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Abstract. Digital Twins (DTs) are one of the most promising enabling technologies for the
deployment of the factory of the future and the Industry 4.0 framework. DTs could be labelled
as an inherently Safe-by-Design (SbD) strategy and can be applied at different stages in the life
cycle of a process. The EU-funded project ASINA has the ambition to promote coherent,
applicable and scientifically sound SbD nano-practices. In particular, in the field of
nanomanufacturing, ASINA intends to deliver innovative SbD solutions applied to process (P-
SbD). In this context, ASINA will investigate the use of DTs as a disruptive digital technology
for the prevention, prediction and control of nano-forms airborne emission and worker exposure.
This paper introduces the concept of DT in the field of nano-processes SbD and outlines the
preliminary architecture of ASINA-DT, that will be developed and implemented by ASINA in
one industrial scenario.

1. Introduction and motivation

Manufacturing processes and systems consume significant amounts of material resources, water, and
energy, and, in parallel, produce significant amounts of polluting emissions and wastes. Companies face
the challenge of reducing resources and energy consumption and minimizing environmental impacts,
while guaranteeing productivity and profits.

European industry is already undergoing a significant transformation towards greener industry while
remaining competitive on the global stage, where digitalization plays an essential role [1]. Evolving
manufacturing more sustainable is essential part of environmental and human health protection [2,3,4,5].
Nanotechnological products and processes although emerging, cannot be foreign to these twin
environmental and digital transitions.

In this new industrial context, digital technologies can play an important role in greening
manufacturing processes, towards the creation of a more competitive and sustainable European industry
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[6]. The current digital revolution is providing the manufacturing sector with innovative technological
capabilities to enable smart manufacturing [5]. The combination of sustainability with smart
manufacturing to reach sustainable smart manufacturing, is the perfect lever to achieve a more
sustainable, digital and competitive European industry [4,7,8,9]. In this context, the SbD concept fits as
a decisive strategy for the design of inherently safe manufacturing processes.

Digital Twins (DTs) is an emerging digital technology, considered as one of the most promising
enabling technologies to deploy the sustainable smart manufacturing framework [7,8,10]. DTs have
been considered by the advisory firm Gartner as one of the ”Top 10 Strategic Technology Trends”
between 2017 and 2019 [11]. Recently, Markets and Markets (2020) values the global DT market at
USD 3.1 billion in 2020 and predicts to reach USD 48,2 billion by 2026. The increasing demand for
DTs in the healthcare and pharmaceutical industries due to the COVID-19 pandemic is one of the key
factors driving the massive growth of DTs market [12].

Currently, the availability and accessibility at an affordable cost of computing, modelling,
interconnectivity and sensor infrastructures, predicts a wide deployment of DTs technology in
manufacturing processes across industries, for applications such as real-time monitoring and control,
off-line analytics, process prediction and optimization, engineering design, business models, and data-
driven decision making in real time.

The EU-funded project ASINA [13] has the ambition to promote consistent, applicable and
scientifically sound SbD nano-practices. In the field of nano-processes, ASINA will investigate the use
of DTs as a disruptive digital technology for the prevention, prediction and control of airborne emission
of nano-forms in process, and worker exposure by inhalation. The project will develop and validate a
technology readiness level (TRL) 5/6 demonstrator (ASINA-DT) in one industrial scenario. The
ultimate goal is to implement SbD concept applied to processes, achieving more sustainable and digital
nano-processes through this technology.

2. Digital Twin concept and applications

DT concept was coined in 2003 by Prof. Grieves at the University of Michigan [14] and a wide
variety of definitions are employed across industry and academia [2,3,7 &, 9,10,15,16,17,18)].

In simple words, a DT is a digital replica of an existing physical entity [10,19]. More specifically
and focusing on its functionalities, a DT could be defined as a high-fidelity digital replica of an existing
physical asset (e.g. a machine or a process in manufacturing), with real-time bi-directional
communication enabled between the virtual and physical worlds (closed-loop), synchronized thanks to
digital enabling technologies [3,8,10,19].

