
Towards Event Analysis in Time-series Data:
Asynchronous Probabilistic Models and

Learning from Partial Labels
by

Nazanin Mehrasa

M.Sc., Simon Fraser University, 2017

B.Sc., Amirkabir University, 2015

Thesis Submitted in Partial Fulfillment of the

Requirements for the Degree of

Doctor of Philosophy

in the

Department of Computing Science

Faculty of Applied Sciences

c© Nazanin Mehrasa 2021
SIMON FRASER UNIVERSITY

Spring 2021

Copyright in this work is held by the author. Please ensure that any reproduction or re-use
is done in accordance with the relevant national copyright legislation.

Declaration of Committee

Name: Nazanin Mehrasa

Degree: Doctor of Philosophy

Thesis title: Towards Event Analysis in Time-series Data: Asynchronous
Probabilistic Models and Learning from Partial Labels

Committee: Chair: Parmit Chilana
Assistant Professor, Computing Science

Greg Mori
Supervisor
Professor, Computing Science

Angel Chang
Committee Member
Assistant Professor, Computing Science

Manolis Savva
Examiner
Assistant Professor, Computing Science

Nicolas Thome
External Examiner
Professor
Department of Computer Science
Conservatoire national des arts et métiers

ii

Abstract

In this thesis, we contribute in two main directions: modeling asynchronous time-series data and

learning from partial labelled data. We first propose novel probabilistic frameworks to improve

flexibility and expressiveness of current approaches in modeling complex real-world asynchronous

event sequence data. Second, we present a scalable approach to end-to-end learn a deep multi-label

classifier with partial labels. To evaluate the effectiveness of our proposed frameworks, we focus

on visual recognition application, however, our proposed frameworks are generic and can be used

in modeling general settings of learning event sequences, and learning multi-label classifiers from

partial labels. Visual recognition is a fundamental piece for achieving machine intelligence, and has

a wide range of applications such as human activity analysis, autonomous driving, surveillance and

security, health-care monitoring, etc. With a wide range of experiments, we show that our proposed

approaches help to build more powerful and effective visual recognition frameworks.

Keywords: Point Processes, Temporal Point Processes, Activity Prediction, Visual Recognition,

Learning From Partial Labels

iii

Acknowledgements

First and foremost, I would like to thank my supervisor, Dr. Greg Mori; though, words are powerless

to express my appreciation for his inspiring enthusiasm and continuous support throughout my PhD

life with his friendship, supervision, and resourcefulness. I am wholeheartedly grateful for all his

invaluable contributions of time and insight to make my PhD research productive and exciting.

Thank you, Greg!

I would like to thank the members of my PhD dissertation committee: Dr. Angel Chang, Dr.

Manolis Savva, Dr. Nicolas Thome, and Dr. Parmit Chilana for their time to read my thesis and

attend my defense.

My research achievements benefit significantly from interacting with an amazing group of col-

laborators and lab-mates. Special thanks to Thibaut Durand, Eric He, and Hossein Hajimirsadeghi

for all their help and mentorship. I would also like to thank Micael Carvalho, Ruizhi Deng, Bo

Chang, Akash Abdu Jyothi, Mehran Khodabandeh, Fred Tung, Mohamed Osama Ahmed, Srikanth

Muralidharan, Zhiwei Deng, Yu Gong, Megha Nawhal, Mengyao Zhai, Lei Chen, Sha Hu, Yifang

Fu, Mostafa S. Ibrahim, Mohammad Hadi Salari, and Hamed Shirzad.

I was very fortunate to have many great friends in Vancouver during my grad life. Many

thanks to Sima Jamali, Hossein Sharifi, Hossein Asghari, Amir Yaghoubi, Abdollah Safari, Huyen

Mori, Ali Arab, Kiarash Zahirnia, Hamid Homapour, Zahra Zohrevand, Mehdi Shirmaleki, Babak

Salimi, Kiana Mostaghasi, Ashkan Alinejad, Payam Ahmadvand, Mahsa Gharibi, Mahdi Nemati

Mehr, Ramtin Mehdi Zade, Sajjad Gholami, Rana Sadeghi, Ehsan Haghshenas, Sina Salari, Narges

Ashtari, Amirali Sharifian, Karoon Rashedi, Saman Taheri, Mina Taheri, Mohammad Tayebi, Sedighe

Razmpour, Leo, and the list goes on ...

My heartfelt thanks go to my beloved Akbar for having this journey with me, for never giving up

and always encouraging me, for believing in me unconditionally, and for tolerating an always-busy,

always-stressed, always-in-a-deadline partner. Thank you Akbar!

I feel deeply indebted to the selfless love and endless support of my lovely mom, dad, and sister

for giving me their boundless love, infinite kindness and support to do my best!

