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further optimisation potential, as most of them are still operated according to reactive control strategies. To fully
exploit the optimisation potential of these systems, their operations should instead be based on model predictive
control strategies implemented through dedicated district energy management platforms. This paper describes a
multiscale and multidomain integrated district model concept conceived to serve as the basis of an energy
prediction engine for the district energy management platform developed in the framework of the MOEEBIUS
project. The integrated district model is produced by taking advantage of co-simulation techniques to couple
building (EnergyPlus) and district heating system (Modelica) physics-based models, while exploiting the po-
tential provided by the functional mock-up interface standard. The district demand side is modelled through the
combined use of physical building models and data-driven models developed through supervised machine
learning techniques. Additionally, district production-side infrastructure modelling is simplified through a new
Modelica library designed to allow a subsystem-based district model composition, reducing the time required for
model development. The integrated district model and new Modelica library are successfully tested in the Stepa
Stepanovic subnetwork of the city of Belgrade, demonstrating their capacity for evaluating the energy savings
potential available in existing district heating systems, with a reduction of up to 21% of the aggregated sub-
network energy input and peak load reduction of 24.6%.

strategies that were typically defined to minimise service deficiency
risks. Similarly, building energy management systems operate local
systems according to reactive control strategies, e.g. by adjusting the
energy requested from the thermal network to the evolution of the local
demand and, if available, to the production of locally deployed
distributed energy resources. Therefore, it can be concluded that these
strategies are still of a reactive nature [3]. Thus, they do not fully cap-
ture the existing optimisation potential allowed by predictive strategies,
e.g. those based on the holistic forecasting of weather and boundary
conditions, and on control-setting definitions according to real-time
evaluations of alternative control strategies [4].

Ideally, as shown in the existing literature, districts should be oper-
ated as integrated systems (buildings and thermal network infrastruc-
ture) to minimise the aggregated district energy demand and peak loads
through the implementation of model predictive control (MPC) strate-
gies. In this regard, [5] presented the development, implementation,
commissioning, and results of an online system based on machine
learning (ML) algorithms (e.g. decision trees) for real-time demand

1. Introduction

District heating (DH) systems play a key role in reducing the
aggregated thermal energy consumption of European building stock.
However, the operational strategies of these systems present further
optimisation potential, as most of them are still operated according to
reactive control strategies [1,2]. Typically, the building-level heating
system service temperatures and DH production and distribution tem-
peratures are set according to static heating curves, allowing for
adjustment of these settings to the evolution of weather conditions.
Additionally, most existing DH system distribution networks operate
according to variable flow rate strategies. This combined use of heating
curves and variable flow rate strategies contributes to reductions in re-
turn temperatures, building-and district-level distribution thermal los-
ses, and pumping energy consumption. However, the definitions of the
heating curves and pressure settings for the pumping groups are per-
formed according to historical data based on previous operational
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Nomenclature

ANNs Artificial Neural Networks

DDM Data Driven Model

DH District Heating

DHW Domestic Hot Water

DR Demand Response

DSM Demand-side Management

FMI Functional Mock-up Interface Standard

FMU Functional Mock-up Unit

HVAC  Heating, Ventilation, and Air Conditioning
IDM Integrated District Model

ML Machine Learning

MLP Multi Layer Perceptron

MPC Model Predictive Control

R? Coefficient of determination

SVM Support Vector Machine

SVR Support Vector Regression

® Weigh vector of the support vector machine method

b Bias component of the support vector machine method

¢ kernel function of the support vector machine method

e Error range of the predictions of the support vector
machine method

C Penalty term of the support vector machine method
&kl Slack variables of the support vector machine method
X Feature vector

Y Target

forecasting and optimisation of the operation of a district heating sys-
tem. Another study ([6]) concerned the development of an intelligent,
context-aware, and adaptive energy management platform for optimis-
ing the operation of a district energy system, by taking advantage of the
predictions produced by several artificial neural network (ANN) models
utilised within a genetic algorithm. This system produced significant
cost savings compared to reactive control strategies. In [7], a model
predictive control system based on simplified physical models (for the
buildings and thermal network) was developed and applied to a virtual
use case comprising three office buildings and two energy supply sour-
ces. According to the obtained results, the peak loads were significantly
decreased and the supply temperature was minimised, thereby reducing
the distribution heat loss in the network. In [8], a DH system MPC
controller was developed based on the DH infrastructure modelling
language Modelica [9], focusing on the aggregated district energy de-
mand/production balance. Finally, [10] provided a review of MPC
works based on data-driven models (DDMs) focused on demand
response applications, and showed the opportunities created by MPC
systems based on data models in buildings connected to smart networks.

