
San Jose State University San Jose State University

SJSU ScholarWorks SJSU ScholarWorks

Master's Projects Master's Theses and Graduate Research

Spring 5-24-2021

Machine Learning Using Serverless Computing Machine Learning Using Serverless Computing

Vidish Naik

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_projects

 Part of the Artificial Intelligence and Robotics Commons, and the Systems Architecture Commons

https://scholarworks.sjsu.edu/
https://scholarworks.sjsu.edu/etd_projects
https://scholarworks.sjsu.edu/etd
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F993&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/143?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F993&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/144?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F993&utm_medium=PDF&utm_campaign=PDFCoverPages

Machine Learning Using Serverless Computing

A Project Report

Presented to

Prof. Robert Chun

Department of Computer Science

San José State University

In Partial Fulfillment

Of the Requirements for the Degree

Master of Science

By

Vidish Naik

May, 2021

© 2021

Vidish Naik

ALL RIGHTS RESERVED

The Designated Project Committee Approves the Project Titled

Machine Learning Using Serverless Computing

by

Vidish Naik

APPROVED FOR THE DEPARTMENT OF COMPUTER SCIENCE

San Jose State University

May 2021

Dr. Robert Chun Department of Computer Science

Dr. Fabio Di Troia Department of Computer Science

Dr. Soon Tee Teoh Department of Computer Science

Machine Learning Using Serverless Computing

i

Abstract

Machine learning has been trending in the domain of computer science for quite some

time. Newer and newer models and techniques are being developed every day. The

adoption of cloud computing has only expedited the process of training machine learning.

With its variety of services, cloud computing provides many options for training machine

learning models. Leveraging these services is up to the user. Serverless computing is an

important service offered by cloud service providers. It is useful for short tasks that are

event-driven or periodic. Machine learning training can be divided into short tasks or

batches to take advantage of this. Due to the nature of serverless computing, there are

certain limitations imposed by the cloud service provider such as execution time and

memory. This research proposes standalone solutions to overcome the challenges faced

by serverless computing in training machine learning models. The research further

combines these individual solutions and proposes a system for leveraging serverless

computing for training a machine learning model that incorporates distributed machine

learning.

Machine Learning Using Serverless Computing

ii

TABLE OF CONTENTS

1. Introduction... 1

1.1 Problem Statement ... 2

2. Motivation ... 3

3. Related Work … ... 5

4. Methodology ... 7

4.1 Storage ... 7

4.2 Time ... 9

4.3 Training Methodologies .. 11

5. Proposed system .. 15

5.1 Architecture .. 15

5.2 Setup .. 20

6. Experiments ... 27

6.1 Requirements ... 27

6.2 Model .. 27

7. Results ... 31

8. Future Scope .. 40

9. Conclusion.. 41

References .. 42

iii

LIST OF FIGURES

Figure 1. Understanding the approach of Feng et al……………………….6

Figure 2. Demonstrating the serial execution method…………………….10

Figure 3. Explanation of training using parameter server…………………14

Figure 4 (a). Architecture for starting the training process…..…………....16

Figure 4 (b). Architecture for combining the gradients…………………….17

Figure 5. Initial invocations event…………….………………………………18

Figure 6. Worker invocation event………….………………………………..19

Figure 7. Combining phase invocation event.………………………………19

Figure 8. Full architecture diagram……….………………………………….21

Figure 9. Sample Dataset………….…..….………………………………….24

Figure 10. Preprocessing of the dataset...………………………………….25

Figure 11. VGG19 with new SoftMax layer…………...…………………....28

Figure 12. Compute time vs Number of workers…………………………..36

Figure 13. Predictions by the trained model………………………………..37

Figure 14. Runtime comparison with traditional VM...…………………..…38

iv

LIST OF TABLES

Table 1. Time delay in reading files………………………………………….26

Table 2. Parameters for finding optimal runtime……………………………31

Table 3. Results for optimal runtime for AWS Lambda………………….…32

Table 4. Parameters for finding optimal memory value……………………33

Table 5. Results of optimal memory value for AWS Lambda……………..34

Table 6. Runtime vs Number of workers…………………………………….35

1

1. Introduction

 Machine learning and artificial intelligence have been the latest trend in

computer science for some time. Machine learning enables computers to learn trends

and patterns in data that are provided during the training phase. Computers are

trained to make decisions on new incoming data based on past data. These decisions

are made without having to explicitly code for the decision-making process and are

based only on the knowledge gained by the computer during the training. The training

process is time consuming and resource intensive. Resources such as GPU, RAM,

and CPU are the main components that are needed for resource intensive training.

Owning these resources individually is expensive.

 Cloud computing has become a viable solution to tackle this problem. Cloud

computing allows users to use resources for a fraction of the cost by leasing them for

the required duration. As the adoption of cloud computing increases, more and more

models are being trained on the cloud. As a result, researchers and developers are

using more and more cloud instances that require constant monitoring and upkeep.

It is also important to note that the cloud service provider is only responsible for the

underlying hardware in such services. The operating system management, updates,

patches, and other software responsibilities belong to the user. This also includes

managing the libraries and their versions. Serverless computing is a type of service

that allows the user to focus their efforts on developing solutions. Cloud service

providers abstract the details of underlying hardware and software infrastructure and

provide the user with a handful of options that are relatively easy to fine tune

according to the need. This becomes useful for the developer as they can invest more

Machine Learning Using Serverless Computing

2

of their time into focusing on the problem rather than solving redundant problems

related to the server. Additionally, serverless computing can be done in isolated

environments. This can be leveraged to test multiple hypothesis in parallel which

becomes an advantage for the developer.

