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Abstract 

Land cover change (LCC) can be viewed as dynamic complex systems which require 

relevant relationships to be encoded when represented within various modeling 

approaches. Recurrent Neural Networks (RNNs), specifically the Long Short-Term 

Memory (LSTM) variant, belong to a category of Deep Learning (DL) approaches best 

suited for sequential and timeseries data analysis, thus suitable for representing LCC. The 

primary objective of this study is to examine the capacity and effectiveness of LSTM 

networks for forecasting LCC given varying geospatial input datasets with feature 

impurities. Using synthetic and MODIS land cover datasets for British Columbia, Canada, 

results demonstrate the sensitivity of LSTM models to varying geospatial input dataset 

characteristics. Geospatial datasets with finer temporal resolutions and increased 

timesteps yielded favourable results while coarser temporal resolutions and fewer 

timesteps were affiliated with less successful outcomes. This thesis research contributes 

to the advancement of automated, data-driven DL methodologies for forecasting LCC. 

Keywords:  Recurrent Neural Networks; Sensitivity Analysis; Long Short-Term 
Memory; Land Cover Change Modeling; Geographic Information Science; 
Deep Learning 
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Chapter 1.  
 
Introduction 

1.1. Introduction 

Land Cover Change (LCC) dynamics can be viewed as complex systems 

processes with spatial and temporal dependencies. Land Cover (LC) refers to Earth’s 

surface cover characteristics, delineated as features including forests, water, built 

environments, and barren lands (Brown et al. 2014). Emerging patterns of LCC at global 

scales are driven by human and environmental interactions occurring at local levels (Friedl 

et al. 2002). LCC studies are important to many disciplines such as geography, urban 

planning, agriculture, forestry, and resource management (Lyu, Lu, and Mou 2016; 

Mayfield et al. 2017). For example, anthropogenic disturbances including deforestation 

directly and indirectly lead to elevated CO2 levels and disturb local weather patterns, 

making LCC significant to consider as global temperatures rise (Findell et al. 2017; Turner, 

Lambin, and Reenberg 2007; Mayfield et al. 2017).  

LCC has been previously assessed at local, regional, and global extents (Hansen 

and Loveland 2012). Assessments focused on biodiversity and habitat fragmentation have 

concerned LCC processes occurring within localized study areas (Lambin, Geist, and 

Lepers 2004). LCC has also been linked to changes in precipitation, air temperature, and 

ecology at regional scales (Patil et al. 2017; Findell et al. 2017). Global scale studies have 

also been conducted to assess the cumulative implications of land change processes such 

as urban growth and deforestation (Seto, Guneralp, and Hutyra 2012). Addressing LCC 

from a top-down perspective, data-driven modeling tactics enable the extraction and 

detections of patterns that have resulted from local interactions (Fu et al. 2019). Top-down 

approaches are primarily focussed on overall patterns that result from processes, utilizing 

facets of satellite and aggregated data sources such as Census data to obtain rates of 

change over time (Verburg et al. 2008; Ren et al. 2019). Given the complexity of LCC, 

automated statistical learning approaches have been increasingly considered for 

classification and predictive tasks in this domain (Otukei and Blaschke 2010; Ienco et al. 

2017).  
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Throughout the past decade, data-driven modeling methods have become 

increasingly considered with the unprecedented availability of data, the Big Data paradigm 

shift, and the growing capacity of computational resources (Samardžić-Petrović et al. 

2017; Li et al. 2016). Machine Learning (ML) refers to a collection of algorithms that 

automatically improve at various tasks when provided more data. ML methods aim to 

automate pattern recognition and minimize manual inputs required of a researcher or 

developer. These algorithms are developed to learn patterns subsisting in input datasets, 

thus it is important to acknowledge these techniques are deterministic approaches for 

modeling non-linear spatial processes. This means that after a model is developed, 

providing the same input will result in the same output each time. While the creation of the 

model is a stochastic procedure, the models are trained to fit a single set of parameters 

that minimize an error function with respect to a training set (Bishop 2006).  

In the presence of high dimensionality and volume of modern datasets, ML 

algorithms typically perform with great efficacy. Previous ML approaches for land change 

forecasting and classification procedures have included Decision Trees (DTs), Random 

Forests (RFs), Neural Networks (NNs), and Support Vector Machines (SVMs) (Otukei and 

Blaschke 2010; Patil et al. 2017; Boulila et al. 2011; B. Huang et al. 2009). However, the 

overall infrequency of LCC and scarcity of apt datasets have proven challenging in this 

domain (Karpatne et al. 2016). Likewise, for ML algorithms to work effectively, 

preprocessing steps including feature extraction are important to consider. The researcher 

or practitioner utilizes domain knowledge to perform preprocessing steps before providing 

input to the model. These preliminary procedures are time-consuming and increase the 

expense of ML workflows (Bengio, Courville, and Vincent 2013). Neural Networks (NNs) 

are particularly adept in capturing complicated relationships obscured in input datasets as 

model depth (the number of layers) and breadth (the number of neurons per layer) 

increases (Sauter, Weitzenkamp, and Schneider 2010; G. Huang et al. 2017). 

Characterizing a subfield of ML called Deep Learning (DL), NNs featuring two or more 

layers are referred to as Deep NNs. DL techniques facilitate automated learning of feature 

representations and have demonstrated ability to capture intricate, hierarchical 

relationships from a dataset. Therefore, these methods depart from modeling approaches 

that necessitate expert knowledge  (Rußwurm and Körner 2018). A Recurrent Neural 

Network (RNN) is a variation of the traditional NN approach that utilizes internal memory 
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for each node, proving useful for capturing dynamic dependencies over time from 

sequential inputs (Hochreiter and Schmidhuber 1997). 

1.2. Theoretical Background and Research Problem 

RNNs are a type of DL model best suited for sequential datasets. That is, RNNs 

have the capacity to recognize and extrapolate patterns occurring in the temporal 

dimension of a given dataset. These networks are composed of neurons, weights, and 

biases, with internal parameters updated using gradient-based learning procedures 

(Bishop 2006; Lecun, Bengio, and Hinton 2015). However, the traditional RNN modeling 

approach is hindered by the “Vanishing Gradient” problem, which impacts the capacity of 

these networks to learn patterns from long input sequences (Hochreiter 1998). To solve 

this problem, an advanced RNN architecture called Long Short-Term Memory (LSTM) was 

later introduced (Hochreiter and Schmidhuber 1997). These improved renditions of 

traditional RNN models have enabled learning of long-term dependencies from sequential 

data while reducing the effects of the Vanishing Gradient problem (Hochreiter and 

Schmidhuber 1997). LSTM architectures vary from traditional RNNs via the critical 

addition of “gating” functions that permit or block the propagation of information through a 

cell. Hidden states and internal memory are updated with respect to previous elements in 

a timeseries, thus allowing information from early in a sequence to be connected to 

elements occurring later in the given sequence. 

To capture prevalent temporal dependencies in geospatial datasets, Recurrent 

Neural Networks (RNNs) have been employed for prediction and classification tasks 

involving geospatial data (Zhu et al. 2017). Sauter et al. (2010) utilized snow cover derived 

from MODIS satellite data with meteorological data to develop a snow cover depth 

forecasting system using an early RNN approach (Sauter, Weitzenkamp, and Schneider 

2010). More recent research endeavors have utilized LSTM to recognize relationships 

occurring over time within geospatial datasets (Lyu, Lu, and Mou 2016; Chi and Kim 2017; 

Ienco et al. 2017; Zhang et al. 2017; Liu et al. 2018; Kong et al. 2018). Proposing an LSTM 

model called REFEREE, Lyu et al. (2016) demonstrate the abilities of pixel-based RNN 

for binary and multi-class LCC detection in a transfer learning scenario involving various 

study areas featuring urban, water, soil, and agricultural land (Lyu, Lu, and Mou 2016). 

LSTMs have also been previously used to forecast sea ice concentration, with input 

sequences extracted along the temporal dimension for each pixel (Chi and Kim 2017). 
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RNNs have also proven effective in LC classification applications. An LSTM model was 

provided 3- and 23-step timeseries to perform pixel-based classification, showing 

improved performance over traditional RF and SVM methods (Ienco et al. 2017). Others 

have explored the effectiveness of cell-based forecasting where grids of separate LSTM 

cells are employed to capture temporal dependencies (Zhang et al. 2017). Utilizing a grid 

of LSTM nodes, each was fit to sea surface temperature values at distinct locations (Zhang 

et al. 2017). LSTM has also been successfully applied in the prediction of influenza 

propagation in the state of Georgia in the United States, considering geographic datasets 

pertaining to weather, pollution, and influenza spread (Liu et al. 2018). Additionally, further 

optimized LSTM networks have been effectively utilized for forecasting bus passenger 

flow at respective bus stations by capturing temporal dependencies (Han et al. 2019). 

Finally, LSTM has also been used to detect natural disturbances such as fires or floods, 

or human disturbances such as deforestation or urban growth, considering satellite image 

timeseries datasets obtained from a moderate-resolution imaging spectroradiometer 

(MODIS) data product (Kong et al. 2018). 

Though it is acknowledged that a multitude of RNN architectures and variants 

exist, in this thesis, LSTM has been selected as the primary architecture to be evaluated 

for its capacity to model LCC (Jia et al. 2017). A prior study compared the performance of 

LSTM and its variants, demonstrating insignificant improvements obtained over the 

traditional LSTM architecture in three applications, including “acoustic modeling, 

handwriting recognition, and polyphonic music modeling” (Greff et al. 2017). It was also 

demonstrated that traditional LSTM networks have the capacity to reliably obtain improved 

performance versus its simplified variant, the Gated Recurrent Unit (GRU) (Chung et al. 

2015), in large-scale “neural machine translation” tasks (Britz et al. 2017). Bidirectional 

RNNs are another type of RNN that permit information from the past and subsequent 

timesteps to influence the network’s learned representation, doing so by replicating the 

input sequence in reverse to provide as an additional input (Schuster and Paliwal 1997). 

Such networks are conducive to tasks such as speech recognition (Arisoy et al. 2015) and 

classification of human activities (Edel and Köppe 2016), where providing additional 

context from the previous and forthcoming inputs in a sequence is essential. However, for 

phenomena such as LCC where processes propagate changes over space and time that 

are linked to spatial dependences, it is deemed inappropriate to consider the temporal 

dimension in reverse. Additionally, hybrid approaches integrating convolutional neural 
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networks (CNNs) and LSTMs have been employed to forecast traffic conditions (Liu et al. 

2017; Yu et al. 2017). To represent spatial relationships, Liu et al. (2017) generate one-

dimensional vectors containing measures obtained from surrounding locations for each 

input record. Likewise, Yu et al. (2017) include information for each input entry pertaining 

to “longitude, latitude, timestamp, direction, and vehicle speed.” Methods reviewed here 

are deterministic techniques used in a variety of spatial and non-spatial modeling 

applications. 

While yielding successful outcomes in classification and predictive tasks involving 

geospatial datasets, a recurring aspect predominant in the aforementioned studies is the 

lack of consensus pertaining to which characteristics of geospatial datasets are conducive 

to the success of these sequential DL methods. It is undetermined whether the method is 

apt for scenarios in which geospatial data is limited in the temporal dimension. Likewise, 

the spatial extent, LC class cardinality, and number of years required for sequential DL 

methods such as LSTM to be of benefit remains unexplored. 

To address these limitations existing in previous data-driven LCC modeling 

methodologies, and the wider domain of data-driven modeling methods applied to 

geospatial data, this thesis aims to address the following research questions: 

1) What geospatial data characteristics are favourable for use with sequential DL 

modeling approaches? 

2) How effective are data-driven modeling approaches such as LSTM for real-world 

geospatial applications where changes are typically slow or rare, and the number 

of timesteps or temporal resolution is limited? 

1.3. Research Objectives 

To address the research questions posed, the objectives of this study are to:  

1) Develop a sensitivity analysis approach to assess the implications of varying 

geospatial input data properties and LSTM modeling scenarios; 

2) Apply the proposed sensitivity analysis approach to hypothetical and real-world 

LC datasets. 
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A progression of modeling approaches has been developed and applied to 

synthetic and real-world datasets to determine the suitability of LSTM for LCC modeling. 

Likewise, this thesis research aims to guide future endeavours considering sequential DL 

methods for modeling LCC. This includes guiding the selection of geospatial datasets for 

use with LSTM modeling approaches in future works. 

1.4. Datasets and Study Areas 

Hypothetical or synthetic datasets are often used when working with simulation 

models (Ligmann-Zielinska and Sun 2010; Bone and Dragićević 2009). To demonstrate 

concepts presented, synthetic and real-world geospatial datasets were used to represent 

study areas featuring increasing/large numbers of unique LC classes and varying rates of 

change. Each synthetic dataset established for the research work presented in chapter 

two features an identical temporal resolution and number of timesteps to control model 

input parameters. Each dataset features a 25-meter spatial resolution, with 45 timesteps 

representing annual LC in the localized study area. Subsequent evaluations of modeling 

approaches presented in chapter three utilize real-world datasets for the province of British 

Columbia, Canada, as a study area. The synthetic datasets created for this work feature 

four, eight, and 16 LC classes, respectively. The synthetic datasets have been generated 

as GeoTiffs using Esri’s ArcGIS Pro (v2.4.0) (Esri 2017).  

Additionally, the global “MODIS Terra+Aqua Combined Land Cover product” has 

been obtained, featuring global annual land cover data from 2001 to 2017 (Friedl, M., 

Sulla-Menashe 2015). This dataset features 500-meter spatial resolution, with LC data 

available at one-year temporal resolution for the period of 2001 to 2017. This LC data is 

also made available with a classification confidence layer featuring percentages for each 

cell at each timestep. Both the categorical LC dataset and continuous assessment layers 

have been extracted to the digital provincial boundary file for British Columbia, Canada 

(“Boundary Files, 2016 Census” 2016). Despite this data product featuring coarse spatial 

resolution, the temporal resolution and the number of timesteps were the strongest 

motivators in the selection of the MODIS LC data product. With finer temporal resolutions 

and increased timesteps prioritized, acquisition of suitable LC datasets at smaller scales 

proved challenging to obtain. Likewise, the extensible spatial extent and large number of 

geospatial layers included in this LC dataset make it favourable for the implementation of 

RNN methods, thus proving suitable for conducting this thesis research.   
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1.5. Thesis Overview 

This thesis is comprised of four chapters. Following the introduction, chapter two 

addresses the Sensitivity Analysis approach for localized cell-based modeling 

approaches. The objective is to assess the implications of varying (1) temporal resolutions, 

(2) number of timesteps, (3) number of land cover classes, and (4) rates of change existing 

in the input dataset. DL methods are initially evaluated using the three small-scale 

synthetic datasets created. This enables localized analyses and reduced computation time 

to perform the repeated evaluations (Hermes and Poulsen 2012). Aiming to evaluate 

assumptions pertaining to sequential DL model’s response to varying input data 

characteristics, such datasets support the exploration of particular scenarios (Burlacu, 

O’Donoghue, and Sologon 2014). The proposed analysis intends to reveal the 

repercussions on method performance across all implemented modeling scenarios by 

altering training dataset characteristics. LSTM modeling scenarios are developed to 

optimize one facet of a stacked LSTM model at a time to observe common trends in 

method response, despite the repeated application of standard optimization tactics to a 

baseline model configuration. 

