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ABSTRACT 

The lack of concern with security when vehicular network protocols were designed some thirty 

years ago is about to take its toll as vehicles become more connected and smart. Today as 

demands for more functionality and connectivity on vehicles continue to grow, a plethora of 

Electronic Control Units (ECUs) that are able to communicate to external networks are added to 

the automobile networks. The proliferation of ECU and the increasing autonomy level give 

drivers more control over their vehicles and make driving easier, but at the same time they 

expand the attack surface, bringing more vulnerabilities to vehicles that might be exploited by 

hackers. Possible outcomes of a compromised vehicle range from personal information theft to 

human life loss, raising the importance of automotive cybersecurity to a whole different level. 

Therefore, network safety has become a necessary and vital consideration of a vehicle. This 

project is two-fold: the first half will focus on the background of vehicle cybersecurity, 

characteristics of vehicular networks that could be leveraged during a hacking process, including 

ECU, Controller Area Network (CAN bus) and On-Board Diagnostics (OBD). It also discusses 

and evaluates previous hacking experiments conducted by researchers and their proposed 

countermeasures. The second half is an evaluation of approaches to design an Intrusion 

Detection System (IDS). The aim of this project is to find an effective and suitable solution to 

defend vehicles against various types of cyber threats. 

Keywords - vehicle cybersecurity, Electronic Control Unit (ECU), Controller Area Network 

(CAN bus), On-Board Diagnostics (OBD) 
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I. INTRODUCTION 

 After the first Internet-connected car was brought to market in late 1990s, automobiles 

were no longer local networks isolated from the web. Today vehicles are gradually transforming 

from purely mechanical entities to digital entities as innovative features are deployed on 

vehicular networks one after another. From conventional cars to connected cars, then to smart 

cars and autonomous cars, our vehicles are becoming smarter and more integrated, 

revolutionizing the way people drive. In 2016, the size of the smart car market around the world 

was estimated to be approximately 20 billion USD and predicted to grow by 6.7% every year [1]. 

While people benefit from the convenience of Internet connectivity and driving assistance inside 

their cars, they are also becoming potential targets of cyber threats. In fact, automobile hacking 

tests had been conducted in various countries that successfully operated steering wheels and 

changed engine velocity remotely [1]. It has been a well-established fact that any one of the cars 

on the road could be attacked anytime without the driver noticing and leave little forensic 

evidence behind [2]. The standardization of V2V/V2I communication technologies and the 

increasing reliance on sensors and intercommunications will potentially bring more 

vulnerabilities to vehicles and further exacerbate the security problem. Therefore, automotive 

network security has a strong potential to become a serious issue, which concerns and threatens 

more and more drivers and automakers around the world. 

 Although the power of cars keeps evolving, their general structures have changed little 

since the 1980s. A car consists of hundreds of ECUs that control different functionalities and 

aspects of the car. These ECUs primarily use the Controller Area Network (CAN bus) protocol to 

communicate with each other as well as outside networks. Thus, once attackers successfully hack 
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into a car’s CAN network, they would have access to the ECUs on the vehicle and be able to 

hijack the vehicle regardless of the driver’s action, resulting in life-threatening consequences. 

The first half of this project will provide a comprehensive and systematic overview of vehicle 

structure and vehicular cyber attacks, which is needed to answer the research questions: What are 

the most possible and viable ways to attack a vehicular network, and how could automotive 

networks be protected from these attacks? It also provides the necessary background and 

perspective on the rationale to the second half of the project, which is an implementation of IDS 

based on One-Class Support Vector Machine (OCSVM). 

 This project is based on published papers, journals and articles in the computer science 

area. It includes the following sections: Section II introduces the background of vehicle 

cybersecurity and demonstrates its importance and efforts made to address the issue. Section III 

explains the vehicle structures, components and their vulnerabilities in more detail, including 

ECU, CAN bus and On-Board Diagnostics (OBD). Section IV discusses possible attack 

scenarios and builds attack models by analyzing previous car hacking experiments. Section V 

lists the pros and cons of possible ways to defend against vehicular cyberattacks. Section VI 

elaborates on the proposed defense method and its advantages over other methods. Section VII 

provides the details of the experiment to implement and evaluate the proposed method. Lastly, 

the review is concluded in Section VIII. 

2
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II. BACKGROUND 

A. Problem analysis 

 At first blush, one might consider vehicle cybersecurity to be an ordinary security 

problem. However, vehicular cybersecurity faces many unique challenges that are not well-

addressed in typical computer networks, and they could bring severe and irreversible 

consequences if not properly dealt with. To elaborate: 

• Besides information and identity theft, it could even threaten drivers’, passengers’ and 

pedestrians’ physical well-being. 

• Drivers could do little to prevent themselves from being hacked, so the responsibilities to 

protect them fall onto car makers’ shoulders. 

• If a vulnerability is found, normal computer systems can easily release a patch to repair it. 

On the other hand, once manufactured, cars are expected to be operable for decades, and 

their updates are not as fast and frequent as computers. Therefore vehicle security systems 

must be designed to be resilient to novel attacks and avoid obsolescence over its long 

lifecycle. 

• Considering the fact that automotive security incidents are not frequently occurring yet, 

solutions that would greatly increase the overall cost of vehicles should be avoided. The 

stringent cost requirement makes most sophisticated protection systems infeasible. 

B. Hacking cases 

 In the past decades, the security of vehicles was ensured primarily through an approach 

called “security by obscurity”, which means to keep the implementation details private and 
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prevent anyone from fully understanding the system. Today, many hardware engineers are still 

under the preconceived notion that people have neither the ability nor the motive to hack a car. 

However, this no longer applies in today’s automotive industry. Systems and devices that were 

once too complex for anyone to understand have become hackers’ common targets [14]. Corner-

cutting designs inside vehicles, such as scripts that run as root on a removable card and 

protection of remote control with a default password of all-zeros, have also been found and 

exploited by hackers. On the other hand, recent evolutions of vehicular networks have made 

vehicle-related crimes more discreet and easier to conduct by allowing indirect and wireless 

access, thus removing the precondition of physical access to the vehicle. Some conceivable 

motives for vehicle cyberattacks include theft, electronic tuning, sabotage, intellectual property 

theft, privacy breach and intellectual challenge [12]. As proof, there have been a few cases 

related to vehicle hacking. For instance, in 2012 there were reports of missing luxurious BMW 

vehicles that turn out to be stolen by unauthorized access to on-board computers and 

programming of blank smart keys. There has also been an incident where a vulnerability in a 

web-based vehicle immobilization system was exploited, resulting in hundreds of cars in a city 

becoming unresponsive and their horns blaring wildly [15]. Evidently, the wide barrier of entry 

around vehicle systems that attempts to provide vehicle cybersecurity cannot defend against the 

rising vehicle attacks much longer. 