iv

Table of Contents

Declaration of Committee ii

Abstract iii

Acknowledgements iv

Table of Contents v

List of Tables viii

List of Figures x

1 Introduction 1
1.1 Motivation . 1

1.1.1 Event Analysis in Asynchronous Time-series Data. 2

1.1.2 Learning from Partially Labeled Data. 5

1.2 Contributions . 5

1.2.1 A Variational Auto-Encoder Model for Stochastic Point Process 7

1.2.2 A Flexible Flow-Based Latent Variable Model for Asynchronous Action

Sequences . 7

1.2.3 Learning Deep Networks with Partially Labeled Data 8

2 Background and Related Works 10
2.1 Event Analysis in Asynchronous Time-Series Data 10

2.1.1 Temporal Point Process . 10

2.1.2 Mark Temporal Point Process . 13

2.1.3 Learning . 13

2.1.4 Basic intensity functions . 14

2.1.5 Toward Deep Learning Approaches . 15

2.1.6 Intensity-free Point Processes . 18

2.2 Learning With Partial / Missing Labels. 19

3 A Variational Auto-Encoder Model for Stochastic Point Processes 21

v

3.1 Overview . 21

3.2 Related Work . 24

3.3 Asynchronous Action Sequence Modeling . 26

3.3.1 Background: Base Models . 26

3.3.2 Proposed Approach . 27

3.4 Experiments . 32

3.4.1 Experiment Results . 33

3.5 Summary . 38

4 Learning a Deep ConvNet for Multi-label Classification with Partial Labels 39
4.1 Overview . 39

4.2 Related Work . 42

4.3 Learning with Partial Labels . 44

4.3.1 Binary cross-entropy for partial labels . 44

4.3.2 Multi-label classification with GNN . 46

4.3.3 Prediction of unknown labels . 48

4.4 Experiments . 50

4.4.1 What is the best strategy to annotate a dataset? 51

4.4.2 Learning with partial labels . 52

4.4.3 What is the best strategy to predict missing labels? 53

4.4.4 Method analysis . 54

4.5 Implementation Details and Analysis . 57

4.5.1 Multi-label classification with GNN . 57

4.5.2 Experimental details . 57

4.5.3 Multi-label metrics . 58

4.5.4 Analysis of the initial set of labels . 60

4.5.5 Analysis of the labeling strategies . 63

4.5.6 Comparison of the loss functions . 66

4.5.7 Analysis of the loss function . 71

4.5.8 Comparison to existing model for missing labels 72

4.5.9 What is the best strategy to predict missing labels? 72

4.5.10 Final results . 74

4.6 Summary . 76

5 A Flexible Flow-Based Latent Variable Model for Asynchronous Action Sequences 77
5.1 Overview . 77

5.2 Related work . 80

5.3 Preliminaries . 82

5.3.1 Temporal point process . 82

5.3.2 Normalizing flow . 82

vi

5.3.3 Continuous normalizing flow . 83

5.4 Method . 84

5.4.1 Problem definition . 84

5.4.2 Generative model . 84

5.4.3 Inference with variational filtering . 85

5.4.4 Action prediction . 85

5.5 Experiments . 87

5.5.1 Baselines . 87

5.5.2 Evaluation metrics . 87

5.5.3 Experimental results . 88

5.5.4 Study on structure of action time and label prediction 89

5.5.5 Ablation study on complexity of time decoder 90

5.5.6 Qualitative results of future actions anticipation 91

5.5.7 Multiple Run Results of Long-term Action Anticipation 93

5.5.8 Unconditional Generation Qualitative Results 93

5.5.9 Experimental Details . 94

5.6 Summary . 97

6 Conclusion 98

Bibliography 100

vii

List of Tables

Table 3.1 Comparison of log-likelihood on Breakfast and MultiTHUMOS datasets. . . 32

Table 3.2 Accuracy of action category prediction and Mean Absolute Error (MAE)

of inter-arrival time prediction of all model variants. Arrows show whether

lower (↓) or higher (↑) scores are better. 33

Table 3.3 Example of test sequences with high and low likelihood according to our

learned model . 35

Table 3.4 Accuracy (Acc) and Mean Absolute Error (MAE) under mode and averaging

over samples. 35

Table 3.5 Log-likelihood for APP-VAE with different latent variable dimensionality on

MultiTHUMOS. 37

Table 4.1 Comparison with a webly-supervised strategy (noisy+) on MS COCO. Clean

(resp. noisy) means the percentage of clean (resp. noisy) labels in the training

set. 52

Table 4.2 Analysis of the labeling strategy of missing labels on Pascal VOC 2007 val

set. For each metric, we report the relative scores with respect to a model that

does not label missing labels. TP (resp. TN) means true positive (resp. true

negative) rate. For the strategy [c], we report the label accuracy instead of the

TP rate. 52

Table 4.3 MAP results on Open Images. 53

Table 4.4 Ablation study on MS COCO with 10% of known labels. 54

Table 4.5 Analysis of the initial set of labels for the partial label scenario. The results

are averaged for 4 seeds on MS COCO val2014. 61

Table 4.6 Comparison of the labeling strategies for different label proportions and dif-

ferent architectures on MS COCO val2014. 63

Table 4.7 Comparison with a webly-supervised strategy (noisy+) on MS COCO. Clean

(resp. noisy) means the percentage of clean (resp. noisy) labels in the training

set. Noisy+ is a labeling strategy where there is only one positive label per

image. 64

viii

Table 4.8 Analysis of the labeling strategy of missing labels on Pascal VOC 2007 val

set. For each metric, we report the relative scores with respect to a model that

does not label missing labels. TP (resp. TN) means true positive (resp. true

negative). Label proportion is the proportion of training labels (clean + weak

labels) used at the end of the training. For the strategy labeling only positive

labels, we report the label accuracy instead of the TP rate. 73

Table 5.1 Short-term Action Anticipation Results 88

Table 5.2 Long-term Action Prediction Results Conditioned on History. The num-

ber in the parenthesis in the first row shows the number of actions in the

observation window. The number in the second row shows the number of

actions in the observation window. 90

Table 5.3 Study on Predefined Structured Prediction. Experimental results on Break-

fast dataset for assuming a pre-defined structured framework for IFL and

Proposed Model. We pass the Ground-truth as the condition for time/action

to the model during test time. Models with action box checked by a 3means

the time decoder is conditioned on action. Models with time box checked by

3means the action decoder is conditioned on time. Models with only history

box checked by 3are the original/proposed model. 91

Table 5.4 Normalizing Flow Complexity Study Results. The model output parame-

ters of a log-normal distribution for zero blocks in the normalizing flow module. 91