Chapter three incorporates the SA approach and findings from chapter two in a 

real-world application utilized to showcase whether the method is propitious for LCC 

applications. Geospatial input datasets are selected, and data-preprocessing procedures 

are applied to match the favourable characteristics determined in the preceding chapter. 

LSTM models are trained on four datasets encapsulating all or subsets of timesteps 

available from the real-world land cover data obtained for the province of British Columbia. 

The optimal number of land cover classes is selected based on previous findings from 

chapter two. Using annual land cover data available from 2001 to 2017, the sensitivity of 

the method is assessed using varying temporal resolutions to determine if method 

response trends subsist as spatial extent and heterogeneity increases. An additional 

modeling scenario is also designed to assess the implications of static LC classes 

surrounded by real-world changes. Finally, the LC classification confidence layer is 

integrated to examine potential improvements that may be afforded by indicating 

potentially erroneous values. 
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Chapter four concludes this thesis, synthesizing results of the modeling scenarios 

developed in chapters two and three. Limitations of these methods are then presented. 

Finally, this chapter includes various trajectories for future work. 
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Chapter 2.  
 
A Sensitivity Analysis of Recurrent Neural Network 
Models for Forecasting Land Cover Change 

2.1. Abstract 

Land cover change (LCC) is a dynamic process characterized by gradual changes 

across Earth’s surface. Data-driven methods for LCC analyses have included Deep 

Learning (DL) approaches. Recurrent Neural Networks (RNNs) are a type of DL method 

that utilize a variation of traditional neural network units, yielding successful outcomes in 

timeseries analysis tasks. While previous LCC analyses employing RNN architectures 

have demonstrated favourable performance, few research studies have reported on the 

assessment of model behaviour when variable input data characteristics have been used. 

The main objective of this study is to evaluate the performance of RNN models, namely 

the Long Short-Term Memory (LSTM) architecture, given varying temporal resolution and 

attributes of geospatial input data. This assessment is conducted using Sensitivity 

Analysis applied to various modeling scenarios involving a selection of spatial metrics. 

The approach aims to assess the implications of varying (1) temporal resolutions, (2) 

number of timesteps, (3) number of land cover classes, and (4) rates of change existing 

in the input dataset. The obtained results indicate that varying these data properties have 

important repercussions on method performance across all tested scenarios, despite 

adjustments to training time or method optimization techniques applied. 
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2.2. Introduction 

Land cover change (LCC) is a dynamic process with spatial and temporal 

dependencies that can be characterized as complex systems. The interactions within and 

between human and natural environmental systems propagate LCCs over space and time 

(Meyer and Turner 1996). LCC research is significant to many disciplines such as 

geography, urban planning, environmental science, forestry, agriculture, and resource 

management (Zadbagher, Becek, and Berberoglu 2018; Rahman et al. 2017; Zhu et al. 

2017). For instance, anthropogenic disturbances such as deforestation both directly and 

indirectly induces increased CO2 levels and affect local weather changes, making LCC 

important to consider as global temperatures rise (Findell et al. 2017; Turner, Lambin, and 

Reenberg 2007; Mayfield et al. 2017; Novo-Fernández et al. 2018). Given the complexity 

of LCC, automated statistical learning approaches have been applied for analyses in this 

domain (Otukei and Blaschke 2010; Ienco et al. 2017).  

Throughout the past decade, data-driven modeling methods have been 

increasingly considered with the unprecedented availability of data, the Big Data paradigm 

shift, and the escalating capacity of computational resources (Li et al. 2016). Machine 

Learning (ML) algorithms automate pattern recognition with minimal manual interference, 

making it important to acknowledge these techniques are deterministic approaches to 

modeling non-linear spatial processes. Given high dimensionality and volume of modern 

datasets, ML algorithms typically perform with great efficacy. Previous ML approaches for 

LC classification and forecasting have included Neural Networks (NNs) (Maithani 2015), 

Decision Trees (W. Boulila et al. 2011; Otukei and Blaschke 2010), Random Forests (Patil 

et al. 2017; Otukei and Blaschke 2010), and Support Vector Machines (Otukei and 

Blaschke 2010).  

Deep Learning (DL) is a subfield of ML, characterized by NNs of increasing depth 

and breadth. DL techniques facilitate automated learning of feature representations and 

have demonstrated ability to capture intricate, hierarchical relationships from a dataset 

(Kong et al. 2018). A Recurrent Neural Network (RNN) is a type of NN suitable for 

sequential data. With internal memory allocated to each neuron, RNNs are useful for 

capturing dynamic, temporal dependencies (Hochreiter and Schmidhuber 1997). RNNs, 

specifically the Long Short-Term Memory (LSTM) variation, have exhibited propitious 

performance in previous LCC analyses (Rußwurm and Körner 2017; Ienco et al. 2017; 
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Lyu, Lu, and Mou 2016). However, geospatial input data characteristics conducive to the 

success of LSTMs have not been fully studied. This motivates an investigation of the 

method’s response to varying geospatial data qualities by means of Sensitivity Analysis 

(SA).  

SA is valuable for identifying favourable geospatial input data properties and how 

they affect model outputs (Lilburne and Tarantola 2009) and has been used in geospatial 

applications to evaluate the implications of changing inputs and parameters on the outputs 

produced (Kocabas and Dragicevic 2006; Ligmann-Zielinska and Sun 2010). SA 

approaches were also employed for super-resolution land cover mapping (Li et al. 2019) 

and LCC modeling (Boulila, Ayadi, and Farah 2017). These SA methods have measured 

a model’s forecasting ability by comparing forecasted maps with reference maps and 

through measures such as Kappa indices or ROC statistics (Bone et al. 2014). Prior 

studies involving ML techniques have also emphasized measuring a model’s capacity to 

forecast changed cells correctly (Samardžić-Petrović et al. 2017).  

Therefore, the main objective of this study is to assess the implications of changing 

geospatial input data properties on the performance of LSTM models and to evaluate their 

ability to forecast localized LCCs using a SA. This research considers LCC sequences 

extracted along the temporal dimension for each cell within various synthetic datasets. A 

SA is evaluated with a collection of incremental modeling scenarios involving a selection 

of Kappa metrics. The aim is to measure the ramifications of varying (1) temporal 

resolution, (2) sequence length, (3) cardinality, and (4) rates of LCC. It is hypothesized 

that performance of these sequential DL models will be impeded by low temporal 

resolutions and shorter sequence lengths. Additionally, it is speculated that fewer unique 

classes and greater LCC occurrences will be favourable for all scenarios. 

2.3. Theoretical Background of Recurrent Neural Networks 

Traditional feed-forward NN models utilize gradient-based learning methods to 

update model parameters as new inputs are provided. The goal is to determine an optimal 

set of network weights that allow the model to generalize to new data. Inputs are fed 

through the network, a cost function is evaluated, and an error term is computed using the 

result obtained from the output layer. Derivatives are computed with respect to each 

weight in the network using a process called backpropagation (Bishop 2006; Lecun, 
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Bengio, and Hinton 2015). Backpropagation informs adjustments of network weight 

parameters with the intent of minimizing the error term.  

RNNs are a type of DNN that are best suited for problems involving sequential 

data. By introducing a recurrence relation to the standard feed-forward neuron, information 

from previous timesteps is propagated to inform future cell state changes and outputs. 

Figure 2.1 depicts a typical RNN model, featuring a hidden state ht. Each hidden state at 

time t depends on the input xt and the previous state ht-1 (Figure 2.1). Network weights 

are shared across all timesteps. However, RNN structures are impeded by a phenomenon 

called a “Vanishing Gradient” (Hochreiter 1998). This occurrence inhibits the propagation 

of previous information and is caused by the inability to maintain gradients to 

backpropagate updates with respect to the error term. Gradients that are too small 

(vanishing) or too large (exploding) prevent any meaningful adjustments of network 

weights. This required alterations to the RNN architecture to handle long-term 

dependencies. 

 
Figure 2.1. A basic RNN cell. 

2.3.1. Long Short-Term Memory 

A notable advancement of the RNN architecture was Long Short-Term Memory 

(LSTM), developed to solve the “Vanishing Gradient” problem (Hochreiter and 

Schmidhuber 1997). Internal components called “gates” permit LSTM cells to allow a 

range of information learned early in a timeseries to inform states in later stages of the 

sequence. Gates in an LSTM cell include an input gate (it), forget gate (ft), output gate 

(ot), and input modulation gate (gt), which control how much information is permitted to 

propagate through the cell (Figure 2.2) (Lyu, Lu, and Mou 2016; Ienco et al. 2017). 
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Figure 2.2.  An LSTM unit (Figure adapted from Rußwurm and Körner (2017) and 

“Understanding LSTM Networks” (2016)). 

Updates of an LSTM cell at timestep t when provided an input xt are formulated 

based on Donahue et al. (2015). A hidden state passed from the previous timestep is 

denoted as ht-1, and the internal memory state from the previous timestep is referred to as 

ct-1 (Donahue et al. 2015). The hidden state ht is passed as an input parameter with the 

next input value xt+1. Network weight matrices and bias vectors obtained during training 

procedures are denoted by W** and b* , respectively (Ienco et al. 2017). The sigmoid (𝜎𝜎) 

function constrains output to an interval of values from 0 to 1 and is used to control the 

flow of information from the input gate (it), forget gate (ft), and output gate (ot) (Equations 

1-3). The hyperbolic tangent (tanh) function produces a value within the interval of -1 to 1, 

imposing a scaling operation to the result produced for the input modulation gate (gt) 

(Equation 4). Element-wise multiplication is symbolized by ⊙. The following equations (1)-

(6) define the LSTM cell behavior as described in (Donahue et al. 2015): 

 
𝑖𝑖𝑡𝑡 =  𝜎𝜎(𝑊𝑊𝑥𝑥𝑥𝑥𝑥𝑥𝑡𝑡 + 𝑊𝑊ℎ𝑖𝑖ℎ𝑡𝑡−1 + 𝑏𝑏𝑖𝑖)  (1) 

𝑓𝑓𝑡𝑡 =  𝜎𝜎�𝑊𝑊𝑥𝑥𝑥𝑥𝑥𝑥𝑡𝑡 + 𝑊𝑊ℎ𝑓𝑓ℎ𝑡𝑡−1 + 𝑏𝑏𝑓𝑓� (2) 

𝑜𝑜𝑡𝑡 =  𝜎𝜎(𝑊𝑊𝑥𝑥𝑥𝑥𝑥𝑥𝑡𝑡 + 𝑊𝑊ℎ𝑜𝑜ℎ𝑡𝑡−1 + 𝑏𝑏𝑜𝑜) (3) 

𝑔𝑔𝑡𝑡 = tanh(𝑊𝑊𝑥𝑥𝑥𝑥𝑥𝑥𝑡𝑡 + 𝑊𝑊ℎ𝑐𝑐ℎ𝑡𝑡−1 + 𝑏𝑏𝑐𝑐) (4) 

𝑐𝑐𝑡𝑡 =  𝑓𝑓𝑡𝑡  ⊙ 𝑐𝑐𝑡𝑡−1 +  𝑖𝑖𝑡𝑡 ⊙ 𝑔𝑔𝑡𝑡  (5) 

ℎ𝑡𝑡 = 𝑜𝑜𝑡𝑡 ⊙ tanh(𝑐𝑐𝑡𝑡)           (6) 
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2.3.2. Flow of Information through a Long Short-Term Memory Unit 

Gates (it , ft , ot , and gt) allow or obstruct information propagation through an LSTM 

unit. When the next item in the input sequence xt is provided, the input gate (1) provides 

an indicator of how much information from xt and of the hidden state from the previous 

timestep, ht-1, should remain when updating the internal memory cell (ct). The forget gate 

(2) produces a value indicating whether the previous cell state (ct-1) should be saved, or if 

the network should “forget” some or all of the previous cell state. The output gate described 

in (3) controls how much of the current state committed to the cell’s internal memory (ct) 

should be passed as the next hidden state (ht). The input modulation gate (4) scales the 

input values xt and ht prior to considering it for the update to the cell’s memory in (5). In 

equations (5)-(6), both the cell’s updated internal memory (ct) and hidden state (ht) are 

updated with consideration to constraints of gates (1)-(3) and the input modulation (4). 

Finally, the cell’s internal memory and hidden state at timestep t are provided as input with 

the next item of the input sequence (xt+1), repeating the process of updating the cell’s 

internal memory and hidden state vectors. 

2.3.3. Geospatial Applications of Recurrent Neural Networks 

Geospatial applications of RNNs have included classification and forecasting (Zhu 

et al. 2017). Sauter et al. (2010) utilized snow cover derived from MODIS satellite data 

with meteorological data to develop a snow cover depth forecasting system using an early 

RNN approach (Sauter, Weitzenkamp, and Schneider 2010). More recently, an LSTM 

model called REFEREE, Lyu et al. (2016) demonstrate the abilities of RNN for binary and 

multi-class LCC detection. The transfer learning scenario involved various study areas 

featuring urban, water, soil, and agriculture. LSTMs have also been used to forecast sea 

ice concentration, with input sequences extracted along the temporal dimension for each 

cell in the raster dataset (Chi and Kim 2017). RNNs have also proven effective in LC 

classification. Provided 3- and 23-step timeseries, an LSTM model showed improved 

performance over Random Forest and Support Vector Machine methods (Ienco et al. 

2017).  

While previous studies have demonstrated the effectiveness of RNNs and its 

variants for geospatial applications, the performance of these methods when working with 

variable geospatial data properties has not been assessed. Using SA applied to three 



19 

modeling scenarios, the goal of this study is to explore the response of RNNs to varying 

geospatial data inputs. 

2.4. Methods 

The systematic assessment of RNN, specifically LSTM, involves modeling 

scenarios established to represent a typical development progression. The model 

response to changing geospatial input is assessed in each scenario. The aim is to observe 

if there are trends in model response despite model optimizations. An overview of the end-

to-end methodology used to train respective models in each scenario is shown in Figure 

2.3. An overview of the end-to-end methodology used to generate forecasted maps in 

each scenario is shown in Figure 2.4. 

 
Figure 2.3.  End-to-end methodology for training in each modeling scenario. 

 
Figure 2.4. End-to-end methodology for generating forecasted maps in each 

modeling scenario. 
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A baseline RNN model undergoes optimizations to create new scenarios. Stacked 

DL models have proven ability to learn increasingly complex relationships (Pascanu et al. 

2014; Hermans and Schrauwen 2013). Stacked LSTM models proposed in this work are 

composed of three layers, featuring 32 neurons per layer. Neurons refer to the units 

composing the network. Each are characterized by a chosen function, working in cohesion 

to produce a “statistical generalization” of the given dataset (Goodfellow, Bengio, and 

Courville 2016). The input layer is compatible with the one-hot encoded sequences. One-

hot encoding involves converting LC class labels to vectors containing zeroes and a single 

non-zero value (1) at the index corresponding with the class ID (Pai and Potdar 2017). 