Recently, the fist standardized definition has been provided by ISO/DIS 23247-1 [20], on automation
systems and integration, that defines DT as a fit for purpose digital representation of some realized
thing or process, with a means to enable convergence between the realised instance and digital instance
at an appropriate rate of synchronisation.

A number of different digital technologies are being used in the creation and operation of DTs, such
as Artificial Intelligence (Al), Cloud computing (CC), Industrial Internet of Things (IloT), Augmented
(AR) and Virtual Reality (VR), Blockchain, etc.

DT is built with data analytics and Al, bi-directionally connected to the process through IloT,
powered by data captured in real time from sensors embedded in the process and other company data
sources, and can make informed decisions through real-time communication and collaboration with
humans.

Grieves [14] originally described a DT consisting of three layers: the digital asset (virtual part), the
real physical asset, and the bi-directional connection between them. ISO/DIS 23247-1 [20] has expanded
the DT structure, including a fourth layer of service (Table 3, Figure 2).

DT technology has experienced rapid growth over the past five years, both in academia and industry
[2,7,15,17,18]. Current literature is limited, with few studies applying the use of DT to production
systems and manufacturing environments [21]. Most of the existing research on the DT is conceptual
work and the development of practical DT applications is still at an early stage [17,19]. The main areas
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of interest of DTs are manufacturing and smart cities, with some healthcare related. Manufacturing
industry started using DT around 2012 [10,18] and leads the research, with particular growth in machine
health and predictive maintenance areas [2,7,8,9,15,17,19].

Applications of DTs in manufacturing include digital design and simulation, real-time monitoring,
production process simulation, evaluation and optimization; digital production line, equipment status
monitoring, product fault warning and predictive maintenance, and production index optimization,
amongst others [8,9,15]. Most of these applications have been developed to provide monitoring,
prediction and optimization functions and can be considered as decision support applications (open
loop), because very few of them complete the automatic self-readjustment of the process (closed loop)
[2,19].

To the best of our knowledge, there is no systematic research on the application of DTs for the
prevention and reduction of airborne emission and occupational exposure of nano-forms, at the aim to
improve sustainability of nanomanufacturing processes.

The implementation of DTs in the design and re-design of nano-processes, can be labelled as an
inherently safe design strategy [22] and matches very well with SbD concept and expectations. At
ASINA, DT is aimed to prevent and reduce the risks resulting from nano-forms emission and exposure.
The expected optimization of the nano-process by the DT, will lead to a direct reduction of nano-forms
emission at the source.

The introduction of DTs in the design/re-design of nano-processes (new sensors, modelling, I1oT,
embedded IA applications) should be considered in the risk assessment stage of the process, in particular
Al-machine learning applications [23].

3. Modelling emissions and exposures

Model is the core of DT. Simulation allows the digital model to interact with the physical asset bi-
directionally in real time. Models used in DTs comprise three categories [15,25]: 1) Physical
models/first-principle models [24], 2) Data-driven models (DDMs), and finally, 3) the combination of
both, Hybrid models (HMs). Table 1, elaborated on the basis of references [15,25], summarizes the main
characteristics of these models. The hybridization of existing physical models with data captured online
(DDMs) is one of the main challenges of ASINA.

Regarding the modelling of emissions and exposures, mechanistic mass balance models describe the
impact of an emission source to the exposure level after dispersion and dilution [25]. They are based on
a general dynamic equation [27], which describes the time rate of change of an indoor pollutant
concentration by including sources, sinks (deposition, filtration), room-to-room air flows (interzonal
airflows), air exchange with the outdoors, and transformation processes. Physical and chemical
processes can be combined with the mass balance, such as e.g. evaporation of low volatile substances
[28], re-suspension [29], ambient air pollution [26,30], portable indoor air purifiers [31], or photoactive
surfaces [32].

State of the art exposure modelling approach includes the relevant physical and chemical processes,
and all sensitive (i.e. relevant) exposure determinants that are quantified with measurements. The model
predictability is tested separately for the dispersion model and the personal exposure assessment. The
exposure model parametrization should be based on process parameters and production activity rather
than fixed parametrization. This makes possible real time exposure assessment where the process
parameters can act as the exposure model input parameters. Environmental emissions and e.g. local
exhaust ventilation (LEV) or general ventilation filter loading can be estimated by using the exposure
model mass flow analysis.