Table 5.5 Long-term Action Prediction Multiple Run Results Conditioned on His-
tory for Breakfast Dataset. The number in the parenthesis in the first row

shows the number of actions in the observation window. The number in the

second row shows the number of actions in the observation window. 93

Table 5.6 Long-term Action Prediction Multiple Run Results Conditioned on His-
tory for Multithumos Dataset. The format of this table is similar to Table 5.5. 93

ix

List of Figures

Figure 2.1 Here, we can see a sequence of discrete events t1:4 where each ti shows the

absolute time when the i-th event happens and inter-arrival time τi shows

the time gap between events ti and ti−1. 10

Figure 2.2 Here we can see the three quantities used for defining the intensity func-

tion of a temporal point process. f(t|H(t)) is the probability density func-

tion for time-step t5 given the history H(t) = (t1, t2, t3, t4). Quantities

F (t|H(t)) and S(t|H(t)) are the corresponding cumulative and survival

functions respectively. 11

Figure 2.3 From [29]. "Architect of RMTPP. For a given sequence S = ((tj, yj)nj=1),

at the j-th event, the marker yj is first embedded into a latent space. Then,

the embedded vector and the temporal features are fed into the recurrent

layer. The recurrent layer learns a representation that summaries the non-

linear dependency over the previous events. Based on the learned repre-

sentation hj , it outputs the prediction for the next marker yj+1 and timing

tj+1 to calculate the respective loss functions" 15

Figure 2.4 From [13]. "Computation graph of the latent ODE model". Here, hti rep-

resents the hidden state of encoder RNN at time-step i. 17

Figure 2.5 From [108]. ODE-RNN compared to standard RNN. "Standard RNNs have

constant or undefined hidden states between observations. States of Neural

ODE follow a complex trajectory but are determined by the initial state.

The ODE-RNN model has states which obey an ODE between observa-

tions, and are also updated at observations" 18

Figure 3.1 It is difficult to make predictions, especially about the future. Given a his-

tory of past actions, multiple actions are possible in the future. We focus

on the problem of learning a distribution over the future actions – what are

the possible action categories and when will they start. 22

Figure 3.2 Given the history of actions, APP-VAE generates a distribution over pos-

sible actions in the next step. APP-VAE can recurrently perform this op-

eration to model diverse sequences of actions that may follow. The figure

shows the distributions for the fourth action in a basketball game given the

history of first three actions. 23

x

Figure 3.3 Our proposed recurrent VAE model for asynchronous action sequence mod-

eling. At each time step, the model uses the history of actions and inter-

arrival times to generate a distribution over latent codes, a sample of which

is then decoded into two probability distributions for the next action: one

over possible action labels and one over the inter arrival time. 26

Figure 3.4 Examples of generated sequences. Given the history (shown at left), we

generate a distribution over latent code zn for the subsequent time step. A

sample is drawn from this distribution, and decoded into distributions over

action category and time, from which a next action/time pair by selecting

the action with the highest probability and computing the expectation of

the generated distribution over τ (Equation 3.21). This process is repeated

to generate a sequence of actions. Two such sampled sequences (a) and (b)

are shown for each history, and compared to the respective ground truth

sequence (in line with history row). We can see that APP-VAE is capable

of generating diverse and plausible action sequences. 34

Figure 3.5 Latent Code Manipulation. The history + ground-truth label of future action for

the sub-figures are: (a) “SIL, crack_egg"→“add_saltnpepper", (b) “SIL, take_plate,

crack_egg"→ “add_saltnpepper" and (c) “SIL, pour_oil, crack_egg"→“add_saltnpepper".

. 36

Figure 4.1 Example of image with all annotations [a], partial labels [b] and noisy/webly

labels [c]. In the partially labeled setting some annotations are missing

(person, boat and apple) whereas in the webly labeled setting one annota-

tion is wrong (person). 40

Figure 4.2 Examples of the weight function g (Equation 4.2) for different values of

hyperparameter γ with the constraint g(0.1) = 5. γ controls the behavior

of the normalization with respect to the label proportion py. 45

Figure 4.3 The first row shows MAP results for the different labeling strategies. On

the second row, we shows the comparison of the BCE and the partial-BCE.

The x-axis shows the proportion of clean labels. 50

Figure 4.4 MAP (%) improvement with respect to the proportion of known labels on

MS COCO for the partial-BCE and the GNN + partial-BCE. 0 means the

result for a model trained with the standard BCE. 53

Figure 4.5 Analysis of the normalization value for a label proportion of 10% (i.e.

g(0.1)). (x-axis log-scale) . 55

Figure 4.6 Analysis of hyperparameter γ on MS COCO. 56

Figure 4.7 Results for different metrics on MS COCO val2014 to analyze the sensi-

bility of the initial label set. 62

xi

Figure 4.8 Comparison of the labeling strategies for different label proportions and

different architectures on MS COCO val2014. 64

Figure 4.9 Comparison of the labeling strategies for different metrics on MS COCO

val2014. 65

Figure 4.10 Analysis of the learning rate on MS COCO dataset. 66

Figure 4.11 Results for different metrics on MS COCO val2014. 67

Figure 4.12 Improvement analysis between partial-BCE and BCE for differents metrics

on MS COCO val2014. 68

Figure 4.13 Results for different metrics on Pascal VOC 2007. 69

Figure 4.14 Improvement analysis between partial-BCE and BCE for differents metrics

on Pascal VOC 2007. 70

Figure 4.15 Analysis of the normalization value for 10% of known labels (i.e. g(0.1))