1.1 Problem Statement

 The goal of this project is to develop a solution to train a machine learning

model using serverless computing. Using serverless computing sounds compelling

but comes with its own set of challenges. Firstly, since the underlying hardware and

software is the responsibility of the cloud service provider, the execution time of the

code is capped at a few minutes. This adds challenges for training that exceed this

time limit. Secondly, the amount of storage that this service provides is limited to

Megabytes (MB). This makes the use of libraries such as PyTorch and TensorFlow,

which are well known for machine learning and artificial intelligence, difficult to use

as they occupy space that can be used for other purposes. Another problem that

limited storage creates is that the trained model size can exceed the memory limit.

Thus, solving these challenges is critical in the adoption of serverless computing to

train machine learning models.

Machine Learning Using Serverless Computing

3

2. Motivation

 Machine learning has been part of almost all possible applications involving

computers. It has helped in forecasting prices of commodities [1] as well as predicting

the possibility of cancer in a medical body scan [2]. These kinds of applications

require sophisticated machine learning models that can accurately fulfill their desired

goal. Not doing so can result in a big financial loss or lead to a loss of human life. As

a result, developers and researchers who train these models must train and choose

multiple models to identify the best performing model. Training multiple models

requires compute resources that are expensive to purchase. The recurring cost of

electricity and maintenance is costly too. As a result, it becomes difficult to test

multiple hypotheses with such restrictions. Cloud service providers that own and

manage these resources offer them in a variety of forms at a fraction of the original

cost. The services offered by the cloud service providers vary in the responsibility

distribution between them and the user. These services can be grouped under three

categories namely, Infrastructure as a Service (IaaS), Platform as a Service (PaaS),

and Software as a Service (SaaS).

 The services that fall under IaaS allow greater flexibility as the user has a

wide variety of customization options that can be chosen. Leveraging the full potential

of these services for practical applications is the responsibility of the users. Creating

a virtual machine in the cloud is an example of IaaS. User has the option to choose

the operating system, the disk space, CPU, and RAM size among other settings.

PaaS allows the users to focus more on the application rather than the underlying

infrastructure. The choices offered to the users are restricted to the language and the

Machine Learning Using Serverless Computing

4

compute capacity required to run the application. The cloud service provider

manages the remaining infrastructure. An example of this service can be hosting

services that allow the users to host websites on their infrastructure. The users

provide the code required to run the application and the remaining part is handled by

the hosting service. SaaS offers readymade software for the users to use. Users do

not have to write any code or manage any infrastructure. Gmail is an example of

SaaS where the users do not have to manage any mail servers, nor do they have to

manage any infrastructure. They can directly send and receive emails through their

accounts.

 Serverless computing, or Function as a Service (FaaS), is a service that

was designed for short-running tasks. These tasks would have been periodic, or

event driven to be able to trigger the code. An application of serverless computing is

the backend of a web application [3]. Web requests are event-driven and short-lived

and perfect for such a use case. With serverless computing, one can integrate other

cloud services and provide a robust application for users. However, the advantage of

serverless computing is that it hides the server management from the user and allows

them to focus on the task at hand like PaaS. This advantage is beneficial to

developers who can focus on the application without worrying about server

management. Bringing this event-driven property of serverless computing to training

machine learning models is challenging. As discussed above, serverless computing

brings time and memory challenges that need to be tackled, but otherwise seems to

be a viable alternative to the mainstream training process.

Machine Learning Using Serverless Computing

5

3. Related Work

 Ishakian et al. [4] have already tested the idea of using serverless

computing in machine learning. Their approach used serverless computing only in

the inference phase. Since the inference phase uses less computation power than

the training phase, their study finds it is suitable to use serverless computing for

serving inference requests although it faces the issue of cold start. Serverless

computing services run in a container and usually have a latency associated with

starting the container which is called cold start. Subsequent requests of the task

reuse the same container reducing the latency and speeding up the process.

 Feng et al. [5] have used serverless computing for training a neural network.

Their approach uses a data-parallel approach to serverless computing. They divide

up the data into multiple chunks and each serverless instance works on the set of

data and updates the parameters accordingly. Their approach only involves training

models that go beyond the time constraints of serverless computing. [6] shows the

model that they chose. They train a Convolution Neural Network to classify images.

The size of the model turns out to be only a few megabytes which is not a storage

challenge even for serverless computing. Their approach uses a parameter server

which is a serverless instance of its own that serves the parameters of the model to

the worker serverless instances. To reduce the number of transfers of parameters,

the authors combine some of the worker nodes to be the parameter server. However,

in case one of the instances is a parameter server and exceeds the time of training

then the remaining workers might not be able to send their updated values. This might

result in a model that was not trained.

Machine Learning Using Serverless Computing

6

Fig 1. Understanding the approach of Feng et al [5]

 Fig. 1 shows the approach taken by the authors. Here, W1, W2, W3, W4

are worker serverless instances that perform the computation on their respective

datasets. After the computation is done, W2 and W4 act as the parameter server and

accept updated parameters from W1 and W3, respectively. Once they receive the

updated parameters, they update the parameters with the ones that they have

calculated. Following this, W4 acts as the parameter server and W2 sends the

updated parameters of W1 and W2 to W4 which has the updated values of W3 and

W4(itself). After receiving the parameters, W4 updates the parameters and we have

the updated parameters from all worker nodes. However, in this case, if either of the

parameter server instances fails, the work will have to be done again leading to extra

efforts.

Machine Learning Using Serverless Computing

7

4. Methodology

 Successfully training a machine learning model using serverless computing

will involve overcoming the challenges of memory and time constraints. These are

the main challenges faced by serverless computing apart from which there is

compute capacity. For this project, we will focus on solving this challenge on AWS

Lambda [7] which is the serverless computing service offered by Amazon Web

Services. The compute capacity of AWS Lambda increases with an increase in its

memory configuration. Hence, having a higher memory serverless function might

benefit from the higher compute power at its disposal. We address the service AWS

Lambda as Lambda, with an uppercase L, and the individual functions in the service

as lambda, with a lowercase L.