To enable the transition to MPC systems, the development of district
energy management optimisation platforms (such as the solution
developed in the framework of the MOEEBIUS project [11]) is required.
These platforms incorporate prediction engines for providing the ca-
pacity to evaluate alternative energy management strategies, such as
those exploiting predictive models. Owing to the complex and multi-
scale nature of districts, the scope of these models must include demand-
side dynamics (buildings), the interface between the buildings and DH
system (thermal substations), and the infrastructures of the DH systems,
including the distribution network and heating plants. The traditional
simplistic modelling approaches are based on building demand aggre-
gation, and are not adequate for addressing the dynamics present in
thermal networks (e.g. temperature distributions over the thermal
network, or distribution thermal losses), or for providing accurate pre-
dictions for DH system operational management optimisation. Addi-
tionally, to generate reliable performance predictions, an accurate
calculation of the return temperatures, i.e. from the buildings to the
thermal network, is necessary. This is only possible if the dynamics
present in the interface between the buildings and thermal network are
evaluated by exploiting a multiscale, multidomain, and fully integrated
district model. These statements have been confirmed by previous
research activities documented in the literature. The work described in
[12] consisted of the development of the 'OpenIDEAS’ framework,
based on the Integrated District Energy Assessment by Simulation
(IDEAS) Modelica library [13], which was designed for integrated dis-
trict energy modelling and simulation. The work in [14] described an
integrated Modelica model to evaluate the district-level energy savings
produced by the retrofitting of buildings connected to a network branch.
In [15], a Modelica-based framework for DH/cooling system modelling

and operational optimisation was described, including the application of
the framework to two virtual DH systems, thereby revealing the
importance of a detailed evaluation of district-level dynamics. Similarly,
the work described in [16] focused on the optimisation of the network
supply temperatures of DH systems, and stressed the need for an accu-
rate modelling and evaluation of the district infrastructure-level
dynamics.

Physics-based models and DDMs are the most generalised energy
behaviour modelling approaches used in the building and district do-
mains. Each of them presents specific advantages and limitations in
relation to their use in MPC implementations. Several works and
abundant literature can be found related to the modelling approaches
existing in this domain. In [17], an analysis and comparison of physics-
based and data-driven building energy modelling approaches was pro-
vided, whereas [18] gathered a case study focused on building tem-
perature prediction through physics-based and DDMs; in regards to the
latter, it evaluated the low prediction accuracy loss and suitability for
real-time use. In [19], a detailed review and comparison between the
physics-based and DDMs as evaluated through simulations was pre-
sented, and hybrid models were identified as the most promising
building energy consumption modelling approaches.

Owing to their nature, physics-based models are very suitable for
generating accurate predictions of the energy behaviours of buildings
and DH infrastructure even when operating under different climatic
conditions, user behaviour patterns, and system operational settings,
provided that they are physically compatible with the technical char-
acteristics of the system, and that all the input data related to the
physical parameters are available. According to the literature, these
models are particularly suitable for MPC approaches. The work
described in [20] consisted of the development of an MPC system based
on an EnergyPlus/MATLAB prediction engine for a building equipped
with an underfloor air distribution system; it achieved significant energy
savings. In [21], an MPC system based on an EnergyPlus energy pre-
diction engine was used to optimise the control rules of an administra-
tive building and to minimise its energy consumption. In [22], an
advanced MPC system based on a control-oriented dynamic thermal
model was developed for radiant floor systems, and was tested in a
TRNSYS-MATLAB co-simulation testbed. The test results showed that,
compared to a conventional on—off controller, the MPC controller could
use building thermal mass to optimally shift energy consumption to low-
price periods. Similarly, [23] focused on an MPC energy management
system based on a resistance-capacitance model for optimising the
operation of a residential building equipped with air-sourced heat
pumps for heating and domestic hot water (DHW) production, and a
floor heating system. The results showed that an optimal control aimed
at minimising energy costs while limiting peak power could lead to
savings of up to 25% compared to a rule-based control.

However, owing to the multidomain and multiscale nature of DH
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systems, the development of physical models is a very challenging task;
it requires deep knowledge, and sufficient experience with building and
DH system physics. Additionally, detailed information related to build-
ings and/or DH system infrastructures is not always available; more-
over, owing to the detailed definitions of these models, the required
computational times are significantly higher than for DDMs. In addition,
none of the existing procedural legacy building simulation programs
such as EnergyPlus [24], eQUEST [25], and TRNSYS [26] provide the
modelling capabilities required for integrated district model composi-
tion, as they were conceived for building architectonic and building
technical system design. The implementation of these tools is based on
large monolithic blocks consisting of programming procedures
composed of causal assignments for defining model equations, numeri-
cal solution algorithms, and data input/output routines. As a conse-
quence, the addition of new modelling capabilities to legacy building
simulation programs becomes technically complex and inefficient, as
has been documented in the existing literature. In [27], a comparison
between legacy building simulation programs and equation-based
modelling languages was described, including two MPC use cases that
displayed the advantages of the latter. Similarly, [28] provided a com-
parison of a multizone building energy model developed in an equation-
based modelling language with the TRNSYS building model, and
concluded that the development time was five to ten times faster. In
[29], a review of the limitations of legacy building simulation engines
and tools (e.g. EnergyPlus, DOE2 [30], eQUEST, and Riuska [31]) was
provided.