on MS COCO. (x-axis log-scale) . 71

Figure 4.16 Comparison with APG-Graph model on Pascal VOC 2007 for different

proportion of known labels. 72

Figure 4.17 The results of our final model with two baselines (complete image labeling

and BCE with partial labels) for different metrics on MS COCO val2014. 75

Figure 5.1 We propose a flexible flow-based recurrent latent variable model for action

sequences. Our framework takes a sequence of actions as observations and

models the distribution of future actions which enables down-stream tasks

such as density estimation, short-term prediction and long-term conditional

generation. 79

Figure 5.2 Graphical model illustration of our proposed framework during inference

and generation. 84

Figure 5.3 Qualitative results of sequence generation on Breakfast dataset. 92

Figure 5.4 Qualitative results of sequence generation on Breakfast dataset. In this set-

ting, no action is observed and sequences are generated by sampling from

the prior distribution of the first step in the sequence. 94

xii

Chapter 1

Introduction

In this thesis, we aim to study, explore, and develop a set of robust deep learning approaches in two

main directions: modeling asynchronous time-series data and learning from partial label data. On

modeling asynchronous time series data, we focus on the anticipatory reasoning of future events

given a history of sparse and asynchronous observations of past events in time. We propose novel

probabilistic models based on the framework of temporal point process which explicitly models the

occurrence rate of future events given the timing and other characteristics of previous events. On

learning from partial labels, we tackle the problem of learning deep networks with partial labels for

classification of static images, and introduce a novel scalable solution for end-to-end learning of

deep convolutional networks with partial labels.

1.1 Motivation

In this thesis, we focus on two challenging problems: (1) modeling event in time-series data with

a particular focus on asynchronous event data, and (2) learning from large databases of partially

labeled data. We choose visual recognition as a testbed to evaluate the effectiveness of our proposed

approaches, however, our proposed frameworks are generic and can be used in modeling general

settings of learning event sequences, and learning multi-label classifiers from partial labels. Visual

recognition is a fundamental problem in computer vision with a wide range of applications in ma-

chine intelligence systems. In the past decade, visual recognition has attracted a significant amount

of research. Most recently, with the emergence of deep learning and neural networks, there has

been a significant improvement in this field. However due to the challenging nature of this problem,

the performance of state-of-the-art models are still far from human recognition performance. This

performance gap mainly arises from the fact that designing an effective recognition framework re-

quires the ability to address challenging tasks of visual understanding, working with large databases,

learning from noisy and partially labeled data, capturing object correlations, modeling time-series

data, learning temporal dependencies and structures, etc. We show that our proposed approaches

help to build stronger and more powerful frameworks in modeling time-series and learning from

partial-labels domains, helping to build a more effective visual recognition framework.

1

1.1.1 Event Analysis in Asynchronous Time-series Data.

Event sequences, as a particular form of time-series data, are discrete events in continuous time,

meaning that they happen irregularly and asynchronously in continuous time. This type of data is

prevalent in a broad spectrum of areas such as human activities, health-care, stock market, seismol-

ogy, e-commerce, social networks, etc.

Human activities produce sequences of events data whose understanding their complex temporal

dynamic plays an important role in many video intelligent system applications such as surveillance

and security, health-care monitoring, simulation systems, and etc. In online social media such as

Facebook and Twitter, user activities can be seen as another example of event sequences. In this

environment, users share news, opinions, and interact with other people. Understanding these social

behaviors is of many domains interest, such as economic, advertisement, and marketing. In seis-

mology, scientists work with large databases of earthquake records. Records of earthquakes in time

are another example of event sequences since earthquakes occur sparsely and asynchronously in

time. One active research field in this area is to predict future earthquakes based on the records of

past earthquakes. If successful, it could help to save many lives, prevents major destruction, urban

planning, etc.

In all the examples above, each event is discrete, and the temporal dynamics of events are complex

and asynchronous, meaning that in a sequence, events happen irregularly in continuous time. There

are a variety of complex processes behind these events. Basically, each event is an observation of

a complex dynamic process. It is crucial to understand the characteristics and dynamics of this

type of data so that plausible future predictions, as well as other downstream applications, such as

intervention or recommendation, can be performed.

Although the analysis of sequential data has a very rich literature in time-series analysis, the asyn-

chronous and probabilistic nature of event sequence data makes it challenging to utilize the power of

off-the-shelf time-series approaches. In this line, at the first glance, discrete-time Markovian mod-

els such as AutoRegressive models [86], Kalman filter models [130], and Hidden Markov Mod-

els [35, 148] might seem a good match for modeling event sequences, however, these approaches

are designed for discrete time-series which are regularly spaced data points in time. A common

approach to use these models is to transform event sequences into regularly spaced data points. For

example, for the case of earthquake data, we could represent it as a time-series of zeros and ones,

where one indicates occurrences of an earthquake. However, such a setup is sensitive to the choice

of aggregation window being used for this transformation, which might cause some information

loss due to discretization error. Also, these transformations might make sequences much longer,

which increases computational cost. Furthermore, Markov models do not perform well in capturing

2

long-term dependencies due to the state-space explosion issue involved with their model design.

Continuous-time variants of Markov models [34, 55] relax the need for regularly spaces data point,

but still suffers from the state-space explosion issue for capturing long-term dependencies.

Temporal point processes (TPPs) [22] provide us with an elegant and effective mathematical frame-

work for modeling event sequences data. A temporal point process is defined as a stochastic process

whose realizations consist of a list of events with their corresponding occurring times. These occur-

ring times can either be real numbers from an index set (defined from prior knowledge) or sampled

from an intensity function. While other time-series models learn temporal patterns synchronously

(with each time-step being treated as an input to the model), TPP-based frameworks directly model

the time intervals between events as random variables. With such a setup, it allows for modeling long

sequences without vanishing gradients or costly memory issues. Moreover, temporal point process

is able to mathematically incorporate the whole history in its model design (to capture long-term

dependencies) without specifying the order as required by Markovian models.