Each input sequence is a matrix of N × M dimensions corresponding to respective cells 

across the study area, where N denotes the number of timesteps and M denotes the 

number of possible categories represented by the one-hot encoded vector. The output 

layer of the respective models produces a M × 1 vector containing the probabilities of each 

class the model forecasts to occur at the cell at the next time step. The position in the 

output vector featuring the highest probability is selected, with the position in the vector 

corresponding to the forecasted class label.  

Model parameter configuration includes pre-set components as well as iteratively 

selected hyperparameters (parameters that are set a priori to aid the model in achieving 

the “statistical generalization”). Hyperparameters set before initiating training procedures 

affect optimization of the model’s internal parameters, thus influencing the quality of the 

model. The number of internal model parameters that are affected by chosen 

hyperparameters selected prior to model training is 24,567. Using a grid search approach, 

two model hyperparameters, the number of epochs and batch size, were determined for 

the respective models for each dataset (Chi and Kim 2017). The number of epochs refers 

to how many times the entire dataset is passed through the network while batch size refers 

to how many data points are considered when computing the gradient prior to each update 

of the model’s internal parameters (weights and biases). The Adam optimization algorithm 

(Kingma and Lei Ba 2015) is used instead of the traditional stochastic gradient descent 

approach due to its proven success and its robustness to model hyperparameters. 

Categorical cross-entropy is utilized as the objective function to accommodate the multi-

class data sequences. The Softmax activation function (Bishop 2006) was employed for 

the output layer to produce a vector of probabilities corresponding to each class label 

(Ienco et al. 2017). This activation function is commonly used with multi-class classification 
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and predictive models (Bishop 2006). Models were implemented using the Python 

programming language (v3.6.5) (van Rossum 2016) and the Keras API (v2.2.0) (Chollet 

2015). The Keras API assists developers in prototyping ML and DL models while providing 

an interface to the extensive functionality of Google’s TensorFlow (v1.8.0) (Chollet 2015). 

TensorFlow is an open-source ML framework that provides advanced features to construct 

and fine-tune the data-driven models (Abadi et al. 2016).  

2.4.1. Modeling Scenarios 

Modeling scenarios were created to assess method sensitivity to varying input data 

characteristics. These include (1) a deterministic baseline, (2) a stochastic scenario, and 

(3) a regularized stochastic scenario. These will be referred to as Model A, B, and C, 

respectively. By emulating a conventional development pathway, it is intended to reveal 

whether resulting metrics obtained exhibit trends that subsist as models are optimized. 

The scenarios ensure results are not unique to a specific configuration, as there are infinite 

arrangements and many model optimization techniques that have proven to improve 

results various applications (Pham et al. 2014).  

The deterministic baseline modeling scenario (Model A) provides a foundation for 

subsequent models. This scenario features three LSTM layers and uses a random seed 

instead of allowing different network weight initializations for each run. This ensures 

results are reproducible given the same set of input parameters over repeated tests.  

The stochastic scenario (Model B) uses “true” random weight initialization with the 

removal of the random seed. Model B iterates upon Model A, allowing initial weights for 

each run to be different given the same set of input parameters. Reintroducing stochastic 

weight initialization potentially leads to improved performance by determining a more 

suitable set of internal weights (Goodfellow, Bengio, and Courville 2016). This allows 

potentially better local optima to be found during the batch gradient descent procedure. 

Finally, a regularized stochastic scenario (Model C) is developed to improve 

generalization and to prevent overfitting. This is done by applying dropout regularization 

between each of the LSTM layers and the final output layer to improve upon Model B. 

Dropout forces a percentage of neurons to be ignored (Srivastava et al. 2014). Dropout 

has been used in previous work involving geospatial data inputs extracted along the 
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temporal dimension, informing a dropout factor of 0.5 (Kong et al. 2018). This means that 

the probability that a neuron is “dropped” is 50% (Sutskever et al. 2014). When a neuron 

is “dropped,” input and output connections to the neuron are also ignored. 

2.4.2. Sensitivity Analysis  

To ensure each modeling scenario was evaluated equally, a collection of test 

cases was designed. This research study utilizes a local SA technique in which a single 

input parameter or variable is adjusted at a time (Boulila, Ayadi, and Farah 2017). For 

each synthetic dataset, for each temporal resolution, and for each modeling scenario, a 

grid search of hyperparameter space was conducted, producing new models and results 

at each iteration. Trained models were then tested, generating a forecasted map output 

for the next unobserved timestep. While outputs of all test case combinations were logged, 

the best performing models were selected based on their ability to forecast changed cells 

using the test set.  

Forecasted and actual maps were compared using a variety of metrics to assess 

the method’s sensitivity to varying input data characteristics. Given that only the 

generated patterns of LCC were observed, overall accuracy and traditional Kappa 

metrics have been used (Hagen 2002). Previous geospatial applications of RNNs have 

also relied on traditional Kappa statistics (Lyu, Lu, and Mou 2016; Rußwurm and Körner 

2018; Ienco et al. 2017), including Kappa, KHistogram, and KLocation (Hagen 2002). The 

Kappa metric provides a measurement of agreement between two maps being 

compared, while KHistogram considers the quantity of similarities between the two maps 

being compared (van Vliet, Bregt, and Hagen-Zanker 2011). KLocation provides a 

measurement of agreement based on similarity of location for each class between two 

maps compared (Hagen 2002). To evaluate the method’s ability to forecast changes, 

KSimulation, KTransition, and KTranslocation have also been selected (Hagen 2002; van Vliet, 

Bregt, and Hagen-Zanker 2011). KSimulation, KTransition, and KTranslocation dismiss effects of 

persistent cells, enhancing assessment of the method’s ability to simulate changed cells 

(van Vliet, Bregt, and Hagen-Zanker 2011). KSimulation is a measure of agreement for 

changed cells present in a reference and simulated map. KTransition is a measure of 

agreement between the number of transitions occurring for each class between a 

reference and simulated map. Lastly, KTranslocation provides a measure of agreement 

based on the similarity of location for transitioned cells in each LC class. While overall 
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accuracy of the model provides a general measure of its performance, typical metrics do 

not suffice for this study when the focus is to understand how well the method forecasts 

LCC. The number of changed cells with respective accuracies were utilized for   

comparison instead of the overall accuracy metric for ML modeling approaches 

(Samardžić-Petrović et al. 2017). 

2.5. Data 

Hypothetical data is used to regulate geospatial input characteristics to assess 

method response to changing inputs (Burlacu, O’Donoghue, and Sologon 2014). Using 

synthetic small-area datasets enables localized analyses and reduced computation time 

to perform evaluations (Hermes and Poulsen 2012) and are commonly used in 

geosimulation modeling (Ligmann-Zielinska and Sun 2010; Bone and Dragićević 2009). 

In this study, synthetic LC datasets were created to control the number of unique LC 

classes and rates of change.  

The three datasets developed feature four, eight, and 16 LC classes, respectively 

(Table 2.1). The LC classes composing the respective datasets have been named as per 

classes featured in Homer et al. (2004) and Friedl, M., Sulla-Menashe (2015). The 

synthetic datasets have been generated using Esri’s ArcGIS Pro (v2.4.0) in order to 

control LC changes to emulate or exaggerate real-world scenarios (Esri 2017). That is, LC 

classes have been specified to emerge, grow, or dissipate over time. For instance, in the 

four-class dataset, forest and cropland are shown to transition to low and high intensity 

developments (Figure 2.5). 

Each dataset has identical dimensions, temporal resolution, and number of 

timesteps. Datasets feature 76×76 cells with 25-meter spatial resolution. A 3-cell buffer is 

considered around the entire study area to mitigate edge effects. This results in a working 

study area of 70×70 cells. These dimensions were chosen to expedite the evaluation 

processes, as small models (where breadth and depth are relatively small) can be typically 

expected to fit to small-scale datasets (Goodfellow, Bengio, and Courville 2016). Each full 

dataset features 45 years with one-year temporal resolution.  

The number of cells belonging to each LC class at each timestep are shown in 

Figure 2.5. Test cases considering all 45 years, including timesteps t0 to t44, are referred 
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to as full sequence tests. Five full sequence tests feature five different temporal 

resolutions (1, 2, 4, 11, and 22-year) that ensured t0 and t44 were included in all cases. 

This guaranteed equal comparisons of forecasts for t44. Shorter sequence lengths were 

tested using data subsets of the 45 years available (Figure 2.5). Subsets contain 15 

timesteps each, where Subset A includes t0 to t14, Subset B includes t15 to t29, and 

Subset C includes t30 to t44. The three 15-year test cases defined feature one, two, and 

seven-year temporal resolutions.  

Table 2.1. LC Classes featured in the 4, 8, and 16-class datasets 

4 Class Dataset 8 Class Dataset 16 Class Dataset 
C1 – Forest Land C1 – High Intensity Development C1 – Cropland 
C2 – Cropland C2 – Pasture  C2 – Pasture 
C3 – Low Intensity Development C3 – Forest Land  C3 – Deciduous Forest 
C4 – High Intensity Development C4 – Barren Land C4 – Evergreen Forest  
 C5 – Grasslands C5 – Mixed Forest 
 C6 – Cropland C6 – High Intensity Development 
 C7 – Low Intensity Development C7 – Low Intensity Development 
 C8 – Water  C8 – Shrubland  
  C9 – Grasslands  
  C10 – Road Surfaces 
  C11 – Barren Land  
  C12 – Lakes  
  C13 – Streams  
  C14 – Wetland  
  C15 – Beaches  
  C16 – Bare Exposed Rock  

 

2.5.1. Data Pre-Processing 

Input sequences are extracted from the synthetic datasets at each cell along the 

temporal dimension according to the specified temporal resolution. An input sequence in 

the training set is denoted as (x0, x1, x2, …, xT-3), while the target LC class is denoted by 

(yT-2). Input sequences in the test set are denoted as (x1, x2, x3, …, xT-2), while the target 

LC class is denoted by (yT-1). The sliding temporal window approach for establishing 

training and test sets is used (Kong et al. 2018). Each (xT-N-1) and (yT-N), where N=1 or 

N=2, are one-hot encoded vectors representing the classes at each cell at each 

timestep.  
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Figure 2.5. Number of cells belonging to each class at each timestep in the (a) 4 

class, (b) 8 class, and (c) 16 class LC datasets. 

  

(a)  

(b) 

(c) 
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Given the disproportionate percentages of persistent versus changed cells in LC 

datasets, a "balanced sampling strategy" was used (Samardžić-Petrović et al. 2017). To 

balance the training sets, it was first determined if a change occurred in an input 

sequence. If a change occurred, the sequence was marked as “changed” (otherwise 

“persistent”). If the number of sequences marked “changed” exceeded those marked as 

“persistent,” the entire training set was considered. Conversely, if more sequences were 

“persistent,” then equal counts of “changed” and “persistent” cells were sampled at 

random. This means that the number of training samples available for the four, eight, 

and 16-class datasets may differ according to the number of changes that occur in order 

to uphold the balanced sampling strategy. 

2.6. Results 

All modeling scenarios (A, B, and C) were considered for the generation of 

results. One run of a modeling scenario considering one dataset, the grid-search 

hyperparameter tuning approach, and varying temporal resolutions consisted of 180 

models fit and evaluated. This is repeated across each modeling scenario (A, B, and C), 

with each of the LC datasets. The number of tests run becomes 180×3×3=1,620. 

Additional to map comparison metrics, various qualitative outputs were also output from 

each model evaluation, including simulation maps, and maps featuring misses produced 

in the forecast. 

The results for full sequence tests featuring 45 years indicate models perform 

better with finer temporal resolutions (Table 2.2, Figure 2.6). Kappa, KHistogram, KSimulation, 

and KTransition measures exhibited distinct decreases as temporal resolution becomes 

coarser (ie. fewer data layers) across all scenarios. This decline is also apparent as the 

number of classes increases, observed as a repercussion of the decreasing sample size 

per class. As the number of classes present in the study area increases, the number of 

errors in the forecasted map increase, demonstrated in Figure 2.7. The KSimulation 

measures decrease as temporal resolution reduces and cardinality increases. For 

instance, KSimulation obtained from Model C outputs using one-year temporal resolution 

with four, eight, and 16 LC classes are 0.99, 0.74, and 0.73, respectively. An exception 

to these trends is shown in the results from Model B using the eight-class dataset (Table 

2.2). Persistent cells were forecast with high accuracies in almost all configurations. 
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Simulation maps using the full sequence datasets are depicted in Figure 2.8 for 

Model C. 

Table 2.2.  Metrics obtained using 45-year LC datasets featuring 4, 8, and 16 
classes. A, B, and C refer to modeling scenarios A, B, and C, 
respectively. 

    4 Classes 8 Classes 16 Classes 
Performance 

Metric 
Temporal 

Resolution A B C A B C A B C 

Changed Cell 
Forecasting 

Accuracy 

1 0.993 0.996 0.995 0.728 0.703 0.762 0.668 0.699 0.715 
2 0.991 0.991 0.991 0.738 0.692 0.763 0.678 0.683 0.686 
4 0.988 0.986 0.986 0.680 0.687 0.676 0.657 0.659 0.661 
11 0.901 0.897 0.901 0.778 0.813 0.792 0.559 0.551 0.573 
22 0.785 0.785 0.785 0.619 0.583 0.649 0.164 0.164 0.164 

Kappa 

1 0.986 0.992 0.991 0.744 0.725 0.775 0.820 0.828 0.837 
2 0.982 0.982 0.982 0.755 0.712 0.777 0.824 0.824 0.826 
4 0.977 0.973 0.973 0.699 0.703 0.701 0.816 0.817 0.817 
11 0.816 0.808 0.812 0.783 0.815 0.797 0.777 0.775 0.783 
22 0.580 0.580 0.580 0.519 0.490 0.538 0.605 0.605 0.605 

KHistogram 

1 0.989 0.992 0.992 0.788 0.756 0.813 0.845 0.850 0.846 
2 0.983 0.983 0.983 0.779 0.734 0.793 0.877 0.840 0.837 
4 0.977 0.979 0.979 0.772 0.780 0.729 0.850 0.845 0.839 
11 0.890 0.890 0.918 0.824 0.870 0.825 0.844 0.847 0.829 
22 0.721 0.721 0.721 0.567 0.490 0.583 0.624 0.622 0.624 

KLocation 

1 0.997 1.000 0.999 0.945 0.959 0.953 0.970 0.975 0.989 
2 0.999 0.999 0.999 0.969 0.970 0.980 0.940 0.981 0.987 
4 1.000 0.994 0.994 0.905 0.902 0.961 0.960 0.966 0.975 
11 0.917 0.908 0.885 0.950 0.936 0.966 0.921 0.915 0.945 
22 0.804 0.804 0.804 0.916 0.999 0.923 0.970 0.972 0.970 

KSimulation 

1 0.984 0.990 0.989 0.710 0.689 0.744 0.703 0.710 0.731 
2 0.979 0.979 0.979 0.723 0.674 0.746 0.707 0.705 0.713 
4 0.973 0.968 0.968 0.660 0.666 0.661 0.691 0.694 0.694 
11 0.784 0.774 0.778 0.752 0.790 0.768 0.615 0.609 0.627 
22 0.526 0.526 0.526 0.453 0.420 0.477 0.307 0.306 0.307 

KTransition 

1 0.986 0.990 0.989 0.753 0.724 0.773 0.724 0.722 0.733 
2 0.979 0.979 0.979 0.750 0.698 0.764 0.726 0.721 0.721 
4 0.973 0.976 0.976 0.735 0.751 0.693 0.713 0.724 0.718 
11 0.849 0.848 0.880 0.795 0.829 0.800 0.674 0.663 0.682 
22 0.628 0.628 0.628 0.506 0.421 0.528 0.326 0.322 0.326 

KTranslocation 

1 0.998 1.000 1.000 0.944 0.952 0.963 0.971 0.984 0.998 
2 1.000 1.000 1.000 0.964 0.965 0.977 0.973 0.978 0.989 
4 1.000 0.992 0.992 0.898 0.887 0.954 0.969 0.958 0.966 
11 0.924 0.913 0.884 0.946 0.952 0.960 0.913 0.918 0.919 
22 0.837 0.837 0.837 0.896 0.999 0.903 0.942 0.949 0.942 
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Figure 2.6. Trends in performance metrics versus increasing temporal 

resolution. 
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Figure 2.7.  Forecasting Errors using 45-year dataset with (a) 4 class, (b) 8 class, 

and (c)16 class LC Datasets 

The results for 15-year sequence tests indicate that across all modeling scenarios, 

KSimulation and KTransition metrics exhibit sharp decreases as temporal resolution becomes 

finer. The overall map comparison metrics including Kappa, KHistogram, and KLocation are 

typically higher when the number of LC changes is lower. As the number of changed cells 

increases, these measures of map agreement decrease. It is also observed that these 

shorter sequence lengths used for input to the sequential models result in lower 

performance metrics than in the 45-year sequence tests in most cases. Results obtained 

using the 15-year sequences have been shown in Tables 2.3-2.5. 
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Figure 2.8.  Simulation Maps generated from Modeling Scenario C using 45-year 

dataset with 4, 8, and 16 class LC Datasets. 