Equation-based modelling languages such as Modelica provide a
powerful and promising alternative to legacy simulation programs.
Specifically, Modelica is an object-oriented acausal modelling language
designed for the multidomain modelling of dynamic systems. Through
this modelling language, physical modelling and executable simulation
program development are decoupled, as the latter is solved by dedicated
modelling and simulation environments such as OpenModelica [32] or
Dymola [33]. In Modelica, the mathematical equations for describing
the physical behaviours of systems are encapsulated within components,
and the relationships among the interface variables are captured by
standardised interfaces. This allows for component connection, and for
reproducing the modularisation and connectivity rules of real equip-
ment to form subsystems, systems, or complete architectures. In the last
decade, several specific libraries such as the Modelica Buildings library
[34], Modelica Building Systems library [35], AixLib library [36], and
IDEAS library have been developed with dynamic models for building
and DH system modelling, and several initiatives such as the Interna-
tional Energy Agency- Energy in Buildings and Communities Annex 60
[37,38] and International Building Performance Simulation Association
Project 1 [39] have increased the availability of libraries for building
and district modelling. The literature related to Modelica works in this
domain is diverse and abundant. In [40], the development of a new
mathematical model for pipes optimised for DH systems managed ac-
cording to variable supply temperature and flow rate strategies was
reported, along with its Modelica implementation. Similarly, the work
compiled in [41] discussed the development of a mathematical model
for a twin pipe incorporating the heat transfer from the supply pipe to
the return pipe, including its Modelica implementation. In [42], a
description of the development, implementation, and validation of a
dedicated Modelica library for DH system modelling was provided. In
[43], an innovative heating and cooling thermal network concept was
designed (with waste heat recovery and bidirectional heat exchange
between prosumers and the network), and its potential was compared to
traditional solutions using Modelica models. Another study ([44]) pro-
vided an analysis of the capacity of Modelica and the Modelica envi-
ronments for modelling and simulating electromechanical power
systems. The work compiled in [45] described the development of a
Modelica-based MPC controller for DH system infrastructures aiming to
optimise the generator status, supply temperature, and pumping system
differential pressure settings. In spite of all of the above, the capacities
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given by these Modelica libraries are not comparable to those provided
by legacy building simulation programs, thereby reducing the possibility
of a prompt transition to the use of Modelica in this domain. Further-
more, a physical component-oriented system composition architecture is
not compatible with an efficient definition of complex DH systems,
owing to the scalability limitations created by the cost associated with
the connection and instantiation of a large number of component models
involved in DH system modelling.

DDMs are generally developed using different techniques (e.g. ML,
statistical methods) and historical data series, including the input and
output parameters of the target dynamic system (the district); they allow
for the definition of numerical algorithms without any explicit model-
ling of the physical behaviours of the system. These algorithms are able
to capture the existing behavioural patterns and to provide predictions
for the energy behaviours of buildings and DH system infrastructures,
starting from the input parameter sets that define their statuses and
boundary conditions. Owing to their nature, detailed information
regarding the physical parameters is not necessary, and a deep under-
standing of the district technical domain, although highly advisable, is
less critical. Additionally, the required calculation times are shorter than
those for physical models, making them suitable for real-time applica-
tions in building and district management systems. A rich and varied
literature is available on the use of data models in this domain. In [46], a
review was provided on recent applications of DDMs for building energy
behaviour forecasting. Similarly, in [47], a review of building DDM
applications is described, including the prevalent ML methods, relevant
parameters, forecasting horizons, and prediction accuracy. The work
described in [48] concerned the development, implementation, and
operational service of real time demand forecasting systems through ML
algorithms and in [49], ANNs were used to predict heat demand and
return water temperatures based on outdoor temperature forecasting
and historical data series. In [50], a new method for district heat de-
mand prediction based on ANNs and duplicated feature elimination was
described. The method was successfully applied to a district heating
network containing tens of buildings at a university campus, and
reduced the training time by 20% from traditional methods while
maintaining the prediction accuracy. In [51] a Chebyshev distance-
based agglomerative hierarchical clustering approach was proposed
for gathering historical prediction residuals of similar operating condi-
tions into the same cluster. A quantile-based approach was proposed to
estimate the prediction interval of a predicted cooling load by using a
cluster of the most similar operating conditions. The method was suc-
cessfully tested using an ANN-based building cooling load prediction
model. In [52], an MPC system based on an ANN building cooling energy
consumption prediction model was developed and exploited to optimise
the setpoints of air handling units. The system was tested in a three-story
office building using an EnergyPlus-MATLAB test bed, and showed a
reduction in cooling energy consumption of 10% compared to a con-
ventional control strategy. In [53], a bidirectional long short-term
memory neural network-based approach was proposed for detecting
and classifying substations that use night setbacks regularly. The pro-
posed approach was evaluated using data from 10 anonymous sub-
stations in Sweden, and the results showed that the proposed approach
outperformed conventional detection methods. In [54], a novel tech-
nique for estimating commercial building energy consumption from a
small number of building features and gradient boosting regression
models was presented. The models were validated using the New York
City Local Law 84 energy consumption dataset, and were applied to the
city of Atlanta to successfully create aggregated energy consumption
estimates. Similarly, in [55], a rough set theory was used to find the
critical factors involved in building energy consumption to facilitate the
development of a deep neural network for predicting building energy
consumption. The data from 100 civil public buildings were used for a
rough set reduction, and the proposed method was tested in a laboratory
building at a university in Dalian. The results were compared with those
of several ML methods, and demonstrated the superior accuracy of the
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proposed method. Notwithstanding the above, the main limitation of
DDMs regarding their use in energy management systems based on MPC
approaches is their lack of capacity to generalise the behaviours of
districts operating under new strategies, i.e. for which no dataset is
available.

