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Abstract—In recent years, many functionalities were developed
for Automated Vehicles (AVs) and some of them with close-to-
market prototypes. A required topic is the generation of contin-
uous trajectories that reduces the amount of discrete and pre-
coded instructions while leading the vehicle safely. Consequently,
this work presents a novel real-time trajectory planning approach
based on numerical optimization of n-order Bézier curves and
lane-based information. The generation of a feasible trajectory
considers the vehicle dimension while driving into a lane-corridor.
The nonlinear optimization problem was solved with the Bound
Optimization BY Quadratic Approximation method (BOBYQA),
and it uses the passengers’ comfort, safety, and vehicle dynamics
as constraints of the problem. The solution is validated in a
simulation environment using a bus with a length of 12 meters.
Moreover, the validation considered the roundabouts due to
its complexity, nevertheless, the solution is scalable to other
scenarios.

I. INTRODUCTION

AVs have shown great potential for improving safety, the
passengers’ comfort, and the efficiency of the driving tasks.
Nevertheless, optimal solutions for vehicle decisions, specifi-
cally for trajectory generation, are demanded in compliance
with the geometry of the maps, vehicle dimensions, and
dynamics [1]].

Typically, the AVs’ decision layer has a hierarchical struc-
ture, such as: i) routing based on passengers’ requirements,
traffic conditions, and road network; ii) reasoning process
through a sequence of driving behaviors, e.g. turning, lane-
changing, etc; and iii) the generation of feasible trajectories
that lead the vehicle safely [2].

Concerning the last topic, the literature presents some issues
in the trajectory generation field, mainly produced due to the
complexity of the problem. A potential solution is to separate
the trajectories in lateral and longitudinal motions. The lon-
gitudinal domain has been studied for a longer time, and this
has produced robust and reliable speed profiles approaches. In
2015, Ford prepared a patent that considers the optimization of
energy consumption and information from the cloud, e.g. the
road grade, to maximize the speed efficiency [3[]. Recently,
Berkeley has proposed a real-time speed profile which is
efficiently computed considering quadratic approximation of
a non-convex optimization problem which includes vehicle
dynamics, passengers comfort, and interaction with other road
participants [4].
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On the other hand, the lateral domain still lacks robustness.
Nevertheless, these previous attempts could be divided into
two different groups; sampling-based [S] and numerical opti-
mization approaches [6].

Sampling-based methods demand a strong computational
effort to generate a discrete set of pre-computed motion prim-
itives considering road geometry, vehicle dynamics, or a com-
bination of both. An offline trajectory generation approach was
proposed considering the vehicle’s reachable set of solutions
and a lower layer that evaluates potential fields while avoiding
collisions with moving obstacles [7]. Another method, inspired
in the RRT technique, generates short trajectories based on a
stochastic search and a steer function (inclusion of the vehicle
motion) [8]].

On the other hand, optimization-based methods generate
trajectories considering the complete solution-space, with a
small compromise in time to obtain the results [9]. A good
example was the combination of a smooth cubic function
and a Model Predictive Control method for the inclusion
of vehicle dynamics that has permitted a comfortable and
feasible driving experience [10]]. Nevertheless, splitting the
task of generating smooth trajectories and vehicle dynamics
can provoke conditions where both cannot be satisfied at the
same time.

Consequently, this work proposes a novel optimization-
based method for a safer trajectory-planning of AVs. It has
used n-order Bézier curves and their convex-hull property,
among others, to generate optimal and safe trajectories con-
tained into the path while considering the dimensions of the
vehicle, its dynamics, and the comfort of the passengers as
problem constraints.

The rest of this paper is divided as follows, section
reviewed the main benefits of the Bézier curves and the opti-
mization method used. Next, section [[II| presents the topology
that was used for the decision processes of the vehicle. Section
presents the trajectory planning approach considering the
lateral domain. Section [V] has a description of the test case.
Sections |VI| and present the results and discussions of the
work, and the contribution finishes with the conclusions and
future works on section [VIIIl



II. CONCEPTS AND BASIS

Our contribution to the optimal paths of AVs is highly
dependent on geometry. Consequently, this section presents
the principal components used for their generation. The first
one is the Bézier curve and the second one is the optimization
method BOBYQA.