C. Related regulations 

 In Europe, the regulatory bodies within the European Union are very active in the 

promotion of vehicle cybersecurity. Aside from the existing General Data Protection Regulation, 
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the European Commission and European Union Agency for Network and Information Security 

(ENISA) have a specific regulation on cybersecurity across Europe. It includes a certification 

scheme that issues certifications to vehicles based on the ranking a vehicle receives during an 

accredited assessment [21]. The US government has also begun to realize the importance of 

enforcing vehicle cybersecurity through regulations. In March 2016, a warning about the 

growing vulnerability of vehicles to remote cyberattacks was given out in a public service 

announcement by the National Highway Traffic Safety Administration, the US Department of 

Transportation and the Federal Bureau of Investigation [19]. In the following month, two bills 

that give life sentences to people who hack into in-vehicle networks were proposed by the 

Michigan state senate [19]. In 2017 the US Congress and Senate passed the Safely Ensuring 

Lives Future Deployment and Research In Vehicle Evolution (SELF DRIVE) Act which takes an 

approach for cybersecurity similar to Europe’s ranking system. 

5
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III. VEHICULAR NETWORK 

A. Connected car 

 In the US and Europe, a connected car or a smart car is defined as a vehicle that makes 

use of information gathered from internal systems and the external environment to provide useful 

driving assistance and improve convenience and safety. It is considered a step toward the 

eventual automated self-driving car [1]. As a major addition to the world of the Internet of 

Things (IoT) and a fundamental part of the smart city vision, the need for modern vehicles’ 

connectivity and automation grows rapidly. By 2016 a typical connected car already had more 

than 75 sensors, 150 actuators and 4000 signal data, while generating 25 gigabytes of data per 

hour which are analyzed by 70 on-board computers (OBCs) [1]. There have also been mobile 

applications and devices that enable remote monitoring and diagnosing of vehicles. They are 

designed to enhance users’ knowledge about their cars, but on the other hand, they bring security 

challenges to the in-vehicle networks by introducing remote access to the in-vehicle network. 

Some researchers argue that vehicles are not ready for the potential attacks it attracts. Thus, it is 

important to evaluate the tradeoffs this technology has brought about. 

 As shown in Figure 1, the vehicles are now at the intersection of myriads of connections, 

each of which is a potential entry point to the car [8]. The connections on a vehicle include, but 

are not limited to: 

• OBD-II port used to access embedded microcontrollers, 

• Vehicle-to-Vehicle (V2V) communications formed with the VANET network that allows for 

aid in effortless driving and automatic response to imminent danger, 
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• Vehicle-to-Infrastructure (V2I) communications allowed by interacting with Roadside Units, 

which are installed at critical points on the roads to enhance driving reliability, 

• Interconnections with smartphones and tablets through auto platforms such as Apple’s 

CarPlay and Google’s Android Auto to enable hands-free access to mobile services, 

• Connection with 4G and 5G mobile networks to enable over-the-air firmware updates, 

satellites and Global Positioning System (GPS) services, 

• And finally, physical connections via CD player and USB sockets. 

 

Fig. 1. Interconnections of a connected car 

B. Electronic control units 

 ECU is an embedded system that controls one or more of the modules and subnetworks 

on a vehicle. Modern vehicles usually comprise more than fifty ECUs, including telematics, 

airbag control unit, engine control unit, transmission control unit and antilock braking system. 

These ECUs are responsible for runtime monitoring and accurate control over the vehicle 
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systems such as fuel injection, air intake, user interface, infotainment, engine control and cruise 

control systems [4]. These functions are facilitated by reading data from sensors, performing 

calculations and then setting actuator variables, and thus, fast and safe communications amongst 

the ECUs are of vital importance. Engine Control Module is a special type of ECU, which 

specifies and controls the real-time parameters of the engine unit. An ECU’s parameters are 

carefully tuned by engineers, and its undisturbed operation is essential to a vehicle’s normal 

behavior on the road [3][5]. Nowadays, the count and complexity of ECUs on a vehicle continue 

to increase, bringing more functionalities and control over the vehicle [1]. However, this also 

increases the possibility of being hacked and increases the severity of the outcomes, as a flaw of 

any ECU could be leveraged by hackers, causing the whole vehicular security system to crumble 

and possibly lead to an accident. Most ECUs only have a simple challenge-response 

authentication scheme to prevent unauthorized access, which could either be cracked in a brute-

force manner or bypassed under an integrity attack [14]. The attacker could then masquerade as 

the compromised ECU and launch attacks on other ECUs. Although the in-vehicle network is 

segregated into subnetworks based on the ECUs’ functionalities, the gateways between 

subnetworks are basically filters that allow only predefined message types to pass through, so 

they will relay any message that possibly interests any ECU in the same subnetwork. Thus, 

gateways can do little to prevent the attacker from gaining full control over the vehicle’s 

functionality. Furthermore, the attacker could even launch attacks on the vehicle’s surrounding 

environment and cause greater damage if V2V/V2I communications are supported. 

8
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C. Controller area network 

 The major in-vehicle subnetwork protocols are CAN, FlexRay, Media Oriented System 

Transport (MOST) and Local Interconnect Networks (LIN). Their utilities and characteristics are 

listed in Table I [8], and an example structure of a typical in-vehicle network is shown in Figure 

2. Among them, FlexRay has not been widely adopted due to its high cost, and MOST and LIN 

are designated for non-critical subnetworks. CAN is the most ubiquitous and also the most 

defenseless protocol in vehicles, and thus, is focused on in this paper. 