In summary, it can be concluded that district modelling remains a
complex technical field, and several limitations remain unsolved,
including the following.

e The limitations of building simulation programs for providing com-
plete physical demand-side modelling efficiently.

e The insufficient maturity level of the multiscale and multidomain
modelling tools for the building and district domains.

e The existing limitations for complex DH infrastructures include
detailed physical modelling, owing to scalability issues.

e The limited capacity of DDMs to generate predictions for districts
operating under unseen strategies.

The aim of the work described herein is the development of an in-
tegrated district model (IDM) concept for overcoming the limitations of
legacy building simulation programs and Modelica for district model-
ling. It takes advantage of co-simulation techniques to enable integra-
tion of the building and DH system physical models, by exploiting the
potential of the functional mock-up interface standard (FMI) [56]. From
the perspective of demand-side modelling, the main contribution of the
developed IDM consists of a new procedure based on the combined use
of physical models and DDMs that allows for complete demand-side
modelling, without the need for developing detailed physical models
for each building in the district. This is a significant barrier to the
implementation of MPC approaches, owing to significant high resources
required for the development of building models. Instead, the proposed
method takes advantage of the structures of urban DH systems, as these
are typically formed by an arbitrary number of building groups built
according to designs similar from architectonic and functional system
perspectives. The method is based on (1) the development of a building
energy demand prediction model for the buildings of a district through
supervised ML regression techniques and (2) on the definition of a
detailed physical model (EnergyPlus) for a single building of each type.
The data-driven building demand forecasting model is exploited to
generate a demand correction function for each of the buildings in the
district. These correction functions, combined with detailed physical
building models, can produce energy demand predictions for all build-
ings operating according to alternative demand-side management
(DSM) strategies.

In relation to DH system infrastructure physical modelling, the main
contribution of the developed IDM is the development of a new Modelica
DH library with specific models for enabling DH system model compo-
sition according to a subsystem-oriented architecture. These subsystem
models are conceived so as to encapsulate the equipment components
existing in the actual subsystems, i.e. by reproducing their modularity
and connectivity rules. Additionally, the flexibility and scalability
required to adapt the models to any specific DH project are added
through dedicated algorithms, and the modelling capacities are opti-
mised to evaluate all of the relevant dynamics. Ultimately, the devel-
oped Modelica library allows for the optimisation of the resources
required for the detailed definition of complex DH system models,
significantly reducing the risk of modelling errors. The developed IDM is
tested on the Stepa Stepanovic subnetwork (Serbia) to evaluate its
capabilities.

Regarding the structure of the rest of this paper, Section 2 provides a
description of the methods defined to develop the IDM, and Section 3
describes the testing process of the developed models in the Stepa Ste-
panovic subnetwork, including the production process of the IDM for the
demo district and the evaluated optimisation scenarios. The results from
the testing processes of the defined models and the impacts of the
optimisation scenarios are discussed in Section 4. Finally, Section 5
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2. Methods
2.1. Integrated district model through co-simulation

Co-simulation is an innovative simulation technique that allows for
data exchange during time integration between two or more simulation
tools, so as to solve coupled systems of equations [57]. These techniques
can be applied in the district modelling domain to overcome the limi-
tations existing in this specific field in regards to both building simula-
tion tools and Modelica, as described in [58,59]. More specifically, from
the development of the first version of the FMI in 2010, designed to
standardise the procedure for coupling simulation tools, the potential of
these techniques has been constantly increasing, as illustrated by the
existing literature. In this regard, [60] described the extension of a
building management system with an interface based on the FMI that
allowed the implementation of fault detection algorithms. Similarly,
[61] illustrated the applicability of co-simulation concepts based on the
FMI for the simulation of buildings and community energy systems by
comparing several state-of-the-art approaches. Finally, [62] described
four completely different applications of the FMI in the building simu-
lation domain.

The procedure designed in this study to generate the IDM took
advantage of the possibilities provided by co-simulation techniques and
the FMI standard to couple a Modelica model for a DH system (heating
plant, solar plants, distribution network, and thermal substations) with
the EnergyPlus models of the buildings (including building-level heat-
ing, ventilation, and air conditioning (HVAC) systems) connected to the
DH system, after being encapsulated into functional mock-up units
(FMUs) [63]. With this approach, it was possible to split the physical
system of the district into several parts that were homogeneous from the
perspective of the physical domain and the scale (building and district)
they belonged to, without losing actual integration among the different
models. This allowed for the development of specific models for each
part of the physical system using suitable modelling and simulation tools
with the capacity to accurately capture all the dynamics present in each
specific model. In the case of the IDM herein, the building thermal
substations were established as the most suitable interface between the
building models and network infrastructure model.