2.7. Discussion 

When analyzing results obtained from the SA, it was observed that the methods 

are highly affected by temporal resolution. Models performed better with finer temporal 

resolutions in nearly all test cases except Model B applied to the eight-class, 45-year 

dataset (Table 2.2, Figure 2.6). Changes that appear over coarser resolutions may appear 

more abrupt, impacting performance across all scenarios. This is expected to have 

affected performance of modeling scenarios applied to the eight-class dataset. LCC 

processes typically occur gradually over long periods of time and finer temporal 

resolutions preserve more detail. Thus, finer temporal resolutions are typically associated 

with higher changed cell forecasting accuracy.  
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Table 2.3. Performance Metrics obtained using Subset A (including timesteps 
0 to 14), featuring 15-year LC datasets with 4, 8, and 16 classes. 

 

Using one input feature with one input label for training and testing sequences, 

respectively, produced poor performing models across all scenarios. This response to 

using the coarsest resolution indicates this type of model may not be appropriate for 

geospatial input datasets featuring only three timesteps available for training and testing. 

Using finer temporal resolutions with more timesteps produced the best results. Datasets 

with higher rates of change or variability also appeared to benefit from finer temporal 

resolutions. An exception to this trend is shown in Table 2.3 considering the four-class, 

15-year dataset including timesteps 0 to 14. Abrupt changes occurring between each 

timestep from timesteps 0 to 14 are expected to have impacted performance metrics. That 

is, considering the four-class synthetic dataset (see Appendix) at two-year temporal 

resolution, cell transition rates are observed as less erratic. This further exemplifies the 

method’s sensitivity to increased or inconsistent rates of LCC.   
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Table 2.4. Performance Metrics obtained using Subset B (including timesteps 
15 to 29), featuring 15-year LC datasets with 4, 8, and 16 classes. 

 

Results showed that increasing sequence length improved a model’s capacity to 

forecast changes. As the input sequence length decreased, models exhibited poorer 

performance indicated by the overall map comparison metrics, including Kappa, KHistogram, 

and KLocation. In cases where smallest sequence lengths are used in both 45-year and 15-

year test cases, KSimulation and KTransition indicate that models are hindered from learning 

LCCs. No model trained on the 15-year, four-class datasets exceeded performance 

measures of models trained on all 45 timesteps with one- and two-year resolution, 

indicating improved performance is associated with greater sequence length.  
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Table 2.5.  Performance Metrics obtained using Subset C (including timesteps 
30 to 45), featuring 15-year LC datasets with 4, 8, and 16 classes. 

 

Overall, the four-class dataset was associated with the best performance metrics 

of all the tests conducted. The SA indicates that dataset cardinality also affects method 

performance. The 16-class dataset proved most challenging for all modeling scenarios to 

forecast changed cells. The more optimized models (Model C) performed slightly better 

as the number of LC classes increased. Finer temporal resolutions and increased 

sequence lengths also improved model performance as LC cardinality increased. The 

four-class dataset allowed all modeling scenarios to forecast cell transitions with high 

performance measures. 

Contrary to initial speculations, the SA demonstrated that models were most 

effective when rates of LCC were more gradual. The 16-class subsets where few changes 

occurred enabled modeling scenarios to obtain improved performance measures despite 

high cardinality. As the number of changes increased, model performance suffered 

especially when using coarse temporal resolutions and when considering the 16-class 

dataset. Overall, cells featuring persistent LC were typically forecasted correctly with fine 

temporal resolutions, indicating that modifications or an alternate approach to the 
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sampling strategy procedure used to compose training datasets in this research study 

should be considered to obtain improved results. 

2.8. Conclusion 

This research study aimed to evaluate the repercussions of varying (1) temporal 

resolution, (2) sequence length, (3) LC class count, and (4) rates of LCC present in the 

input dataset. The systematic SA identified similar responses across Models A, B, and C. 

Results indicated that LSTM models perform poorly when datasets feature coarser 

temporal resolution, fewer timesteps, increased cardinality, and greater LCC rates over 

time. LSTM models perform best when datasets feature finer temporal resolution, longer 

sequence lengths, lower cardinality, and more gradual LCCs. 

This study considered changes occurring at each cell over the temporal dimension, 

neglecting explicit spatial dependencies. There is a need to investigate how 

spatiotemporal dependencies may affect the performance and spatial autocorrelation 

should be considered explicitly in future studies. Experiments considering convolutional 

LSTM (ConvLSTM) have begun considering one-year temporal resolution data, exhibiting 

similar sensitivity to the number of LC classes. The size of filter being considered should 

be further assessed using a SA. Larger filter sizes used with this method produced 

forecasts with worse agreement to the real map in all scenarios tested thus far. A 

preliminary study has been conducted and results show that the ConvLSTM method 

forecasts the four-class dataset nearly as well as the LSTM method. As cardinality is 

increased, ConvLSTM demonstrations potential to be more robust to this data property 

than LSTM. It has not yet been assessed if the method produces lower quality forecasts 

as temporal resolution becomes coarser, sequence length increases, and rates of LCC 

present in the considered dataset increase. Future work should continue to explore the 

capacity of ConvLSTM for modeling LCC. Likewise, a comparison of LSTM and 

ConvLSTM should be conducted to compare response to the varying geospatial data 

properties assessed in this study.  

The models designed for this study was intended to focus on local changes and 

control input variations to assess model response while reducing computation time. 

Producing categorical forecasts also have implications on results. It would be possible to 

highlight areas of uncertainty using the probabilistic outputs produced for each cell, which 
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could help direct attention to more specific characteristics of geospatial datasets that prove 

challenging for models to forecast. Likewise, an assessment of how well the modeling 

scenarios were able to forecast emerging phenomena or dissipating phenomena should 

be investigated. 

As cell-based LSTM models are fit to accommodate variation occurring across an 

entire study area, it would prove useful to determine the implications on method 

performance when using actual datasets with increased spatial heterogeneity. The large 

number of optimizations and configurations of LSTM models also provides opportunities 

for future exploration. The SA indicated the capacity of LSTM for modeling gradual change 

as exhibited by LCC. Similarly, this study shows that RNNs become even more suitable 

for forecasting LCC as more timesteps become available. 
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Chapter 3.  
 
Analyzing the Effects of Temporal Resolution and 
Classification Error Propagation for Modeling Land 
Cover Change with Long Short-Term Memory 
Networks 

3.1. Abstract 

Land Cover Change (LCC) is typically characterized by infrequent changes over space 

and time. Data-driven methods including Deep Learning (DL) approaches have proven 

effective in many domains for predictive and classification tasks. Applied to real-world 

geospatial data, sequential DL methods such as Long Short-Term Memory (LSTM) have 

yielded promising results in GIScience and remote sensing studies. However, the nature 

of geospatial datasets selected for use with these methods has been shown impactful to 

method performance. With LCC processes propagating relatively slow changes over time 

and errors resulting from classification procedures influencing model performance, it is 

unknown whether such datasets are compatible with the LSTM method. As such, the main 

objective of this study is to explore the capacity of LSTM to forecast patterns that have 

emerged from LCC dynamics given varying temporal resolutions, persistent land cover 

classes, and integration of classification confidence layers. Stacked LSTM modeling 

approaches are applied to geospatial datasets focused on the province of British 

Columbia, Canada. The 17-year MODIS land cover data selected was reclassified to four 

major LC classes. The evaluation considers this dataset at four different temporal 

resolutions to demonstrate the significance of geospatial data characteristics on LSTM 

method performance. Results indicate that LSTM can be utilized for forecasting LCC 

patterns when there are few limitations on temporal intervals of the datasets provided. 

Furthermore, this study demonstrates heightened performance measures when fewer 

classes undergo changes. Including classification confidence data as ancillary input also 

demonstrated potential for improving scenarios where the number of timesteps or 

temporal resolution is limited.  
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3.2. Introduction 

Land Cover Changes (LCCs) are typically slow changes occurring across Earth’s 

surface over long periods of time (Geist et al. 2006). The aggregated effects of changes 

have global implications, contributing to local, regional, and global climate changes, loss 

of biodiversity and, ultimately, disturbing the capacity of systems to sustain people 

(Lambin et al. 2001; Findell et al. 2017). Therefore, analyzing and representing LCC 

processes are important tasks in various disciplines such as geography (Meyer and Turner 

1996), hydrology (Yang, Long, and Bai 2019), and climatology (Chase et al. 2000). 

Previous studies have introduced and assessed methodologies for forecasting 

LCC. Such models have included cellular, agent-based, data-driven, and hybrid modeling 

approaches (Ren et al. 2019). In particular, data-driven methods including Machine 

Learning (ML) approaches have been increasingly considered for LCC forecasting (Patil 

et al. 2017). The goal of data-driven methodologies is for models to “learn” patterns 

existing in datasets while reducing the manual operations required to utilize the method 

(Bishop 2006). Applied to LC datasets, the aim is to use these automated, statistical 

methods to identify and analyze spatial patterns that have resulted from underlying 

processes of LCC over time. ML methods employed in LC simulations and assessments 

have previously included Neural Networks (NNs) (Maithani 2014), Decision Trees (DTs), 

and Support Vector Machines (SVMs) (Otukei and Blaschke 2010).  

While ML approaches have demonstrated promising results for forecasting and 

detecting LCC, challenges include the infrequence of LC changes and obtaining 

appropriate labeled training datasets (Karpatne et al. 2016). Recent advances in a subfield 

of ML called Deep Learning (DL) have demonstrated the capacity of these increasingly 

complex models. Such models exhibit aptness for learning more complicated relationships 

existing in training datasets while simultaneously achieving substantial improvements in 

predictive performance measures (Karpatne et al. 2016). DL approaches such as 

Recurrent Neural Networks (RNNs) are best suited for sequential or timeseries data 

(Hochreiter and Schmidhuber 1997). An improved RNN architecture called Long Short-

Term Memory has garnered increased attention for geospatial applications, with 

demonstrated aptitude to forecast LCC (Jia et al. 2017) and to classify LC (Sun, Di, and 

Fang 2018) by leveraging patterns obtained from timeseries data. However, the 
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effectiveness of these methods to forecast or classify change is impacted by the 

characteristics of the training dataset selected. 

As observed in Chapter 2, the geospatial data characteristics selected for use with 

LSTM have important implications on the effectiveness of the method. Previous work 

employed a stacked LSTM modeling approach to assess the capacity of the method to 

forecast LCC as temporal resolution and LC class cardinality increased. With the sparsity 

of changed cells existing in typical LC datasets, the focus of the assessment was to 

evaluate how well the method could forecast transitioned cells. Using synthetic datasets, 

the work demonstrated that an increased number of timesteps, fewer LC classes, and 

finer temporal resolutions yielded the most capable models for LCC forecasting. However, 

the behaviour of this method is yet to be assessed in a scenario utilizing real-world 

geospatial datasets. Thus, this study aims to evaluate the effectiveness of data-driven 

approaches such as LSTM for real-world geospatial applications where the amount of 

change is typically small or occurring at slow rates over long periods of time. Additionally, 

it is aimed to demonstrate the importance and implications of the characteristics of 

geospatial datasets selected for use with this method, namely temporal resolution. Such 

an assessment of the method’s sensitivity to temporal resolution has not yet been 

conducted in the presence of classification errors that may exist in real-world datasets.  

It is expected that trends obtained using the real-world dataset will follow those 

observed in Chapter 2, where coarser temporal resolutions will have negative 

repercussions on method performance. Likewise, it is expected that erroneous values due 

to classification procedures will impact the results. To further observe the effects of 

potentially inaccurate values, a hypothetical scenario is adapted from the original LC 

dataset to exhibit persistence in a single class. The classification confidence layer 

associated with the original LC data product will be incorporated to a secondary modeling 

approach applied to scenarios involving real-world and hypothetical scenarios. By 

including this ancillary data layer, the aim is to reduce epistemic imperfection and 

determine if improvements can be obtained by indicating potential at each cell to contain 

erroneous values (Boulila, Ayadi, and Farah 2017). Thus, the three main objectives of this 

study are (1) to evaluate the sensitivity of the method to varying temporal resolutions, (2) 

to assess the implications of persistent LC classes in a hypothetical scenario, and (3) to 

examine potential improvements by providing classification confidence layers as model 

input in both real-world and hypothetical scenarios. 
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3.3. Theoretical Background 

RNNs were introduced as a variant of traditional NN modeling approaches, 

devised for sequential data (Hochreiter and Schmidhuber 1997). To do this, a recurrent 

connection was added to traditional neurons, allowing information from previous elements 

in timeseries data to be propagated when weight updates occur for subsequent elements 

observed by the network. The recurrent connection allowed information to be propagated 

through the entire timeseries input, with weights being updated with respect to the entire 

timeseries input. However, a major problem arose when these networks were utilized to 

learn dependencies across long input sequences. For instance, information pertaining to 

critical features from early in a sequence could not be connected to data elements 

occurring later in the sequence. This phenomenon ensues from the Vanishing (or 

exploding) gradient problem (Hochreiter 1998). This implies that network weights tend 

toward either very small (vanishing) or very large (exploding) values, negating the ability 

of the network to learn important information as weight updates become infinitesimal or 

massive. 

