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A B S T R A C T   

District heating systems play a key role in reducing the aggregated heating and domestic hot water production 
energy consumption of European building stock. However, the operational strategies of these systems present 
further optimisation potential, as most of them are still operated according to reactive control strategies. To fully 
exploit the optimisation potential of these systems, their operations should instead be based on model predictive 
control strategies implemented through dedicated district energy management platforms. This paper describes a 
multiscale and multidomain integrated district model concept conceived to serve as the basis of an energy 
prediction engine for the district energy management platform developed in the framework of the MOEEBIUS 
project. The integrated district model is produced by taking advantage of co-simulation techniques to couple 
building (EnergyPlus) and district heating system (Modelica) physics-based models, while exploiting the po-
tential provided by the functional mock-up interface standard. The district demand side is modelled through the 
combined use of physical building models and data-driven models developed through supervised machine 
learning techniques. Additionally, district production-side infrastructure modelling is simplified through a new 
Modelica library designed to allow a subsystem-based district model composition, reducing the time required for 
model development. The integrated district model and new Modelica library are successfully tested in the Stepa 
Stepanovic subnetwork of the city of Belgrade, demonstrating their capacity for evaluating the energy savings 
potential available in existing district heating systems, with a reduction of up to 21% of the aggregated sub-
network energy input and peak load reduction of 24.6%.   

1. Introduction 

District heating (DH) systems play a key role in reducing the 
aggregated thermal energy consumption of European building stock. 
However, the operational strategies of these systems present further 
optimisation potential, as most of them are still operated according to 
reactive control strategies [1,2]. Typically, the building-level heating 
system service temperatures and DH production and distribution tem-
peratures are set according to static heating curves, allowing for 
adjustment of these settings to the evolution of weather conditions. 
Additionally, most existing DH system distribution networks operate 
according to variable flow rate strategies. This combined use of heating 
curves and variable flow rate strategies contributes to reductions in re-
turn temperatures, building-and district-level distribution thermal los-
ses, and pumping energy consumption. However, the definitions of the 
heating curves and pressure settings for the pumping groups are per-
formed according to historical data based on previous operational 

strategies that were typically defined to minimise service deficiency 
risks. Similarly, building energy management systems operate local 
systems according to reactive control strategies, e.g. by adjusting the 
energy requested from the thermal network to the evolution of the local 
demand and, if available, to the production of locally deployed 
distributed energy resources. Therefore, it can be concluded that these 
strategies are still of a reactive nature [3]. Thus, they do not fully cap-
ture the existing optimisation potential allowed by predictive strategies, 
e.g. those based on the holistic forecasting of weather and boundary 
conditions, and on control-setting definitions according to real-time 
evaluations of alternative control strategies [4]. 

Ideally, as shown in the existing literature, districts should be oper-
ated as integrated systems (buildings and thermal network infrastruc-
ture) to minimise the aggregated district energy demand and peak loads 
through the implementation of model predictive control (MPC) strate-
gies. In this regard, [5] presented the development, implementation, 
commissioning, and results of an online system based on machine 
learning (ML) algorithms (e.g. decision trees) for real-time demand 
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forecasting and optimisation of the operation of a district heating sys-
tem. Another study ([6]) concerned the development of an intelligent, 
context-aware, and adaptive energy management platform for optimis-
ing the operation of a district energy system, by taking advantage of the 
predictions produced by several artificial neural network (ANN) models 
utilised within a genetic algorithm. This system produced significant 
cost savings compared to reactive control strategies. In [7], a model 
predictive control system based on simplified physical models (for the 
buildings and thermal network) was developed and applied to a virtual 
use case comprising three office buildings and two energy supply sour-
ces. According to the obtained results, the peak loads were significantly 
decreased and the supply temperature was minimised, thereby reducing 
the distribution heat loss in the network. In [8], a DH system MPC 
controller was developed based on the DH infrastructure modelling 
language Modelica [9], focusing on the aggregated district energy de-
mand/production balance. Finally, [10] provided a review of MPC 
works based on data-driven models (DDMs) focused on demand 
response applications, and showed the opportunities created by MPC 
systems based on data models in buildings connected to smart networks. 

To enable the transition to MPC systems, the development of district 
energy management optimisation platforms (such as the solution 
developed in the framework of the MOEEBIUS project [11]) is required. 
These platforms incorporate prediction engines for providing the ca-
pacity to evaluate alternative energy management strategies, such as 
those exploiting predictive models. Owing to the complex and multi-
scale nature of districts, the scope of these models must include demand- 
side dynamics (buildings), the interface between the buildings and DH 
system (thermal substations), and the infrastructures of the DH systems, 
including the distribution network and heating plants. The traditional 
simplistic modelling approaches are based on building demand aggre-
gation, and are not adequate for addressing the dynamics present in 
thermal networks (e.g. temperature distributions over the thermal 
network, or distribution thermal losses), or for providing accurate pre-
dictions for DH system operational management optimisation. Addi-
tionally, to generate reliable performance predictions, an accurate 
calculation of the return temperatures, i.e. from the buildings to the 
thermal network, is necessary. This is only possible if the dynamics 
present in the interface between the buildings and thermal network are 
evaluated by exploiting a multiscale, multidomain, and fully integrated 
district model. These statements have been confirmed by previous 
research activities documented in the literature. The work described in 
[12] consisted of the development of the ’OpenIDEAS’ framework, 
based on the Integrated District Energy Assessment by Simulation 
(IDEAS) Modelica library [13], which was designed for integrated dis-
trict energy modelling and simulation. The work in [14] described an 
integrated Modelica model to evaluate the district-level energy savings 
produced by the retrofitting of buildings connected to a network branch. 
In [15], a Modelica-based framework for DH/cooling system modelling 

and operational optimisation was described, including the application of 
the framework to two virtual DH systems, thereby revealing the 
importance of a detailed evaluation of district-level dynamics. Similarly, 
the work described in [16] focused on the optimisation of the network 
supply temperatures of DH systems, and stressed the need for an accu-
rate modelling and evaluation of the district infrastructure-level 
dynamics. 

Physics-based models and DDMs are the most generalised energy 
behaviour modelling approaches used in the building and district do-
mains. Each of them presents specific advantages and limitations in 
relation to their use in MPC implementations. Several works and 
abundant literature can be found related to the modelling approaches 
existing in this domain. In [17], an analysis and comparison of physics- 
based and data-driven building energy modelling approaches was pro-
vided, whereas [18] gathered a case study focused on building tem-
perature prediction through physics-based and DDMs; in regards to the 
latter, it evaluated the low prediction accuracy loss and suitability for 
real-time use. In [19], a detailed review and comparison between the 
physics-based and DDMs as evaluated through simulations was pre-
sented, and hybrid models were identified as the most promising 
building energy consumption modelling approaches. 

Owing to their nature, physics-based models are very suitable for 
generating accurate predictions of the energy behaviours of buildings 
and DH infrastructure even when operating under different climatic 
conditions, user behaviour patterns, and system operational settings, 
provided that they are physically compatible with the technical char-
acteristics of the system, and that all the input data related to the 
physical parameters are available. According to the literature, these 
models are particularly suitable for MPC approaches. The work 
described in [20] consisted of the development of an MPC system based 
on an EnergyPlus/MATLAB prediction engine for a building equipped 
with an underfloor air distribution system; it achieved significant energy 
savings. In [21], an MPC system based on an EnergyPlus energy pre-
diction engine was used to optimise the control rules of an administra-
tive building and to minimise its energy consumption. In [22], an 
advanced MPC system based on a control-oriented dynamic thermal 
model was developed for radiant floor systems, and was tested in a 
TRNSYS-MATLAB co-simulation testbed. The test results showed that, 
compared to a conventional on–off controller, the MPC controller could 
use building thermal mass to optimally shift energy consumption to low- 
price periods. Similarly, [23] focused on an MPC energy management 
system based on a resistance–capacitance model for optimising the 
operation of a residential building equipped with air-sourced heat 
pumps for heating and domestic hot water (DHW) production, and a 
floor heating system. The results showed that an optimal control aimed 
at minimising energy costs while limiting peak power could lead to 
savings of up to 25% compared to a rule-based control. 