2.2. Combined use of physical and data driven models for district
demand-side modelling

The created IDM acted as the base of the energy prediction engine for
the developed district management system. The functionalities provided
by this platform were based on the capacity of the IDM to evaluate
alternative operational strategies on the demand side and DH system
side, owing to the physical modelling approach. However, the tradi-
tional procedures for district demand-side physical modelling, as pure
aggregations of the physical models of each and every district building,
were unfeasible from the perspective of the required resources. This
barrier was overcome by exploiting the synergies obtained from the
combined use of physical models and building energy demand models,
as obtained through ML techniques. More specifically, the sequential
procedure displayed in Fig. 1 was defined to allow complete demand-
side modelling, and included the following aspects.

e Building typologies existing within the district were defined ac-
cording to their use and architectonic/system design.

e A representative building was selected for each of the defined
building typologies.

e Physical models (EnergyPlus) were developed for the representative
buildings (including their HVAC systems).
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Fig. 1. Demand-side modelling through the combined use of physical and data driven models.

e A building demand forecasting model was developed through su-
pervised ML regression techniques, taking advantage of the historical
data of the heating demands of the buildings.

o A specific building demand correction function was defined for each
building by taking advantage of the predictions provided by the data
model.

e Hourly/sub-hourly demand predictions were generated for all the
buildings of each type by taking advantage of the demand correction
functions, and of the predictions produced by the physical models
developed in EnergyPlus for the representative buildings.

As described in the available literature, support vector machine
regression (SVR) and ANNs are the most commonly employed super-
vised ML methods in the building and district domains. In this regard,
[64] proposed a detailed review of ML based building energy perfor-
mance prediction methods (e.g. ANNs, SVR) and presented the princi-
ples, applications, advantages, and limitations of these ML algorithms.
Similarly, [65] reviewed recently developed building energy perfor-
mance models, including engineering, statistical and ML methods and
described relevant applications of ANNs and SVR. Finally, another study
[66] proposed a detailed review of buildings energy performance
modelling (physical, ML and hybrid models) and identified ANNs and
support vector machines as the predominant ML methods. Thereby, SVR
and ANNs were selected for the development of the proposed method.

2.2.1. Support vector regression

SVR is a supervised ML method which aims to find a decision func-
tion or model for representing the relationships between features (x1,
X2, X3,....... xi) and a target (y). It is based on the principle of structural
risk minimisation, and takes advantage of the definition of one or more
hyperplanes in a high-dimensional space that can be mapped through a
kernel function ¢, weight vector w, and bias component b to the original
feature space, as follows [67]:

Y = w(X) +b &)

The goal of the SVR method is to minimise the probability that the
model will make an error on an unseen data instance. This is achieved by
finding the solution which best generalises the training dataset, by
minimising a convex criterion function as follows:

1 ! .
Minimize : §\|w|\2+C;§i+§i 2

This calculation is subject to certain constraints, as follows:

yi—0 X)) —b< e+§ ©)]

TP +b—y < e+ & €))

In the above, < denotes the prediction error range, & and &, are the
slack variables which ensure the existence of a solution for any ¢, and C
is a penalty term used to optimise the balance between data fitting and
prediction smoothness. In this domain, the SVR method can provide
better accuracy than most of the existing classical ML methods, and
through the use of the regularisation parameter C, is not prone to
overfitting problems. Its main limitation is the lack of a universal pro-
cedure for selecting the appropriate kernel function and its slow learning

speed, making it a computationally less efficient method during the
model training stage.

2.2.2. Artificial neural networks

Supervised ANNs are trained using historical data that describe the
energy behaviours of buildings, for creating a model with the capacity to
reproduce the relationships between the features and target. Owing to
their accuracy and ability to represent non-linear processes, the use of
supervised ANN models in this domain has been intense [67]. The main
advantage of ANNSs is their high prediction accuracy when large datasets
free from fuzzy, noisy, or incomplete data, are available. However, their
main limitations are the high computational resources required, slow
learning process, and risk of overfitting.

The architecture of an ANN consists of an input layer, an arbitrary
number of hidden layers, and an output layer. The input dataset (fea-
tures) flows from the input layer through the hidden layers to the output
layer, where the target value is obtained. In the case of the hidden layers,
the output of each neuron is delivered to each neuron of the subsequent
hidden layer after being multiplied by its corresponding neuron weight.
The total output of any of the neurons of a specific hidden layer is
calculated by summing all the inlets, including a bias contribution.
Finally, an activation function is applied to the latter to define the output
of each neuron. During the training stage, through a back-propagation
process, different optimisation algorithms can be used to identify the
weight and bias contributions to minimise the loss function value and
correctly map outputs with inputs. Fig. 2 displays the architecture of an
ANN consisting of a single hidden layer with three neurons.

2.3. New Modelica district heating (DH) modelling library

In the Modelica libraries available at the time of completion of this
work, the district modelling was based on a physical equipment-oriented
architecture, which is far from ideal for providing detailed definitions of
complex DH systems in an efficient way. District modelling should
instead be based on a subsystem-oriented modelling architecture, so as
optimise the effort required for model development. To overcome this
limitation, a new Modelica library was developed, including subsystem
models specifically conceived for that purpose, according to a flexible
and scalable approach required to allow modelling of DH systems of any
size and complexity. Therefore, it was possible to maximise the capa-
bility to define typical existing DH system typologies.