TABLE I 
SUBNETWORK PROTOCOLS IN VEHICLES 

 The CAN bus protocol is a network protocol developed by Robert Bosch GmbH to 

replace the previously hard-wired communication systems. It was released in 1986, and despite 

its age, it is still the de facto standard of all vehicles in the US [4]. Due to its comparably low 

cost and optimized power to deliver short and periodic messages, its usage even extends to 

telecommunication backup power systems and robots [7]. CAN bus connects all the ECUs on a 

vehicle in a fashion similar to how a household electric circuit connects home appliances, 

Name Description Bandwidth

CAN The predominant network protocol in 
vehicular networks, divided in high and 
low speed buses

CAN high: 500 Kbit/s

CAN low: 125 Kbit/s

FlexRay Designed as a replacement of CAN with 
higher speed, but its higher cost hinders 
its use

10 Mbit/s

MOST Offers synchronous and asynchronous 
data channels, used by infotainment 
systems

24 Mbit/s for synchronous transmission

14 Mbit/s for asynchronous transmission

LIN Use a master-slave model, provide low-
cost communication between sensors 
and actuators

20 Kbit/s

9
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allowing them to be easily added to or removed from the network. The advantage of the CAN 

bus protocol is that it greatly reduced the cost and complexity of interconnection amongst 

different vehicle systems and made the configuration of ECUs easier [4]. However, it is old, and 

in the 1980’s the Internet was not yet as prominent, let alone cyberattacks. As a protocol 

designed thirty years ago, CAN bus protocol naturally does not have any intrinsic encryption or 

security support, delegating this responsibility to the higher-level protocols. On the other hand, 

since CAN bus protocol is a real-time control protocol with stringent cost constraints, most of the 

existing security mechanisms for general applications are incompatible with vehicular systems, 

and must adapt to CAN bus protocol’s specific constraints before applying [7]. The security 

levels of vehicles also differ dramatically between one model and another. Mid-priced cars are 

the most prone to cyber attacks, because they depend more on the CAN bus network than low-

priced cars, but they do not have a strong security gateway like high-priced cars [3]. This could 

10
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be an implication of the fact that current security solutions are so expensive to deploy on a car 

that most car makers do not consider them practical and worthwhile. 

TABLE II 
STRUCTURE OF BASIC CAN FRAME 

 There are two types of CAN frame format: basic frame format (CAN 2.0A) and extended 

frame format (CAN 2.0B). The format of the basic CAN frame is listed in Table II. The extended 

frame format is similar but with 29 identifier bits. Depending on the purpose, CAN messages can 

be categorized in four different types, which are explained in Table III [8]. Moreover, there is 

also a special type of message called diagnostic message, which always has a value greater than 

0x700 as its CAN ID. Normally, diagnostic messages occur only when the vehicle is under the 

Name Description Length in bits

Start-of-frame (SOF) Indicate the start of a frame 1

Identifier The CAN ID of the sender ECU 11

Remote transmission request (RTR) Indicate whether this message is a data frame 
or remote request frame

1

Identifier extension bit (IDE) Indicate whether this message is in basic or 
extended frame format

1

Reserved bit Must be dominant (0) 1

Data length code (DLC) The number of bytes used in the data field 4

Data The data transmitted 64

Cyclic redundancy check (CRC) Detect hardware bit corruptions 15

CRC delimiter Must be recessive (1) 1

ACK slot Must be recessive 1

ACK delimiter Must be recessive 1

End-of-frame (EOF) Denote the end of a frame, must be recessive 7

11
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diagnosis of vehicle mechanics, and they could be very powerful depending on the design of 

ECUs. 

TABLE III 
TYPES OF CAN MESSAGES 

 CAN bus protocol has two major characteristics that pose inherent security issues. First, 

to maximize the number of messages transmitted in a time unit, which determines the 

performance of a car to a large extent, CAN messages are made to be as short as possible [7]. As 

a result, the receiver’s field is omitted in CAN messages, and every message is broadcasted in 

the network for every ECU’s acceptance filter to decide whether the message is intended for 

itself [3][8]. Second, a unique CAN identifier is assigned to every ECU on a vehicle, which also 

serves as its priority value. A CAN message contains the CAN ID of the sender, and if it collides 

with another CAN message, then the message with the higher CAN ID has to yield and resend at 

a later time. Because of these characteristics, CAN bus protocol cannot guarantee the following 

security properties, which could potentially be exploited by hackers [12]: 

• Confidentiality: a faulty node can easily tap the CAN network and decrypt the meaning of 

each message. 

Message type name Usage

Data frame The most common message type, which broadcasts a data 
payload between nodes.

Remote frame Requests the transmission of data from a particular node.

Error frame Sent by a node that has detected an error in a message to ask 
the sender to retransmit that message.

Overload frame Sent by a busy node to request an extra delay between 
messages.

12
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• Authenticity: a node could send packets with any CAN ID, making it impossible to verify the 

sender of a packet. 

• Integrity: likewise, a node could also send packets with falsified data contents. 

• Availability: a Denial-of-Service (DoS) attack is plausible by bombarding the CAN bus with 

messages with low CAN IDs, or high priority values, forcing all other messages to stall and 

disabling the CAN bus [3] 

• Non-repudiation: there is no way for an authentic ECU to prove whether or not it has sent or 

received a certain message. 

D. On-board diagnostics 

 The term OBD refers to the self-diagnosing capabilities of vehicles. Since 1996, it has 

been mandatory for every car sold in the US to provide an OBD-II diagnostic connector. An 

OBD socket is usually located below the steering wheel and above the brake, and can be 

connected to various diagnosis tools like OBD dongles and scanners to listen to the CAN bus and 

inspect ECUs by means of the ELM327 functions. Figure 3 shows the possible usages of an 

OBD port. While OBD connectors allow repair technicians to easily diagnose cars, the wide 

range of ECU control commands stored in the tools also make them exploitable to hackers who 

could access the CAN bus and manipulate ECUs in unethical ways. A host of tools that are 

publicly purchasable in automotive stores and online allow the user to extract and decipher CAN 

bus traffic or inject arbitrary messages into the CAN bus to manipulate target units [3]. These 

tools once required a wired connection to a computer terminal, but now, most of them provide 

remote access via Bluetooth, 3G/4G or Wi-Fi connections, and are easy to be carried and 

13
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concealed [3][6]. It has been reported that about half of the investigated OBD dongles have 

exposed, weak or no encryption key, and thus can be utilized for OBD injection attacks. These 

tools greatly lower the threshold and cost of vehicle hacking [6]. 