4.1 Storage

 The challenge of storage arises from the fact that AWS Lambda only has

512 MB of non-persistent memory during runtime in the “/tmp” directory. Any data

stored during runtime will not be available during subsequent executions. As a result,

it becomes impossible to dynamically load the libraries such as PyTorch [8] or

TensorFlow [9] during runtime.

4.1.1 Customizing AWS Lambda

 Perez et al. [10] propose a solution to custom create a Docker image and

upload it to AWS Lambda. This method allows us to load the required library and, if

needed, the dataset in the image. This reduces the time and latency in fetching the

Machine Learning Using Serverless Computing

8

data as the data is locally available. However, with this approach, we also must add

the AWS Software Development Kit (SDK) as well as the library that we will use for

training. This also required the use of an AWS owned repository for container images

called Elastic Container Registry (ECR) [11]. AWS ECR is like Docker Hub [12] in the

sense that it hosts the container images created by the user.

 Another approach we can take is adding layers to AWS Lambda. Layers

are zip files that are added to the lambda function. The layers can hold the libraries

in the layer. The contents of the layers are then available in the “/opt” directory from

where we can use the libraries. With this approach, we can quickly develop the code

and make minor changes without uploading large amounts of data for small changes.

4.1.2 AWS Simple Storage Service

 Another approach will be to access AWS Simple Storage Service, more

commonly known as S3[13]. It allows object storage which can be easily accessed

by using AWS SDK. AWS SDK’s are readily available in all AWS Lambda runtimes.

We can store the dataset in an S3 bucket and then retrieve it as and when needed.

This allows us to free the space for the dataset. S3 also supports byte streaming

which can be used to store the model. However, we will need to create a file or object

for every worker and then have additional workers combine those files. This adds

overhead to the process. S3 does not allow object locking where one process can

update the model. Hence it becomes difficult to use the same object amongst all

workers.

Machine Learning Using Serverless Computing

9

4.1.3 AWS Elastic File Storage

 Alternatively, rather than having external storage, we can leverage the

services offered by AWS to solve the issue of storage. As pointed out by Sindi et al.

[14], we can extend the storage by using Elastic File Storage (EFS) [15] which is a

network file system that can be mounted in AWS Lambda. EFS is fully managed by

AWS and is scalable meaning that it is serverless and can grow and shrink according

to the need of the user. AWS Lambda uses a mount point in EFS to allow the file

system to be mounted. This gives lambda the required additional storage for the

model training. EFS also supports file locking including both shared and exclusive

locks. This allows multiple workers to update the file, while locking, without having to

worry about the consistency of the file. As a result, we can update the contents of the

model without having the overhead of combining multiple files into one.

4.2 Time

 Another major factor affecting the adoption of serverless computing is the

time constraint on the execution of code. Since the user is not managing the

underlying server, the user does not have access to configure the time for which the

code should run. This is done for security purposes such that any malicious code

cannot run for long durations on cloud service provider managed servers. The cloud

service provider, AWS in this case, does allow the user to configure the maximum

time the code can be executed. However, that is limited to a maximum of 15 minutes.

Machine Learning Using Serverless Computing

10

4.2.1 Sequential Execution

 We can use serverless instances to call one another and pass the current

state of training. The caller instances pass the parameters of the model as an event

and the called instance receives them and continues training from that point. Once

the caller has successfully called the other function, it can be terminated. The called

instance now has the responsibility of continuing the training. This can be continued

till the result is achieved. This means that we will be training in serial fashion meaning

one instance after another. As a result, we will take similar or more time depending

on the overhead of calling instances successively. Fig 2. shows sequential execution

of lambdas for machine learning.

Fig 2. Demonstrating the sequential execution method

4.2.2 Orchestrated workflow

 Orchestration systems build orchestrated workflows based on business

logic. These workflows control the execution of FaaS services provided by the cloud

service provider. AWS has an orchestration system called AWS Step Functions [16].

AWS Step Functions allows conditional execution as well as parallel execution of

Machine Learning Using Serverless Computing

11

AWS Lambda based on certain conditions. Lopez et al [17] compare the different

orchestration systems for FaaS by their respective cloud service providers. Their

study also finds that state can be transferred between instances up to 32KB. Models

cannot be passed in such short memory constraints. However, we can store the

model into an S3 bucket or EFS as discussed in section 4.1.2 and section 4.1.3

respectively. We can then send the location of the model while transferring the state.

This can be achieved with the 32KB limit. Another point to be noted here is that the

charges for using AWS Step functions might be steep when training large models.

4.3 Training Methodologies

 Selecting the appropriate methodology for training is key to getting the result

faster. Serverless computing poses challenges to traditional training methods.

Traditionally, training a model involves all the data and required model attributes

available to the training process. With serverless computing, based on the computing

method, when the computing transitions from one instance to another, these

attributes need to be replicated for the training to proceed. This poses a challenge to

the serial mode of execution discussed in section 4.2.1. Also, the serverless

computing instances are stateless, meaning that no information about the current

execution will be retained by the next execution. Taking advantage of this property,

we can focus on the distributed training of the model.

4.3.1 Distributed Training

 Training of the model involves iterating over the dataset and updating the

Machine Learning Using Serverless Computing

12

weights of the model. The frequency at which the weights are updated depends on

the algorithm that we are using to update the weights. Gradient descent is a popular

choice for such problems. Gradient descent has three variants, namely Batch

Gradient Descent (BGD) [18], Stochastic Gradient Descent (SGD) [19], and

Minibatch Gradient Descent (mini BGD) [20].

 BGD iterates over the entire dataset to update the weights of the model. It

considers all the data points available in the given dataset before adjusting the

weights. For large datasets having millions of data points, it takes a long time for one

iteration. This process must be repeated over and over each time on all the data

points to reach the desired result. As a result, this process is time-consuming.