The library models were developed using the physical component
models available in the Modelica Standard Library (version 3.2.2),
Modelica Buildings Library (version 4.0.0), and ThermoPower Library
(version 3.1) [68]. These models were adjusted to align them with the
implemented subsystem-oriented architecture approach. The code of the
models was defined with specific algorithms to provide the flexibility
and scalability required to adapt the models to any specific DH project.

Fig. 3 displays a very simple example of a DH system modelled using
the subsystem models available in the developed Modelica library. In
this specific case, the DH system is configured through an instance of the
DH plant model, an instance of the pumping station model, and a dis-
tribution network consisting of two instances of the loop/branch sub-
system model (as required to represent a network topology with a two-
level hydraulic circuit hierarchy). Finally, the model of the DH infra-
structure is completed by using several instances of the building
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Output layer

Fig. 2. Artificial neural network (ANN) architecture consisting of a single hidden layer with three neurons.

BRANCH_LEVEL_01

FMU_1
—
.
—
L »
S1
SP
HP PS

MAIN_LOOP

Fig. 3. District model defined through the subsystem architecture using the developed Modelica Library.

substation model deployed all over the branch hierarchy of the network,
so as to integrate the impact of the energy requested by the buildings on
the DH system. Additionally, as displayed in Fig. 3, the solar plant
subsystem model incorporated into the developed Modelica library al-
lows for the integration of solar production into the DH system. In the
following sections, an overview of the different subsystem models is
provided. A more comprehensive description of the technical features of
the subsystem models can be found in [69].

2.3.1. DH plant model

The DH heating plants formed by water boilers and steam production
plants are a very common plant typology in existing European DH sys-
tems. Considering this, the developed subsystem model was specifically
designed to address this plant typology. All of the equipment existing in
this type of plant was encapsulated within the designed model, and

during model instantiation, it supported a flexible and scalable config-
uration regarding:

o the number of existing hot water generation groups and the specific
component configuration within each generation group (heat gen-
erators, pumps, pipes, vertical stratified storage tanks, energy de-
livery heat exchangers, valves, and control components); and

e the configuration of the steam production plant in terms of steam
generator and water heating line numbers.

Fig. 4 displays a simplified version of the component models
encapsulated within a hot water production plant subsystem model as
formed by a single water production group with thermal storage.

The steam production plant supported by the DH plant subsystem
model consisted of an arbitrary number of steam generators coupled to
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Fig. 4. Simplified version of the component models encapsulated within the district heating (DH) plant model for a DH plant with a single hot water genera-

tion group.

an arbitrary number of heating lines (condensers and subcoolers con-
nected in series). Fig. 5 displays a simplified version of the component
models encapsulated within the steam production plant of a generic DH
plant with a single steam boiler and single water heating line.

2.3.2. Pumping station model

The pumping station model was conceived to encapsulate the
physical components required to configure any DH system pumping
station, including the pumps, pipes, pipe thermal boundary conditions,
valves, and control components. It allowed for the flexibility and auto-
matic scalability of the model, e.g. to adjust the number of existing
pumping groups and number of pumps within each pumping group. In
its simplest configuration, any DH model defined through the developed
Modelica library would necessarily include a pumping station subsystem
model connecting the demand side of the DH plant to the source side of
all of the existing main distribution loops of the network. Depending on
the specific topology of the modelled network, additional pumping
station models could be integrated at any loop or branch hierarchy level.
Fig. 6 depicts the component models encapsulated within the subsystem

model of a specific pumping station formed by a single pumping group
with two pumps.

2.3.3. Loop/branch model

The loop/branch model was conceived to encapsulate all of the hy-
draulic components required to configure any distribution of a thermal
network of a DH system including pipes, connection ports, and pipe
thermal boundary conditions. It could be used to model typical thermal
network topologies (e.g. ring, radial, branched, meshed), and allowed
for the evaluation of the impacts of the distribution of thermal losses and
pressure drops over the network. Regarding connectivity, on the load
side, the model allowed for the connection of an arbitrary number of
branch models of a lower level in the branch hierarchy, or a direct
connection to building thermal substations.

Similarly, on the source side, the model could be directly connected
to the load side connections of a DH plant subsystem model, or alter-
natively, to the load side connection ports of one of the branches of a
higher level in the branch hierarchy. Additionally, the model could be
configured during instantiation to define the main loops (including a
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Fig. 5. Simplified version of the component models encapsulated within the heating plant model for a heating plant equipped with a single steam production boiler

and a single heating line.
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Fig. 6. Component models encapsulated within the pumping station subsystem model for a pumping station equipped with a single pumping group with two pumps.

bypass at the end of the loop) or branches of a lower level in the branch
hierarchy (without a bypass). Fig. 7 depicts the physical component
models encapsulated inside a loop/branch model for the specific case of
a loop with four pairs of load-side connection ports.