3.3.1. Long Short-Term Memory 

Long Short-Term Memory (LSTM) is an improved variation of the traditional RNN 

architecture (Hochreiter and Schmidhuber 1997). With internal memory cells and gating 

functions controlling the propagation of information through a unit, LSTMs have proven 

capable in mitigating the effects of the Vanishing Gradient Problem that was detrimental 

to earlier RNN implementations (Ball, Anderson, and Chan 2017). The input gate (it), forget 

gate (ft), output gate (ot), and input modulation gate (gt) control the propagation of new 

information in, within, or out of the unit to be considered with the next element in the input 

sequence (Figure 3.1). While other LSTM variants exist, it has been determined in large-

scale studies that the standard LSTM architecture performance remains most effective 

(Greff et al. 2017). The following equations have been obtained from Donahue et al. 

(2015). 
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Figure 3.1.  An LSTM unit (Figure adapted from Rußwurm and Körner (2017) and 

“Understanding LSTM Networks” (2016)). 

When an input sequence is provided, (x0, x1,…, xt-1, xt), a hidden state, ht-1, is either 

initialized at the start of the sequence or propagated from a computation considering a 

previous input sequence element. The amount of data from the next element in the input 

sequence, xt, and how much of the hidden state from the previous timestep, ht-1, should 

be committed to the internal memory cell ct is determined by the input gate (it). How much 

information propagated through this gate is specified as follows:  

𝑖𝑖𝑡𝑡 =  𝜎𝜎(𝑊𝑊𝑥𝑥𝑥𝑥𝑥𝑥𝑡𝑡 + 𝑊𝑊ℎ𝑖𝑖ℎ𝑡𝑡−1 + 𝑏𝑏𝑖𝑖)  (1) 

where the sigmoid function (𝜎𝜎) limits resulting values to the range of (0,1). Wxi and Whi are 

learnable weight matrix parameters and bi is a learnable bias parameter (Kratzert et al. 

2018). 

Next, a critical component of the LSTM unit is called a forget gate (ft) (Ball, 

Anderson, and Chan 2017). By using gating functions to “forget” information, this 

component allows the network to ignore non-critical information during training procedures 

(Gers 1999; Kratzert et al. 2018). The vector resulting from the forget gate is denoted as 

follows: 

𝑓𝑓𝑡𝑡 =  𝜎𝜎�𝑊𝑊𝑥𝑥𝑥𝑥𝑥𝑥𝑡𝑡 + 𝑊𝑊ℎ𝑓𝑓ℎ𝑡𝑡−1 + 𝑏𝑏𝑓𝑓� (2) 

where the sigmoid function (𝜎𝜎) limits resulting values to the range of (0,1). Wxf and Whf are 

learnable weight matrix parameters and bf is a learnable bias parameter.  

The next component of the LSTM cell is called the output gate (ot), which mitigates 

the degree to which the value or state stored in the cell’s internal memory, ct, should be 
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propagated to the new hidden state, ht, to be computed. The behaviour of the output gate 

is represented as follows: 

𝑜𝑜𝑡𝑡 =  𝜎𝜎(𝑊𝑊𝑥𝑥𝑥𝑥𝑥𝑥𝑡𝑡 + 𝑊𝑊ℎ𝑜𝑜ℎ𝑡𝑡−1 + 𝑏𝑏𝑜𝑜)  (3) 

where Wxo and Who are learnable weight matrix parameters and b0 is a learnable bias 

parameter.  

Utilizing a hyperbolic tangent function, the input modulation gate (gt) scales input 

values xt and ht before all or part of the resulting value is committed to the cell’s internal 

memory in (5). The output of the input modulation gate is computed as:  

𝑔𝑔𝑡𝑡 = tanh(𝑊𝑊𝑥𝑥𝑥𝑥𝑥𝑥𝑡𝑡 + 𝑊𝑊ℎ𝑐𝑐ℎ𝑡𝑡−1 + 𝑏𝑏𝑐𝑐)  (4) 

where Wxc and Whc are learnable weight matrix parameters and bc is a learnable bias 

parameter.  

The cell’s internal memory is then updated, using the outputs of the forget gate (ft), 

the previous internal memory state (ct-1), input gate (it), and input modulation gate (gt): 

𝑐𝑐𝑡𝑡 =  𝑓𝑓𝑡𝑡  ⊙ 𝑐𝑐𝑡𝑡−1 +  𝑖𝑖𝑡𝑡 ⊙ 𝑔𝑔𝑡𝑡  (5) 

where element-wise multiplication is symbolized by ⊙. 

Finally, the new hidden state is computed as follows: 

ℎ𝑡𝑡 = 𝑜𝑜𝑡𝑡 ⊙ tanh(𝑐𝑐𝑡𝑡)         (6) 

where ht becomes the next ht-1, and the next element in the input sequence is 

considered.  

3.3.2. LSTM for Geospatial Applications 

LSTM approaches have been previously utilized for simulating patterns resulting 

from dynamic geospatial systems (Lyu, Lu, and Mou 2016; Kong et al. 2018; Zhang et al. 

2017; Liu et al. 2018). LSTM has been leveraged to learn LC changes in transfer learning 

applications (Lyu, Lu, and Mou 2016). It proved effective in learning changes in binary and 

multi-class LC datasets created for three variable-sized study areas focused on different 
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cities in China. LSTM has also been employed to reveal natural disturbances such as fires 

or floods, or human disturbances such as deforestation and urban growth, using satellite 

image timeseries datasets from a moderate-resolution imaging spectroradiometer 

(MODIS) data product (Kong et al. 2018). LSTM has also been effectively utilized in short- 

and long-term forecasts of sea surface temperature (Zhang et al. 2017). Using geographic 

datasets pertaining to weather, pollution, and influenza spread, LSTM has also been 

successfully applied in prediction of influenza propagation in the state of Georgia in the 

United States (Liu et al. 2018).  

Though prior research has made evident that LSTM is useful for geospatial 

applications, the implications of varying temporal resolution as explored in Chapter 2 have 

not yet been applied to real-world datasets. The goal of this study is to evaluate the 

effectiveness of LSTM networks for LCC forecasting in real-world and hypothetical 

scenarios. Considering variable geospatial properties such as temporal resolution and the 

number of data layers obtainable to train LSTM models, the aim is to quantify the 

repercussions of changing temporal resolution in a real-world application and a 

hypothetical scenario derived from the real-world dataset. In contrast with the study 

applied to synthetic data developed in Chapter 2, real-world LC datasets feature inevitable 

classification errors, further impacting method performance. In addition to changing 

temporal resolution, this study intends to demonstrate the impacts of persistent LC classes 

and to determine if improved performance can be obtained using available classification 

confidence data. 

3.4. Methods 

3.4.1. Study Area and Datasets 

The “MODIS Terra+Aqua Combined Land Cover product” was first obtained, 

featuring global annual land cover data from 2001 to 2017 (Friedl, M., Sulla-Menashe 

2015). This dataset features 13 scientific data layers, including land cover, surface 

hydrology, and classification confidence layers. This dataset features 17 LC classes using 

the “MCD12Q1 International Geosphere-Biosphere Programme (IGBP)” classification 

system (Sulla-Menashe and Friedl 2018). It features 500-meter spatial resolution with data 

layers available annually from 2001 to 2017. Additional details regarding this dataset are 

shown in Table 3.1. The number of timesteps, temporal resolution, and numerous 



48 

geospatial data layers available in the selected MODIS dataset motivated the selection, 

despite coarse spatial resolution inhibiting studies at smaller spatial scales. Thus, the data 

is further processed to consider the only province of British Columbia. 

Table 3.1. Overview of original MODIS land cover dataset characteristics. 

Name Details 

Data Product 
“MODIS Terra+Aqua Combined Land Cover product” global land cover dataset, 
featuring land use layers, surface hydrology, and classification confidence layers (13 
scientific data layers) 

Dataset Source 
URL https://lpdaac.usgs.gov/products/mcd12q1v006 

Coordinate 
System Sinusoidal 

Spatial 
Resolution 500m 

Temporal 
Resolution Yearly 

Spatial Extent of 
Original Data Global Coverage 

Temporal Extent 2001-01-01 to 2017-12-31 
(17 timesteps) 

Land Cover 
Layer 

“Land Cover Type 1: Annual International Geosphere-Biosphere Programme (IGBP) 
classification” (Friedl, M., Sulla-Menashe 2015) 

Land Cover 
Confidence 
Layer 

“LCCS1 land cover layer confidence” (Friedl, M., Sulla-Menashe 2015),  
with assessments recorded as percentages for each cell 

Number of Land 
Cover Classes 

17 LC classes using the “MCD12Q1 International Geosphere-Biosphere Programme 
(IGBP)” classification system 

Data Format HDF-EOS 

Data 
Acquisition 
Tools 

LP DAAC2Disk – An executable required to directly download MODIS data from the 
Land Processes Distributed Active Archive Center 
(https://lpdaac.usgs.gov/data_access/daac2disk) 

 
First, using the Geospatial Data Abstraction Library (v2.2.4), the desired 17-class 

LC data layer and respective classification confidence layer were obtained and combined 

to create a multidimensional mosaic dataset for each timestep (GDAL/OGR contributors 

2019). The raster mosaics were then extracted and re-projected to the NAD 1983 BC 

Environment Albers projected coordinate system with the provincial boundary of British 

Columbia, Canada obtained from the 2016 Canadian Census Boundary Files (“Boundary 

Files, 2016 Census” 2016). These operations were conducted using the data management 

tools available in Esri’s ArcGIS Pro (v2.4.0) and applied to both the LC and classification 

confidence layers (Esri 2017a). When using the “Project Raster” tool available in ArcGIS 
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Pro (Esri 2017b), the “Nearest Neighbor” resampling technique was used as “it is suitable 

for discrete data, such as land cover” (Esri 2017b). The nearest neighbor resampling 

technique is utilized for the discrete and continuous datasets to maintain the related 

confidence layer data with the respective LC class for each cell (Esri 2016). Different 

resampling techniques including “bilinear interpolation” and “cubic convolution” are only 

relevant for continuous datasets (Esri 2016). 

To integrate findings from Chapter 2 pertaining to favourable geospatial dataset 

characteristics, classes are aggregated to form four LC classes to improve model 

performance. The 17 available LC classes have been aggregated to forest, anthropogenic 

areas, non-forest areas, and water as presented in Table 3.2. Details of the original LC 

classes are shown in Table 3.3. This reclassification procedure was conducted in Esri’s 

ArcGIS Pro (Esri 2017a). The new aggregated class labels were named as per Voight et 

al. (2019). Datasets were subsequently resampled to 1 km spatial resolution to reduce the 

computation time required (Figure 3.2). Confidence data layers have been processed to 

this spatial resolution as well, featuring continuous percentage values indicating 

classification confidence (Figure 3.3).  

Table 3.2.  Detailed LC class composition following reclassification procedures 
to produce a four-class LC dataset. 

Aggregate Class 
Name Forest Anthropogenic 

Areas Non-Forest Water 

Original Class 
Names from the 
“MCD12Q1 
International 
Geosphere-
Biosphere 
Programme 
(IGBP)” 
classification 
system (Sulla-
Menashe and 
Friedl 2018) 

• Evergreen 
Needleleaf 
Forests 

• Evergreen 
Broadleaf 
Forests 

• Deciduous 
Needleleaf 
Forests 

• Deciduous 
Broadleaf 
Forests 

• Mixed Forests 

• Croplands 
• Urban and Built-up 

Lands 
• Cropland/Natural 

Vegetation Mosaics 

• Closed 
Shrublands 

• Open 
Shrublands 

• Woody 
Savannas 

• Savannas 
• Grasslands 
• Permanent 

Wetlands 
• Permanent 

Snow and Ice 
• Barren 

• Water Bodies 
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Table 3.3.  “MCD12Q1 International Geosphere-Biosphere Programme (IGBP) 
legend and class descriptions” from Sulla-Menashe and Friedl 
(2018). 
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Figure 3.2.  Land cover maps of British Columbia generated for years: (a) 2001 

and (b) 2017. 
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Figure 3.3.  Examples of maps using classification confidence data for years: (a) 

2001 and (b) 2017. 
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For the purpose of investigating the performance of the LSTM method on a 

persistent class, a hypothetical scenario has been created. The water class has been 

chosen to become a persistent class given the observed fluctuation of its boundaries 

through all data layers that potentially are due to classification errors. For example, the 

number of cells denoted as water abruptly changes from 90,963 to 94,290 between 2016 

to 2017 (Figure 3.4). To make the water class persistent through time, all water cells 

present in the study area from 2002 to 2017 were converted to “No Data.” Next, the cells 

containing water in the study area in 2001 were overlaid to the same location from 2001 

through 2017. Cells that were occupied by water in 2002 to 2017 that were not water cells 

in 2001 remain “No Data” and are thus excluded in the model evaluation procedure. The 

persistent water datasets for 2001 and 2017 have been shown in Figure 3.5. These 

procedures were enabled by reading data using the Geospatial Data Abstraction Library 

and modifying the data programmatically using the Python programming language (v3.6.5) 

(van Rossum 2016). 

 
Figure 3.4.  Class membership for each land cover class per year in the British 

Columbia study area. 
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Figure 3.5.  Land cover maps of British Columbia for the hypothetical scenario 

featuring a persistent water class for years: (a) 2001 and (b) 2017. 
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3.4.2. Training and Testing Procedures  

Following the data preparation procedures, datasets must be further processed to 

create training and test sets for use with the LSTM method. Input sequences composing 

the training and testing datasets are created using a moving-window approach (Kong et 

al. 2018). Training sets are thus denoted as (x0, x1, x2, …, xT-3), while the target LC class 

is denoted by (yT-2). Input sequences in the test set are denoted as (x1, x2, x3, …, xT-2), 

while the target LC class is denoted by (yT-1). The training and test sets are dependent on 

the temporal resolution being utilized with the currently trained model. Table 3.4 presents 

the years used in training and testing procedures with respective temporal resolutions. 

The subsequent timestep to be forecasted, or the training targets (yT-2) and testing targets 

(yT-1), have been underlined (Table 3.4). Both training and testing datasets are one-hot 

encoded to represent LC classes at each timestep (Lyu, Lu, and Mou 2016; Rußwurm and 

Körner 2018). The LC classification confidence layer is processed in the same way, 

without the one-hot encoding procedure. The confidence layers are comprised of 

continuous percentages ranging from 0 to 100. 

Table 3.4.  Years used to compose training and test datasets considering the 
four temporal resolution scenarios. 