Considering the time challenge on serverless computing, the process of batch

gradient descent might go beyond the permissible execution time.

 SGD provides a faster way of updating the weights. In contrast to BGD, it

considers each data point as a whole dataset and updates the weight after each data

point. This gives instant feedback to the developer. It may seem like this approach is

the best since it gives instant feedback and tunes the weights based on individual

data points, but that is not the case. Since it is considering all the data points equally,

it is also considering the outliers. Outliers are the data points that do not follow the

general trend of the entire dataset. This allows outliers to distort the weights of the

model and can harm the training process. Although SGD gives instant feedback, the

outcome of BGD is better than SGD. SGD also proves to be difficult to implement in

a distributed environment. Every update requires locks for updating the parameters

which lead to overhead. It is found that the process of updating parameters with locks

Machine Learning Using Serverless Computing

13

slows down the process as processes end up waiting for the lock rather than doing

actual computation. If a serverless instance ends up waiting for a lock, then it might

cross the maximum permissible time and we might have to repeat the process. This

adds extra work for computing and wastes resources.

 Mini BGD takes the best of both worlds and combines them into one

algorithm. It randomly samples the dataset into smaller groups. It can be noted that

each smaller group will represent the entire dataset when divided at random. Each

batch will now be processed as an entire dataset, and the weights will be updated

after one batch rather than the entire dataset. The process, however, involves

iterating over the entire dataset. This process helps reduce the memory requirements

of AWS Lambda. The entire dataset does not have to be in the memory. Only the

smaller batch that is currently being used can be in RAM while others can be in

persistent storage. This allows serverless instances to work only on part of the data

and can be executed within the permissible time limit. However, choosing the correct

size for the mini batches becomes a trivial problem.

4.3.2 Parameter Server

 Li et al. [21] have discussed the idea of having a centralized update and

distribution of the model weights by using a parameter server. This server is

responsible for updating the parameters when new parameters are received from the

worker nodes and distributing the parameters when the worker nodes ask for them.

Each server maintains a master copy of the parameters that it is responsible for and

then also maintains duplicates of the parameters from other servers for fault

Machine Learning Using Serverless Computing

14

tolerance. In the context of serverless computing, we can have a serverless

computing instance act as the parameter server and update and distribute the values

of the updated weights. However, this approach means that we will always have a

serverless instance running for that purpose. Instead, we can distribute the

responsibility of updating parameters to the individual serverless instances. The

instances do not have to propagate the weights as all the updates will occur on a

central copy of weights that can be done via locks. The instances will read the

parameters and then work on updating the parameter and update the parameters

when the computation is done. While it is computing, it will release the locks and

allow other instances to read or update the parameters.

 Contrary to the general intuition of not allowing updates while working on

the current data that is currently being processed, it is safe to allow updates to the

model weights in machine learning. Niu et al [22] propose a novel idea of parallelizing

SGD while not having locks when updating the weights. Their research shows that

most updates to the weights of the model are sparse. The update only changes a set

of parameters. As a result, their algorithm, called Hogwild, achieves results like the

serial version of execution. Fig 3. explains their approach of using parameter server

for training models.

Fig 3. Explanation of training using parameter server.
Source: Niu et al. [22]

Machine Learning Using Serverless Computing

15

5. Proposed System

5.1 Architecture

 Looking at the different approaches mentioned in section 4, we can see that

some options are well suited for certain tasks, whereas other options are well suited

for other sets of tasks. By combining the required properties of each approach that

suit our tasks, we can achieve a system that is well suited for achieving the desired

result. To tackle the issue of storage, we can create a system with a combination of

EFS and Lambda. We eliminate the use of S3 as it adds an extra overhead of

managing multiple workers. Additionally, S3 follows a mechanism of write once read

many (WORM) meaning that data can only be written once. For making changes to

the file, the entire file must be over-written. As a result, for solving the issue of

storage, we will use a combination of customizing the lambda and adding storage

using EFS. We will store the dataset, libraries, and model on EFS.

 For tackling the time constraints, we can make use of a combination of serial

and distributed workers. Initially, we start with a set of workers working parallelly in a

distributed fashion. Each of them will work on their own set of data. Once the training

process is done, the workers will store the gradients in a directory in the EFS. These

gradients will then be picked up by the lambda function that combines the gradients

and updates the weight. Once the weight is updated, the combining lambda again

invokes the workers, and the process continues. The number of workers working in

parallel will be decided by parameter values that we will pass at the start of training.

 For the training methodology, we will be using a distributed training

approach using minibatch gradient descent (mini BGD). We will distribute the dataset

Machine Learning Using Serverless Computing

16

amongst the number of worker nodes and each node will process and update the

weight of the model. We plan to incorporate the portion of the parameter server into

each worker node thereby eliminating the need for a standalone server. This reduces

the networking overhead of passing and retrieving parameters and can be directly

fetched from the mounted storage.

Fig 4 (a). Architecture for starting the training process.

Machine Learning Using Serverless Computing

17

Fig 4 (b). Architecture for combining the gradients.

 Fig 4 (a) and (b) show the architecture of the proposed system. Fig 4 (a)

focuses on the architecture for initiation of the training process. Fig 4 (b) focuses on

the architecture for combining phase and continuing the training process. The

architecture consists of an AWS Elastic File System, Lambda, and DynamoDB. EFS

stores the libraries used for machine learning, the data set required for training, the

gradients, and the model while the training is in progress. The entire code for the

lambda is written in the same lambda function. The same lambda function is re-used

as a parameter server for calculating the gradient and combining the gradients once

the calculation step finishes. Each lambda function updates the DynamoDB table to

give updates to the user. Users can track the current state of the training process

through the data inserted into DynamoDB.