Formally, a temporal point process is a stochastic process whose realization is a sequence of

discrete events in time t1:n = (t1, t2, ..., tn), where ti ∈ R≥0 is the time when the ith event occurs.

These events usually come with other characteristics such as type of event, actor of event, etc.

In this literature, this information is known as mark and is modeled with the framework of mark

temporal point process [22]. A mark temporal point process provides a probability distribution

over events timing and the corresponding marks. Similarly, a mark temporal point process is an

stochastic process whose realization is a list of events described with their corresponding time and

mark x1:n = (x1, . . . , xn) where each event xi = (ti, yi) is represented by the time it happens ti as

well as the mark yi. In this thesis, we formalize the input to the problem, similar to mark temporal

point process as sequences of events x1:n = (x1, . . . , xn) described by their occurring times and

marks xi = (ti, yi) .

A temporal point process is usually characterized with the conditional intensity function λ(t)
which encodes the expected rate of events happening in a small area around t given the history of

past events. More precisely, the intensity function λ(t) is defined as the conditional probability of

observing an event in an infinitisemal area [t, t+ dt):

λ(t|H(t))dt = P{event in [t, t+ dt)|H(t)} (1.1)

where H(t) = (t1, t2, ..., ti−1) is the ordered sequence of all events that happened before time t

with t1 < t2 < · · · < ti−1 < t. Given the intensity defined as above, the conditional probability

3

density function of the time of the next event in the sequence can be written as follows [105]1:

f(t|H(t)) = λ(t|H(t)) exp
{
−
∫ t

ti−1
λ(u|H(u)) du

}
(1.2)

For a long while, various works in this literature used to build hand-crafted intensity function

in order to define a temporal point process [46, 54, 69]. For example, Poisson process [69] assumes

that events happen independent of each other where the intensity is a fixed positive constant. In

a more general case, inhomogeneous Poisson process is based on the assumption that intensity

could be a function of time, but still independent of other events. The key contribution of all these

models is to find a functional form of intensity that fits data distribution well by making various

parametric assumptions on the underlying generative process of the data. Although shown effective

in modeling simple synthetic datasets, these strong parametric assumptions make such frameworks

lack the flexibility to model the generative process for real-life and complex data, hindering wider

adoption of TPP-based frameworks.

Deep Neural Network (DNN) based algorithms have been shown effective and promising for

various tasks including classification [23, 24], retrieval [10], prediction [47], and more. To improve

the flexibility of point processes, multiple works proposed using DNNs especially recurrent neural

networks (or its more recent variants such as LSTM [51], GRU [17]) in temporal point process

learning [29, 60, 93, 134, 144]. In this line of work, history information is encoded by utilizing

recurrent neural networks and exploited in learning the intensity of the point process distribution.

Although improving over hand-crafted approaches, in these works, the intensity function is usu-

ally limited to simple forms which restricts the model performance. This is because the maximum

likelihood training criteria involved with these models requires the intensity function to be simple

for the likelihood to stays tractable2. More recently, a few works have tried to formulate TPP in

an intensity-free manner [79, 132, 133]. WGANTPP [132, 133] introduces modeling the point pro-

cess distribution using Wasserstein distance with generative adversarial network (GAN). RLPP [79]

formulates this problem in a reinforcement learning framework and treats future event predictions

as actions taken by an agent. Both of these models are optimized by trying to generate sequences

of samples that are indistinguishable from the ground-truth sequences. Although these models are

capable of generating realistic sequences, such training criteria fail to model the data distribution,

resulting in intractable likelihood.

In this dissertation, we contribute to event analysis in asynchronous time-series data by introducing

novel probabilistic models under the prospective of temporal point processes. Our proposed frame-

works aim to improve the flexibility and expressiveness of point processes in modeling complex

1The proof can be found in Proposition 2.1 of Rasmussen et al. [105]

2In point processes, when specifying the process by intensity function, an integration over the intensity function will
appear in the functional form of the likelihood (Equation 1.2).

4

real-world event sequences. First, we formulate our model with variational auto encoder (VAE)

paradigm, a powerful class of probabilistic models, and present a novel form of VAE modeling the

distribution of timing and categories of event sequences. Second, we connect the fields of point

processes and neural density estimation and propose a recurrent latent variable framework that di-

rectly models point processes distribution by utilizing normalizing flows. This approach is capable

of capturing highly complex temporal distribution and does not rely on any restrictive parametric

forms. Section 1.2 explains our contribution to this direction in more details.

1.1.2 Learning from Partially Labeled Data.

Recently, Stock and Cisse [116] presented empirical evidence that the performance of state-of-the-

art classifiers on ImageNet [109] is largely underestimated – much of the remaining error is due to

the fact that ImageNet’s single-label annotation ignores the intrinsic multi-label nature of the im-

ages. Unlike ImageNet, multi-label datasets (e.g. MS COCO [82], Open Images [75]) contain more

complex images that represent scenes with several objects. However, collecting multi-label anno-

tations is more difficult to scale-up than single-label annotations [25]. As an alternative strategy,

one can make use of partial labels; collecting partial labels is easy and scalable with crowdsourc-

ing platforms like Amazon Mechanical Turk3, and Google Image Labeler4 or web services like

reCAPTCHA5 which can scalably collect partial labels for a large number of images.