However, owing to the multidomain and multiscale nature of DH 

Nomenclature 

ANNs Artificial Neural Networks 
DDM Data Driven Model 
DH District Heating 
DHW Domestic Hot Water 
DR Demand Response 
DSM Demand-side Management 
FMI Functional Mock-up Interface Standard 
FMU Functional Mock-up Unit 
HVAC Heating, Ventilation, and Air Conditioning 
IDM Integrated District Model 
ML Machine Learning 
MLP Multi Layer Perceptron 

MPC Model Predictive Control 
R2 Coefficient of determination 
SVM Support Vector Machine 
SVR Support Vector Regression 
ω Weigh vector of the support vector machine method 
b Bias component of the support vector machine method 
ϕ kernel function of the support vector machine method 
∊ Error range of the predictions of the support vector 

machine method 
C Penalty term of the support vector machine method 
ξi,ξ*

i Slack variables of the support vector machine method 
X Feature vector 
Y Target  
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systems, the development of physical models is a very challenging task; 
it requires deep knowledge, and sufficient experience with building and 
DH system physics. Additionally, detailed information related to build-
ings and/or DH system infrastructures is not always available; more-
over, owing to the detailed definitions of these models, the required 
computational times are significantly higher than for DDMs. In addition, 
none of the existing procedural legacy building simulation programs 
such as EnergyPlus [24], eQUEST [25], and TRNSYS [26] provide the 
modelling capabilities required for integrated district model composi-
tion, as they were conceived for building architectonic and building 
technical system design. The implementation of these tools is based on 
large monolithic blocks consisting of programming procedures 
composed of causal assignments for defining model equations, numeri-
cal solution algorithms, and data input/output routines. As a conse-
quence, the addition of new modelling capabilities to legacy building 
simulation programs becomes technically complex and inefficient, as 
has been documented in the existing literature. In [27], a comparison 
between legacy building simulation programs and equation-based 
modelling languages was described, including two MPC use cases that 
displayed the advantages of the latter. Similarly, [28] provided a com-
parison of a multizone building energy model developed in an equation- 
based modelling language with the TRNSYS building model, and 
concluded that the development time was five to ten times faster. In 
[29], a review of the limitations of legacy building simulation engines 
and tools (e.g. EnergyPlus, DOE2 [30], eQUEST, and Riuska [31]) was 
provided. 

Equation-based modelling languages such as Modelica provide a 
powerful and promising alternative to legacy simulation programs. 
Specifically, Modelica is an object-oriented acausal modelling language 
designed for the multidomain modelling of dynamic systems. Through 
this modelling language, physical modelling and executable simulation 
program development are decoupled, as the latter is solved by dedicated 
modelling and simulation environments such as OpenModelica [32] or 
Dymola [33]. In Modelica, the mathematical equations for describing 
the physical behaviours of systems are encapsulated within components, 
and the relationships among the interface variables are captured by 
standardised interfaces. This allows for component connection, and for 
reproducing the modularisation and connectivity rules of real equip-
ment to form subsystems, systems, or complete architectures. In the last 
decade, several specific libraries such as the Modelica Buildings library 
[34], Modelica Building Systems library [35], AixLib library [36], and 
IDEAS library have been developed with dynamic models for building 
and DH system modelling, and several initiatives such as the Interna-
tional Energy Agency- Energy in Buildings and Communities Annex 60 
[37,38] and International Building Performance Simulation Association 
Project 1 [39] have increased the availability of libraries for building 
and district modelling. The literature related to Modelica works in this 
domain is diverse and abundant. In [40], the development of a new 
mathematical model for pipes optimised for DH systems managed ac-
cording to variable supply temperature and flow rate strategies was 
reported, along with its Modelica implementation. Similarly, the work 
compiled in [41] discussed the development of a mathematical model 
for a twin pipe incorporating the heat transfer from the supply pipe to 
the return pipe, including its Modelica implementation. In [42], a 
description of the development, implementation, and validation of a 
dedicated Modelica library for DH system modelling was provided. In 
[43], an innovative heating and cooling thermal network concept was 
designed (with waste heat recovery and bidirectional heat exchange 
between prosumers and the network), and its potential was compared to 
traditional solutions using Modelica models. Another study ([44]) pro-
vided an analysis of the capacity of Modelica and the Modelica envi-
ronments for modelling and simulating electromechanical power 
systems. The work compiled in [45] described the development of a 
Modelica-based MPC controller for DH system infrastructures aiming to 
optimise the generator status, supply temperature, and pumping system 
differential pressure settings. In spite of all of the above, the capacities 

given by these Modelica libraries are not comparable to those provided 
by legacy building simulation programs, thereby reducing the possibility 
of a prompt transition to the use of Modelica in this domain. Further-
more, a physical component-oriented system composition architecture is 
not compatible with an efficient definition of complex DH systems, 
owing to the scalability limitations created by the cost associated with 
the connection and instantiation of a large number of component models 
involved in DH system modelling. 

DDMs are generally developed using different techniques (e.g. ML, 
statistical methods) and historical data series, including the input and 
output parameters of the target dynamic system (the district); they allow 
for the definition of numerical algorithms without any explicit model-
ling of the physical behaviours of the system. These algorithms are able 
to capture the existing behavioural patterns and to provide predictions 
for the energy behaviours of buildings and DH system infrastructures, 
starting from the input parameter sets that define their statuses and 
boundary conditions. Owing to their nature, detailed information 
regarding the physical parameters is not necessary, and a deep under-
standing of the district technical domain, although highly advisable, is 
less critical. Additionally, the required calculation times are shorter than 
those for physical models, making them suitable for real-time applica-
tions in building and district management systems. A rich and varied 
literature is available on the use of data models in this domain. In [46], a 
review was provided on recent applications of DDMs for building energy 
behaviour forecasting. Similarly, in [47], a review of building DDM 
applications is described, including the prevalent ML methods, relevant 
parameters, forecasting horizons, and prediction accuracy. The work 
described in [48] concerned the development, implementation, and 
operational service of real time demand forecasting systems through ML 
algorithms and in [49], ANNs were used to predict heat demand and 
return water temperatures based on outdoor temperature forecasting 
and historical data series. In [50], a new method for district heat de-
mand prediction based on ANNs and duplicated feature elimination was 
described. The method was successfully applied to a district heating 
network containing tens of buildings at a university campus, and 
reduced the training time by 20% from traditional methods while 
maintaining the prediction accuracy. In [51] a Chebyshev distance- 
based agglomerative hierarchical clustering approach was proposed 
for gathering historical prediction residuals of similar operating condi-
tions into the same cluster. A quantile-based approach was proposed to 
estimate the prediction interval of a predicted cooling load by using a 
cluster of the most similar operating conditions. The method was suc-
cessfully tested using an ANN-based building cooling load prediction 
model. In [52], an MPC system based on an ANN building cooling energy 
consumption prediction model was developed and exploited to optimise 
the setpoints of air handling units. The system was tested in a three-story 
office building using an EnergyPlus-MATLAB test bed, and showed a 
reduction in cooling energy consumption of 10% compared to a con-
ventional control strategy. In [53], a bidirectional long short-term 
memory neural network-based approach was proposed for detecting 
and classifying substations that use night setbacks regularly. The pro-
posed approach was evaluated using data from 10 anonymous sub-
stations in Sweden, and the results showed that the proposed approach 
outperformed conventional detection methods. In [54], a novel tech-
nique for estimating commercial building energy consumption from a 
small number of building features and gradient boosting regression 
models was presented. The models were validated using the New York 
City Local Law 84 energy consumption dataset, and were applied to the 
city of Atlanta to successfully create aggregated energy consumption 
estimates. Similarly, in [55], a rough set theory was used to find the 
critical factors involved in building energy consumption to facilitate the 
development of a deep neural network for predicting building energy 
consumption. The data from 100 civil public buildings were used for a 
rough set reduction, and the proposed method was tested in a laboratory 
building at a university in Dalian. The results were compared with those 
of several ML methods, and demonstrated the superior accuracy of the 
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proposed method. Notwithstanding the above, the main limitation of 
DDMs regarding their use in energy management systems based on MPC 
approaches is their lack of capacity to generalise the behaviours of 
districts operating under new strategies, i.e. for which no dataset is 
available. 