Temporal 
Resolution 

(years) 

Years used in model training (where 
the last entry in each input sequence is 

the training target) 

Years used in model testing (where the 
last entry in each input sequence is the 

testing target) 

1 

 
2001, 2002, 2003, 2004, 2005, 
2006, 2007, 2008, 2009, 2010, 

2011, 2012, 2013, 2014, 2015, 2016 
 

2002, 2003, 2004, 2005, 2006,  
2007, 2008, 2009, 2010, 2011,  

2012, 2013, 2014, 2015, 2016, 2017 

2 
 

2001, 2003, 2005, 2007, 2009, 2011, 
2013, 2015 

 

 
2003, 2005, 2007, 2009, 2011, 2013, 

2015, 2017 
 

4 2001, 2005, 2009, 2013 2005, 2009, 2013, 2017 

8 2001, 2009 2009, 2017 
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The overall number of cells per class considering the real LC dataset has been 

shown in Figure 3.5. Although there is a multitude of ways of composing the training sets, 

due to the scarcity of cells undergoing change (Karpatne et al. 2016), it is necessary to 

apply an improved sampling strategy to form the training sets used in each scenario. This 

means that strategies such as random sampling or obtaining equal counts from each class 

are disadvantageous for phenomena such as LCC. Samardžić-Petrović et al. (2016) 

propose a balanced sampling strategy, showing the benefits of equal counts of persistent 

cells and changed cells used to compose the training set. Changed cells are denoted as 

such if they have undergone one or many changes between x0 and yT-2. However, due to 

the large discrepancy between changed and persistent cell counts, persistent cells cannot 

be simply randomly sampled. Therefore, all changed cells are added to the training data 

set, while persistent cells are sampled at random across the entire study area while 

maintaining the original distributions of classes found in the entire set of persistent cells 

(Samardžić-Petrović et al. 2016, 2017). This technique impacts the number of inputs 

available for training for each temporal resolution. That is, if changes occurred during 

timesteps unavailable in the creation of the training set for the temporal resolution being 

considered, the cell would be marked as persistent. This sampling procedure is also 

applied to the derived hypothetical scenario, ignoring the additional cells marked as “No 

Data.” Due to the increased number of cells ignored in the hypothetical scenario, training 

and testing datasets are smaller in these scenarios. 

Previous methods have utilized subsets of available datasets for testing, following 

suit with training dataset creation procedures (Samardžić-Petrović et al. 2016, 2017). 

However, in this study, the balanced sampling strategy has been employed for only the 

training dataset creation procedure. To create the test set, all cells (except for those 

containing “No Data”) are considered in the evaluation of the entire forecasted map. That 

is, the number of cells forecasted correctly as changed or persistent are calculated for all 

cells available in the forecasted map, in both the real and hypothetical scenarios.  

3.4.3. Model Specifications  

The LSTM-based approach for forecasting LCC includes a stacked LSTM model 

(Figure 3.6). Figure 3.6 depicts the model considering training input sequences x0 to x14, 

considering one-year temporal resolution. The “Dense” layer refers to a fully-connected 

neural network layer used as the output layer. By stacking LSTM layers, these models 
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have been demonstrated to have improved capacity to capture increasingly complex 

relationships subsisting in input datasets (Pascanu et al. 2014; Hermans and Schrauwen 

2013). In this study, three LSTM layers are used in a stacked modeling approach 

accepting categorical LC input sequence data. Each LSTM layer is composed of 128 

neurons per layer. The input layer is compatible with one-hot encoded input sequences. 

Between each layer, various Dropout regularization factors were also tested before 

settling on a factor of 0.5 between each layer (Srivastava et al. 2014; Kong et al. 2018). 

The Dropout factor controls the probability of neurons being discarded during the training 

procedure. For instance, if a factor of 0.5 is applied between each layer, the probability 

that the information from a neuron is “dropped” becomes 50%. This simple tactic has 

proven effective in preventing overfitting and improving representations learned by RNNs 

(Pham et al. 2014). 

To incorporate the classification confidence layer, this configuration is 

concatenated with an additional input layer and LSTM layer. This branched configuration 

is required to provide mixed input types to models, a prevalent approach in applications 

such as image captioning (Karpathy and Fei-Fei 2017; Wu et al. 2018). The model branch 

accepts the confidence layer as input. The output of this branch is concatenated with 

output resulting from the stacked LSTM used to consider the LC class sequences. This 

configuration is demonstrated in Figure 3.7. The application of the Dropout regularization 

terms remains the same in the model branch considering LC input sequences.  

Models were developed using Python (v3.6.5) and the Keras API (v2.2.0) (Chollet 

2015). The Keras API aids in simplifying DL model prototyping workflows while affording 

users the functionality of Google’s TensorFlow GPU implementation (v1.8.0) (Chollet 

2015). TensorFlow is “an open-source machine learning framework” that provides users 

advanced functionality to fine-tune ML and DL models (Abadi et al. 2016). The 

optimization method used was the Adaptive Moment Estimation or “Adam” algorithm 

(Kingma and Lei Ba 2015) due to its demonstrated success and robustness to model 

hyperparameters. Categorical cross-entropy is utilized as the objective function to 

accommodate the multi-class data being used with this method (Rußwurm and Körner 

2017).  
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Figure 3.6.  Stacked LSTM Model with a land cover input sequence example 

using 1-year temporal resolution. 

The Softmax activation function (Bishop 2006) was employed in the output layer. 

This ensures a vector of probabilities corresponding to each class label for each cell is 

output from the model. This activation function is commonly used with multi-class 

classification and predictive models (Bishop 2006; Ienco et al. 2017). In this study, there 

are four LC classes. The fifth class (y0 in Figures 3.6 and 3.7) denotes a “NoData” option 

which is unrepresented in the training and test sets. The maximal number of epochs 

models are enabled to train for is 1,000 epochs, with early-stopping callbacks utilized to 

prevent overfitting (Raskutti, Wainwright, and Yu 2011). Early stopping terminates model 

fitting when there have been no improvements to a model’s objective function within a 

specified number of epochs. Models have been trained and tested using a NVIDIA 

GeForce GTX 1080 Ti GPU. 
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Figure 3.7.  Stacked LSTM model configured for land cover and classification 

confidence input layers. 

3.4.4. Experiment Overview 

Using the original datasets that have undergone pre-processing procedures 

described in 3.3.1, two experiments are performed, including (1) training and evaluating 

the stacked LSTM model considering only the LC dataset (Figure 3.6) and (2) training and 

evaluating the mixed input stacked LSTM model considering both the LC dataset with the 

ancillary classification confidence layer (Figure 3.7). In the evaluation procedure, all cells 

apart from those assigned “No Data” are involved. 

The hypothetical scenarios are used to assess whether performance may increase 

or decrease when a class remains persistent through all timesteps. In the hypothetical 

scenarios, the two experiments conducted using the persistent water dataset include (1) 

training and evaluating the stacked LSTM model considering the persistent water dataset 

(Figure 3.6) and (2) training and evaluating the mixed input stacked LSTM model 

considering the classification confidence layer (Figure 3.7). In the evaluations considering 

the persistent water dataset, a greater number of cells marked will be marked as “No Data” 

due to data creation procedures described in 3.3.1, implying more cells will be omitted 

during the evaluation procedure.  
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3.5. Results and Discussion 

Constructing four models for each experiment, each model was trained with 

training sets featuring one-, two-, four-, and eight-year temporal resolutions, respectively. 

Training set composition has been shown in Table 3.5 for experiments involving the real-

world datasets (Table 3.5a) and for the hypothetical scenario (Table 3.5b). The number of 

training samples for each temporal resolution option in Table 3.5a and 3.5b indicate that 

as the temporal resolution becomes coarser, the number of cells marked that would be 

observed changed becomes smaller with the lesser number of years available. Likewise, 

the number of persistent cells in the respective training sets becomes smaller to uphold 

the balanced sampling strategy posed in 3.4.2. Though the water class is persistent 

through all timesteps (Table 3.5b), the percentage of persistent water cells obtained for 

the respective training sets maintains the sampling strategy. The years composing the test 

set will vary for each modeling scenario due to changing temporal resolution. The 

timesteps involved in training and testing each model in all experiments is demonstrated 

in Table 3.4. To examine differences in forecasted outputs, metrics and maps are 

produced at the provincial extent. Additionally, a smaller spatial extent focused on the 

Central Okanagan region is selected for visual assessment (Figure 3.8). This data was 

extracted from the “Regional District Boundaries” file available for the province of British 

Columbia (Elections BC 2019). 

To evaluate the method, cells are marked as changed if they have undergone a 

transition between 2001 and 2017. Likewise, the evaluation does not consider cells 

marked as “No Data.” This operation considers all timesteps and is then used to compare 

to the forecasted output generated from each of the models. Each model in every 

experiment is tested to forecast the LC geospatial data available for 2017 in both real-

world and hypothetical scenarios, respectively. Evaluation metrics are considered per 

category by “cell-by-cell comparison,” indicating which cells were forecasted as persistent 

or changed (Ahmed et al. 2013). 

  



61 

Across all experiments, in utilizing the coarsest temporal resolution possible (eight-

year temporal resolution), results obtained were poor and erratic (Sections 3.5.1 and 

3.5.2). This scenario involves one input feature mapped to one output feature for training 

and testing. This behavior is consistent was observations made in Chapter 2, which 

showed poor performance with coarsest temporal resolutions at a slightly lesser degree.  

 
Figure 3.8.  Maps created with actual land cover data for the Central Okanagan 

Region used for visual comparisons between forecasted outputs for 
2017. 
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Table 3.5.  Composition of each training set and for each temporal resolution. 
The number of cells belonging to each class has been shown, along 
with the original percentage of cells belonging to each class in the 
respective datasets for (a) the actual dataset and (b) the persistent 
water dataset. 

(a) 
 

 
Changed Cell Counts 

Number of Changed Cells 
(% of changed cells) 

Persistent Cell Counts 
Number of Persistent Cells 

(% of persistent cells) 

Temporal 
Resolution 

Number 
of 

Training 
Samples 

Forest 
Anthro-
pogenic 
Areas 

Non-
Forest 
Areas 

Water Forest 
Anthro-
pogenic 
Areas 

Non-
Forest 
Areas 

Water 

1 322278 65341 1102 94037 659 68493 719 75182 16745 
(40.55%) (0.68%) (58.36%) (0.41%) (42.51%) (0.45%) (46.66%) (10.39%) 

2 307964 62129 982 89991 880 65618 690 71795 15879 
(40.35%) (0.64%) (58.44%) (0.57%) (42.61%) (0.45%) (46.63%) (10.31%) 

4 274386 50080 731 85436 946 58835 619 63851 13887 
(36.50%) (0.53%) (62.27%) (0.69%) (42.89%) (0.45%) (46.54%) (10.12%) 

8 204328 19457 309 81456 942 44204 464 47536 9960 
(19.04%) (0.30%) (79.73%) (0.92%) (43.27%) (0.45%) (46.53%) (9.75%) 

 

(b) 
 

 
Changed Cell Counts 

Number of Changed Cells 
(% of changed cells) 

Persistent Cell Counts 
Number of Persistent Cells 

(% of persistent cells) 

Temporal 
Resolution 

Number 
of 

Training 
Samples 

Forest 
Anthro-
pogenic 
Areas 

Non-
Forest 
Areas 

Water Forest 
Anthro-
pogenic 
Areas 

Non-
Forest 
Areas 

Water 

1 317754 
64981 1102 92794 

N/A 

67626 711 73931 16610 
(40.90%) (0.69%) (58.41%) (42.56%) (0.45%) (46.53%) (10.45%) 

2 303742 
61789 982 89100 64814 682 70624 15750 

(40.69%) (0.65%) (58.67%) (42.68%) (0.45%) (46.50%) (10.37%) 

4 270628 
49746 731 84837 58124 613 62804 13772 

(36.76%) (0.54%) (62.70%) (42.96%) (0.45%) (46.41%) (10.18%) 

8 201628 
19314 309 81191 43707 459 46770 9878 

(19.16%) (0.31%) (80.54%) (43.35%) (0.46%) (46.39%) (9.80%) 
 

3.5.1. Real-world Dataset Experiments 

Using the real-world dataset, the models trained with one-year temporal resolution 

yielded highest counts of correctly simulated cells across the forest, anthropogenic areas, 

and non-forest area classes. This is exhibited by results including only the LC data layer 

(Figure 3.9), and the LC data layer with the confidence layer as ancillary data (Figure 

3.10). This includes both changed and persistent cells belonging to the respective classes. 
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Similarly, the model trained with the finest temporal resolution forecasted the least number 

of changed cells incorrectly as persistent. The number of changed cells simulated as 

persistent increases with temporal resolution. It is also observed that the highest number 

of simulation errors exists in “changed cells simulated incorrectly as persistent” counts in 

both Tables 3.6 and 3.7. 

The exemption to the aforementioned trends is the water class, exhibiting slightly 

increased counts of correctly simulated cells as temporal resolution becomes coarser. 

Overall, models performed poorly when forecasting water. Assumed to be mostly 

persistent, erroneous values may have factored in to poor performance for simulating this 

specific class. For instance, from 2016 to 2017, the number of cells occupied by water 

changes from 90,963 to 94,290 (Figure 3.5). This abrupt change occurring at the end of 

the available timeseries may be due to classification errors or discrepancies when annual 

data products were created.  

Overall, the effects of increasing or decreasing temporal resolution were as 

expected. It was observed that method performance is impeded in scenarios involving 

coarser temporal resolutions. When forecasting land cover, the LSTM method forecasts a 

greater number of persistent cells than changed cells as temporal resolution becomes 

coarser. This is demonstrated in Table 3.6, where the number of persistent cells 

forecasted correctly increases as temporal resolution becomes coarser. The capacity of 

the models to forecast changed cells increases as temporal resolution becomes finer 

(Table 3.6). For instance, the model trained with the finest temporal resolution (one-year) 

produced the forecast with the most correctly transitioned cells for forest and 

anthropogenic areas. Across all scenarios, the models demonstrated their bias for 

forecasting persistent cells, despite the sampling regime instated. Therefore, it is observed 

that LSTM models are most effective when provided increased numbers of timesteps and 

finer temporal resolutions in this real-world application. 

It was hypothesized that adding the classification confidence layer would mitigate 

the effects of erroneous values and thus enhance LCC forecasts when considering all 

temporal resolution options. However, results obtained using the mixed input models failed 

to significantly improve in scenarios involving finer temporal resolutions (Table 3.7). This 

is also evident in the map produced for the Central Okanagan region (Figure 3.11). By 

including the LC classification confidence layer, the capacity for the models to forecast 
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changes improved marginally as temporal resolution became coarser. For instance, Table 

3.6 shows the model trained with eight-year temporal resolution data to forecast only two 

of the four possible classes, including the majority class (non-forest areas) and water cells. 

While still obtaining suboptimal results, models trained with both types of inputs forecasted 

some cells in forest and anthropogenic classes, albeit less than 1% in each class, 

respectively.   

 
Figure 3.9. Land cover classes with actual data, and forecasted outputs 

obtained for year 2017 for model trained with (a) one-year, (b) two-
year, (c) four-year, (d) eight-year temporal resolution datasets. 