This direction is actively being pursued by the research community [122, 131, 136, 137]. How-

ever, these approaches are not scalable and cannot be used to fine-tune a ConvNet. In this disserta-

tion, we contribute to learning from partial labels by presenting a scalable approach to end-to-end

learn a deep network with partial labels. More specifically, we propose a framework for learning

from partially labeled image data with a multi-label classifier. First, we empirically compare several

labeling strategies to highlight the potential for learning with partial labels. Second, we introduce a

new loss function that enables end-to-end learning of a classifier from partially labeled data. Last,

we develop a method that uses graph neural networks to capture correlation between different cat-

egories to improve label prediction, and we use our model to predict missing labels. Section 1.2

explains our contribution to this direction in more details.

1.2 Contributions

This dissertation contributes to visual recognition in two main directions: modeling asynchronous

time-series data and learning from partial labels. Following is a summary of our contributions,

followed by sections for more details:

3https://www.mturk.com/

4https://crowdsource.google.com/imagelabeler/category

5https://www.google.com/recaptcha/

5

• A Variational Auto-Encoder Model for Stochastic Point Process [92]. We study point

processes under the prospective of deep generative models. Recently, deep generative mod-

els have achieved tremendous success in modeling complex real-world data distributions

[40, 66, 106] in different applications such as images and videos. We propose a probabilis-

tic generative model based on the framework of temporal point process for event sequences.

In this work, we focus on modeling human activity sequences as an example of event se-

quence data. The model is termed the Action Point Process VAE (APP-VAE), a variational

auto-encoder [66] that can capture the distribution over the times and categories of action

sequences. Modeling the variety of possible action sequences is a challenge, which we show

can be addressed via the APP-VAE’s use of latent representations and non-linear functions

to parameterize distributions over which event is likely to occur next in a sequence and at

what time. We empirically validate the efficacy of APP-VAE on challenging human activity

datasets.

• A Flexible Flow-Based Latent Variable Model for Asynchronous Action Sequences [91]
We connect the fields of temporal point process and neural density estimation [43, 106]. We

propose an intensity-free recurrent latent variable framework that directly models point pro-

cess distribution by utilizing normalizing flows. This approach is capable of capturing highly

complex temporal distributions and does not rely on restrictive parametric forms. Further-

more, with temporal latent variables, our model is also capable of capturing highly complex

temporal dependence structures. In this work, we focus on modeling asynchronous human

action sequences characterized by the time and type of actions. Comparisons with state-of-

the-art baseline models on challenging real-life datasets show that the proposed framework is

effective at modeling the stochasticity of discrete event sequences.

• Learning Deep Networks with Partially Labeled Data [30]. In this work, we tackle the

problem of learning deep networks. Deep networks have shown great performance for single-

label image classification (e.g. ImageNet), but it is necessary to move beyond the single-

label classification task because pictures of everyday life are inherently multi-label. Modeling

multi-label images is a more difficult task than single-label because both the input and output

spaces are more complex. Furthermore, collecting clean multi-label annotations is more dif-

ficult to scale-up than single-label annotations. To reduce the annotation cost, we propose to

train a model with partial labels i.e. only some labels are known per image. We first empiri-

cally compare different labeling strategies and show the potential for using partial labels on

multi-label datasets. Then to learn with partial labels, we introduce a new classification loss

that exploits the proportion of known labels per image. Our approach allows the use of the

same training settings as when learning with all the annotations. Experiments are performed

on large-scale multi-label datasets.

6

1.2.1 A Variational Auto-Encoder Model for Stochastic Point Process

Anticipatory reasoning to model the evolution of action sequences over time is a fundamental chal-

lenge in human activity understanding. Human activities produce sequences of events data whose

complex temporal dynamics need to be studied in order to be able to predict future activities, and

is of many domains interests such as surveillance and security, health-care monitoring and etc. The

crux of the problem in making predictions about the future is the fact that for interesting domains,

the future is uncertain – given a history of actions, the distribution over future actions has substantial

entropy.

Much of the work in this domain has focused on taking frame level data of video as input in

order to predict the actions or activities that may occur in the immediate future [1, 63, 76, 90, 126].

Such frame-based approaches could be computationally inefficient and limit the model’s ability

to make long-term predictions. As motivated earlier, point process framework is a better fit for

this problem, however, existing related work s [29, 144] make simplified assumption about the

action timing distribution which limits the models expressiveness in modeling complex real-word

distribution.

In this work, we propose a powerful generative approach that can effectively model the cate-

gorical and temporal variability comprising action sequences. The contributions of this work center

around the APP-VAE (Action Point Process VAE), a novel generative model for asynchronous time

action sequences. We formulated our model with the variational auto-encoder (VAE) paradigm, a

powerful class of probabilistic models that facilitate generation and the ability to model complex

distributions. We present a novel form of VAE for action sequences under a point process approach.

As a generative model, APP-VAE can produce action sequences by sampling from a prior distribu-

tion, the parameters of which are updated based on neural networks that control the distributions

over the next action type and its temporal occurrence. More specifically, in the generation phase,

APP-VAE receives the history of past actions and predicts two distribution over the future action:

one categorical distribution over the type of next action and one exponential distribution over its

timing.

We empirically validate the efficacy of APP-VAE for modeling human action sequences on the

MultiTHUMOS [139] and Breakfast [73] datasets. Experiments shows the efficiency and superior

performance of APP-VAE in capturing the uncertainty inherent in tasks such as density estimation

of action sequences, future action prediction and anomaly detection.