In summary, it can be concluded that district modelling remains a 
complex technical field, and several limitations remain unsolved, 
including the following. 

• The limitations of building simulation programs for providing com-
plete physical demand-side modelling efficiently.  

• The insufficient maturity level of the multiscale and multidomain 
modelling tools for the building and district domains.  

• The existing limitations for complex DH infrastructures include 
detailed physical modelling, owing to scalability issues.  

• The limited capacity of DDMs to generate predictions for districts 
operating under unseen strategies. 

The aim of the work described herein is the development of an in-
tegrated district model (IDM) concept for overcoming the limitations of 
legacy building simulation programs and Modelica for district model-
ling. It takes advantage of co-simulation techniques to enable integra-
tion of the building and DH system physical models, by exploiting the 
potential of the functional mock-up interface standard (FMI) [56]. From 
the perspective of demand-side modelling, the main contribution of the 
developed IDM consists of a new procedure based on the combined use 
of physical models and DDMs that allows for complete demand-side 
modelling, without the need for developing detailed physical models 
for each building in the district. This is a significant barrier to the 
implementation of MPC approaches, owing to significant high resources 
required for the development of building models. Instead, the proposed 
method takes advantage of the structures of urban DH systems, as these 
are typically formed by an arbitrary number of building groups built 
according to designs similar from architectonic and functional system 
perspectives. The method is based on (1) the development of a building 
energy demand prediction model for the buildings of a district through 
supervised ML regression techniques and (2) on the definition of a 
detailed physical model (EnergyPlus) for a single building of each type. 
The data-driven building demand forecasting model is exploited to 
generate a demand correction function for each of the buildings in the 
district. These correction functions, combined with detailed physical 
building models, can produce energy demand predictions for all build-
ings operating according to alternative demand-side management 
(DSM) strategies. 

In relation to DH system infrastructure physical modelling, the main 
contribution of the developed IDM is the development of a new Modelica 
DH library with specific models for enabling DH system model compo-
sition according to a subsystem-oriented architecture. These subsystem 
models are conceived so as to encapsulate the equipment components 
existing in the actual subsystems, i.e. by reproducing their modularity 
and connectivity rules. Additionally, the flexibility and scalability 
required to adapt the models to any specific DH project are added 
through dedicated algorithms, and the modelling capacities are opti-
mised to evaluate all of the relevant dynamics. Ultimately, the devel-
oped Modelica library allows for the optimisation of the resources 
required for the detailed definition of complex DH system models, 
significantly reducing the risk of modelling errors. The developed IDM is 
tested on the Stepa Stepanovic subnetwork (Serbia) to evaluate its 
capabilities. 

Regarding the structure of the rest of this paper, Section 2 provides a 
description of the methods defined to develop the IDM, and Section 3 
describes the testing process of the developed models in the Stepa Ste-
panovic subnetwork, including the production process of the IDM for the 
demo district and the evaluated optimisation scenarios. The results from 
the testing processes of the defined models and the impacts of the 
optimisation scenarios are discussed in Section 4. Finally, Section 5 

concludes the paper. 

2. Methods 

2.1. Integrated district model through co-simulation 

Co-simulation is an innovative simulation technique that allows for 
data exchange during time integration between two or more simulation 
tools, so as to solve coupled systems of equations [57]. These techniques 
can be applied in the district modelling domain to overcome the limi-
tations existing in this specific field in regards to both building simula-
tion tools and Modelica, as described in [58,59]. More specifically, from 
the development of the first version of the FMI in 2010, designed to 
standardise the procedure for coupling simulation tools, the potential of 
these techniques has been constantly increasing, as illustrated by the 
existing literature. In this regard, [60] described the extension of a 
building management system with an interface based on the FMI that 
allowed the implementation of fault detection algorithms. Similarly, 
[61] illustrated the applicability of co-simulation concepts based on the 
FMI for the simulation of buildings and community energy systems by 
comparing several state-of-the-art approaches. Finally, [62] described 
four completely different applications of the FMI in the building simu-
lation domain. 

The procedure designed in this study to generate the IDM took 
advantage of the possibilities provided by co-simulation techniques and 
the FMI standard to couple a Modelica model for a DH system (heating 
plant, solar plants, distribution network, and thermal substations) with 
the EnergyPlus models of the buildings (including building-level heat-
ing, ventilation, and air conditioning (HVAC) systems) connected to the 
DH system, after being encapsulated into functional mock-up units 
(FMUs) [63]. With this approach, it was possible to split the physical 
system of the district into several parts that were homogeneous from the 
perspective of the physical domain and the scale (building and district) 
they belonged to, without losing actual integration among the different 
models. This allowed for the development of specific models for each 
part of the physical system using suitable modelling and simulation tools 
with the capacity to accurately capture all the dynamics present in each 
specific model. In the case of the IDM herein, the building thermal 
substations were established as the most suitable interface between the 
building models and network infrastructure model. 

2.2. Combined use of physical and data driven models for district 
demand-side modelling 

The created IDM acted as the base of the energy prediction engine for 
the developed district management system. The functionalities provided 
by this platform were based on the capacity of the IDM to evaluate 
alternative operational strategies on the demand side and DH system 
side, owing to the physical modelling approach. However, the tradi-
tional procedures for district demand-side physical modelling, as pure 
aggregations of the physical models of each and every district building, 
were unfeasible from the perspective of the required resources. This 
barrier was overcome by exploiting the synergies obtained from the 
combined use of physical models and building energy demand models, 
as obtained through ML techniques. More specifically, the sequential 
procedure displayed in Fig. 1 was defined to allow complete demand- 
side modelling, and included the following aspects. 

• Building typologies existing within the district were defined ac-
cording to their use and architectonic/system design.  

• A representative building was selected for each of the defined 
building typologies.  

• Physical models (EnergyPlus) were developed for the representative 
buildings (including their HVAC systems). 
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• A building demand forecasting model was developed through su-
pervised ML regression techniques, taking advantage of the historical 
data of the heating demands of the buildings.  

• A specific building demand correction function was defined for each 
building by taking advantage of the predictions provided by the data 
model.  

• Hourly/sub-hourly demand predictions were generated for all the 
buildings of each type by taking advantage of the demand correction 
functions, and of the predictions produced by the physical models 
developed in EnergyPlus for the representative buildings. 

As described in the available literature, support vector machine 
regression (SVR) and ANNs are the most commonly employed super-
vised ML methods in the building and district domains. In this regard, 
[64] proposed a detailed review of ML based building energy perfor-
mance prediction methods (e.g. ANNs, SVR) and presented the princi-
ples, applications, advantages, and limitations of these ML algorithms. 
Similarly, [65] reviewed recently developed building energy perfor-
mance models, including engineering, statistical and ML methods and 
described relevant applications of ANNs and SVR. Finally, another study 
[66] proposed a detailed review of buildings energy performance 
modelling (physical, ML and hybrid models) and identified ANNs and 
support vector machines as the predominant ML methods. Thereby, SVR 
and ANNs were selected for the development of the proposed method. 