A. BEZIER CURVES

Bézier curves are part of the spline family. An example of
them is presented in Fig. [I] These curves are described by the
equation:
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AW n—i
P = Z;bzP“ bi = (z>t (1=6"" M
where {b; € R} is the Bernstein polynomial, {P; € R?} are
the control points used to generate the curve, {n € N*} is the
Bézier order and {t € R,¢ = [0, 1]} is the parameter used to
construct the curve. This type of curves has been widely used
in Automated Vehicles with promising results in trajectory
generation. Further information about them can be found in
(1, [12].
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Fig. 1. Bézier and its properties

The Bézier curves have a set of characteristics that make
them robust and efficient for AVs’ path planning. Nevertheless,
this work relies on two of them:

Property 1: The starting point of the Bézier curve

corresponds with the control point Py, and its ending

point corresponds with P,,.

Property 2: The curve lies into the convex hull formed

by its control points.

B. OPTIMIZATION METHOD

The trajectory generation problem of the AVs, considering
the vehicle dimensions and lane boundaries, is a highly nonlin-
ear problem with non-smooth, discontinuous, and non-convex
objective functions. Derivative-based optimization methods are
weak against this problem [13]. However, modern derivative-
free methods can achieve good results.

The developments in derivative-free methods have been im-
proved with the emergence of new solvers, such as: NOMAD,
OQNLP, NEWUOA, BOBYQA, among others [14]. Some of
these methods have the following disadvantages: (i) the NO-
MAD method generates a global optimal solution that demands
a long computation time (ii)) OQONLP demands smooth

Ihttps://www.inverseproblem.co.nz/OPTI/index.php/Solvers/NOMAD

constraints to find a global optimal ﬂ (iii) NEWUOA solves
unconstrained optimization problems; this is time-consuming
and inefficient for a difficult problem which has well-defined
constraints [15].

In these terms, the BOBYQA method has been used to
solve the online optimization problem. It was originally a
Fortran package in charge of finding the minimum value of
a function {F(x), x € R™} subject to the bound constraints
{a; < x; < b;: i =1,2,...,n}, where x is the vector
to be optimized [16]. The method does not require pre-
computed derivatives and that is a major benefit in this type of
highly nonlinear problems. The BOBYQA algorithm generates
a quadratic approximation of the objective function F(x) in
the form of {Q(zx) = F(ar) : k = 1,2,...,m}, with m
the number of discretization steps. This approximation, along
with the use of the truncated conjugate gradient method [17],
permits solve the objective function efficiently and robustly.

Our approach used the optimization module of the DLib
toolkit to compute the BOBYQA method. It has C++ and
python interfaces distributed under a boost open source license
(18]

III. VEHICLE DECISION PROCESS

The literature has a great number of contributions to AVs
software and hardware architectures. Also, some of those
contributions have considered more detailed representations
than other ones. This work has used the vehicle architecture
reviewed in [19]]. This set-up has a good level of detail in
terms of the vehicle decision process. It is divided in three
stages which are the global, behavioral, and local planning.
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Fig. 2. Flowchart of the assumed vehicle decision process
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Fig. |2| presents the information flow through the three
previously-mentioned stages. They are presented as a sequence
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to simplify the explanation although, some of its tasks could
be parallelized. The contribution of this work targets the
computation of an optimal path, and the figure presents its
location in gray color.

This work assumes the presence of a global planning which
computes a route to lead the vehicle to a destination. The route
contains road information, such as the geometry of the lanes,
speed limits, traffic signals, etc.

After, the road information is given to the behavioral
planning. It calculates a collision-free corridor that defines the
driveable road’s area where the vehicle can move safely. This
part uses the information of the trajectory previously computed
for the verification and mitigation of any possible collision that
could take place in the future. As before, the existence of this
part is assumed, for further information refers to [20].