Machine Learning Using Serverless Computing

18

5.1.1 Training

 To start the training process, we need to invoke the lambda for the first time.

The function takes an event to start, and we can provide this event manually through

the console. This event is a JSON object and should contain the key “start” to begin

the training process. Additionally, it should also contain the number of workers that

need to be used for the training.

Fig 5. Initial invocation event

 Fig 5. shows the invocation event for the training process. Once the lambda

receives the event, it invokes the required number of workers and assigns each of

them with a worker ID. Workers IDs are assigned from 0 to N-1 where N is the number

of workers requested. To start the workers, we create an event in the initial lambda

itself. The worker lambdas require their worker IDs in the event along with the total

number of workers in the training process. We also pass the information regarding

the number of epochs that are done.

Fig 6. Worker invocation event

Machine Learning Using Serverless Computing

19

 Fig 6. shows the invocation event for a worker. The worker lambda receives

this event and starts by loading the data that is saved in the EFS. Initially, it loads the

weights of the pre-trained model and then starts running the training on the dataset.

It saves the gradients on the EFS for each step. Before finishing execution, the

lambda function combines all its gradients to reduce the workload of the combining

lambda. After the training is complete, only one lambda function initiates the

combining phase. Each worker checks for the number of gradient files present on

EFS. If they are equal to the number of workers, then it creates an event for the

combining phase.

Fig 7. Combining phase invocation event

 Fig 7. shows the event for starting the combine phase. The event phase

contains the key “combine” to let the lambda function know that it is in the combine

phase. In this phase, it sums all the gradients generated by the worker lambdas and

then proceeds to update the weight based on the formula given by Li et al. [21]. The

combine phase also determines if the training needs to proceed or can be stopped.

5.2 Setup

 To setup the entire architecture, we use CloudFormation which allows us to

Machine Learning Using Serverless Computing

20

create resources in AWS using templates. Users can use the templates to deploy the

same infrastructure in multiple accounts while ensuring that the architecture remains

the same. Through the template, we create resources, install libraries and preprocess

the dataset.

5.2.1 Resources

 We need to create resources in addition to AWS Lambda and AWS EFS to

be able to run our experiments. These resources are provided by AWS. While

creating the resources, we keep security in mind and follow guidelines provided by

AWS to have a secure environment. We also have Identity and Access Management

(IAM) roles that permit only selected entities to access the filesystem. Fig 8. shows

the full architecture diagram which involves other AWS services. The resources

needed for this experiment are as follows:

• Virtual Private Cloud (VPC)

VPC is a logical boundary for isolation of resources in an AWS account. VPC

acts as a private network for resources to interact. Each user can have their

VPC and resources inside them to allow independent work or work in the same

VPC to collaborate.

Machine Learning Using Serverless Computing

21

Fig 8. Full architecture diagram

• Subnet

Subnets are virtual subnetworks within a VPC. These are smaller logical

partitions of the VPC and are used by resources to interact. We will need 2

types of subnets:

o Public subnet

Resources in these subnets have access to the internet.

o Private subnet

These subnets do not have access to the internet. Internet access can

be provided by routing the requests through a public subnet. Primarily

EFS and Lambdas will be deployed in this subnet for security purposes.

Machine Learning Using Serverless Computing

22

• NAT Gateway

Network Address Translation (NAT) Gateway is used to provide internet

access to private subnet. It forwards the request to the destination while

masking, or translating, the IP of the resource requesting it.

• Internet Gateway

Internet Gateway provides the access to the entire VPC. It allows access to

public subnets and the NAT Gateway to connect to the internet.

• Elastic File System

The filesystem that will be used for storing the dataset, libraries, and the

model. It will also store the gradients while the training is in progress.

• Mount target and security groups

Mount targets are logical mounting points of EFS that allow other resources to

mount the filesystem.

Security groups act like firewalls and allow the whitelisted sources while

denying any other traffic.

• DynamoDB Table

DynamoDB table is used to monitor the progress of the ongoing training

process. We can store the epoch information as well as the loss values.

• Lambda and IAM Role

Lambda is used to train the model. Any lambda that is trying to access the

filesystem requires permission to do so. IAM role has permissions that allow

lambda to access the filesystem. To keep the architecture secure, we only

allow Lambda to assume the role and no other service can use the role.

Machine Learning Using Serverless Computing

23

5.2.2 Libraries

 While setting up the resources, we also install the libraries into the EFS for

the lambdas to access. We install the libraries onto the EFS which allows us to go

beyond the 512MB limit of Lambda. We can install popular machine learning libraries

such as PyTorch [8] and Tensorflow [9]. These libraries can be shared amongst

multiple developers through the same EFS thereby reducing dependency conflicts.

All the developers use the same version and have a uniform development

environment. The libraries installed for this project are mentioned below:

• Boto3 (v 1.17.39)

• Keras (v 2.4.3)

• Matplotlib (v 3.4.0)

• NumPy (v 1.19.3)

• Open CV (v 4.5.1)

• Pandas (v 1.2.3)

• Pickle (v 0.0.11)

• Pillow (v 8.1.2)

• Scikit Learn (v 0.24)

• SciPy (v 1.6.2)

• TensorFlow (v 2.4.1)

• Urllib3 (v 1.26.4)

Machine Learning Using Serverless Computing

24

5.2.3 Dataset

 For this experiment, we use the CIFAR10 dataset [23]. The dataset contains

60,000 images divided into 10 distinct classes. Each class has 6000 images. The

dataset is divided into 50,000 images for training and 10,000 images for testing. Fig

9. shows 30 sample images from the dataset.

Fig. 9 Sample dataset.

Machine Learning Using Serverless Computing

25

Fig 10. Preprocessing of the dataset.