2.2.1. Support vector regression 
SVR is a supervised ML method which aims to find a decision func-

tion or model for representing the relationships between features (x1, 
x2, x3,……. xi) and a target (y). It is based on the principle of structural 
risk minimisation, and takes advantage of the definition of one or more 
hyperplanes in a high-dimensional space that can be mapped through a 
kernel function ϕ, weight vector ω, and bias component b to the original 
feature space, as follows [67]: 

Y = ωϕ(X)+ b (1) 

The goal of the SVR method is to minimise the probability that the 
model will make an error on an unseen data instance. This is achieved by 
finding the solution which best generalises the training dataset, by 
minimising a convex criterion function as follows: 

Minimize :
1
2
‖ω‖

2
+C

∑l

i=1
ξi + ξ*

i (2) 

This calculation is subject to certain constraints, as follows: 

yi − ωT ϕ(xi) − b ≤ ∊+ ξi (3)  

ωT ϕ(xi)+ b − yi ≤ ∊+ ξ*
i (4) 

In the above, ∊ denotes the prediction error range, ξi and ξ*
i are the 

slack variables which ensure the existence of a solution for any ∊, and C 
is a penalty term used to optimise the balance between data fitting and 
prediction smoothness. In this domain, the SVR method can provide 
better accuracy than most of the existing classical ML methods, and 
through the use of the regularisation parameter C, is not prone to 
overfitting problems. Its main limitation is the lack of a universal pro-
cedure for selecting the appropriate kernel function and its slow learning 

speed, making it a computationally less efficient method during the 
model training stage. 

2.2.2. Artificial neural networks 
Supervised ANNs are trained using historical data that describe the 

energy behaviours of buildings, for creating a model with the capacity to 
reproduce the relationships between the features and target. Owing to 
their accuracy and ability to represent non-linear processes, the use of 
supervised ANN models in this domain has been intense [67]. The main 
advantage of ANNs is their high prediction accuracy when large datasets 
free from fuzzy, noisy, or incomplete data, are available. However, their 
main limitations are the high computational resources required, slow 
learning process, and risk of overfitting. 

The architecture of an ANN consists of an input layer, an arbitrary 
number of hidden layers, and an output layer. The input dataset (fea-
tures) flows from the input layer through the hidden layers to the output 
layer, where the target value is obtained. In the case of the hidden layers, 
the output of each neuron is delivered to each neuron of the subsequent 
hidden layer after being multiplied by its corresponding neuron weight. 
The total output of any of the neurons of a specific hidden layer is 
calculated by summing all the inlets, including a bias contribution. 
Finally, an activation function is applied to the latter to define the output 
of each neuron. During the training stage, through a back-propagation 
process, different optimisation algorithms can be used to identify the 
weight and bias contributions to minimise the loss function value and 
correctly map outputs with inputs. Fig. 2 displays the architecture of an 
ANN consisting of a single hidden layer with three neurons. 

2.3. New Modelica district heating (DH) modelling library 

In the Modelica libraries available at the time of completion of this 
work, the district modelling was based on a physical equipment-oriented 
architecture, which is far from ideal for providing detailed definitions of 
complex DH systems in an efficient way. District modelling should 
instead be based on a subsystem-oriented modelling architecture, so as 
optimise the effort required for model development. To overcome this 
limitation, a new Modelica library was developed, including subsystem 
models specifically conceived for that purpose, according to a flexible 
and scalable approach required to allow modelling of DH systems of any 
size and complexity. Therefore, it was possible to maximise the capa-
bility to define typical existing DH system typologies. 

The library models were developed using the physical component 
models available in the Modelica Standard Library (version 3.2.2), 
Modelica Buildings Library (version 4.0.0), and ThermoPower Library 
(version 3.1) [68]. These models were adjusted to align them with the 
implemented subsystem-oriented architecture approach. The code of the 
models was defined with specific algorithms to provide the flexibility 
and scalability required to adapt the models to any specific DH project. 

Fig. 3 displays a very simple example of a DH system modelled using 
the subsystem models available in the developed Modelica library. In 
this specific case, the DH system is configured through an instance of the 
DH plant model, an instance of the pumping station model, and a dis-
tribution network consisting of two instances of the loop/branch sub-
system model (as required to represent a network topology with a two- 
level hydraulic circuit hierarchy). Finally, the model of the DH infra-
structure is completed by using several instances of the building 

Fig. 1. Demand-side modelling through the combined use of physical and data driven models.  

V.F. Sánchez and A. Garrido Marijuan                                                                                                                                                                                                    



Applied Thermal Engineering 196 (2021) 117233

6

substation model deployed all over the branch hierarchy of the network, 
so as to integrate the impact of the energy requested by the buildings on 
the DH system. Additionally, as displayed in Fig. 3, the solar plant 
subsystem model incorporated into the developed Modelica library al-
lows for the integration of solar production into the DH system. In the 
following sections, an overview of the different subsystem models is 
provided. A more comprehensive description of the technical features of 
the subsystem models can be found in [69]. 

2.3.1. DH plant model 
The DH heating plants formed by water boilers and steam production 

plants are a very common plant typology in existing European DH sys-
tems. Considering this, the developed subsystem model was specifically 
designed to address this plant typology. All of the equipment existing in 
this type of plant was encapsulated within the designed model, and 

during model instantiation, it supported a flexible and scalable config-
uration regarding:  

• the number of existing hot water generation groups and the specific 
component configuration within each generation group (heat gen-
erators, pumps, pipes, vertical stratified storage tanks, energy de-
livery heat exchangers, valves, and control components); and  

• the configuration of the steam production plant in terms of steam 
generator and water heating line numbers. 

Fig. 4 displays a simplified version of the component models 
encapsulated within a hot water production plant subsystem model as 
formed by a single water production group with thermal storage. 

The steam production plant supported by the DH plant subsystem 
model consisted of an arbitrary number of steam generators coupled to 

Fig. 2. Artificial neural network (ANN) architecture consisting of a single hidden layer with three neurons.  

Fig. 3. District model defined through the subsystem architecture using the developed Modelica Library.  
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an arbitrary number of heating lines (condensers and subcoolers con-
nected in series). Fig. 5 displays a simplified version of the component 
models encapsulated within the steam production plant of a generic DH 
plant with a single steam boiler and single water heating line. 

2.3.2. Pumping station model 
The pumping station model was conceived to encapsulate the 

physical components required to configure any DH system pumping 
station, including the pumps, pipes, pipe thermal boundary conditions, 
valves, and control components. It allowed for the flexibility and auto-
matic scalability of the model, e.g. to adjust the number of existing 
pumping groups and number of pumps within each pumping group. In 
its simplest configuration, any DH model defined through the developed 
Modelica library would necessarily include a pumping station subsystem 
model connecting the demand side of the DH plant to the source side of 
all of the existing main distribution loops of the network. Depending on 
the specific topology of the modelled network, additional pumping 
station models could be integrated at any loop or branch hierarchy level. 
Fig. 6 depicts the component models encapsulated within the subsystem 

model of a specific pumping station formed by a single pumping group 
with two pumps. 

2.3.3. Loop/branch model 
The loop/branch model was conceived to encapsulate all of the hy-

draulic components required to configure any distribution of a thermal 
network of a DH system including pipes, connection ports, and pipe 
thermal boundary conditions. It could be used to model typical thermal 
network topologies (e.g. ring, radial, branched, meshed), and allowed 
for the evaluation of the impacts of the distribution of thermal losses and 
pressure drops over the network. Regarding connectivity, on the load 
side, the model allowed for the connection of an arbitrary number of 
branch models of a lower level in the branch hierarchy, or a direct 
connection to building thermal substations. 