1.2.2 A Flexible Flow-Based Latent Variable Model for Asynchronous Action Se-
quences

Predicting action sequences of both what and when to happen is a fundamental inference task in

human activity understanding. We argue that the challenge of this task stems from four aspects: 1)

the complex dependence between the past and the future actions; 2) the complex structure of an

action, i.e. how the timing of an action is related to its label or vice versa; 3) the multi-modal nature

7

of future uncertainty, i.e. given a sequence of past actions, multiple different sequences of future

events could be of substantial possibility; 4) the diverse and complex distributions of future action

times.

Previous models, especially video frame-based ones, deal with the problem on a regularly

spaced time grid with short intervals between time-stamps [63, 89, 126]. However, actions are usu-

ally sparsely and irregularly spaced in terms of time. Such frame-based setup could be computa-

tionally inefficient and limit the expressiveness of model in making long-term predictions across

multiple actions. On the other side, in point process literature, existing approaches directly model

the marginal distributions of future action time and action category by making oversimplified inde-

pendence assumptions about the joint distribution. They also neglect the multi-modal possibility of

the future [29, 114].

This work improves over APP-VAE proposed in Section 1.2.1. Although APP-VAE provides a

more flexible framework compared to previous works, the model assumes that the time of the next

action follows an exponential distribution which could restrict the ability in modeling complex time

distributions.

We propose a recurrent latent variable model for action sequence generation and anticipation

that directly addresses the challenges mentioned before. In our proposed framework, the stochastic

latent variable encodes high-level information about possible future actions as well as how the future

action times and categories are correlated. When this latent code is combined with the history of

actions, it can be decoded into independent action category and time distributions that are consistent

with the past actions. Unlike existing approaches that rely on restrictive parametric distributions over

action timing, our approach makes use of the normalizing flow to generate flexible distributions

of event times. More specifically, we learn a distribution over the action timing by transforming

a simple base probability density through continuous normalizing flow, i.e. a series of invertible

transformations. Furthermore, with temporal latent variables, our model is also capable of capturing

highly complex temporal dependence structures. The proposed model is trained in a variational

filtering framework; it uses a separate inference network to propose the posterior distribution of the

latent variable conditioned on current observations and maximizes a variational lower bound.

The proposed model is evaluated on benchmark action sequence datasets of MultiTHUMOS [139]

and Breakfast dataset [73]. The recurrent latent variable model achieves state-of-the-art performance

on various tasks including density estimation, short-term prediction, and long-term conditional gen-

eration.

1.2.3 Learning Deep Networks with Partially Labeled Data

Recently, Stock and Cisse [116] presented empirical evidence that the performance of state-of-the-

art classifiers on ImageNet [109] is largely underestimated – much of the remaining error is due

to the fact that ImageNet’s single-label annotation ignores the intrinsic multi-label nature of the

images. Unlike ImageNet, multi-label datasets (e.g. MS COCO [82], Open Images [75]) contain

8

more complex images that represent scenes with several objects. However, collecting multi-label

annotations is more difficult to scale-up than single-label annotations [25].

To reduce the annotation cost, as an alternative strategy to fully annotation, one can make use

of partial labels; collecting partial labels is easy and scalable with crowd-sourcing platforms. In

the first part of this work, we study the problem of learning a multi-label classifier with partial

labels. We empirically compare different labeling strategies to show the potential for using partial

labels on multi-label datasets. Then to learn with partial labels, we introduce a loss function that

generalizes the standard binary cross-entropy loss by exploiting label proportion information. Our

approach allows the use of the same training settings as when learning with all the annotations. We

further explore several curriculum learning based strategies to predict missing labels. Experiments

are performed on three large-scale multi-label datasets: MS COCO, NUS-WIDE and Open Images.

9

Chapter 2

Background and Related Works

2.1 Event Analysis in Asynchronous Time-Series Data

2.1.1 Temporal Point Process

Temporal point processes (TPPs) [22] provide us with an elegant and effective mathematical frame-

work for modeling event sequences data. A TPP is a stochastic process whose realization is a se-

quence of discrete events in time t1:n = (t1, t2, ..., tn), where ti ∈ R≥0 is the time when the ith event

occurs. Similarly, the realization could be a sequence of inter-arrival times τ1:n = (τ1, τ2, ..., τn),

where inter-arrival time τi indicates the time difference between the starting time of two consecutive

events ti and ti−1. Figure 2.1 shows these quantities. In this report, we assume that all sequences

are simple such that no events coincide i.e. the absolute time of events are strictly ordered in time

ti > ti−1 and τi 6= 0.

Figure 2.1: Here, we can see a sequence of discrete events t1:4 where each ti shows the absolute
time when the i-th event happens and inter-arrival time τi shows the time gap between events ti and
ti−1.

Equivalently, a temporal point process can be also represented as a counting process N(t),

which defines the number of events that happened in the interval (0, t). Having this representation,

we can obtain the absolute time of events by keeping track of the times at which there is an increase

in the counting process.

10

Figure 2.2: Here we can see the three quantities used for defining the intensity function of a temporal
point process. f(t|H(t)) is the probability density function for time-step t5 given the historyH(t) =
(t1, t2, t3, t4). Quantities F (t|H(t)) and S(t|H(t)) are the corresponding cumulative and survival
functions respectively.

In general, the choice of any of absolute timing, inter-arrival time, or counting process represen-

tation is based on the problem of interest. Each representation has a different probability distribution

associated to it’s random variable. If one representation has a distribution that is complicated and

hard to work with, one can simply transform to the other two representations without any loss of

information. In this report, we use these representations interchangeably to define a point process.