 

Fig. 3. Usages of an OBD port 

14



DEFENDING VEHICLES AGAINST CYBERTHREATS: CHALLENGES AND A DETECTION-BASED SOLUTION

IV. ATTACK MODEL 

A. Hacking experiments 

 Establishing the attack model is crucial to learn the attacker’s capabilities and effectively 

design defenses. In the last decade, many car hacking experiments have been mounted and 

documented to showcase the vulnerabilities of automotive networks. To give a flavor of the wide 

spectrum of hacking methods, some representative hacking experiments conducted in the past 

are summarized below: 

• In 2015 Miller and Valasek found a vulnerability in the head unit of a 2014 Jeep Cherokee 

[2]. They demonstrated and published in detail how to exploit this vulnerability to remotely 

compromise the vehicle. Malfunctions were caused to a 2014 Jeep Cherokee by 

reprogramming a gateway chip inside the car’s head unit and making it send random CAN 

messages. This hack eventually caused the Jeep company to recall millions of their Jeeps. 

• In [3], the control over lights, horn, dashboard, lock and steering of different models of cars 

was gained by injecting CAN messages through the OBD interface. 

• In [5], the throttle control, gear state and brake of a Renault Twizy 80 were remotely 

controlled by tampering with the vehicle’s main ECU, the Sevcon Gen4 controller. It was 

achieved by finding the passcode of the Sevcon Gen4 with brute force, which only took a 

matter of hours because the passcode is only two bytes long. 

• In [9], the Advanced Driver-Assistance Systems (ADAS) of a car produced in 2018 was 

successfully hacked and manipulated to remotely accelerate, brake or steer the car.  

• In [17], a man-in-the-middle attack was conducted on a simulated CAN bus formed by a 

BMW E90 (3 Series) instrument cluster, an Arduino MEGA 2560 board and a CAN bus 

15
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shield. A rogue device was connected to the CAN bus and was able to intercept CAN 

packets, modify its content and send them to the rest of the CAN bus without being detected. 

• In [20], a live demonstration of an attack experiment is reported in a television news 

program. The experimenters used a malicious mobile app written by themselves to remotely 

control a mid-size car. They were able to change the dashboard, steering and acceleration of 

the car. The video clip of the live experiment is still available at an URL provided in their 

paper. 

 The successes of these experiments revealed that car hacking is not a mere academic 

theory, but an activity that anyone with some knowledge about cars might be able to do. Despite 

that, little research has been done in recent years due to a large knowledge gap between 

automotive cybersecurity and other computer science fields [2]. On the other hand, automakers 

are seeking profit in developing higher-level smart and autonomous cars, while the development 

of security systems is being outpaced or even neglected. If cybersecurity requirements and 

standards are not established early in the system design lifecycle and maintained throughout, 

then it will be even harder to fix security vulnerabilities in later design phases. Therefore, to 

address the automotive security challenges that are in the way of the deployment of fully 

autonomous vehicles, academic researchers and industrial engineers need to work together to 

reach an effective and efficient solution promptly. 

B. Attack surface 

 According to previous hacking experiments, an attack usually needs to first break into the 

internal CAN network through a wired or wireless entry point. Modern vehicles have a broad 

16
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range of access points where unauthorized access could enter through. Some access points that 

are likely to be targeted are discussed in table IV [12]. 

TABLE IV 
POSSIBLE ENTRY POINTS OF IN-VEHICLE NETWORK 

 After the attacker gains the ability to send and receive packets to or from the vehicular 

networks, they could then start a reconnaissance phase by eavesdropping on the CAN traffic and 

infer information such as the ECUs in the network, the messages they send, the frequency of 

their packets, etc. They could also send arbitrary CAN messages to see the reactions of the 

Category Access point Description

Indirect 
Access

OBD port An OBD adapter used for diagnosis could be left plugged in the OBD 
port, and any device nearby could pick up its WiFi or Bluetooth signal 
and connect to the in-vehicle networks (in fact “fit and forget” is a 
feature OBD adapter sellers boast about). An unprotected OBD dongle 
could also be rewritten to emit malicious CAN packets when plugged in 
an OBD port.

CD player A malicious music file could be either written on a CD/USB or 
downloaded from the Internet. The decoding of Windows Media Audio 
(WMA) files might be exploited to emit malicious packets while the 
music is played.

Short 
range 
attacks

Mobile device 
connection

A mobile device paired with a vehicle through an auto platform could 
gain access to data stored in the communication unit, leading to 
database leakage and even ECU compromises [6].

V2V/V2I 
communication

Bogus data packets could be sent through V2V/V2I communication 
channels and trick the vehicle into taking inappropriate emergency 
actions.

Remote keyless 
system

Experimental attacks have been documented that successfully cracked 
or bypassed keyless entry systems and unlocked cars.

Long 
range 
attacks

Web browsing Vehicles embedded with a web browser should keep an eye on browser 
targeted attacks such as buffer overflow and code injection.

App store Similar to iOS Appstore and the Play Store, some automakers already 
released their online App Stores providing auto application downloads. 
However, a malicious app could disguise as a car diagnostic app and fly 
under the radar, which could have large-scale consequences.
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ECUs. Once enough information about the target vehicle’s CAN network structure has been 

gathered, the real attack phase will be initiated. 

C. Attack scenarios 

 After an attacker breaks through the defense system and gains a foothold in the CAN bus, 

the real attack could be launched in limitless ways. The most common types of attack include: 

• Denial of Service (DoS) attack: a straightforward way to attack a vehicle is to bombard its 

CAN bus with injected packets. Because in case of a packet collision, the packet with a higher 

ID should always yield, flooding the CAN bus using packets with the lowest ID could easily 

disable the function of the network and bring devastating outcomes. 

• Diagnosis attack: manipulate individual ECUs by forging and sending diagnostic messages. 

The severity of diagnosis attacks have been demonstrated in many hacking experiments. 

However, diagnosis messages are not supposed to appear in CAN bus during normal operation 

of a vehicle, so it is not hard to detect and defend against this type of attack. 

• Replay attack: an attacker could perform some action on the car such as unlocking the car or 

turning on the radio, then record the CAN packets while this action is happening. This 

recording could be saved and replayed later to produce the same effect on any vehicle with the 

same model. By repeatedly trimming and replaying the recording, the recording’s size could be 

reduced to as small as needed. 

• Spoof attack: masquerade as other legitimate ECUs and send erroneous data packets to the 

CAN bus. This requires more prior knowledge about the vehicle’s CAN implementation than a 

replay attack, but is also more powerful. 
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• Fuzzy attack: send random CAN messages to disrupt the vehicle’s normal operation. Because 

precise control over the result cannot be achieved, fuzzy attacks are less severe compared to 

other types of attacks. Nonetheless, fuzzy attacks could temper with the safety constraints of 

the vehicular systems without any knowledge of the underlying structures, making them easy 

to carry out and more difficult to counter. 