2.3.4. Thermal substation model

The thermal substation model encapsulated all of the physical
components forming a typical parallel-type thermal substation,
including the DHW production heat exchangers, valves, control equip-
ment, and components required to integrate the energy requested by the
connected buildings. The model could be adjusted to set the presence/
absence of a dedicated DHW production heat exchanger. Fig. 8 displays
the connections of the physical component models encapsulated inside
the thermal substation model of a parallel-type substation with dedi-
cated heating and DHW production heat exchangers.

2.3.5. Solar collector plant model

This subsystem model was conceived to encapsulate all of the
physical components required to configure a solar thermal collector
plant, including collectors, pumps, pipes, storage tanks, valves, control
equipment, and pipe and tank thermal boundary conditions. During the
instantiation of the model, flexibility and scalability were available
when configuring the solar field, in relation to the number of collector
arrays connected in parallel and number of collectors connected in series
in each array. Fig. 9 shows the component models encapsulated within
the thermal collector plant model for a specific plant with a single col-
lector array.

2.3.6. Auxiliary record classes

To allow for a simple and systematic introduction of the specifica-
tions of the physical components encapsulated within the defined
models, several auxiliary record classes were defined and used as
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Fig. 7. Component models encapsulated within the loop/branch subsystem model for a loop with four connections, including the supply and return pipes, the inlet
and outlet connection ports, and the bypass deployed at the end of the hydraulic circuit.
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Fig. 8. Component models encapsulated within the parallel substation model including the heating heat exchanger (HE1), the DHW production heat exchanger
(HE2), and the energy delivery control valves for heating (V1) and for DHW production (V2).
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Fig. 9. Component models encapsulated within the solar collector plant subsystem model for a solar plant with a solar field formed by a single collector array, solar
tank, solar energy delivery plate heat exchanger, mixing valve to adjust production temperature, and the two pumps required to produce water circulation.

necessary in the subsystem models (e.g. pipe specification, pump spec-
ification, plate heat exchanger specification, condenser specification,
hot water boiler specification and hot water boiler performance speci-
fication, storage tank specification, two-way valve and three-way valve
specifications, solar collector specification, and steam boiler
specification).

3. Stepa Stepanovic use case
3.1. Vozdovac DH system and Stepa Stepanovic subnetwork
The Vozdovac system is one of the several heating networks that

form the DH system of the city of Belgrade. It comprises of a DH plant
and a two-pipe distribution network based on a branched topology. It

meets the energy demand (heating and DHW production) associated
with different areas of the city, including the Stepa Stepanovic neigh-
bourhood. Three hot water boilers (total capacity of 241 MW) and two
steam boilers (total production capacity of 22 t/h), all of which run on
natural gas, produc the energy distributed to the mentioned areas from
the Vozdovac heating plant.

The evaluation of the potential of the proposed IDM concept and of
the developed Modelica library was performed based on the subnetwork
of the Stepa Stepanovic neighbourhood. This subnetwork provides the
energy required to cover the heat demand of 52 residential buildings, a
kindergarten, and a primary school. Table 1 provides a summary of the
specific HVAC systems existing in the residential buildings and educa-
tional buildings connected to the subnetwork. A more detailed
description of the technical features of the Vozdovac system and of the
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Table 1
Technical features of heating, ventilation, and air conditioning (HVAC) systems
of the buildings connected to the subnetwork.

Buildings Connection  Building Emission Ventilation
level subsystem
distribution
Residential Indirect Dedicated Conventional Mechanical
heating distribution hot water exhaust
substation circuits for radiators with systems in
different thermostatic apartment
building valves kitchens and
orientations, toilets
equipped with Natural
variable flow ventilation in
pumps the rest of
the rooms
Kindergarten  Indirect Common Conventional Several air
heating centralised hot water handling
substation distribution radiators units of
circuit different
equipped with types
variable flow operating
pumps according to
constant air
flow
strategies
Indirect Several split Exhaust air
ventilation and multi split  systems for
substation units some specific
zones (e.g.
food
preparation
rooms)
Primary Indirect Dedicated Conventional Several air
school heating distribution hot water handling
substation circuits for radiators units of
the radiator Radiant floor different
and the system (multi-  types
radiant floor sports court) operating
system according to
equipped with constant air
variable flow flow
pumps strategies
Indirect Dedicated all Exhaust air
ventilation air systems for  systems for
substation some specific some specific
zones zones (e.g.
Several split food
and multi split ~ preparation
units rooms,
toilets,
locker
rooms,
technical
rooms)

buildings of the Stepa Stepanovic neighbourhood can be found in [70].

3.2. Integrated district model of the Stepa Stepanovic subnetwork

3.2.1. Co-simulation procedure

The IDM was developed to serve as the prediction engine for the
district energy management platform developed in the framework of the
MOEEBIUS project, according to a service-based distributed architec-
ture. In the case of the Stepa Stepanovic subnetwork, owing to certain
platform implementation limitations, it was necessary to modify the
FMI/FMU-based co-simulation procedure, and to instead adopt a
sequential co-simulation procedure [71]. The steps were as follows.

e For the complete prediction period (one day), simulation of the
EnergyPlus models of the representative buildings was conducted to
calculate the evolution of building-side variables at the boundary
between the building models and subnetwork Modelica model
(substation secondary side inlet temperature and water flow rate).
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According to the operator, hot water delivery at nominal tempera-
ture conditions was always guaranteed for all buildings. Therefore,
the EnergyPlus building models were simulated assuming a nominal
district supply temperature and capacity.