The last part of the decision process is the local planning
which generates the optimal path and speed profile. An optimal
vehicle trajectory is obtained after combining both of them.
The computation of the vehicle trajectory obeys the boundaries
of the collision-free corridor and the vehicle dimensions. On
these terms, the main contribution of the work is in terms of
the optimal path, presented in section [[V] The speed profile
generation was explained in a previous contribution and refer
to [21]] for further information.

IV. PATH PLANNING APPROACH

Some authors have established that highly-precise prere-
corded map information will be needed to execute AVs’ tasks
under real traffic circumstances [22]]. Nevertheless, a recent
demonstration has shown a camera approach that had a good
performance under the difficulties of the roads of Jerusalenﬂ

Fig. 3. Road and lane definition

One aspect in common between the approach of prerecorded
maps and the one with cameras is the definition of the
navigable space with precise lane boundaries. In these terms,
the proposed path planning approach relies on the boundaries
of a collision-free lane, like the ones depicted in blue in Fig.
Bl to generate an optimal and safe path.

The collision-free corridor is defined by the left (Br) and
right (Br) lane boundaries, as depicted in Fig. EI The local
planning will use these constraints to generate feasible, com-
fortable, and safe trajectories leading the vehicle controllers.

The left and right boundaries are moved to the inner part of
the collision-free corridor, considering the displacements W7,

3Web page: www.theverge.com/platform/amp/2020/1/7/21055450/
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Fig. 4. Bézier control points positioning

and W, for the left and right sides. This action generates the
new boundaries B} and B} depicted in Fig. fff The values of
W1, and Wg are the distance from the vehicle reference point
to the outer left and right bound limits of the vehicle.

These bounds define an area that allows the generation
of a safe Bézier trajectory envelope using the convex hull
principle; this is the property 2 explained in section
The envelope ensures a trajectory that is contained into the
lane limits whenever the Bézier’s control points lay into the
envelope. Fig. ] presents this area in light gray color.

The initial control point Py will have a position given by
the following conditions:

1) the initial control point will be given by the current
location of the vehicle if there is not a previous feasible-
trajectory or the deviation between car and the trajectory
is greater than a value Ayy.

2) If the vehicle has a deviation lower than Ay, respect
to the previous feasible-trajectory, the first control point
will be given by the projection of the vehicle position
over the feasible trajectory. This condition ensures the
continuity and smoothness of the path (property 1 ex-
plained in section [[I-A).

This exception prevents a big deviation between the vehicle
and the trajectory due to possible human intervention or
abnormal operation of the controllers. For a small deviation,
the point is projected over the previous feasible-trajectory to
generate a small difference that will be corrected by the vehicle
controllers, moving the vehicle in the desired direction.

After, a set of n-control points is created over the right
bound. The separation between each other is equivalent to a
distance of A (Fig. [). For straight and soft bent segments,
the high density of points is filtered out. They do not add
additional information while increasing the non-linearity of
the problem.

Finally, the optimization method will move the control
points in the direction of the line segments {a; : @ =
1,2,...,n—1,n} between the bound B} and B, of the lane,
as Fig. @] depicts; the line segments a; are perpendicular to the
bound B}, and they end in B . The distance over this axis is
adjusted given the objective function:
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min{zqs(sj,kj),j1,2,3,...,m} )
j=1

where s; are the points used to reconstruct the path (inter-
polation points), k; is the curvature associated to the point
J.

The objective function ¢(s;, k;) is presented as a piecewise
function which is switched by a feasibility criterion. The
generation of the path is performed considering the vehicle
width. Nevertheless, a small portion of the front or rear part
of the vehicle could be guided out the corridor limits [By,, Bg]
in the cases of long vehicles (e.g. bus or truck). Moreover, a
kinematic bicycle model is used to associate the maximum
turning radius with the maximum curvature that is feasible
kmaz; the path selection is unfeasible if its maximum curvature
value is greater than k,,,,. The mathematical representation
of the objective function is:

¢ (sj, kj), when feasible
¢(Sj, k]) = + )
¢t (sj,k;), whenunfeasible
. 1
¢_(Sj, kj) = —mm{d(sj,BR), d(sj7BL)} — m
j

¢t (s, kj) = maz{d(s;,Bg),d(s;,Br)} + maz{| k; |
- kmazv 0}

3)
d(sj,Bg) and d(s;, By) refer to the distance between the path
point and the right or left bound respectively, and k; is the
curvature associated to the interpolated point s;.