Similarly, on the source side, the model could be directly connected 
to the load side connections of a DH plant subsystem model, or alter-
natively, to the load side connection ports of one of the branches of a 
higher level in the branch hierarchy. Additionally, the model could be 
configured during instantiation to define the main loops (including a 

Fig. 4. Simplified version of the component models encapsulated within the district heating (DH) plant model for a DH plant with a single hot water genera-
tion group. 

Fig. 5. Simplified version of the component models encapsulated within the heating plant model for a heating plant equipped with a single steam production boiler 
and a single heating line. 
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bypass at the end of the loop) or branches of a lower level in the branch 
hierarchy (without a bypass). Fig. 7 depicts the physical component 
models encapsulated inside a loop/branch model for the specific case of 
a loop with four pairs of load-side connection ports. 

2.3.4. Thermal substation model 
The thermal substation model encapsulated all of the physical 

components forming a typical parallel-type thermal substation, 
including the DHW production heat exchangers, valves, control equip-
ment, and components required to integrate the energy requested by the 
connected buildings. The model could be adjusted to set the presence/ 
absence of a dedicated DHW production heat exchanger. Fig. 8 displays 
the connections of the physical component models encapsulated inside 
the thermal substation model of a parallel-type substation with dedi-
cated heating and DHW production heat exchangers. 

2.3.5. Solar collector plant model 
This subsystem model was conceived to encapsulate all of the 

physical components required to configure a solar thermal collector 
plant, including collectors, pumps, pipes, storage tanks, valves, control 
equipment, and pipe and tank thermal boundary conditions. During the 
instantiation of the model, flexibility and scalability were available 
when configuring the solar field, in relation to the number of collector 
arrays connected in parallel and number of collectors connected in series 
in each array. Fig. 9 shows the component models encapsulated within 
the thermal collector plant model for a specific plant with a single col-
lector array. 

2.3.6. Auxiliary record classes 
To allow for a simple and systematic introduction of the specifica-

tions of the physical components encapsulated within the defined 
models, several auxiliary record classes were defined and used as 

Fig. 6. Component models encapsulated within the pumping station subsystem model for a pumping station equipped with a single pumping group with two pumps.  

Fig. 7. Component models encapsulated within the loop/branch subsystem model for a loop with four connections, including the supply and return pipes, the inlet 
and outlet connection ports, and the bypass deployed at the end of the hydraulic circuit. 
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necessary in the subsystem models (e.g. pipe specification, pump spec-
ification, plate heat exchanger specification, condenser specification, 
hot water boiler specification and hot water boiler performance speci-
fication, storage tank specification, two-way valve and three-way valve 
specifications, solar collector specification, and steam boiler 
specification). 

3. Stepa Stepanovic use case 

3.1. Vozdovac DH system and Stepa Stepanovic subnetwork 

The Vozdovac system is one of the several heating networks that 
form the DH system of the city of Belgrade. It comprises of a DH plant 
and a two-pipe distribution network based on a branched topology. It 

meets the energy demand (heating and DHW production) associated 
with different areas of the city, including the Stepa Stepanovic neigh-
bourhood. Three hot water boilers (total capacity of 241 MW) and two 
steam boilers (total production capacity of 22 t/h), all of which run on 
natural gas, produc the energy distributed to the mentioned areas from 
the Vozdovac heating plant. 

The evaluation of the potential of the proposed IDM concept and of 
the developed Modelica library was performed based on the subnetwork 
of the Stepa Stepanovic neighbourhood. This subnetwork provides the 
energy required to cover the heat demand of 52 residential buildings, a 
kindergarten, and a primary school. Table 1 provides a summary of the 
specific HVAC systems existing in the residential buildings and educa-
tional buildings connected to the subnetwork. A more detailed 
description of the technical features of the Vozdovac system and of the 

Fig. 8. Component models encapsulated within the parallel substation model including the heating heat exchanger (HE1), the DHW production heat exchanger 
(HE2), and the energy delivery control valves for heating (V1) and for DHW production (V2). 

Fig. 9. Component models encapsulated within the solar collector plant subsystem model for a solar plant with a solar field formed by a single collector array, solar 
tank, solar energy delivery plate heat exchanger, mixing valve to adjust production temperature, and the two pumps required to produce water circulation. 
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buildings of the Stepa Stepanovic neighbourhood can be found in [70]. 

3.2. Integrated district model of the Stepa Stepanovic subnetwork 

3.2.1. Co-simulation procedure 
The IDM was developed to serve as the prediction engine for the 

district energy management platform developed in the framework of the 
MOEEBIUS project, according to a service-based distributed architec-
ture. In the case of the Stepa Stepanovic subnetwork, owing to certain 
platform implementation limitations, it was necessary to modify the 
FMI/FMU-based co-simulation procedure, and to instead adopt a 
sequential co-simulation procedure [71]. The steps were as follows.  

• For the complete prediction period (one day), simulation of the 
EnergyPlus models of the representative buildings was conducted to 
calculate the evolution of building-side variables at the boundary 
between the building models and subnetwork Modelica model 
(substation secondary side inlet temperature and water flow rate). 

According to the operator, hot water delivery at nominal tempera-
ture conditions was always guaranteed for all buildings. Therefore, 
the EnergyPlus building models were simulated assuming a nominal 
district supply temperature and capacity.  

• A simulation of the infrastructure of the subnetwork’s Modelica 
model was conducted for the complete prediction period to evaluate 
the aggregated impacts of the evolution over time of the energy 
requested by the buildings to the subnetwork, including the effects of 
infrastructure dynamics (e.g. distribution of thermal losses).  

• The prediction process was launched several times during the day, 
allowing for the evaluation of alternative demand-side and district- 
side management strategies for optimising the implemented opera-
tional strategies in real time. 

3.2.2. Physical models of the representative buildings 
According to the procedure defined in Section 2.2, the district 

buildings were grouped into homogenous building typologies from the 
perspectives of their architectonic (e.g. envelope, compactness, solar 
access, orientation), user behaviour, and technical system features. For 
each of the defined building types, a representative building was 
selected, and its detailed EnergyPlus model was developed. In total, 
eight residential buildings and two educational buildings were modelled 
in EnergyPlus, including building-level HVAC systems. Fig. 10 displays 
the locations of the selected representative buildings within the neigh-
bourhood, whereas Figs. 11 and 12 depict some of the eight developed 
EnergyPlus models. 

Table 2 depicts the detailed modelling specifications applied in the 
development of the EnergyPlus models for the buildings connected to 
the Stepa Stepanovic subnetwork. A more comprehensive description of 
the modelling specifications can be found in [70]. 

Regarding the followed criteria in relation to the thermal zone 
definition, in the case of the residential buildings, each apartment was 
considered a single thermal zone with residential activity, so as to 
optimise the calculation speed for the models. Common and non- 
residential spaces were grouped into unconditioned thermal zones. In 
the case of the two educational buildings, the definition process fol-
lowed to configure the thermal zones as integrated into the models 
required a more elaborate sequence, as follows:  

• Analysis of the activities in the different spaces of the buildings.  
• Identification of the different zone types according to the developed 

activities.  
• Classification of the zones of the buildings according to the defined 

types. 
• Aggregation of the zones of the same type located in adjacent posi-

tions and served by the same HVAC system. 

3.2.3. Demand correction functions 
The definitions of the correction functions required to produce the 

hourly heat request predictions (building demand) for all of the build-
ings were provided according to the procedure described in Section 2.1, 
through the following two-stage sequence. 