 Fig 10. shows the preprocessing of dataset. The dataset is downloaded and

extracted in tar format to the EFS directly. The extracted data is divided into 6 files: 5

files for test data and 1 file for validation. These files are stored in pickle format and

requires the pickle library for reading the data. To save time during each lambda

Machine Learning Using Serverless Computing

26

execution, we read all the data during the setup process and preprocess the data.

Preprocessing includes resizing the images to fit the input of the model as well as

one-hot encoding the output labels. The train and test images are then converted to

NumPy arrays for more efficient storage. We then store the data in four separate files.

One file each for training data, training labels, test data, and test labels. These files

can be read faster and save time since the lambda must read fewer files each time.

Table 1. shows the time taken to read files from untarred data and NumPy files.

Table 1. Time delay in reading files

 UNTARRED DATA (in seconds) NUMPY DATA (in seconds)

RUN 1 4.07 2.04

RUN 2 3.43 1.76

RUN 3 4.80 2.17

Machine Learning Using Serverless Computing

27

6. Experiments

6.1 Requirements

6.1.1 Hardware Requirements

 We use 2 different computing machines during the experiments. They are:

• Machine 1: AWS Lambda (RAM: 1GB – 10GB; 1 GB increments)

• Machine 2: AWS EC2: t2.xlarge (4 vCPU, 16 GB RAM)

6.1.2 Software Requirements

 We use python3.7 as the programming language for the experiments. The

libraries discussed earlier are installed using python’s package installer pip. The

libraries are installed on EFS and shared amongst all the machines to have identical

training and testing environments to prevent any undue advantage.

6.2 Model

 We use VGG19 [23] for experimenting with the proposed system. VGG19

has a trained model size of 549MB [24]. This size goes beyond the 512MB limit of

AWS Lambda and is used for this purpose. We decide to perform transfer learning of

the VGG19 model. Transfer learning takes more than 15 minutes which is the

maximum permissible runtime of AWS Lambda.

Machine Learning Using Serverless Computing

28

Fig 11. VGG19 [23] with new SoftMax layer.

 Fig. 11 show the layers of the VGG19 model with the modified SoftMax

layer. The input size is an image or array of dimensions (224, 224, 3). The first two

values are the width and height of the image and the third value is the number of

color channels. Here 3 indicates that there are three color values per pixel. The

CIFAR10 input, for this experiment, must be resized from 32 x 32 to 224 x 224. The

Machine Learning Using Serverless Computing

29

images are already in three channels and no further modification is required here.

The resized images are stored as NumPy arrays in EFS. After the input stage, there

are two 3 x 3 convolution layers with 64 filters. The output of the convolution layers

goes into a max-pool layer. Max-pool layer has a filter of size 2 x 2, and it generates

an output of size 112 x 112 x 64 from input size from 224 x 224 x 64. This output

goes into two 3 x 3 convolution layers with 128 filters and a max-pool layer to get 56

x 56 x 128 output. This is repeated for four 3 x 3 convolution layers with 256 filters

with max-pool layer and twice for four 3 x 3 convolution layers with 512 filters and

max-pool layer to get the final output from the convolution neural network part to get

an output of 7 x 7 x 512. This input is flattened fed into a fully connected layer with

4096 outputs having ReLU activation. This is again passed through a fully connected

layer before passing it through the final SoftMax classifier which classifies the input

image into a category.

6.2.1 Transfer learning

 Transfer learning is a method where a model previously trained on a dataset

is customized to work on our dataset. The datasets must be similar in features for

this approach to work. The pre-trained model that we use for our experiment is a

model trained on ImageNet dataset [25]. ImageNet consists of more than 21,000

classes. For the CIFAR10 dataset [23], we need the feature extraction part of the pre-

trained model. As a result, we swap out the final SoftMax classification layer with

1000 outputs and introduce a new SoftMax classification layer with 10 outputs which

needs to be trained. We freeze the weights of the previous layers such that they are

Machine Learning Using Serverless Computing

30

not affected during the training process.

6.2.2 SoftMax layer

 We swap out the SoftMax layer of the pre-trained model for a SoftMax layer

that outputs 10 classes. SoftMax classifier converts the input into probabilities and

then normalizes them. The normalized output lies in the range of 0.0 to 1.0 and the

sum of all the outputs is 1.0. The output index with the highest value is the predicted

class. We need to train this layer during our transfer learning so that we can predict

the output based on the 10 classes that we have in our dataset.

Machine Learning Using Serverless Computing

31

7. Results

7.1 Lambda Configuration – Time

 The first configuration that is adjustable is the runtime duration of the

lambda function. The minimum runtime is 1 second and the maximum is 15 minutes

or 900s. We keep the RAM at 10240 MB which is 10 GB to avoid any conflicts due

to memory. We experiment the setup on 1-minute intervals to find the optimum

runtime configuration. We set 20 steps per epoch for this experiment. Table 2. lists

the parameters for the experiment.

Table 2. Parameters for finding optimal runtime.

Parameter Value

Language Python3.7

Memory 10 GB

Steps 20 per epoch

Epochs 5

Batch size 8

Time duration 1 min increments

(Min: 1s, Max: 15m)

Number of workers 1

Machine Learning Using Serverless Computing

32

Table 3. Results for optimal runtime for AWS Lambda.

Runtime Duration (in minutes) Epochs Steps Total steps

1 0 0 0

2 0 4 4

3 0 9 9

4 0 15 15

5 1 0 20

6 1 5 25

7 1 11 31

8 1 17 37

9 2 2 42

10 2 7 47

11 2 11 51

12 2 15 55

13 2 19 59

14 3 4 64

15 3 8 68

 Table 3 shows us that we can achieve 3 epochs and 8 steps or 68 steps of

training per execution. This is achieved with the parameter values in Table 2. For

each additional minute added to the execution, we get additional four to five steps.

To maintain a consistent epoch count, we will set the epochs per worker to 3 and

leave additional time aside in case a batch takes longer than expected.