The component max{d(s;,Br),d(s;,Br)}, in the case of
an unfeasible weight ¢ (s, k;), is in charge of penalizing the
objective due to the displacement of a part of the vehicle out
of the corridor; and the component max{| k; | —kmaz,0}
adds a contribution to a greater objective if the curvature limit
is violated.

On the other hand, the component
—min{d(s;,Br),d(s;,Br)}, of the feasible part of the
weight function ¢~ (s;,k;), is in charge of centering the
vehicle in the middle of the lane; and the component —ﬁ
decreases the contribution to the weight with a reduction of
the curvature.

Previously, a speed profile solution was proposed using the
maximum path distance as a problem constraint [20], [23].
In these terms, the path will have a maximum displacement
distance related to the provided free-collision corridor, and this
must be respected by the speed profile to avoid any unsafe
condition out of its limits.

V. PROPOSED SCENARIO

The approach has been tested in simulation environments
considering a vehicle’s width of 2.5 meters and length of 12.0
meters. The authors tested the method on a segment of the
Malaga’s Port (Spain) that will be used as proving ground for
AVs demonstrations in the up-coming months.

The upper part of Fig. [5] shows the complete path. The
algorithm was validated in a portion that has tight and bend-
segments. Moreover, the selected section is part of a round-
about that represents one of the most difficult scenarios for
drivers and automated vehicles (lower part of Fig. [5).

Fig. 5. The proposed scenario

This roundabout was split into three parts, considering
the geometry of the road, for the analysis of the trajectory
planning approach. The sections are the roundabout entry,
driving in the roundabout, and the roundabout exit. The entry
and exit have one part of the trajectory in a straight segment
(curvature approximately 0.0), and its middle path has a
curvature proportional to the roundabout radius. The central
part of the roundabout must satisfy a narrow and continuous
turning path.

These use cases have been considered only for a real-time
trajectory generation based on free-collision lane information.
In these terms, the approach is scalable to execute stop-and-
go, lane change, overtaking, obstacle avoidance, and lane-
keeping maneuvers based on camera or map information. The
computation of the free-collision lane is a task of an upper
layer of the vehicle decision module (behavioral planning) that
future works will analyze.

VI. RESULTS

The analysis was split into three zones. All of them de-
scribed the current value of the trajectory, in the sample time
ti, with a thick and blue line. The thin and light grey lines
represented the previous values of the trajectory planned, in
the sample time {t;, ¢ = k — 1,k — 2,k — 3,...}. The thick
black lines depict the boundaries of the path.

A. Roundabout entrance

The top of Fig. [6] shows the trajectory generation on the
roundabout entry, starting in a path segment more or less
straight. The curvature value of ~ 0 verifies the statement
aforementioned (bottom of Fig. [6).

A positive turning value is obtained with counterclockwise
rotation and a clockwise rotation implies a negative value. In
these terms, the trajectory has been adapted to the change
of the turning sense in the entry. The curvature value was
—0.033[m™1], equivalent to a turning radius of ~ 30[m)]
(first trajectory samples), and the last samples had a value of
0.03[m~1]. This change of the curvature concavity permitted
to fit the trajectory according to the shape of the entry.
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Fig. 6. Trajectory planning on the roundabout (enty)

B. Driving in the roundabout

Fig. [7] presents the results for the inner part of the round-
about. The trajectory described a smooth and monotonous
counterclockwise turn in this section, finishing on the round-
about exit.

