). The first two 

values are the width and height of the image and the third value is the number of 

color channels. Here 3 indicates that there are three color values per pixel. The 

CIFAR10 input, for this experiment, must be resized from 32 x 32 to 224 x 224. The 
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images are already in three channels and no further modification is required here. 

The resized images are stored as NumPy arrays in EFS. After the input stage, there 

are two 3 x 3 convolution layers with 64 filters. The output of the convolution layers 

goes into a max-pool layer. Max-pool layer has a filter of size 2 x 2, and it generates 

an output of size 112 x 112 x 64 from input size from 224 x 224 x 64. This output 

goes into two 3 x 3 convolution layers with 128 filters and a max-pool layer to get 56 

x 56 x 128 output. This is repeated for four 3 x 3 convolution layers with 256 filters 

with max-pool layer and twice for four 3 x 3 convolution layers with 512 filters and 

max-pool layer to get the final output from the convolution neural network part to get 

an output of 7 x 7 x 512. This input is flattened fed into a fully connected layer with 

4096 outputs having ReLU activation. This is again passed through a fully connected 

layer before passing it through the final SoftMax classifier which classifies the input 

image into a category. 

 

6.2.1  Transfer learning 

  Transfer learning is a method where a model previously trained on a dataset 

is customized to work on our dataset. The datasets must be similar in features for 

this approach to work. The pre-trained model that we use for our experiment is a 

model trained on ImageNet dataset [25]. ImageNet consists of more than 21,000 

classes. For the CIFAR10 dataset [23], we need the feature extraction part of the pre-

trained model. As a result, we swap out the final SoftMax classification layer with 

1000 outputs and introduce a new SoftMax classification layer with 10 outputs which 

needs to be trained. We freeze the weights of the previous layers such that they are 
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not affected during the training process. 

 

6.2.2  SoftMax layer 

  We swap out the SoftMax layer of the pre-trained model for a SoftMax layer 

that outputs 10 classes. SoftMax classifier converts the input into probabilities and 

then normalizes them. The normalized output lies in the range of 0.0 to 1.0 and the 

sum of all the outputs is 1.0. The output index with the highest value is the predicted 

class. We need to train this layer during our transfer learning so that we can predict 

the output based on the 10 classes that we have in our dataset. 
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7. Results 

7.1  Lambda Configuration – Time  

  The first configuration that is adjustable is the runtime duration of the 

lambda function. The minimum runtime is 1 second and the maximum is 15 minutes 

or 900s. We keep the RAM at 10240 MB which is 10 GB to avoid any conflicts due 

to memory. We experiment the setup on 1-minute intervals to find the optimum 

runtime configuration. We set 20 steps per epoch for this experiment. Table 2. lists 

the parameters for the experiment. 

 

Table 2. Parameters for finding optimal runtime. 

Parameter Value 

Language Python3.7 

Memory 10 GB 

Steps 20 per epoch 

Epochs 5 

Batch size 8 

Time duration 1 min increments 

(Min: 1s, Max: 15m) 

Number of workers 1 
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Table 3. Results for optimal runtime for AWS Lambda. 

Runtime Duration (in minutes) Epochs Steps Total steps 

1  0 0 0 

2 0 4 4 

3 0 9 9 

4 0 15 15 

5 1 0 20 

6 1 5 25 

7 1 11 31 

8 1 17 37 

9 2 2 42 

10 2 7 47 

11 2 11 51 

12 2 15 55 

13 2 19 59 

14 3 4 64 

15 3 8 68 

   

  Table 3 shows us that we can achieve 3 epochs and 8 steps or 68 steps of 

training per execution. This is achieved with the parameter values in Table 2. For 

each additional minute added to the execution, we get additional four to five steps. 

To maintain a consistent epoch count, we will set the epochs per worker to 3 and 

leave additional time aside in case a batch takes longer than expected. 
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7.2  Lambda Configuration – Memory 

  The next configuration that can be changed for the lambda function is the 

memory configuration. The minimum amount of memory that a lambda function can 

have is 128 MB and the maximum is 10240 MB or 10 GB. We experiment with the 

setup on 1 GB increments and use the maximum memory used log provided by AWS 

for each execution of the function. We keep the runtime at 15 minutes to test the 

memory requirements during the entire process. We take the maximum number of 

epochs. Table 4. lists the parameters for the experiment. 

Table 4. Parameters for finding optimal memory value. 

Parameter Value 

Language Python3.7 

Time duration 15 minutes 

Steps 20 per epoch 

Epochs 3 

Batch size 8 

Memory 1 GB increments 

(Min: 128 MB, Max: 10 GB) 

Number of workers 1 
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Table 5. Results of optimal memory value for AWS Lambda. 

Memory (in GB) Epochs Steps Total Steps Time 

1 0 0 0 Out of Memory 

2 0 0 0 Out of Memory 

3 0 0 0 Out of Memory 

4 0 1 1 Out of Memory 

5 2 16 56 15 minutes 

6 3 0 60 14min 26s 

7 3 0 60 13min 48s 

8 3 0 60 13min 05s 

9 3 0 60 12min 20s 

10 3 0 60 11min 42s 

 

  From Table 5, we can see that any memory configuration above 5GB can 

give us training results for 3 epochs under 15 minutes. For 5GB memory, we can 

train the model, but we are not able to complete 3 epochs. We consider the 8GB 

memory option as an optimal memory configuration as we can get 2 minutes of buffer 

time in case, we were to exceed the observed time.   