 



65 

 
Figure 3.10.  Land cover classes obtained for year 2017 with actual land cover 

and confidence data for model trained with (a) one-year, (b) two-
year, (c) four-year, (d) eight-year temporal resolution datasets. 
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Table 3.6.  Number of cells correctly and incorrectly simulated per class using 
the four temporal resolution options considering the real-world land 
cover dataset. 

  Land Cover Class 
  Forest Anthropogenic 

Areas 
Non-Forest 

Areas Water 
Real # of Changed Cells from 2001 

to 2017 40050 780 85481 3786 

Real # of Persistent Cells from 
2001 to 2017 396842 4145 408548 90504 

Measure 
Temporal 

Resolution 
(Years) 

    

Number of Cells 
Correctly 

Simulated as 
Changed 

1 33037 593 77228 485 
2 32147 547 75191 550 
4 28192 412 70475 516 
8 0 0 85435 524 

% of Cells 
Correctly 

Simulated as 
Changed 

1 82.49% 76.03% 90.35% 12.81% 
2 80.27% 70.13% 87.96% 14.53% 
4 70.39% 52.82% 82.45% 13.63% 
8 0% 0% 99.95% 13.84% 

Number of Cells 
Correctly 

Simulated as 
Persistent 

1 388738 4093 404179 90342 
2 388437 4082 404161 90357 
4 384974 4047 403954 90357 
8 0 0 408235 90412 

% of Cells 
Correctly 
persistent 

1 97.96% 98.75% 98.93% 99.82% 
2 97.88% 98.48% 98.93% 99.84% 
4 97.01% 97.64% 98.88% 99.84% 
8 0% 0% 99.92% 99.90% 

Number of 
Changed Cells 
Simulated as 

Wrong Change 

1 138 3 181 5 
2 165 2 144 26 
4 193 2 119 44 
8 0 0 739 55 

Changed Cells 
Simulated 

Incorrectly as 
Persistent 

1 8643 139 9628 17 
2 10679 154 10452 40 
4 15370 200 14526 48 
8 0 0 43291 53 

Persistent Cells 
Simulated 

Incorrectly as 
Changed 

1 4158 155 8286 88 
2 4070 131 8562 239 
4 4291 102 12040 274 
8 0 0 401029 363 

 
 
  



67 

Table 3.7.  Number of cells correctly and incorrectly forecasted per class using 
the four temporal resolution options with the actual land cover 
dataset combined with the land cover classification confidence 
layer. 

  Land Cover Class 
  Forest Anthropogenic 

Areas 
Non-Forest 

Areas Water 
Real # of Changed Cells from 2001 

to 2017 40050 780 85481 3786 

Real # of Persistent Cells from 
2001 to 2017 396842 4145 408548 90504 

Measure 
Temporal 

Resolution 
(Years) 

    

Number of Cells 
Correctly 

Simulated as 
Changed 

1 33037 594 77228 502 
2 32145 542 75192 560 
4 28190 412 70478 553 
8 43 2 85387 524 

% of Cells 
Correctly 

Simulated as 
Changed 

1 82.49% 76.15% 90.35% 13.26% 
2 80.26% 69.49% 87.96% 14.79% 
4 70.39% 52.82% 82.45% 14.61% 
8 0.11% 0.26% 99.89% 13.84% 

Number of Cells 
Correctly 

Simulated as 
Persistent 

1 388731 4093 404172 90342 
2 388436 4069 404154 90356 
4 384819 4041 403860 90358 
8 1018 34 407562 90412 

% of Cells 
Correctly 
persistent 

1 97.96% 98.75% 98.93% 99.82% 
2 97.88% 98.17% 98.92% 99.84% 
4 96.97% 97.49% 98.85% 99.84% 
8 0.26% 0.82% 99.76% 99.90% 

Number of 
Changed Cells 
Simulated as 

Wrong Change 

1 138 3 176 5 
2 164 2 144 27 
4 193 2 120 49 
8 6 0 735 55 

Changed Cells 
Simulated 

Incorrectly as 
Persistent 

1 8643 139 9615 17 
2 10678 153 10450 40 
4 15362 200 14488 50 
8 45 2 43245 53 

Persistent Cells 
Simulated 

Incorrectly as 
Changed 

1 4158 155 8293 95 
2 4071 127 8577 249 
4 4295 102 12200 364 
8 671 2 399977 363 
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Central Okanagan Region Land Cover Forecasts using the Real Land Cover Dataset 
  Without Confidence Layer With Confidence Layer 
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Figure 3.11.  Comparison of land cover forecasts centred on the Central 

Okanagan region, British Columbia, using the real land cover 
dataset without and with classification confidence data. 

 



69 

3.5.2. Persistent Water Dataset Experiments 

The persistent water dataset experiments consider the persistent water LC class 

developed from the real-world dataset, considering water cells from 2001 as persistent 

through all timesteps. The hypothetical scenario supports the observation that erroneous 

values pose significant detriments to forecasted results. Using this persistent water 

scenario, it was observed that study areas featuring LC classes that undergo slow or no 

changes greatly influence the method performance. Forecasted maps produced when 

considering the persistent water datasets have been shown in Figures 3.12 and 3.13.  

Following suit with results obtained using the real-world datasets, the models 

trained with finer temporal resolutions obtained the most favourable results (Tables 3.8 

and 3.9). In the case of the models considering the persistent water data layer with eight-

year temporal resolution, it is observed that the model forecasted only non-forest areas 

and persistent water cells (Table 3.8). It is also observed that cells occupied by persistent 

water through all timesteps have been forecasted with no errors across all modeling 

scenarios considering both exclusively the persistent water land cover dataset as well as 

the mixed inputs.  

Like results obtained when considering the real-world data, the addition of the 

classification confidence layer as input to the model increased model performance slightly 

when considering coarser temporal resolutions and fewer timesteps. It similarly had little 

to no effect on LCC forecasting performance in scenarios where finer temporal resolutions 

were considered. However, in the scenario considering eight-year temporal resolution, the 

addition of the classification confidence layer as model input contributed to the success in 

forecasting anthropogenic areas, with 92.6% of persistent anthropogenic areas forecasted 

correctly (Table 3.9). This can be viewed in Figure 3.14 at the smaller spatial extent.  

As observed previously, the capacity of the method to forecast changes degrades 

as temporal resolution becomes coarser. An exemption to this trend is the number of non-

forest areas correctly forecasted as changed (Tables 3.8 and 3.9). This is deemed a 

consequence of the bias toward the majority class, especially considering the “worst-case” 

scenario of eight-year temporal resolution.  



70 

 
Figure 3.12.  Forecasted land cover classes obtained for year 2017 in the 

hypothetical scenario for models trained with (a) one-year, (b) two-
year, (c) four-year, (d) eight-year temporal resolution. 
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Figure 3.13.  Forecasted land cover classes for year 2017 in the hypothetical 

scenario with classification confidence data for models trained with 
(a) one-year, (b) two-year, (c) four-year, (d) eight-year temporal 
resolution. 
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Table 3.8.  Number of cells correctly and incorrectly forecasted per class using 
the four temporal resolution options considering the hypothetical 
scenario. 

  Land Cover Class 
  Forest Anthropogenic 

Areas 
Non-Forest 

Areas Water 
Real # of Changed Cells from 2001 

to 2017 39969 780 85379 0 

Real # of Persistent Cells from 
2001 to 2017 396781 4145 407873 90607 

Measure 
Temporal 

Resolution 
(Years) 

    

Number of Cells 
Correctly Simulated 

as Changed 

1 32974 593 77145 0 
2 32104 542 75127 0 
4 28169 412 70418 0 
8 0 0 85379 0 

% of Cells Correctly 
Simulated as 

Changed 

1 82.50% 76.03% 90.36% N/A 
2 80.32% 69.49% 87.99% N/A 
4 70.48% 52.82% 82.48% N/A 
8 0% 0% 100.00% N/A 

Number of Cells 
Correctly Simulated 

as Persistent 

1 388684 4093 403597 90607 
2 388405 4081 403708 90607 
4 384961 4047 403520 90607 
8 0 0 407873 90607 

% of Cells Correctly 
persistent 

1 97.96% 98.75% 98.95% 100.00% 
2 97.89% 98.46% 98.98% 100.00% 
4 97.02% 97.64% 98.93% 100.00% 
8 0% 0% 100.00% 100.00% 

Number of Changed 
Cells Simulated as 

Wrong Change 

1 0 3 2 0 
2 0 2 2 0 
4 0 2 1 0 
8 0 0 10 0 

Changed Cells 
Simulated 

Incorrectly as 
Persistent 

1 8093 139 7179 0 
2 10098 153 8100 0 
4 14761 200 12165 0 
8 0 0 40739 0 

Persistent Cells 
Simulated 

Incorrectly as 
Changed 

1 4121 155 8149 0 
2 4038 127 8440 0 
4 4251 102 11918 0 
8 0 0 400926 0 
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Table 3.9.  Number of cells correctly and incorrectly forecasted per class using 
the four temporal resolution options considering the hypothetical 
scenario with the land cover classification confidence layer. 

  Land Cover Class 
  Forest Anthropogenic 

Areas 
Non-Forest 

Areas Water 
Real # of Changed Cells from 2001 

to 2017 39969 780 85379 0 

Real # of Persistent Cells from 
2001 to 2017 396781 4145 407873 90607 

Measure 
Temporal 

Resolution 
(Years) 

    

Number of Cells 
Correctly Simulated 

as Changed 

1 32974 593 77145 0 
2 32104 542 75128 0 
4 28167 413 70396 0 
8 41 198 85069 0 

% of Cells Correctly 
Simulated as 

Changed 

1 82.50% 76.03% 90.36% N/A 
2 80.32% 69.49% 87.99% N/A 
4 70.47% 52.95% 82.45% N/A 
8 0.10% 25.38% 99.64% N/A 

Number of Cells 
Correctly Simulated 

as Persistent 

1 388679 4090 403596 90607 
2 388405 4076 403708 90607 
4 384847 4048 403518 90607 
8 1018 3837 407103 90607 

% of Cells Correctly 
persistent 

1 97.96% 98.67% 98.95% 100.00% 
2 97.89% 98.34% 98.98% 100.00% 
4 96.99% 97.66% 98.93% 100.00% 
8 0.26% 92.57% 99.81% 100.00% 

Number of Changed 
Cells Simulated as 

Wrong Change 

1 0 3 2 0 
2 0 2 3 0 
4 0 2 1 0 
8 2 1 5 0 

Changed Cells 
Simulated 

Incorrectly as 
Persistent 

1 8093 139 7179 0 
2 10096 153 8100 0 
4 14756 227 12166 0 
8 40 267 40505 0 

Persistent Cells 
Simulated 

Incorrectly as 
Changed 

1 4122 155 8157 0 
2 4038 127 8445 0 
4 4251 104 12031 0 
8 671 99 396071 0 
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Central Okanagan Region Land Cover Forecasts using the Persistent Water Dataset 
  Without Confidence Layer With Confidence Layer 
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Figure 3.14.  Comparison of land cover forecasts centred on the Central 

Okanagan region, British Columbia, in the hypothetical scenario 
without and with the classification confidence data. 
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3.6. Conclusion 

The stacked LSTM modeling approach for forecasting LCC aims to detect patterns 

occurring across the temporal dimension to forecast forest, anthropogenic areas, non-

forested non-anthropogenic areas, and water. Compared to previous applications of LSTM 

for prediction and classification tasks utilizing geospatial data, real-world applications thus 

far had not considered the implications and importance of the choice of geospatial input 

data characteristics on method performance. For slow-changing geospatial systems such 

as LCC, it is demonstrated that obtaining datasets that feature many timesteps and finer 

temporal resolutions enable more optimal models to be obtained. It is also indicative of 

potential issues arising when considering the LSTM method for use with geospatial 

datasets that are limited in the number of data layers or timesteps.  

By comparing models trained with four temporal resolutions, it was observed that 

there is an overall bias for this method to forecast persistent cells, despite the balanced 

sampling regime used. This method also demonstrates a bias toward the majority class 

and persistent cells, especially as the number of timesteps decreased and temporal 

resolution became coarser in all experiments. Future work should consider improved 

sampling strategies to further address this issue. Similarly, a consequence of the sampling 

regime employed was a significant loss of potential training data samples. Maintaining and 

obtaining additional high-quality training samples available should continue to be a priority 

for further research involving LSTM.  

While the classification confidence layer slightly increased the number of changed 

cells forecasted correctly in the real-world LC data scenarios, the greatest increase was 

seen in the hypothetical scenarios involving the persistent water class. This suggests the 

method’s sensitivity to classification errors and suitability for situations where fewer 

classes undergo abrupt or rapid changes. Future work should consider reducing the 

cardinality of land cover datasets in order to use this method to its fullest potential given 

real-world geospatial datasets with limited layers available. Additional data layers should 

also be considered to increase method performance, especially if classes undergo more 

rapid changes. 

Since this evaluation was conducted at a provincial scale, future works should also 

consider the implications of spatial extent and resolution on method performance. It is also 
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recommended that future work utilize additional evaluation metrics that consider not only 

location-based metrics, but spatial pattern metrics should be considered as well. While the 

integration of the available classification confidence layer available in the “MODIS 

Terra+Aqua Combined Land Cover Product” (Friedl, M., Sulla-Menashe 2015) was 

considered, further sensitivity analyses should be conducted to assess the effects of 

perturbations in input sequences and model response. Additional auxiliary or contextual 

data to provide more detail pertaining to spatial features to input sequences should also 

be explored. This could include deriving additional layers pertaining to local spatial 

autocorrelation. Though the classification confidence layer did not enhance LCC 

forecasting performance in situations involving fine temporal resolution data, this 

additional data layer may be advantageous in data-scarce scenarios where improving 

temporal resolution or increasing the number of timesteps is not an option. It should be 

assessed whether increasing the number of additional features may improve the 

forecasting performance of the method or increase robustness of the method to varying 

geospatial input data characteristics such as temporal resolution, LC class cardinality, and 

the number of timesteps available.  

Given the lack of research endeavors exploring the effectiveness of LSTM for LCC 

forecasting, it was inconclusive as to what geospatial dataset characteristics were required 

to optimize the use of this modeling approach. By training and testing models using varying 

geospatial dataset characteristics, this work aimed to contribute to future LCC forecasting 

applications by providing recommendations and an assessment displaying under which 

circumstances the method is most effective. In this real-world application, it was 

determined that increasing the number of timesteps and obtaining data with finer temporal 

resolution enable the most optimal models to be developed for LCC forecasting. Likewise, 

the number of classes exhibiting change also demonstrated an impact on method 

performance. Lastly, integrating additional data layers such as classification confidence 

proved useful in mitigating the effects of coarser temporal resolution on the method’s 

capacity to simulate LCC. 
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Chapter 4.  
 
Conclusion 

4.1. Synthesis of Research Results 

With increasing interest in applying data-driven modeling approaches for 

geospatial applications, it becomes important to assess the capacity of these methods for 

capturing and forecasting complex geospatial systems. Land cover change (LCC) 

dynamics typically exhibit infrequent or slow changes over time, posing challenges for 

currently available Machine Learning (ML) methods (Geist et al. 2006; Karpatne et al. 