. 20 1 Previous
E = Current
. -30
c
._g -40 -
‘0
& 50t
60 = . . . . . . >
80 90 100 110 120 130 140 150
Position X [m]
£ 008
o 0.04
S 0
© -0.04
c -0.08
8 0 10 20 30 40
Distance [m]

Fig. 7. Trajectory planning on the roundabout (central segment)

The first samples have a curvature related to the previous
experiment (entrance) with a value of 0.04[m~1!] that is
equivalent to a turning radius of ~ 25[m]. This curvature
reached a maximum value of 0.08[m~!] or a turning radius
of 12.5[m], which is equal to the roundabout radius (circle
fitting).

The last part of the trajectory has generated a change of
sign (concavity) that permits to fit into the exit shape. This
event provoked a minimum value of the curvature under
—0.08[m 1], which could end up in a tight turn. These final
values will be re-adapted in the following iterations of the
real-time trajectory planner.

C. Roundabout exit

Fig. [8] depicts the roundabout exit. The curvature of the
generated trajectory started with a magnitude proportional
to the inverse of the roundabout radius. After, the curvature
decreased to a minimum value of —0.04[m~1!]. This behavior
is similar to the one observed in the entry due to the symmetry
of the problem.
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Fig. 8. Trajectory planning on the roundabout (exit)

The trajectory finishes with values of ~ 0.0 in the straight
segment. These values are interesting results because some
tracking controllers demand continuous curvature trajectories
[L1]. These approaches have the precondition of producing a
reliable description of the path curvature to generate the proper
correction (controllers).

VII. DISCUSSION

The maximum lane distance was set to 50 meters (the top
part of Fig.[9) to improve the computation. A vehicle at 50kph
(max. speed in urban environments) can reduce its speed to
Okph in this distance, at a deceleration of 2m/ s2. This max-
imum deceleration is under nominal operation, and it can be
stronger in case of an emergency. The distance of the generated
trajectory surpasses the 50m mark due to concatenating a
previous feasible-trajectory with the current one. On the other
hand, the length was lower than the maximum lane distance
due to the reduction of the feasible trajectory distance before
achieving a new feasible solution.
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Fig. 9. Analysis of the trajectory distance, curvature and time.

The maximum value for the curvature was obtained with
the approximation of the kinematic bicycle model:

tan(maz)
kmaa: =
L



Qmae 18 the maximum value of the frontal wheel in the model,
and L is the wheelbase [24]]. In this test case, the values were
L = 3.5[m] and aq, = 40° resulting in ko, ~ 0.24[m 1.
In these terms, the maximum and minimum values of the gen-
erated trajectories have been within the bound limits (middle
part of Fig. [9).

Lastly, the algorithm has presented a computation time
lower than 0.53 seconds (bottom part of Fig. [9). This value
can be analyzed as a maximum convergence distance of 17[m]
for a vehicle at 120[kph] and 4[m] for a vehicle at 30[kph)].
The maximum convergence value has been obtained in the
narrow bend segment where a lower speed is demanded. The
trajectories have been generated at a sample rate of 0.05
seconds.

VIII. CONCLUSION

This work has presented a novel real-time trajectory plan-
ning method based on Bézier curves for the path generation.
The optimal trajectory was found using a nonlinear local
optimization method named BOBYQA. Moreover, it has used
the convex hull principle of Bézier curves, produced from n-
points, to generate a safe trajectory containing the vehicle
into the lane given its dimension. A fast speed profile was
considered, based on previous works.

The method has presented a total computation time in
the range of 50 to 550 milliseconds on segments of 50
meters length. The algorithm has been tested in simulation
environments and considering a real scenario context.

This paper has used roundabouts to validate the approach
due to their complexity, nevertheless, other scenarios such as
stop-and-go, lane change, overtaking, obstacle avoidance, stop
maneuvers on a shoulder, lane returning, and merging can be
addressed using this method via the definition of the collision-
free corridors.

As future works, this algorithm will be improved with
the addition of the vehicle’s length for locating the control
points; this will ensure a path that maintains the vehicle area
completely into the corridor. This method will be tested with
long non-holonomic vehicles as an automated bus in real test
cases.
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