• Suspension attack: intercept or stop the transmission of one or more ECU’s authentic 

messages, resulting in obliteration of packets in the vehicle CAN. This type of attack is rare 

but is relatively hard to defend. 

• Malware: aside from direct attacks, malware may also crawl its way to vehicle systems, which 

could take the form of a virus, worm, Trojan horse, spyware, ransomware or rootkit [13]. If left 

untreated, malware could create an adversarial driving environment and greatly impact the 

vehicle’s normal functionality. 
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V. DEFENSE MECHANISMS 

 Given the vast number of attack methods and the possible emergence of novel cyber-

attacks, it is unrealistic to try to cope with every single type of attack. Securing wired and 

wireless access points is also important, but it is inefficient to make the broad communication 

interfaces perfectly hack-proof. To make the investment in vehicle security worthwhile and avoid 

raising the overall cost too much, a centralized solution that can thwart all types of attacks should 

be in our best interest. Most defense mechanisms proposed so far can be grouped into three 

categories: cryptography, IDS and cloud-based solutions. We will discuss the pros and cons of 

each category in detail. 

A. Cryptography 

 Cryptographic solutions are a natural first thought to protect data from being sniffed or 

tampered. Cryptographic schemes such as encryption and Message Authentication Code (MAC) 

are devised to ensure data integrity and authenticity [7]. Some cryptographic schemes have been 

proposed in [11] and [20] where their ability to increase the difficulty to sniff and spoof the CAN 

bus traffic have been theoretically proved. However, cryptographic solutions also have their 

drawbacks. First, constant encoding and decoding will bring a lot of computation overhead to the 

resource-constrained CAN network, and the extra bits of the MAC tags will also decrease the 

data throughput. Second, normal encryption could do little against fuzzy attacks, because there 

will always be some random ciphertexts that can decrypt to a meaningful message and get past 

the error detection checks [7]. Although MAC is able to defend against fuzzing attacks, it has its 

key distribution problem, because it cannot make sure that the various components have the 
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secret shared key which is used to verify the MACs. Third, cryptographic solutions also 

necessitate a heavy modification to the structure of the CAN bus protocol, which will greatly 

increase the vehicle system complexity and cost time and resources for manufacturers and 

agencies to respond to this change. Therefore it should not be expected to happen in the near 

future and could only be saved as a candidate for a long-term solution. 

B. Intrusion detection system 

 No matter how sophisticated an authentication system is, if it cannot stop attackers from 

trying repeatedly, then the system will be much more likely to be cracked given enough time. 

Thus, it is imperative to adopt an Intrusion Detection System (IDS) that is able to mitigate 

security risks by the means of detecting attacks and taking corresponding countermeasures. 

Unlike cryptography, an IDS only needs a monitoring controller that scans CAN traffic and 

distinguishes malicious from benign payloads. This does not require any change to the current 

CAN bus structure. Once an attack is detected, the driver should be notified and some predefined 

emergency methods should be provided to protect the driver and passengers. If the IDS is 

confident enough, it can also take safety measures on its own, such as ignoring packets from 

offending CAN ID, reconfiguring compromised ECUs or disabling inessential subnetworks. 

 There are two main challenges presented to the implementation of an IDS. First, false 

positives have a much greater impact on the feasibility of IDSs than other applications. Thanks to 

the high speed and heavy traffic in the CAN bus, even a 0.001% False Positive Rate (FPR) could 

cause the alarm to be triggered once every few minutes, rendering the IDS completely useless. 

On the other hand, if the sensitivity of the IDS is lowered to decrease the FPR, it would in turn 
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decrease the true positive rate (TPR), hindering its ability to detect anomalies. Therefore, an IDS 

is only practical if it can achieve a high TPR while keeping its FPR very close to zero. This 

constraint limited the practical use of many existing IDS designs, which we will discuss in the 

next section. The second challenge is that the specifications of ECUs are usually considered as 

intellectual property and are not shared by automakers. Thus, knowledge about the ECUs could 

only come through a process called reverse engineering, which needs to be done on each 

individual car model and is both time-consuming and painstaking. In the next section, a solution 

that addresses both challenges will be proposed. 

C. Cloud-based solutions 

 To make up for vehicular systems’ constraints, cloud-based solutions have been proposed 

by [13]. By delegating the responsibility to the cloud, which usually has more storage and 

computation power than a vehicle, more sophisticated detection mechanisms could be employed, 

such as storing the signatures of all known threats and vehicle malware in a database for 

comparison. These solutions are more likely to achieve a much lower FPR than typical on-board 

IDS. However, cloud-based solutions are not perfect either. First, a large rate of real-time data 

will be transmitted from the vehicle to the cloud whenever the vehicle is on, which brings a huge 

load to the already resource-limited vehicular systems. Second, the connection between the 

vehicle and the cloud creates another vulnerability. If this connection is compromised, it would 

be susceptible to a man-in-the-middle attack, intercepting all communication messages between 

the vehicle and the cloud while tricking them with forged messages. Third, the latency of a 

cloud-based solution tend to be longer than an on-board IDS, so it usually takes longer to find 
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out that the vehicle is being attacked, which could be the difference between life and death. More 

proper usage of a cloud-based system is to combine it with an on-board IDS, which could scan 

and validate most of the CAN packets on its own and only send a partial log to the cloud for 

confirmation when it is not sure about its authenticity. This could greatly reduce the 

communication load with the cloud-based defense system. The IDS is also responsible for the 

safety of the communication link. On the other hand, the cloud could provide regular firmware 

updates to the ECUs and fix any found vulnerabilities, as well as updating the IDS when a new 

type of threat is found. Therefore, cloud-assisted solutions are only viable when combined with 

an IDS, and the design of a practical IDS should be prioritized before employing a cloud-based 

solution. 
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VI. THEORY 

A. IDS Evaluations 

 In previous works, various approaches were taken to build an IDS. However, each of 

them has its own flaws, and there has not been a perfect IDS design as of yet. For instance: 

• [4] used normal real-world CAN messages combined with manually injected messages to 

simulate four types of attacks: DOS attack, fuzzy attack, drive gear spoofing attack and RPM 

gauge spoofing attack. They employed fuzzy logic techniques and obtained a precision of 

85%, which is far from 100% and thus unacceptable for practical use. 