• Development of the energy demand prediction model for the build-
ings of the Stepa Stepanovic neighbourhood through supervised ML 
regression techniques, starting from the energy demand data avail-
able for each building from September 2017 to May 2018. 

• Definition of the specific correction functions for each of the build-
ings, by exploiting the predictions provided by the data model for 
each building of the neighbourhood. 

As described in Section 2.1., by taking advantage of the hourly 
predictions provided by the EnergyPlus models for the representative 
buildings and of the developed correction functions, it became possible 
to provide hourly predictions of the energy requested by each building 
to the subnetwork. 

Table 1 
Technical features of heating, ventilation, and air conditioning (HVAC) systems 
of the buildings connected to the subnetwork.  

Buildings Connection Building 
level 
distribution 

Emission 
subsystem 

Ventilation 

Residential Indirect 
heating 
substation 

Dedicated 
distribution 
circuits for 
different 
building 
orientations, 
equipped with 
variable flow 
pumps 

Conventional 
hot water 
radiators with 
thermostatic 
valves 

Mechanical 
exhaust 
systems in 
apartment 
kitchens and 
toilets 
Natural 
ventilation in 
the rest of 
the rooms 

Kindergarten Indirect 
heating 
substation 

Common 
centralised 
distribution 
circuit 
equipped with 
variable flow 
pumps 

Conventional 
hot water 
radiators 

Several air 
handling 
units of 
different 
types 
operating 
according to 
constant air 
flow 
strategies 

Indirect 
ventilation 
substation 

Several split 
and multi split 
units 

Exhaust air 
systems for 
some specific 
zones (e.g. 
food 
preparation 
rooms) 

Primary 
school 

Indirect 
heating 
substation 

Dedicated 
distribution 
circuits for 
the radiator 
and the 
radiant floor 
system 
equipped with 
variable flow 
pumps 

Conventional 
hot water 
radiators 

Several air 
handling 
units of 
different 
types 
operating 
according to 
constant air 
flow 
strategies 

Radiant floor 
system (multi- 
sports court) 

Indirect 
ventilation 
substation 

Dedicated all 
air systems for 
some specific 
zones 

Exhaust air 
systems for 
some specific 
zones (e.g. 
food 
preparation 
rooms, 
toilets, 
locker 
rooms, 
technical 
rooms) 

Several split 
and multi split 
units  
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To produce the building heating demand model, SVR and ANNs with 
a multi-layer perceptron architecture (MLP) were used. As displayed in 
Table 3, the initially considered feature set included features related to 
climatic conditions, architectonic design, and user behaviour. 

The available data set consisted of the monthly values of the energy 
requested by each of the buildings from September 2017 to May 2018. 
Owing to the lack of data with an hourly/sub-hourly resolution, it was 
necessary to base the procedure on a monthly building energy demand 
prediction model. In addition, in the cases of residential buildings, the 
availability of data for some of the architectonic features (e.g. infiltra-
tion rates) and many of the user behaviour related features (e.g. thermal 
comfort settings, ventilation rates, occupancy profiles) were only 
available for certain representative buildings. Therefore, the feature set 
to be used to produce the building energy demand prediction model was 
reduced, as displayed in Table 4. 

The unavailability of data regarding the infiltration levels, 

ventilation rates, occupancy patterns, and thermal comfort preferences 
in the final feature set was expected to have a moderate impact on the 
accuracy of the predictions provided by the model, since according to 
the information provided by district operators, very similar values could 
be expected for all residential buildings in the district. The available 
dataset was split into three datasets: 75% of the data (corresponding to 
43 of the buildings) were allocated to model training, 25% of the data 
were used for the testing dataset, and finally, all of the available data 
from nine of the 52 buildings in the district were used to generate the 
building demand prediction model validation dataset. 

The values of the hyperparameters of the SVR model were optimised 
through a grid search process with cross-validation that allowed for 
obtaining an R2 value of 0.96 for the monthly energy demand pre-
dictions provided by the model for the validation dataset. Similarly, the 
architecture of the ANN model (number of layers and number of neurons 
per layer), as well as the most relevant hyperparameters, were 

Fig. 10. Location of the representative buildings defined for the Stepa Stepanovic subnetwork.  

Fig. 11. Residential representative building of group 2A. The rest of the residential models are omitted for the sake of brevity.  
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iteratively optimised (e.g. learning rate) allowing for an R2 of 0.94 for 
the monthly building energy demand for the buildings of the validation 
dataset. The lower accuracy of the MLP model was a consequence of the 
insufficient number of available samples, which made it unsuitable for 
fully exploiting the potential of the ANN algorithm. Fig. 13 shows a 
comparison between the energy requested by each of the buildings of the 
validation set to the thermal network from September 2017 to April 
2018, and the monthly predictions provided by the SVR and ANN 
models. The capacity of both ML models to provide moderately accurate 
predictions for all the months of the 2017–2018 heating season for all 
the buildings in the validation dataset is depicted. As expected, ac-
cording to the R2 values obtained for the ANN and SVR models, in 
general, the predictions provided by the latter are closer to the actual 
measured values. 

Owing to the scope (time granularity and features) and quality lim-
itations of the available dataset, the accuracy of the predictions provided 
by the model was moderate in comparison with the levels typically 
achievable within this domain through ML techniques. However, it was 
considered acceptable for the final goal of this procedure, i.e. the defi-
nition of the correction functions required to allow demand-side 
modelling. Fig. 14 displays the correction functions produced for the 
building groups of the neighbourhood using the described method. Ac-
cording to the values obtained for the correction functions, the buildings 
that are part of the same group display very similar patterns, thereby 
confirming the consistency of the performed building classification, and 
the technical robustness of the method proposed for demand-side 
modelling. 

3.2.4. DH infrastructure Modelica model 
The composition of the IDM was completed by using the Modelica 

model of the Stepa Stepanovic distribution subnetwork produced by 
exploiting the defined new DH system modelling approach and 

Fig. 12. Primary school model. For the sake of brevity the kindergarten model is omitted.  

Table 2 
Modelling specification of the EnergyPlus buildings connected to the 
subnetwork.  

Modelling domain Modelling specification 

Architectonic Detailed geometrical definition of the 
buildings and of the surrounding objects. 
Detailed definition of all the solutions of the 
thermal envelope (e.g. façade, roof, glazing) 

User behaviour Detailed occupancy schedule and density 
profiles 
Detailed definition of metabolic rates 
according to developed activities 
Detailed definition of the internal load profiles 
(lighting and electric equipment) 
User type specific definition of the thermal 
comfort, visual comfort and internal air 
quality settings 

HVAC and domestic hot water 
(DHW) production systems 

Detailed building substation modelling (inlet 
temperature, outlet temperature, inlet water 
flow rate) 
Detailed modelling of the topology of the 
building level distribution subsystem 
including distribution of thermal losses and 
the energy consumption of pumps 
Detailed modelling of the emission subsystem 
(hot water radiators, radiant floors, etc) 
Detailed modelling of the ventilation systems 
to evaluate the behaviour of air handling units 
(fans, heating coils, dampers, heat recovery 
heat exchangers) and exhaust mechanical 
ventilation systems 
Detailed modelling of the DHW production 
and storage system to evaluate the impact of 
stratification and thermal losses on the DHW 
storage tanks  

Table 3 
Preliminary feature set.  

Initial Feature Set 

Climatic Architectonic User behaviour 

Air dry bulb 
temperature 

Orientation of each façade Heating setpoint 
temperature 

Solar irradiation Length and surface of each façade Ventilation rates 
Wind speed Window area of each façade Occupancy patterns 
Wind direction Shading coefficient of each façade Day of the week 
Absolute humidity Infiltration rate Month of the year  

Thermal transmittance of façade, 
roof and glazing 

Hour of the day  

Solar gain coefficient of glazing   
Building heated area   

Table 4 
Final feature set.  