Machine Learning Using Serverless Computing

33

7.2 Lambda Configuration – Memory

 The next configuration that can be changed for the lambda function is the

memory configuration. The minimum amount of memory that a lambda function can

have is 128 MB and the maximum is 10240 MB or 10 GB. We experiment with the

setup on 1 GB increments and use the maximum memory used log provided by AWS

for each execution of the function. We keep the runtime at 15 minutes to test the

memory requirements during the entire process. We take the maximum number of

epochs. Table 4. lists the parameters for the experiment.

Table 4. Parameters for finding optimal memory value.

Parameter Value

Language Python3.7

Time duration 15 minutes

Steps 20 per epoch

Epochs 3

Batch size 8

Memory 1 GB increments

(Min: 128 MB, Max: 10 GB)

Number of workers 1

Machine Learning Using Serverless Computing

34

Table 5. Results of optimal memory value for AWS Lambda.

Memory (in GB) Epochs Steps Total Steps Time

1 0 0 0 Out of Memory

2 0 0 0 Out of Memory

3 0 0 0 Out of Memory

4 0 1 1 Out of Memory

5 2 16 56 15 minutes

6 3 0 60 14min 26s

7 3 0 60 13min 48s

8 3 0 60 13min 05s

9 3 0 60 12min 20s

10 3 0 60 11min 42s

 From Table 5, we can see that any memory configuration above 5GB can

give us training results for 3 epochs under 15 minutes. For 5GB memory, we can

train the model, but we are not able to complete 3 epochs. We consider the 8GB

memory option as an optimal memory configuration as we can get 2 minutes of buffer

time in case, we were to exceed the observed time.

7.3 Number of workers

 We will be running multiple workers in parallel to achieve faster training

times. To get the most out of the parallelism, we need to decide the optimal number

of workers. In this experiment, we will run multiple workers in parallel and look at the

Machine Learning Using Serverless Computing

35

total time required by setup to complete the training process. We start by running only

one worker which is a linear approach where the lambda keeps calling itself linearly.

We then increase the number of workers exponentially up to 32 workers in parallel.

The epoch count here is the total of all the workers combined.

Table 6. Runtime vs Number of workers

Number of

Workers

Epochs per

worker

Epochs Time

(in minutes)

1 45 45 221

2 36 72 193

4 30 120 157

8 27 216 139

16 21 336 118

32 18 576 132

 We can see from the observations that initially as we increase the workers,

the time taken for the training decreases. However, as we go beyond 16 workers, the

time taken starts to increase. For 32 workers, the time taken is almost equal to having

8 workers. Having additional workers does not benefit us in terms of time. As a result,

the optimum number of workers lies between 16 workers to 20 workers.

 The reason behind the training taking longer even though we have additional

workers is the fact that the combine stage must collect gradients from additional

workers and compute the sum on all the gradients. This process adds overhead in

Machine Learning Using Serverless Computing

36

the entire training phase and diminishes the advantages of having additional workers.

This is because we have more than a million weights and each weight will have a

corresponding gradient. Every worker generates these million gradients, and the

combining function must collect these weights and process them before updating the

weights. Fig 12. plots the graph of the results of table 6. It shows the time taken by

the workers to complete the training process.

Fig 12. Compute time vs Number of workers

Machine Learning Using Serverless Computing

37

Fig 13. Predictions by the trained model

 Fig 13. shows the prediction of the model trained by 16 workers. We can

see that the model accurately predicts 26 out of 30 test images.

Machine Learning Using Serverless Computing

38

7.4 Comparison with traditional VM instance

 For comparison with a traditional VM instance, we use an EC2 instance in

AWS which provides virtual machines in predefined as well as custom configurations.

We use machine 2 which has 4 vCPUs and 16 GB RAM. We train the model using

the libraries installed on EFS. This allows us to have a uniform environment across

the machines. We make use of the same code used on AWS Lambda to run on the

instance with modifications to make it run on the instance.

Fig 14. Runtime comparison with traditional VM

 From Fig. 14, we can see that traditional VM is faster than a single worker

lambda but slower that 16 workers working in parallel. Single worker lambda acts as

a traditional VM but has overhead of combining stage making it slower than the

traditional VM. For the lambda with 16 workers, the advantages of parallelism

overcome the overhead of combining the gradients. The workers compute the

gradients in parallel leading to faster training times. We can see that having more

Machine Learning Using Serverless Computing

39

workers results in faster training times than traditional VMs. However, there is a limit

to the number of workers we can have before the overhead of having these additional

workers outweighs their advantages.

 The main bottleneck of the training in parallel is the combine phase. The

combine phase must wait for all the worker lambdas to finish the computation and

then only can it start processing the gradients. Additionally, the combining phase

must read all the gradients and sum them up which delays the training process. As a

result, the more workers we add to the training process, the longer is the wait time

for the combine phase to start. Also, the combining phase must run longer to compute

all the gradients. Hence, adding additional workers beyond a point leads to additional

overhead that is not overcome by the parallelism of the worker lambdas.

 Another constraint of the process is the synchronization of the lambdas to

make sure we only have one event triggering the combine phase. It might happen

that multiple lambdas satisfy the condition for the combine phase. If we have multiple

lambdas triggering the combine phase, we might end up having more than N workers

as each combining lambda will start N workers of its own. As a result, it becomes

necessary to control the initiation of the combine phase and to make sure that one

and only one of these lambdas is started.

Machine Learning Using Serverless Computing

40

8. Future Scope

 Serverless computing has seen an increased demand in recent times. This

goes to show that it has lasting consequences on the current workloads. We have

seen in the experiments that serverless computing can be used for machine learning

workloads. Given that machine learning primarily benefits from the use of GPUs

shows us that serverless computing with GPU can be considered a possibility in the

future.