 

7.3  Number of workers 

  We will be running multiple workers in parallel to achieve faster training 

times. To get the most out of the parallelism, we need to decide the optimal number 

of workers. In this experiment, we will run multiple workers in parallel and look at the 
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total time required by setup to complete the training process. We start by running only 

one worker which is a linear approach where the lambda keeps calling itself linearly. 

We then increase the number of workers exponentially up to 32 workers in parallel. 

The epoch count here is the total of all the workers combined. 

 

Table 6. Runtime vs Number of workers  

Number of 

Workers 

Epochs per 

worker 

Epochs Time  

(in minutes) 

1 45 45 221 

2 36 72 193 

4 30 120 157 

8 27 216 139 

16 21 336 118 

32 18 576 132 

 

 We can see from the observations that initially as we increase the workers, 

the time taken for the training decreases. However, as we go beyond 16 workers, the 

time taken starts to increase. For 32 workers, the time taken is almost equal to having 

8 workers. Having additional workers does not benefit us in terms of time. As a result, 

the optimum number of workers lies between 16 workers to 20 workers. 

 The reason behind the training taking longer even though we have additional 

workers is the fact that the combine stage must collect gradients from additional 

workers and compute the sum on all the gradients. This process adds overhead in 
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the entire training phase and diminishes the advantages of having additional workers. 

This is because we have more than a million weights and each weight will have a 

corresponding gradient. Every worker generates these million gradients, and the 

combining function must collect these weights and process them before updating the 

weights. Fig 12. plots the graph of the results of table 6. It shows the time taken by 

the workers to complete the training process. 

 

 

Fig 12. Compute time vs Number of workers 
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Fig 13. Predictions by the trained model 

 

 Fig 13. shows the prediction of the model trained by 16 workers. We can 

see that the model accurately predicts 26 out of 30 test images.   
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7.4  Comparison with traditional VM instance 

 For comparison with a traditional VM instance, we use an EC2 instance in 

AWS which provides virtual machines in predefined as well as custom configurations. 

We use machine 2 which has 4 vCPUs and 16 GB RAM. We train the model using 

the libraries installed on EFS. This allows us to have a uniform environment across 

the machines. We make use of the same code used on AWS Lambda to run on the 

instance with modifications to make it run on the instance. 

 

Fig 14. Runtime comparison with traditional VM 

 From Fig. 14, we can see that traditional VM is faster than a single worker 

lambda but slower that 16 workers working in parallel. Single worker lambda acts as 

a traditional VM but has overhead of combining stage making it slower than the 

traditional VM. For the lambda with 16 workers, the advantages of parallelism 

overcome the overhead of combining the gradients. The workers compute the 

gradients in parallel leading to faster training times. We can see that having more 
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workers results in faster training times than traditional VMs. However, there is a limit 

to the number of workers we can have before the overhead of having these additional 

workers outweighs their advantages.  

 The main bottleneck of the training in parallel is the combine phase. The 

combine phase must wait for all the worker lambdas to finish the computation and 

then only can it start processing the gradients. Additionally, the combining phase 

must read all the gradients and sum them up which delays the training process. As a 

result, the more workers we add to the training process, the longer is the wait time 

for the combine phase to start. Also, the combining phase must run longer to compute 

all the gradients. Hence, adding additional workers beyond a point leads to additional 

overhead that is not overcome by the parallelism of the worker lambdas. 

 Another constraint of the process is the synchronization of the lambdas to 

make sure we only have one event triggering the combine phase. It might happen 

that multiple lambdas satisfy the condition for the combine phase. If we have multiple 

lambdas triggering the combine phase, we might end up having more than N workers 

as each combining lambda will start N workers of its own. As a result, it becomes 

necessary to control the initiation of the combine phase and to make sure that one 

and only one of these lambdas is started.  
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8. Future Scope 

  Serverless computing has seen an increased demand in recent times. This 

goes to show that it has lasting consequences on the current workloads. We have 

seen in the experiments that serverless computing can be used for machine learning 

workloads. Given that machine learning primarily benefits from the use of GPUs 

shows us that serverless computing with GPU can be considered a possibility in the 

future. 

  ECS Fargate is another serverless service that provides a cluster of 

compute resources and uses containers to perform tasks. We can have machine 

learning tasks run inside these containers and the service can scale as and when 

needed. This allows us to eliminate the time constraint as there are no time limits for 

ECS. 
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9. Conclusion 

  The application of machine learning is increasing by the day. New models 

are being trained at a rapid pace and the need for having newer and faster methods 

of training is increasing by the day. Cloud service providers have a variety of services 

for computing. Serverless computing, although with its limitations, proves to be a vital 

service in the cloud domain. The limitations of serverless computing can be leveraged 

to our benefit and can be turned into a resource. The limitation of time and storage 

combined gives rise to a novel approach to distributed training. The architecture and 

the system proposed in this research can be leveraged to train large models that 

exceed the limitations of serverless computing for training machine learning models 

in parallel. 
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