2016). A subfield of ML, Deep Learning (DL), provides increasingly complex modeling 

approaches based on traditional Neural Networks (NNs). This subtype of data-driven 

methods has proven advantageous for predictive and classification tasks involving 

complex datasets, with performance measures improving as dataset size increases (Chi 

and Kim 2017).  

With their heightened capacity for capturing intricate, non-linear relationships 

subsisting in datasets, few DL methods have been assessed in their ability to model LCC 

dynamics, where changes are typically infrequent. Likewise, it was unknown what 

characteristics of geospatial datasets were compatible or conducive for increasing the 

efficacy of the methods. Sequential DL methods such as Recurrent Neural Networks 

(RNNs) (specifically the Long Short-Term Memory variant) have been previously utilized 

in geospatial applications (Lyu, Lu, and Mou 2016; Chi and Kim 2017; Ienco et al. 2017; 

Zhang et al. 2017). However, geospatial data characteristics required to yield successful 

outcomes from these method applications were unspecified. For instance, the number of 

timesteps or temporal resolution required to produce improved results were undetermined.  

This thesis research aims to assess not only the potential of sequential DL 

methods for forecasting LC changes, but to guide the selection of appropriate geospatial 

datasets for use with these methods. The effectiveness of sequential DL models in real-

world scenarios where limitations exist in the temporal dimension of datasets is also 

assessed. This includes an evaluation of method response to limited timesteps or coarse 

temporal resolutions available. Likewise, it was also necessary to assess the effectiveness 

of LSTM for forecasting slow changes common in geospatial systems such as LCC.  
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To implement the proposed methodology, Python (v3.6.5) and the Keras API 

(v2.2.0) (Chollet 2015) were used. The TensorFlow GPU implementation (v1.8.0) was 

selected as the backend implementation, with the Keras API providing a high-level 

interface to utilize the functionality afforded by this open-source machine learning library 

(Abadi et al. 2016). Stacked LSTM models were developed for their known capacity to 

capture complex relationships existing in input datasets (Pascanu et al. 2014; Hermans 

and Schrauwen 2013). The Geospatial Data Abstraction Library (v2.2.4) (GDAL/OGR 

contributors 2019) and Esri’s ArcGIS Pro (v2.4.0) (Esri 2017) were used to process input 

datasets and to process, evaluate, and visualize results. Model training, testing, and 

evaluations were conducted using NVIDIA Quadro 600 and NVIDIA GeForce GTX 1080 

Ti GPUs. 

First, favorable geospatial data characteristics were determined (Chapter 2). The 

primary objective of this study was to evaluate the repercussions of varying geospatial 

data properties on LSTM model performance. Localized LCC forecasts produced by the 

LSTM models were evaluated using a Sensitivity Analysis (SA) approach that considered 

varying (1) temporal resolution, (2) sequence length, (3) cardinality, and (4) rates of LCCs. 

It was determined that performance of LSTM models would be impacted by coarse 

temporal resolutions and limited numbers of timesteps. It was also observed that 

increasing the cardinality of the dataset yielding poorer performing models, despite model 

optimization techniques applied. These results indicated that this method benefits from 

fewer LC classes being present in the geospatial dataset being provided as input to the 

model. It was also observed that the method is biased toward persistent cells in all 

scenarios. For instance, it was observed that methods simulated persistent cells with near-

perfect agreement between forecasted and actual maps (Figure 2.7). This occurred 

despite the variations in temporal resolution and the increase in number of LC classes 

being considered. Overall, results produced when using finer temporal resolution data, 

more correctly changed cells were captured in the forecasted land cover.  

Utilizing findings from the preceding chapter, this research further explored the 

implications of geospatial data characteristics on method performance (Chapter 3). 

Methods were adapted and applied to LCC data obtained for the province of British 

Columbia, Canada. The purpose was to evaluate the potential of LSTM for LCC modeling 

in a real-world scenario where datasets may feature erroneous values resulting from prior 

classification procedures. By training the method using varying temporal resolutions, 
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results coincided with previous conclusions formed from using the localized, synthetic 

datasets. It was also observed that potential classification errors in the MODIS land cover 

dataset increased the number of errors, especially as temporal resolution became coarser 

(Tables 3.6 and 3.7). It was ascertained that more timesteps improved the model’s 

capacity to forecast slow or rarer changes. The balanced training dataset creation 

procedures described in Samardžić-Petrović et al. (2017) were employed. This approach 

creates training datasets by randomly sampling changed and persistent cells for each land 

cover class according to their original distributions. This showed greater positive impacts 

on method performance than in the previous method focussed on the localized study area. 

Likewise, the model benefitted from greater breadth (number of units per layer) and use 

of optimization techniques such as Dropout that proved beneficial in Chapter 2 (Sutskever 

et al. 2014). Results showed that persistent cells were also forecasted with high accuracy 

measures for the one-, two-, and four-year temporal resolutions (Table 3.5). In the 

scenario using the training set characterized by four-year temporal resolution, the lowest 

percentage of cells forecasted accurately as persistent was still 97.01%. Cells simulated 

incorrectly as persistent was also the most frequent error type occurring in forecasts of the 

two majority classes (forest and non-forest areas). It was also observed that the worst-

case scenario with the coarsest possible temporal resolution (where one input was 

mapped to one output) produced far more erratic, poor results in the tests utilizing the real-

world dataset, despite the addition of the classification confidence layer and efforts to 

reconfigure training dataset creation procedures to improve or reduce biases in the 

training set.  

This study further illustrates the importance of temporal resolution and opting for 

greater number of timesteps when choosing to utilize LSTM for forecasting LCC. Overall, 

the models trained with the coarsest temporal resolution, considering one timestep as 

input and one timestep as output, have shown to be ineffective in LCC modeling in such 

configurations. The addition of the classification confidence layer as input showed 

potential for enhancing scenarios in which the number of timesteps or temporal resolution 

is limited, albeit achieving poor simulation results across all experiments considering real-

world and hypothetical scenarios. 

By developing the persistent water class scenarios, evaluations demonstrated the 

sensitivity of the method to unchanging classes and to classification errors existing in the 

original dataset. With one class remaining static through time, changes occurring in other 
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classes were better captured at coarser temporal resolutions. Persistent cells were 

forecasted with no errors in all experiments, considering all temporal resolutions and both 

datasets. This concurs with results obtained in Chapter 2, indicating the method favours 

persistent cells and that decreased rates of change improves method performance.    

By developing various modeling approaches, conducting a SA, and applying the 

method to real-world LC datasets, the method forecasted changed cells better when the 

finest temporal resolutions were used. It was also determined that geospatial dataset 

properties such as rates of change and LC class cardinality impact the performance of the 

LSTM models. For forecasting LCC when many timesteps are available, LSTM proves to 

be an accessible, capable method for forecasting patterns of change from these dynamic, 

geospatial systems. 

4.2. Limitations and Future Directions 

While the LSTM approaches have exemplified the potential of sequential DL 

models for LCC modeling, there exist limitations within the current implementations. In 

both chapters two and three, it was observed that the method was biased toward 

persistent cells. As temporal resolution became coarser, the method response became 

more erratic. Conversely, if the geospatial dataset featured increased depth in the 

temporal dimension, forecasts were drastically improved. The addition of ancillary data 

layers as demonstrated in chapter three pose promising directions for potentially 

improving LCC modeling performance in scenarios where the number of timesteps or 

temporal resolution is limited. Providing other derived data layers including layers 

pertaining to spatial autocorrelation may also be beneficial to improving model 

performance. To further improve the capacity of these methods to forecast LCC, there 

exist many avenues for future research endeavours. Following the development of 

solutions for each of the limitations described in following sections, expanded study areas 

should also be considered, including national and global scales.  

First, additional SAs should be conducted to assess the implications of changing 

spatial resolution on LSTM performance, as data was resampled from 500m to 1km to 

expedite model training and testing procedures in Chapter 3. Likewise, the resampling 

technique of nearest neighbour impacts the quality of ancillary data layers. Error 
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accumulation occurs as a result of these resampling procedures and is expected to impact 

method performance in future work.   

It is also recognized that explicitly spatio-temporal DL modeling approaches such 

as Convolutional LSTM exist (Shi et al. 2015). These approaches should be evaluated 

further for their potential to model LCC patterns in future work, especially for their capacity 

to forecast spatial patterns. However, these methods are affected by similar shortcomings 

as models presented in this thesis. It is important that future research should aim to 

address some of the inherent limitations of data-driven techniques for geospatial 

applications. As ML and DL methods are typically trained to fit a single set of parameters 

that minimize an error function with respect to a training set, problems arise for 

heterogeneous study areas. With the goal of “learning” a set of parameters that will 

achieve suitable performance when given new observations in classification or predictive 

applications (Bishop 2006), the procedure to train ML and DL methods involves utilizing 

all inputs with equal importance. That is, the influence of training samples that may or may 

not be adjacent or near to one another are used to fit a single set of internal network 

parameters that should generalize to all future inputs given. This implies that methods are 

typically not adapted for considering properties of geospatial datasets such as spatial 

heterogeneity and non-stationarity (Karpatne et al. 2016; Brunsdon, Fotheringham, and 

Charlton 1996). This concern continues to be exacerbated as study areas expand and 

diversify. Thus, future research endeavours should explore and integrate consideration of 

these properties in various aspects of future models constructed. 

Next, sequential DL approaches are limited in their ability to model complex 

systems. Since LCC dynamics can be viewed as complex systems processes, their many 

interacting elements result in new, emergent behaviours and patterns that a data-driven 

model may not have observed in training procedures and thus not be able to forecast 

(Manson 2001; Batty and Torrens 2005). Data-driven approaches are pattern recognition 

methods which are incapable of capturing facets of complex systems such as emergence, 

evolution, feedback loops, bifurcation, and self-organization (Manson 2001). For instance, 

ML methods utilize historic trends to forecast changes and are therefore not inherently 

intended for simulating non-stationary patterns and feedback loops that characterize 

human and environmental interactions (National Research Council 2014). ML algorithms 

assume stationarity of patterns and are devised to extrapolate patterns, not the processes 

by which they were generated (National Research Council 2014). While LSTM is stated 
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to be able to capture path dependencies in timeseries data, it is also largely unknown or 

challenging to determine how well these “black-box” approaches are capturing these 

relationships through time (Vohra, Goel, and Sahoo 2015). Existing complex systems 

modeling approaches such as Cellular Automata have their own shortcomings, such as 

challenges involving manual encoding of transition rules (Yang, Li, and Shi 2008). 

Likewise, biases are introduced during the selection and definition of transition rules, 

which have significant effects on the emergent behaviour of the system (Roodposhti, 

Aryal, and Bryan 2019). Conversely, statistical learning algorithms are advantageous in 

scenarios where driving factors are unknown or theory is ill-defined (National Research 

Council 2014). Combining sequential DL methods such as LSTM with Cellular Automata 

to formulate novel modeling approaches may leverage beneficial aspects of both top-down 

and bottom-up modeling techniques.  

The performance of LSTM versus other RNN modeling approaches should also be 

considered and compared in future work. For instance, the gated recurrent unit (GRU) 

(Chung et al. 2015), a simplification to the LSTM gated architecture, has been made 

increasingly available and accessible in popular high-level APIs such as Keras. While 

yielding similar results to LSTM modeling approaches (Greff et al. 2017), GRUs are stated 

to converge faster than LSTM due to fewer internal parameters. In future studies, it should 

be assessed if method performance similarly degrades across other RNN architectures 

such as GRUs as temporal resolution becomes coarser, the number of land cover classes 

increases, and the number of timesteps available for model training decreases. Hybrid 

Deep Neural Network approaches should also be implemented and assessed to capture 

different types of spatial features occurring over space and time. These include combined 

networks such as Convolutional LSTM (Shi et al. 2015), merged models used to 

accommodate different input data types (Wu et al. 2015), and merging fine-tuned DL 

models with traditional ML methods (Chen et al. 2014; Zhao and Du 2016). 

Additional exploration of sampling schemes used to form better training sets 

should also be considered. Patterns resulting from processes amalgamating slow changes 

across Earth’s surface over time prove difficult to forecast without the use of balanced 

training set creation strategies. The sensitivity of sequential DL methods such as LSTM to 

training dataset composition has been demonstrated in this work. For instance, training 

dataset composition was heavily influenced by persistent cells and necessitated balanced 

sampling schemes to improve model performance, imposing limitations on the amount of 
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training data that could be used despite having full spatial and temporal extents available 

in all datasets used in this work. Knowing the propensity of the method to forecast 

persistence, future works should consider strategies that do not require so much data to 

be discarded when few changed cells or areas are available for training the method. 

Modifying the training dataset composition via improved sampling schemes or data 

augmentation procedures should be explored in future work to lessen the amount of 

unused data and improve model performance. Similarly, it may prove advantageous to 

utilize or develop new sampling strategies to account for spatial autocorrelation.  

Finally, future studies should consider a wider array of validation approaches for 

data-driven models. While measuring locational agreement between a forecasted output 

and real map provides one means of assessment, the capacity of modeling approaches 

for forecasting spatial patterns should also be considered (van Vliet et al. 2016). 

Additionally, fuzzy methods for evaluation should also be employed (Ahmed et al. 2013). 

Errors resulting from procedures used to classify satellite imagery should not only 

considered, but the sensitivity of the method to erroneous values present in the timeseries 

inputs that constitute training datasets should be quantified in future work. Likewise, 

epistemic imperfections should be quantified and decreased by including additional data 

layers (Boulila, Ayadi, and Farah 2017). 

4.3. Thesis Contributions 

The proposed methodologies exemplify the potential of the LSTM method and 

sequential DL modeling approaches for forecasting LCC by determining patterns through 

time. The research aimed to determine favourable scenarios for sequential DL methods 

such as LSTM to forecast changes in systems where changes are infrequent. It is intended 

that this work informs future research endeavours by either assisting in method selection 

or by providing insight for geospatial data selection. 

By conducting a formal analysis of the method’s response to different geospatial 

data properties, researchers can be better informed of both the strengths and 

shortcomings of the method for modeling systems such as LCC. This thesis research 

provides improved, automated methodologies for forecasting LCC while formalizing the 

geospatial data requirements necessary for this method to be effective. These automated 

methodologies are developed and evaluated in hypothetical and real-world scenarios at 
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local and provincial scales in order to help form conclusions regarding the method’s 

effectiveness for forecasting LCC. The SA and real-world application of the method 

highlight the importance of geospatial data selection if this method is to be utilized to its 

full potential.  

This thesis research aims to contribute to the field of GIScience by elucidating the 

benefits and limitations of this data-driven modeling approach. The proposed research 

methodologies contribute to the expanding collection of geocomputational approaches 

available and tested for forecasting dynamic, geospatial systems such as LCC. These 

contributions can also be beneficial for other disciplines that consider LCC studies, such 

as land change science, forestry, resource management, and urban planning. 
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Appendix.   
 
Full Synthetic Dataset Overview 

 
Figure A.1.  Dataset featuring 4 Land Cover Classes 
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Figure A.2.  Dataset featuring 8 Land Cover Classes 
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Figure A.3.  Dataset featuring 16 Land Cover Classes 
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