• [8] constructed a neural network on data collected from a 2012 Sebura Impreza car and 

evaluated it using normal and suspicious data sequences, but the Receiver Operating 

Characteristic (ROC) curve shows that the TPR is at most 0.85 when the FPR is 0, which is 

decent but still has room for improvement. 

• [10] used CAN bus data collected from a 2011 Ford Explorer to implement a flow-based 

anomaly detector that identifies inserted and deleted packets from irregular frequency 

changes. They also built an OCSVM for comparison and showed results better than 

expected. However, they only considered timing statistics and ignored all data frames as well 

as non-periodic packet types, rendering the IDS impractical. 

• [16] proposed using recurrent neural networks to detect malicious packets and showed that it 

performs better than the conventional threshold-based method. However, it may still fail to 

detect some consecutive malicious packets when the variance of the packet contents is large. 
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• [18] also built an IDS based on long short-term memory recurrent neural network and 

obtained satisfactory results on synthesized datasets, but its detectability drops to almost zero 

when the FPR is kept at zero. 

B. Proposed solution 

 As discussed in the previous section, in order to make an IDS practical, the limitation that 

the FPR of the IDS has to be zero must be relaxed. To do this, the periodicity and redundancy of 

the CAN signals could be harnessed. Most ECUs in the CAN bus broadcast their current state 

variables to the rest of the network with a strict frequency, which gives the system high fault 

tolerance, noise immunity and resilience to transient attacks. Individual spoofed messages could 

at best cause a momentary fluctuation in a control signal before it recovers, and are unlikely to 

cause a catastrophic system crash [7]. Our previous discussion on known attack types also shows 

that almost all types of attacks would give rise to a significant change in the CAN traffic. The 

only known exception is diagnosis attack, which is the only type of attack that does not need to 

send packets at a high rate and vie for the attention of its target recipient ECU. However, since 

diagnosis packets appear only when the vehicle is under diagnosis, the detection of this type of 

attack can be trivialized by ignoring all diagnostic packets during the vehicle’s normal operation. 

Given this insight, it is sufficient for an IDS to raise the alarm only when it detects a significant 

number of suspicious or invalid packets in the CAN bus within a small time interval. If the FPR 

of one packet is , then the possibility that  packets are all misclassified will drop to . 

Therefore, this solution could exponentially reduce the FPR and make the result more reliable. 

x n xn
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 Most of the previous IDS implementations are signature-based, which means they use 

signatures of various attack types to train the identifiers. Thus, they are good at identifying 

signatures of known attack types but are not capable of detecting novel types of attack [22]. This 

project aims to present an IDS based on OCSVM that does not require any knowledge about the 

meaning of CAN packets nor assume any attack type, and thus can be easily adapted to any 

model of car. It is also anomaly-based and is able to detect abnormal behavior caused by both 

known and novel attacks. 

C. OCSVM 

 

Fig. 4. OCSVM on the wine recognition dataset 
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 For classification problems that involve distinguishing test data amongst different classes 

based on labeled training data, traditional classification algorithms like Naive Bayes (NB) and 

Support Vector Machine (SVM) are usually our first choices. However, for problems such as 

detecting malicious messages in the CAN bus, it is easy to collect normal data, but gathering 

faulty messages is much harder and more expensive. Even if some data can be collected through 

simulation or during experiments, there is no way to ensure that the collected data are 

representative of all known and novel types of attacks. OCSVM is an algorithm that was 

introduced by Schölkoph et al. to specifically handle this kind of case, where the training data 

consists mostly or entirely of one of the classes. It will try to build a model that captures the 

characteristics of the initial observations, and if it encounters a data point that deviates too much 

from the learned characteristics, then the data point will be labeled as out-of-class. Figure 4 

shows an example where OCSVM is applied to the wine recognition dataset and learns a contour 

of the data distribution [23]. 

 Mathematically, the algorithm first transfers all data points to a hyperplane represented 

with the equation , where  (F is the feature space) and . Then it tries to 

maximize the distance between the data points and the origin in the feature space. The objective 

function is 

 

subject to: 

  for all i = 1, …, n 

    for all i = 1, …, n 

ωT + b = 0 ω ∈ F b ∈ R

min
ω,ξi,ρ

∥ω∥2

2
− ρ +

1
νn

n

∑
i=1

ξi

(ω ⋅ ϕ(xi)) ≥ ρ − ξi

ξi ≥ 0
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where  are the slack variables that specify the outliers,  are the data points,  is the number of 

data points, and  is the parameter that controls both the upper bound of the fraction of outliers in 

the training data and the lower bound of the number of data points used as Support Vector (the nu 

parameter in Scikit-learn). Solving this problem using Lagrange multipliers yields the decision 

function 

 

where  are the Lagrange multipliers that “support” the machine, and  is the kernel 

function. Common choices of the kernel function are Radial Basis Function (RBF), linear, poly, 

and sigmoid. RBF is the most popular choice among them, and this is what we chose for this 

project. The definition of RBF kernel is 

 

where  is a free parameter (the gamma parameter in Scikit-learn). 

ξi xi n

ν

f (x) = sgn(
n

∑
i=1

αiK(x, xi) − ρ)

αi > 0 K(x, xi)

K(x, x′ ) = exp(−γ∥x − x′ ∥2)

γ
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VII. EXPERIMENT 

A. Dataset 

 The dataset used in this experiment is downloaded from [24], which includes three sets of 

CAN bus data collected from an Opel Astra, a Renault Clio and a prototype respectively. The 

prototype dataset only has about a hundred thousand packets, which is not enough to be used for 

any purpose. So we only used the first two sets of data, which were captured by connecting a 

laptop and a CAN-to-USB interface called CANtact to the OBD-II port of the vehicle, followed 

by driving the car in an urban environment for several minutes. The Opel Astra dataset lasts for 

1382.22 seconds and contains 2.7 million packets from 85 unique CAN IDs, while the Renault 

Clio dataset lasts for 275.09 seconds and contains 0.4 million packets sent by 55 different CAN 

IDs. The datasets also come with synthesized attack data created by copying and modifying the 

original data. However, we did not use the attack data and will instead synthesize our own attack 

data, as this will give us more control over it. The Opel Astra dataset has significantly more 

packets than the Renault Clio one, so we mainly used this one for training and validation, and 

used the Renault Clio dataset for the final evaluation only. 