 ECS Fargate is another serverless service that provides a cluster of

compute resources and uses containers to perform tasks. We can have machine

learning tasks run inside these containers and the service can scale as and when

needed. This allows us to eliminate the time constraint as there are no time limits for

ECS.

Machine Learning Using Serverless Computing

41

9. Conclusion

 The application of machine learning is increasing by the day. New models

are being trained at a rapid pace and the need for having newer and faster methods

of training is increasing by the day. Cloud service providers have a variety of services

for computing. Serverless computing, although with its limitations, proves to be a vital

service in the cloud domain. The limitations of serverless computing can be leveraged

to our benefit and can be turned into a resource. The limitation of time and storage

combined gives rise to a novel approach to distributed training. The architecture and

the system proposed in this research can be leveraged to train large models that

exceed the limitations of serverless computing for training machine learning models

in parallel.

Machine Learning Using Serverless Computing

42

REFERENCES

[1] N. Amjady and M. Hemmati, “Energy price forecasting - problems and

proposals for such predictions,” IEEE Power and Energy Magazine, vol. 4, no.

2, pp. 20–29, Mar. 2006.

[2] Y. Khourdifi and M. Bahaj, “Applying Best Machine Learning Algorithms for

Breast Cancer Prediction and Classification,” 2018 International Conference

on Electronics, Control, Optimization and Computer Science (ICECOCS),

Dec. 2018.

[3] N. Savage, “Going serverless,” Communications of the ACM, vol. 61, no. 2,

pp. 15–16, Jan. 2018.

[4] V. Ishakian, V. Muthusamy, and A. Slominski, “Serving Deep Learning Models

in a Serverless Platform,” 2018 IEEE International Conference on Cloud

Engineering (IC2E), Apr. 2018.

[5] L. Feng, P. Kudva, D. Da Silva, and J. Hu, “Exploring Serverless Computing

for Neural Network Training,” 2018 IEEE 11th International Conference on

Cloud Computing (CLOUD), Jul. 2018.

[6] “Convolutional Neural Network (CNN): TensorFlow Core,” TensorFlow.

[Online]. Available: https://www.tensorflow.org/tutorials/images/cnn.

[Accessed: 29-Mar-2021].

[7] R. W. Hendrix, “Lambda,” Amazon. [Online]. Available:

https://aws.amazon.com/lambda/ [Accessed: 29-Mar-2021].

[8] A. Paszke et al., "PyTorch: An imperative style high-performance deep

learning library", Proc. Adv. Neural Inf. Process. Syst., pp. 8024-8035, 2019.

[9] M. Abadi et al., "Tensorflow: Large-scale machine learning on heterogeneous

systems", OSDI, 2016.

[10] A. Pérez, G. Moltó, M. Caballer, and A. Calatrava, “Serverless computing for

container-based architectures,” Future Generation Computer Systems, vol.

83, pp. 50–59, Jun. 2018.

[11] “ECR,”. [Online]. Available: https://aws.amazon.com/ecr/. [Accessed: 29-Mar-

2021].

[12] “Docker Hub.” [Online]. Available: https://hub.docker.com/. [Accessed: 29-

Machine Learning Using Serverless Computing

43

Mar-2021].

[13] “S3,” Amazon, 2002. [Online]. Available: https://aws.amazon.com/s3/.

[Accessed: 29-Mar-2021].

[14] M. Sindi and J. R. Williams, “Using Container Migration for HPC Workloads

Resilience,” 2019 IEEE High Performance Extreme Computing Conference

(HPEC), Sep. 2019.

[15] “EFS,” Amazon, 2000. [Online]. Available: https://aws.amazon.com/efs/.

[Accessed: 29-Mar-2021].

[16] “Step functions,” Amazon, 1975. [Online]. Available:

https://aws.amazon.com/step-functions/. [Accessed: 29-Mar-2021].

[17] P. Garcia Lopez, M. Sanchez-Artigas, G. Paris, D. Barcelona Pons, A. Ruiz

Ollobarren, and D. Arroyo Pinto, “Comparison of FaaS Orchestration

Systems,” 2018 IEEE/ACM International Conference on Utility and Cloud

Computing Companion (UCC Companion), Dec. 2018.

[18] “Gradient Descent Algorithms,” An Introduction to Neural Networks, 1995.

[19] H. Robbins and S. Monro, “A Stochastic Approximation Method,” The Annals

of Mathematical Statistics, vol. 22, no. 3, pp. 400–407, Sep. 1951.

[20] S. Khirirat, H. R. Feyzmahdavian, and M. Johansson, “Mini-batch gradient

descent: Faster convergence under data sparsity,” 2017 IEEE 56th Annual

Conference on Decision and Control (CDC), Dec. 2017.

[21] M. Li et al., "Scaling distributed machine learning with the parameter server",

Proc. OSDI, vol. 14, pp. 583-598, 2014.

[22] F. Niu, B. Recht, C. Re, and S. J. Wright, "Hogwild!: A lockfree approach to

parallelizing stochastic gradient descent," in NIPS, 2011.

[23] K. Simonyan and A. Zisserman, Very deep convolutional networks for large-

scale image recognition, 2014.

[24] A. Krizhevsky and G. Hinton, "Learning multiple layers of features from tiny

images", 2009.

[25] “Keras Applications,” Team Keras, 2020. [Online]. Available:

https://keras.io/api/applications/. [Accessed: 29-Mar-2021]

https://keras.io/api/applications/

Machine Learning Using Serverless Computing

44

[26] J. Deng, W. Dong, R. Socher, L. -J. Li, K. Li and L. Fei-Fei, "Imagenet: A large-

scale hierarchical image database", Computer Vision and Pattern Recognition

2009. CVPR 2009. IEEE Conference on., pp. 248-255, 2009.

	Machine Learning Using Serverless Computing
	tmp.1621926250.pdf.cYylh