Final Feature Set 

Climatic Architectonic 

Air dry bulb monthly mean 
temperature 

Orientation of each façade 

Monthly mean solar irradiation Length of each façade 
Monthly mean wind speed Surface of each façade 
Monthly mean wind direction Window area of each façade 
Monthly mean absolute humidity Shading coefficient of each façade  

Thermal transmittance of façade, roof and 
glazing  
Solar gain coefficient of glazing  
Building heated area  
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subsystem models of the developed Modelica library. Through the 
reduction of the effort required for model instantiation and connection, 
it was possible to provide the same level of modelling detail and to 
simultaneously enable an approximate reduction of 40% of the time 
required for model development, in comparison to the traditional 
equipment-based modelling architecture approaches (an approximate 
time saving of 15 h for a standard modeller). 

The distribution loop/branch hierarchy consisted of 21 loops, sub-
loops, and branches, and 56 substations connected to the loops/ 

branches of the subnetwork. The considered level of detail in the 
modelling was able to accurately capture the topology of the distribution 
network and the locations within the Stepa Stepanovic neighbourhood 
of the buildings connected to the subnetwork. 

3.2.5. Integrated district model calibration 
The calibration process of the IDM consisted of the sequential cali-

bration of the EnergyPlus models and the Modelica model of the district 
infrastructure. This process was based on the historical data available for 

Fig. 13. Energy requested by the buildings of the validation dataset from September 2017 to April 2018 vs support vector machine regression (SVR) and ANN 
predictions. 
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the 2017–2018 heating season (September 2017 to May 2018). The 
calibration and validation parameters are listed in Table 5. 

Through the described procedure, the capacity of the IDM to repro-
duce the energy behaviour of the district was maximised, thereby 
reducing the difference between the predictions provided by the models 
and the actual figures to values below 10% for the building models and 
infrastructure model. 

3.3. Optimisation scenarios 

At the time of completion of this work, the priority for the operator of 
the Stepa Stepanovic subnetwork was to use the developed district 
management platform to exploit the existing demand-side flexibility, 
and to generate accurate aggregated district energy demand forecasts, so 
as to enable an optimised operation of the different heat generation 
technologies of the DH plant. Based on these preferences, and starting 
from the evaluation of the existing demand-side flexibility and user 

Fig. 14. Correction functions for the buildings included in the different building types connected to the subnetwork.  
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constraints in residential and educational buildings, different DSM sce-
narios were defined with the support of subnetwork operators. After 
analysing the HVAC systems and actuators available in the buildings of 
the district, the defined DSM scenarios were focused on residential 
building comfort setting optimisation. Educational buildings were 
excluded from the scenarios owing to their reduced flexibility in terms of 
comfort settings (thermal and internal air quality), which was a conse-
quence of the relative vulnerability of the users. In any case, the defined 
DSM scenarios addressed more than 90% of the aggregated subnetwork 
energy demand. The features of the DSM scenarios defined according to 
these criteria are summarised in Table 6. 

Regarding DH system infrastructure management optimisation 
strategies, according to the performed conceptual analysis, it was 
concluded that, in the short term, the available potential was limited, 
owing to the existing constraints and the operational strategies already 
implemented in the reference scenario.  

• The production and distribution temperature of the subnetwork were 
already adjusted according to weather compensation strategies 
(outdoor dry bulb air temperature and wind speed), exploiting a 
static heating curve which settled the subnetwork supply tempera-
ture setpoint in the range from 105 ◦C to 85 ◦C.  

• The subnetwork pumping station was operated according to variable 
water flow rate strategies. 

• The heating systems of the residential buildings consisted of con-
ventional hot water radiators designed for a supply water tempera-
ture of 80 ◦C, which set a minimum subnetwork supply temperature 
of 85 ◦C. 

• Distributed energy resources were not available in the Stepa Stepa-
novic neighbourhood. 

However, in the medium term, the district operator is planning to 
gradually transform the DH system into a low-temperature DH system, 
including the deployment of renewable energy systems (e.g. solar 
thermal collectors), the reduction of the operational temperatures of the 
heating systems of the residential buildings, and the reduction of the 
production/distribution temperature of the DH system. Such a transition 
will provide the ideal frame to fully exploit the potential of the devel-
oped district management platform and IDM. Although a comprehensive 
analysis of all of the technical building and district level modifications 
involved in that transition is beyond the scope of the work described 
herein, to provide an initial evaluation of some of the optimisation op-
tions that would become available and to further test the prediction 
capabilities provided by the IDM, two additional scenarios were 
evaluated.  

• Scenario 3: Starting from Scenario 2, this scenario was completed 
with the addition of subnetwork supply production/distribution 
temperature optimisation. The goal was to explore the additional 
energy savings and peak load reduction possibilities through a 
decrease in the distribution of thermal losses, with the currently 
existing minimum subnetwork distribution temperature value of 
85 ◦C. Owing to the existing high minimum subnetwork supply 
temperature value, no major impact was expected for this scenario.  

• Scenario 4: To obtain a more realistic estimate of the potential 
benefits through the optimisation of the subnetwork distribution 
temperature after the transition to a low-temperature distribution 
approach, the following modifications were assumed in this scenario.  
o The emission system of the residential buildings was modified to 

operate at a service temperature of 60 ◦C.  
o The Kv value of the control valves of the substations of the 

buildings connected to the subnetwork was increased, as neces-
sary, to meet the existing heat demands while operating with 
significantly lower subnetwork distribution temperatures (higher 
water flow rate values). 

The impacts in terms of energy consumption and peak load reduction 
were evaluated for the third week of January 2018 for each of the 
defined scenarios. Additionally, to ensure that stable network conditions 
had already been reached at the beginning of the target period, the 
simulation also included the second week of January. The month of 
January was selected as the most severe weather conditions of the 
2017–2018 heating season took place in January. The computation time 
required for the simulation of each of the scenarios in a laptop work-
station equipped with an Intel Core i7 9750H preprocessor (2.60 GHz 
and 6 cores) and 32 GB of RAM memory was in the range of 10–15 min. 

4. Results and discussion 

The impacts in terms of the energy consumption and peak load 
reduction of the proposed scenarios, according to the results provided by 
the IDM developed for the Stepa Stepanovic subnetwork, are discussed 
in this section. Table 7 displays the energy demand and peak loads of the 
residential buildings for the baseline scenario, and Fig. 15 summarises 
the impacts of the DSM scenarios (1 and 2) on each of the representative 
buildings. 

After the implementation of the DSM optimisation measures 
considered for Scenario 1, the reduction in the energy requested by all of 
the representative residential buildings is in the range of 10%–20%. 
Similarly, the peak load reduction obtained for the residential buildings 
is in the range of 10%–25%. Scenario 2 provides an additional reduction 
of the energy requested by the residential buildings to the subnetwork 
that lies in the range of 4– 6%, leaving the absolute building demand 
reduction in the range from 17% to 24%. The impact of Scenario 2 in 

Table 5 
Validation and calibration parameters of the calibration procedure.  

Parameters EnergyPlus models (buildings) Modelica model 
(subnetwork) 

Validation Energy requested by each building to 
the subnetwork (monthly building 
demand) 

Vozdovac heating plant 
production temperature 
Vozdovac heating plant 
distribution temperature 
Substation primary side 
inlet temperature 
Subnetwork distribution 
of thermal losses 

Calibration Envelope thermal properties Pipe insulation layer 
thickness 

Envelope optical properties Conductivity of pipe 
insulation material 

Infiltration rates Pipe length 
Internal gains (occupancy and 
equipment) 

Monthly ground 
temperature 

Thermal comfort settings 
Ventilation rates 

Initial gap 
(%) 

25 – 40 20 

Final gap 
(%) 

10 – 5 < 5  

Table 6 
Description of the demand-side management scenarios defined for residential 
buildings.  