B. Data processing 

 In the raw datasets, every CAN packet has three fields: the timestamp when the message 

was sent, the sender’s CAN ID, and the eight-byte payload of the packet. Each byte of the 

payload is treated as an individual feature to give them equal significance. Since the timestamp 

itself does not have any meaning, it was replaced by two new features derived from it: the time 

passed since the last packet was sent to the CAN bus, and the time passed since the last CAN 
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Fig. 5. Message frequency of CAN bus

Fig. 6. Message frequency of each CAN ID
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message was sent by the same CAN ID. We used both of these two features because both of them 

have a clear correlation with the CAN ID, as shown in Figures 5 and 6, and most attack types 

will significantly change either or both of these two features. The first packet sent by each CAN 

ID does not have these two values, so these packets were discarded. Also in the dataset some 

CAN packets have their CAN ID greater than 0x700, indicating that they are diagnosis messages. 

However, as discussed earlier, diagnosis messages are not supposed to appear during a vehicle’s 

normal operation, so we assumed that these packets were produced by the data collecting devices 

and removed them from the dataset. Since the Opel Astra dataset is sufficiently large, we did not 

use cross-validation and simply used the first 1.2 million packets for training and the following 

0.6 million packets for validation. The last 0.9 million packets were reserved for final testing. 

After the features were extracted from the raw dataset, we used a standard scaler to center the 

data points to Gaussian distribution before using them for training and testing. 

C. Evaluation criteria 

 Before training the model, we need to decide on the evaluation criteria. An ideal IDS 

should keep quiet during the vehicle’s normal operation, but when the vehicle is under attack, the 

IDS should be able to detect and respond to it as soon as possible. We achieve this by 

periodically counting abnormal CAN packets detected in the CAN bus and compare it to a set 

threshold. If the number of detected abnormal packets in a time period t exceeds the threshold, 

then it will be an indication that the vehicle is under attack. The psuedocode of the IDS’s 

behavior is shown as the following, assuming all variables are properly defined and initialized 

before the loop: 
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while packetBuffer: # assume new packets are appended to packetBuffer 

 packet = packetBuffer.pop(0) 

 t = packet[timestamp] 

 if t >= nextCheckpoint: 

  if count >= threshold: # raise the alarm 

  count = 0 

  nextCheckpoint += t 

 packet.remove(timestamp) 

 packet[timeSinceLastPacket] = t - prevTime 

 packet[timeSinceLastPacketFromECU] = t - prevTimeFromECU[packet[ECUID]] 

 prevTime = t 

 prevTimeFromECU[packet[ECUID]] = t 

 if clf.predict(packet) == -1: count += 1 

 Because our data points are generated from not only the current packet but also the 

previous packet in the CAN bus and the previous packet from the same CAN ID, abnormal 

packets will affect the legitimacy of their neighboring packets as well. Therefore conventional 

evaluation criteria like the confusion matrix would make little sense in this problem. Instead, we 

want to maximize the difference in the positive count between normal data and attack data, so 

that a threshold in between could easily separate the two groups of data. Specifically, we define 

maxNormal as the maximum positive count during any time period t in the normal data, and 

minAttack as the minimum positive count during any time period t in the attack data. To account 

for the uncertainty, we are going to use S = minAttack - maxNormal as our scoring function, so a 
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positive S means that one type of data will never be classified as another. However, generally we 

want S to be as large as possible, so that we can be more confident in the decision. Figure 7 

illustrates how our scoring function is derived. 

 As discussed earlier, the three major categories of attacks are insertion, modification and 

deletion of the original CAN messages, so these were the ways we generated our attack data. The  

modification and deletion cases has not been considered by many IDS evaluations due to their 

relatively rare occurrences, but we included them as extra challenges. As for the rate of change in 

the dataset, works like [4], [10] and [18] synthesized their attack data by injecting 0.5 to 10 times 

of the number of packets in the normal traffic. Hence we decided to create our attack data by 

injecting, modifying or deleting twenty percent of the number of packets in our original data, 

since a higher rate of change would be easier to detect, and a lower rate of change would not be 

likely to cause significant damage. For insertion, we created various types of new CAN packets 

and inserted them into the original data in a frequency of four hundred packets per second, or one 

packet every 2.5 milliseconds, which is about twenty percent of the frequency of the normal 

CAN traffic. For simplicity, we will use “random ID” to represent a randomly generated CAN ID 

between 0 and 0x700, and use “valid ID” to represent a valid CAN ID that is randomly chosen 
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from the pool of CAN IDs appeared in the original data. Likewise, we will use “random 

payload” to represent a randomly generated 8-byte payload, and use “valid payload” to represent 

a valid payload that is randomly chosen from the pool of payloads that appeared in the original 

data. Then the five types of CAN packets inserted are “random ID, random payload”, “random 

ID, valid payload”, “valid ID, random payload”, “valid ID, valid payload”, and “replay” which 

simulates the replay attack. For modification, we will randomly modify twenty percent of the 

original data points with “random ID”, “valid ID”, “random payload”, and “valid payload”. And 

for deletion, we will simulate two scenarios: randomly deleting twenty percent of the original 

data, and randomly choosing one CAN ID from the pool of valid CAN IDs and deleting all 

packets sent from it. To prove our model’s ability to detect novel types of attacks, we performed 

our validations on the “replay” and “random ID” scenarios only and used the outcome to find the 

best gamma and nu values. The other scenarios were reserved for our final evaluations on the 

final model. 

D. Model training 

 Once the evaluation criteria are decided, building the model is quite straightforward with 

Scikit-learn’s built-in OneClassSVM class. We used default values for most of the hyper-

parameters except for gamma and nu, for which we used grid search to find the best values. 

Gamma could be any positive number, while nu should be very close to zero in this problem as 

we only use normal data to train the classifier. The optimal values we decided on were gamma = 

0.4 and nu = 0.0025. The data in figures 8 to 10 were captured with gamma = 0.4, nu = 0.0025, 

training size = 1.2m and t = 1s except for the x-variables in the graphs. Figures 8 and 9 show the 
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Fig. 8. Relationship between gamma and S

Fig. 9. Relationship between nu and S
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process of finding the optimal values for gamma and nu respectively, while figure 10 shows the 

relationship between the training size and S, which proves the dataset size is quite sufficient for 

our purpose. 