A simulation of the infrastructure of the subnetwork’s Modelica

model was conducted for the complete prediction period to evaluate

the aggregated impacts of the evolution over time of the energy
requested by the buildings to the subnetwork, including the effects of
infrastructure dynamics (e.g. distribution of thermal losses).

e The prediction process was launched several times during the day,
allowing for the evaluation of alternative demand-side and district-
side management strategies for optimising the implemented opera-
tional strategies in real time.

3.2.2. Physical models of the representative buildings

According to the procedure defined in Section 2.2, the district
buildings were grouped into homogenous building typologies from the
perspectives of their architectonic (e.g. envelope, compactness, solar
access, orientation), user behaviour, and technical system features. For
each of the defined building types, a representative building was
selected, and its detailed EnergyPlus model was developed. In total,
eight residential buildings and two educational buildings were modelled
in EnergyPlus, including building-level HVAC systems. Fig. 10 displays
the locations of the selected representative buildings within the neigh-
bourhood, whereas Figs. 11 and 12 depict some of the eight developed
EnergyPlus models.

Table 2 depicts the detailed modelling specifications applied in the
development of the EnergyPlus models for the buildings connected to
the Stepa Stepanovic subnetwork. A more comprehensive description of
the modelling specifications can be found in [70].

Regarding the followed criteria in relation to the thermal zone
definition, in the case of the residential buildings, each apartment was
considered a single thermal zone with residential activity, so as to
optimise the calculation speed for the models. Common and non-
residential spaces were grouped into unconditioned thermal zones. In
the case of the two educational buildings, the definition process fol-
lowed to configure the thermal zones as integrated into the models
required a more elaborate sequence, as follows:

e Analysis of the activities in the different spaces of the buildings.

o Identification of the different zone types according to the developed
activities.

e Classification of the zones of the buildings according to the defined
types.

e Aggregation of the zones of the same type located in adjacent posi-
tions and served by the same HVAC system.

3.2.3. Demand correction functions

The definitions of the correction functions required to produce the
hourly heat request predictions (building demand) for all of the build-
ings were provided according to the procedure described in Section 2.1,
through the following two-stage sequence.

e Development of the energy demand prediction model for the build-
ings of the Stepa Stepanovic neighbourhood through supervised ML
regression techniques, starting from the energy demand data avail-
able for each building from September 2017 to May 2018.

e Definition of the specific correction functions for each of the build-
ings, by exploiting the predictions provided by the data model for
each building of the neighbourhood.

As described in Section 2.1., by taking advantage of the hourly
predictions provided by the EnergyPlus models for the representative
buildings and of the developed correction functions, it became possible
to provide hourly predictions of the energy requested by each building
to the subnetwork.
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Fig. 10. Location of the representative buildings defined for the Stepa Stepanovic subnetwork.

Fig. 11. Residential representative building of group 2A. The rest of the residential models are omitted for the sake of brevity.

To produce the building heating demand model, SVR and ANNs with
a multi-layer perceptron architecture (MLP) were used. As displayed in
Table 3, the initially considered feature set included features related to
climatic conditions, architectonic design, and user behaviour.

The available data set consisted of the monthly values of the energy
requested by each of the buildings from September 2017 to May 2018.
Owing to the lack of data with an hourly/sub-hourly resolution, it was
necessary to base the procedure on a monthly building energy demand
prediction model. In addition, in the cases of residential buildings, the
availability of data for some of the architectonic features (e.g. infiltra-
tion rates) and many of the user behaviour related features (e.g. thermal
comfort settings, ventilation rates, occupancy profiles) were only
available for certain representative buildings. Therefore, the feature set
to be used to produce the building energy demand prediction model was
reduced, as displayed in Table 4.

The unavailability of data regarding the infiltration levels,

11

ventilation rates, occupancy patterns, and thermal comfort preferences
in the final feature set was expected to have a moderate impact on the
accuracy of the predictions provided by the model, since according to
the information provided by district operators, very similar values could
be expected for all residential buildings in the district. The available
dataset was split into three datasets: 75% of the data (corresponding to
43 of the buildings) were allocated to model training, 25% of the data
were used for the testing dataset, and finally, all of the available data
from nine of the 52 buildings in the district were used to generate the
building demand prediction model validation dataset.

The values of the hyperparameters of the SVR model were optimised
through a grid search process with cross-validation that allowed for
obtaining an R? value of 0.96 for the monthly energy demand pre-
dictions provided by the model for the validation dataset. Similarly, the
architecture of the ANN model (number of layers and number of neurons
per layer), as well as the most relevant hyperparameters, were
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Fig. 12. Primary school model. For the sake of brevity the kindergarten model is omitted.

Table 2
Modelling specification of the EnergyPlus buildings connected to the
subnetwork.

Modelling domain Modelling specification

Architectonic Detailed geometrical definition of the
buildings and of the surrounding objects.
Detailed definition of all the solutions of the
thermal envelope (e.g. facade, roof, glazing)
Detailed occupancy schedule and density
profiles