The exposure model with main exposure determinants and stationary measurement locations for
quantifying the model parametrization is represented in Figure 1. It consists of two compartments, where
near field (NF) compromises the source and a worker breathing zone (Vyr, m?®) and the far field (FF)
volume (Vrr, m®) rest of the room (i.e. Vi = Vyr+ Vrr). The air exchange is limited between the NF and
FF volumes (8, m?/sec) that causes a concentration gradient. The room is ventilated via FF volume
(Qour, m*/min) and three local exhaust ventilation at the coating unit entrance (Qrev,em, m*>/min), spray
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chamber (Qver, m*/min), and exit (QLev.exi, m*>/min). The ventilation replacement air (Qyy, m*/min) is
assumed to be filtered outdoor air which concentration is (Cy, mg/m?). It is assumed that: 1) all mass
entering the model is created by a source ER (mg/min) in the NF and the concentrations entering via
replacement air Qv Ciy (mg/min) to the FF, 2) concentrations are fully mixed at all the times both in
NF and FF volumes, 3) there are no other losses for the concentrations than the FF ventilation, and 4)
there is no significant cross draft. Figure 1 shows the model concept which mathematical description is:

VNFdCIZl—i(t) = ER(t) + BCrr(t) — (B + Quey)Cnr (D) (1)
VFFdC};—I;(t) = QinCin(t) + BCrr(t) — (B + Qour + Quev + Quev.ent + Quev,exit ) Crr(t) ()

Exposure determinants and their assignment methods are presented in Table 2. The air flows are
assumed to be balanced, i.e. Ow= Qour+ OLev.en + QLev + QLEVexir. If emissions occurs from the coating
unit entrance or exit those can be implemented as additional sources in the NF volume or as additional
compartments.

NPs release form the spray process is product of the nanoparticle feed rate via coating suspension
(gnp, mg/min) and spray process transfer efficiency €7 (-). The NP tranfer efficiency from the spray
nozzle to substrate can be quanitfied by measuring the NP mass flow via local exhaust ventilation (77, gy,
mg/min) and the coating suspension NP mass flow rate as & = m;gy/qyp When other NP loss
mechanisms are insignificant.

Table 1. Typologies of models for DTs [15,25].

1. Physical models

2. Data-driven models
(DDMs)

3. Hybrid models
(HMs)

Require comprehensive
understanding of the

physical properties and
their mutual interaction.

Quality determined by the
availability of knowledge
and computational
feasibility.

Robust extrapolation and
low data demand.

Expensive to develop and
compute.

Detailed enough models
for application can be
challenging.

Do not require a deep
understanding of the process.

Trained by known inputs and
outputs, using Al methods.

Highly dependent on the
quantity and quality of data used
for their development.

Poor extrapolation and
generalization, due to lack of
underlying process knowledge.

Can only be as good as the data
available to train them.

Usually developed to
supplement physical models.

The most uncertain mechanisms
are commonly modelled by
DDMs.

Essential for high-fidelity modelling.

Combines physical models and
DDMs, either in parallel or in series.

Performance determined by the
quality of sub-models (physical
models and DDMs) and the way they
are combined.

Performance of serial HMs
determined by the quality of the
physical models. Usually used when
the physical model is unable to fully
modelling, due to complexity
(complex processes, unavailable
knowledge, computational solution
infeasible)

Performance of parallel HMs
dependent on the quality of the
DDMs.
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Figure 1. Exposure model with main exposure determinants and stationary measurement locations
for quantifying the model parametrization. The coating unit consists of four segments: 1) Plasma
neutralizer, 2) Pre-heating zone, 3) Spray chamber and 4) Thermal treatment. Table 2 shows the model
exposure determinants. Dotted area illustrates the NF volume.

Table 2. Exposure determinants and their assessment

deterministic by nature.

methods. The parameters are probabilistic or

Exposure determinant

Symbol, [units]

Assessment method

Emission rate from coating

-1
S, [ugs ]

Product of O,z and measured concentration.
It is assumed that particle losses via
deposition on the chamber walls and escape
to the room are insignificant and background
particle concentrations from the room air are
insignificant.