E. Final evaluations 

 The final evaluations on the Opel Astra dataset and the Renault Clio dataset are shown in 

Table V and VI respectively. As a reminder, the min, max and average columns mean the 

minimum, maximum and average number of positive data points detected in time t respectively, 

and our scoring function is S = minAttack - maxNormal. To reduce the influence of all the 

randomness on the results, all values were sampled five times and then averaged. For the Opel 
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Astra dataset, the first 1.8 million packets were used for training and the rest 0.9 million packets 

were used for testing. The result scores for insertion and modification are all positive and 

sufficiently large, even though we only used the replay and random ID scenarios for training. 

This proves OCSVM’s ability to detect novel attack types. Note that even though more positive 

data points on average were detected with random ID and/or payload than with valid ones, the 

minimum number of positive data points detected was lower due to its higher randomness. On 

the other hand, S is only -17 for random deletion and -56 for deletion from one CAN ID. This 

implies that deletions of CAN packets are harder for our IDS to detect. For the Renault Clio 

dataset, the first half was used for training and the second half was used for testing. Other 

parameters remained the same, i.e. gamma = 0.4, nu = 0.0025 and t = 1 second. The results were 

very similar to the Opel Astra dataset, which proves that our solution works for different models 

of cars. 

TABLE V 
EVALUATION ON THE OPEL ASTRA DATASET 

Type Min Max Average S

Original 1 58 17 -

Insertion - random ID, random payload 175 447 411 117

Insertion - random ID, valid payload 168 447 408 110

Insertion - valid ID, random payload 314 416 360 256

Insertion - valid ID, valid payload 274 366 316 216

Insertion - replay 192 300 233 134

Modification - random ID 213 492 427 155

Modification - random payload 166 243 201 108

Modification - valid ID 224 323 275 166
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TABLE VI 
EVALUATION ON THE RENAULT CLIO DATASET

 To get a feeling of how various parameters affect the result, more experiments were 

performed where one parameter varies and the other ones remains fixed. First, we measured the 

relationship between t and S in the replay attack, as shown in figure 11. We can see that if we 

only want a positive S, then t could be set to as low as 0.2 seconds. However, since S increases 

significantly as t increases, for the best performance t should be set to the maximum time the 

vehicle could spend on determining if it is under attack before taking countermeasures, which is 

something the vehicle designers need to measure. Next, we plotted the relationship between the 

Modification - valid payload 114 194 147 56

Deletion - randomly 41 122 69 -17

Deletion - from one ID 2 65 21 -56

Type Min Max Average S

Original 4 79 28 -

Insertion - random ID, random payload 247 454 406 168

Insertion - random ID, valid payload 241 445 400 162

Insertion - valid ID, random payload 469 533 491 390

Insertion - valid ID, valid payload 356 425 382 277

Insertion - replay 428 553 489 349

Modification - random ID 148 434 348 69

Modification - random payload 246 342 287 167

Modification - valid ID 247 352 294 168

Modification - valid payload 110 195 145 31

Deletion - randomly 78 144 104 -1

Deletion - from one ID 4 79 28 -75
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Fig. 11. Relationship between t and S

Fig. 12. Relationship between insertion frequency and S
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Fig. 13. Relationship between modification rate and S

Fig. 14. Relationship between deletion rate and S
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rate of change in the data and S, as shown in figures 12 to 14. We can see from these figures that 

our IDS is capable of perfectly detecting an insertion frequency of one packet every 12.5 

milliseconds or less, a modification rate of at least 10%, or a deletion rate of above 27.5%. This 

confirmed that our solution has satisfactory detection ability on injection-based or modification-

based attacks, but its ability to detect deletion-based attacks still needs improvement. One idea is 

to combine the IDS with a monitoring device which periodically checks if all the CAN IDs are 

still alive. We also looked into the scenario of deletion from one CAN ID, and found that our 

IDS cannot effectively detect the silence of any CAN ID, probably because the silence of one 

ECU does not cause a significant rate of change in the whole CAN traffic. Finally, we tested the 

case where the packets are injected sporadically rather than periodically, and the result showed 

that it does not really affect the result as long as the number of packets injected in time t stays the 

same. 

TABLE VII 
COMPARISON TO OTHER IDS IMPLEMENTATIONS 

 Lastly, we compared our results to the performances of [4] and [10] representing other 

IDS implementations, as shown in Table VII. As we can see, they mainly focused on the 

Our solution [4] [10]

Insertion frequency > 12.5 ms 0.5 ms < 0.5 ms

Insertion accuracy 100% > 82.3% > 90.7%

Modification rate > 10% Not tested Not tested

Modification accuracy 100% Not tested Not tested

Deletion rate > 27.5% Not tested 50%

Deletion accuracy 100% Not tested > 73.1%

Delay 1 second Instantly 0.2 - 0.5 seconds
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insertions case, and in all the tested cases they had a worse detection accuracy on a more heavily-

modified attack dataset than our solution. In conclusion, our solution was superior in both the 

sensitivity and the accuracy. The only downside is that our solution requires a one-second delay 

in detection, but it could be adjusted flexibly at the cost of the sensitivity, as shown in figure 10. 

Furthermore, our solution is the only one that can perfectly identify normal data and attack data, 

which is an important prerequisite for the IDS to be potentially viable. 
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VIII. CONCLUSION 

 This project has first provided the background about vehicle cybersecurity, then proposed 

a detection-based solution to defend vehicles against cyberthreats. It has introduced concepts 

about vehicle subnetworks necessary to understand the topic of vehicle cybersecurity, including 

ECU, CAN bus and OBD. It has also discussed previous car hacking experiments, known attack 

types and proposed defense methods. Finally, a new design of IDS based on OCSVM has been 

implemented and evaluated. The main contribution of this project is proving that most 

sophisticated cyberattacks against CAN bus would result in a high frequency of packet injection, 

modification or deletion, thus eliminating the need to detect every single abnormal packet, which 

makes the design of a practical IDS possible. As future work, more experiments on the insertion 

and modification cases could be run to get a better sense of the solution’s reliability, and a 

solution to improve its ability to detect deletion-based attacks needs to be found. Moreover, the 

proposed method ultimately needs to be tested on a real vehicle and have its feasibility 

confirmed. This will ultimately help vehicle manufacturers design an effective and efficient 

security solution that can prevent vehicles from most cyberattacks at a reasonable cost. 
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