Scenario 1 Scenario 2 

Reduction of the heating Setpoint 
temperature to 20 ◦C (from the 
original value of 22 ◦C) 

Reduction of the heating Setpoint 
temperature to 20 ◦C (from the original 
value of 22 ◦C) 

Maximum acceptable discomfort period 
of one hour in setback to comfort 
settings transitions 

Maximum acceptable discomfort period 
of one hour in setback to comfort settings 
transitions  
Free floating period for 50% of the 
apartments (from Monday to Friday) 
while apartments remain with no 
occupancy (central hours of the day)  
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terms of the peak load reduction is similar to that observed for Scenario 
1, and for some buildings, it is moderately lower. This was a conse-
quence of the free-floating period introduced in Scenario 2 for the 
central hours of the day, which generates relevant loads at the end of 
that period. Fig. 16 depicts the hourly evolution of the heat requested by 
residential building 1B for the third week of January. The rest of the 
buildings are omitted here for brevity. 

As shown in Fig. 16, in general, the instantaneous value of the energy 
requested by building 1B to the subnetwork for Scenario 1 for all days in 
the week is reduced to within the range between 20 and 30 kW. The 
reduction in the setpoint from 22 ◦C to 20 ◦C has a beneficial effect for 

every hour at which the setpoint applies. The impact of Scenario 2 in-
creases the savings by an additional 30–50 kW during workdays for the 
free-floating period included in this scenario. As can be observed, Sce-
nario 2 creates a local demand peak on evenings when the free-floating 
period ends, and the savings in this period are less significant than those 
during mornings. Fig. 17 shows the impact at the subnetwork level of the 
DSM strategies (Scenario 1 and Scenario 2) and of the optimisation of 
the distribution water temperature (Scenarios 3 and 4), in relation to the 
subnetwork energy input (818.78 MWh) and peak load (13.73 MW) 
associated with the baseline scenario. 

The aggregated heat load reduction obtained for the considered DSM 
scenarios is within the range of 13.8%–18%. The impact of the DSM 
scenarios in terms of the peak load reduction is moderately higher, and 
lies within the range of 10.85%–23.45%. Fig. 18 displays the impact of 
the considered DSM scenarios (1 and 2) on the subnetwork inlet 
energies. 

The relevant but only moderate reduction of the distribution of 
thermal losses provided by Scenario 4 can be explained by the limited 
capacity of the substations of the buildings (designed to operate with a 
network supply temperature of 105 ◦C) to efficiently adapt their oper-
ation to the reduced network supply temperature (in the range between 
75 ◦C and 65 ◦C). Owing to this limited capacity, Scenario 4 allows for a 
reduction in the mean subnetwork distribution temperature of 27% in 
relation to Scenario 2, but at the expense of an increase in the mean 
aggregated subnetwork water flow rate of 50%, which has a negative 
impact on the reduction of the distribution thermal losses. Fig. 19 de-
picts the evolution of the subnetwork distribution water temperature 
setpoint for the baseline scenario, and for Scenarios 3 and 4. In Scenario 
3, the available unexploited potential to reduce the subnetwork distri-
bution water temperature is such that the obtained reduction is always 

Table 7 
Energy demand and peak loads for the residential buildings (baseline scenario).  

Building (Substation) Baseline energy request 
(kWh) 

Baseline peak load 
(kW) 

Building 1D (8244 
substation) 

14100.53 255.26 

Building 2A (8252 
substation) 

19544.40 351.97 

Building 3G (8234 
substation) 

10588.53 223.21 

Building 3G (8235 
substation) 

11827.80 200.06 

Building 4E (8028 
substation) 

17624.61 229.32 

Building 4E (8036 
substation) 

11997.63 334.42 

Building 6D (8238 
substation) 

12246.03 252.85 

Building 6L (8123 
substation) 

10000.56 206.28  

Fig. 15. Building demand and peak load reduction for the demand-side management (DSM) scenarios (1 and 2).  

Fig. 16. Energy requested to the subnetwork by Building 1B. Third week of January 2018.  
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below 10 ◦C. Fig. 20 displays the evolution of the aggregated subnet-
work inlet water flow rate for Scenarios 2 and 4, where a strong increase 
associated with Scenario 4 can be observed. More specifically, the sub-
network inlet water flow rate for Scenario 2 falls in the range between 
35 kg/s and 80 kg/s, and this range increases with the strategies 

followed in Scenario 4 to between 45 kg/s and 120 kg/s. 
As part of Scenario 4, the substation control valves were resized. 

However, according to the obtained results, to fully exploit the existing 
distribution of thermal loss reduction potential, a complete redesign of 
the substations would be required (heat exchangers specifically 
designed for the proposed network supply temperatures), which is 
beyond the scope of the work described herein. 

5. Conclusions 

This paper presents a new IDM concept conceived to serve as the core 
of the energy prediction engine of a district energy management opti-
misation platform, as developed in the framework of the MOEEBIUS 
project. The physical, multiscale, multidomain, and integrated nature of 
the model enables the platform to evaluate the impacts of alternative 
district operational strategies, while analysing the dynamics existing in 
all of the involved time and space scales with the required accuracy. 

The method, based on co-simulation, shows the potential to model, 
in a detailed way, the demand side of districts through the combined use 
of physical building models (EnergyPlus) and a building demand 

Fig. 17. DSM and district infrastructure management optimisation impact at 
subnetwork level. 

Fig. 18. Subnetwork energy input for the evaluated DSM strategies. Third week of January 2018.  

Fig. 19. Subnetwork distribution temperature. Reference/Scenario 2 vs Scenarios 3 and 4. Third week of January 2018.  
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prediction DDM based on supervised ML techniques. It allows for the 
complete evaluation of new building operational strategies, without 
facing the burden of complete demand-side physical modelling. 

Additionally, a new Modelica library is developed to enable a 
subsystem-based composition architecture. This dedicated library re-
duces the time required for DH system infrastructure physical modelling 
and minimises modelling errors, providing the flexibility and scalability 
required to define DH system infrastructure models of any size and 
distribution topology. 

Finally, the described Stepa Stepanovic subnetwork use case shows 
the applicability of the developed IDM and new Modelica library to 
evaluating the unexploited energy savings potential available in existing 
DH systems through transitions to MPC operational strategies. With the 
restrictions and boundary conditions existing in the Stepa Stepanova 
subnetwork, the impact of the evaluated optimisation strategies allows 
for a reduction of up to 21% of the aggregated subnetwork energy input, 
and a reduction of the peak load of the district by 24.6%. According to 
the obtained results, adapting the designs of the building heating sub-
stations to the new low-temperature operational settings is recom-
mended to fully exploit the existing distribution thermal loss reduction 
potential. 

Regarding the applicability of the platform in real-world projects, 
low temperature DH systems with high penetration of distributed energy 
resources, provide the ideal framework to maximize the potential 
impact (e.g. demand flexibility exploitation, setpoint optimization 
through continuous commissioning) of the developed district manage-
ment platform. In addition, the initial availability of modern control 
systems (at building and district level) and energy meters contributes to 
simplify the deployment of the platform as an additional layer on top of 
the existing control systems, reducing the cost of the developed solution. 
In this respect, the authors are already working to adapt the IDM concept 
to DH system design scenarios affected by a lack of proper energy con-
sumption data. In the upgraded concept, the data-driven building de-
mand forecasting model and demand correction functions will be 
completed by building energy behaviour metamodels produced through 
ML techniques. This new body of work will be presented in a subsequent 
paper. 
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