Far-Field volume

3
Vg, [m ]

Measured

Near-Field volume

3
VNF: [m ]

Assigned: A volume of ~1 m from the spray
chamber covering the operator breathing
zone.

Air mixing between NF and FF

B.[m’s ]

Measured by using NF/FF concentrations or
estimated.

General ventilation

Qrr» [mss-l]

Mechanical ventilation; Set according to the
measured flow rate.

Local control efficiency

ELEvs [-]

Measured with two diffusion chargers from
inside and outside of the spray chamber.

Local exhaust ventilation

Qrev» [m3s-1]

Measured

unit

LEV at the entrance of the 0 [m3s_1] Measured
. . LEV ent»

coating unit

LEV at the exit of the coating ' | Measured

3 -
QLEv exit> [m's ]
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The NP emission rate to the room air (ER) is defined by the coating chamber emission control
efficiency €, gy (-) as:

ER(t) = qnp(t) - (1 — &r) * &gy (3)

When transfer efficiency is quantified for different process parameters (e.g. number of nozzles,
nozzle pressure, substrate type) the relation can be used to predict NP emission rate from the coating
chamber to the room air. LEV mass flow, m; gy, can be used to estimate the environmental emissions
or LEV filter loading by assuming ER < m;gy.

The dispersion model performance will be tested by comparing the predicted NF and FF
concentrations with measurements. The worker exposure can be calculated based on the person working
practices. Parametrization describing the working practices needs to be developed in situ for different
production phases having a potential impact on personal exposure.

4. Methodological approach and preliminary reference architecture for the ASINA-DT

The spraying coating line selected by ASINA for the implementation and validation of the ASINA-
DT is owned by WIVA Group Company (Florence, Italy). It manufactures n-TiO, coated ceramic and
plastic photocatalytic substrates.

The manufacturing line is a multistep process, consisting of four modules (Figure 2): 1) Plasma
unit, to activate the substrate and improve the coating spreading, 2) Pre-heating, to maximize the
bonding capacity between substrate and coating, 3) Gun spraying chamber, with four movable sprays
guns for spraying tunable grammage on the substrate, and 4) Heating, to dry the product, equipped with
eight furnaces individually controlled for an improved temperature profile regulation, with a final
cooling unit.

The ISO 23247 series provides guidance on how to build up DTs for manufacturing [20]. In
particular, ASINA is using ISO/DIS 23247-2 [33] as a reference for the preliminary design of DT (high-
level architecture).

According to this reference, DT is structured in four domains or layers: 1) Observable manufacturing
domain, 2) Data collection and device control domain, 3) DT domain, and finally 4) DT user domain.
The first domain represents the physical world - the manufacturing process and its elements - which
connects and synchronizes with the virtual world (third domain) through the communications layer
(second domain). The fourth domain is a layer of services where the user can find information.

Table 3 specifies these four domains and provides the preliminary architecture of the ASINA-DT
according to the ISO / DIS 23247-2 reference model. Besides Figure 2 shows a conceptual approach on
the projected deployment of ASINA-DT in the selected industrial scenario.

Monitor airborne emission and occupational exposure, predict and alert about risk level and optimize
process performance to prevent and control potential emission and exposure [through Key Performance
Indicators (KPIs)], will be the key functionalities to be deployed by the future ASINA-DT.

The main challenges of the work will focus on deploying a network of sensors to capture on-line data
on emissions/exposures to nano-forms, and on hybridizing the existing physical models with the data
captured on-line (DDMs).

Finally note that, although the ASINA-DT will be designed for bi-directional operation (closed loop),
due to limitations related to process safety (CE marking), the ASINA demonstrator will work in open
loop, providing, in this first stage, only outputs for decision-making by using KPIs. Thus, automatic
self-readjustment of the process - without human control - is beyond the scope of ASINA.
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Figure 2. ASINA on premises and ASINA cloud for DT implementation in the industrial use case,

conceptualized according to ISO/DIS 23247-2 high-level structure [33].
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