2.1.1.1 Conditional Intensity

A temporal point process can be defined by specifying distributions of each inter-arrival time f(τi)
in the sequence τ1:n. The simplest case could be Poisson process [69] which assumes that in a

sequence, inter-arrival times are independent, and each f(τi) follows an exponential distribution

with a constant rate parameter λ:

f(τ) = λ exp(−λτ) (2.1)

In Possion process, the density function f does not depend on history in the sequence. Each

event in the sequence might depend on previous events in a very complex way, so its important

to take the history information into consideration. In general, it is hard to build intuition on how

to design density f to be history-dependent. Alternatively, the conditional intensity function pro-

vides a more intuitive and easier way to design a history-dependent process. Conditional intensity

λ(t|H(t)), also known as hazard function, is a popular way of characterizing a temporal point pro-

cess. Consider modeling the i-th event in the sequence, given the past history of all events that

happened before; for this case, the conditional intensity is defined as [105]:

λ(t|H(t)) = f(t|H(t))
1− F (t|H(t)) (2.2)

11

where history H(t) = (t1, t2, ..., ti−1) is the ordered sequence of all events that happened before

time t with t1 < t2 < · · · < ti−1 < t, and f(t|H(t)) is the probability density function of

the i-th event time given history of past event in the sequence and F (t|H(t)) is its corresponding

cumulative function. In point process literature, the term 1−F (t|H(t)) is known as survival function

S(t|H(t)) = 1−F (t|H(t)), which shows the probability that the next event will not happen before

time t. Figure 2.2 shows these three quantities.

Conditional intensity function can be interpreted as the expected rate of events happening in an

infinitisemal area [t, t+ dt):

λ(t|H(t))dt = f(t|H(t))dt
1− F (t|H(t)) (2.3)

= P(ti ∈ [t, t+ dt)|H(t))
P(ti /∈ (ti−1, t)|H(t)) (2.4)

= P(ti ∈ [t, t+ dt), ti /∈ (ti−1, t)|H(t))
P(ti /∈ (ti−1, t)|H(t)) (2.5)

= P(ti ∈ [t, t+ dt)|ti /∈ (ti−1, t),H(t)) (2.6)

= P{event in [t, t+ dt)|H(t)} (2.7)

= E[N(t+ dt)−N(t)|H(t)] (2.8)

With this interpretation, it is easier to build intuition on how to design a functional form that depends

on history, rather than directly working with the probability density function f . Indeed, given the

intensity defined as Equation 2.2, we can write the probability density function f with the following

proposition:

Proposition 1 ([105]). The reverse relation of (2.2) is given by

f(t|H(t)) = λ(t|H(t)) exp
{
−
∫ t

ti−1
λ(u|H(u)) du

}
.

Proof. By 2.2, we get that

λ(t|H(t)) = f(t|H(t))
1− F (t|H(t)) (2.9)

=
dt
d F (t|H(t))

1− F (t|H(t)) (2.10)

= −dt
d

log(1− F (t|H(t))). (2.11)

By the fundamental theorem of calculus and integrating both sides, we obtain∫ t

ti−1
λ(s|H(s))ds = −(log(1− F (t|H(t))))− log(1− F (ti−1|H(t))) (2.12)

= −(log(1− F (t|H(t)))), (2.13)

12

since F (ti−1|H(t)) = 0 (point ti = ti−1 with probability zero, since the sequences are simple; no

events coincide). By isolating F (t|H(t)) we get

F (t|H(t)) = 1− exp(−
∫ t

ti−1
λ(s|H(s))ds) (2.14)

Then by differentiating F (t|H(t)) with respect to t and using the fundamental theorem of calculus,

we get the claimed equality.

2.1.2 Mark Temporal Point Process

In temporal point process, event sequences are characterized by the time they happen. These events

usually come with other characteristics such as type of event, actor of event, etc. This information

is known as mark and is modeled with the framework of mark temporal point process.

Formally, a mark temporal point process [22] is a stochastic process whose realization is a se-

quence of events x1:n = (x1, . . . , xn) where each event xi = (ti, yi) is represented by the time it

happens ti and well as the mark yi. Mark temporal point process models the underlying distribu-

tion of events’ times as well as the underlying distribution of events’ marks. Similar to TPPs, the

distribution over event timing is usually characterized by the intensity function, which could be a

function of mark data as well. The choice of modeling mark data is application dependent, e.g. if

mark represents the type of event with a finite set of possible values i.e. yi ∈ 1, 2, ...,K (K discrete

event categories), it could be modeled as multinomial distribution.

2.1.3 Learning

Point process models are usually optimized by maximizing the likelihood of observed sequences un-

der the point process distribution. The likelihood function L is the joint probability density function

of observed sequence f(t1, t2, ..., tn) which can be decomposed into all the conditional probability

densities of each event given past history:

L(θ) = fθ(t1, t2, ..., tn) (2.15)

=
∏
i

fθ(ti|t1, t2, ..., ti−1) (2.16)

=
∏
i

fθ(ti|H(ti)) (2.17)

=
∏
i

λθ(ti|H(ti)) exp
{
−
∫ ti

ti−1
λθ(u|H(u)) du

}
. (2.18)

where θ is the set of point process parameters.

For mark temporal point processes, the likelihood function depends on how we factorize the

joint probability density of f(ti, yi|H(ti)). One simple factorization could be assuming that time

13

ti and mark yi are conditionally independent given the past history H(ti). In this case, given the

observed sequence (ti, yi)n1 = (t1, y1), (t2, y2), ..., (tn, yn), the likelihood is defined as:

L(θ) = fθ((t1, y1), (t2, y2), ..., (tn, yn)) (2.19)

=
∏
i

fθ(ti, yi|(t1, y1), (t2, y2), ..., (ti−1, yi−1)) (2.20)

=
∏
i

fθ(ti, yi|H(ti)) (2.21)

=
∏
i

fθ(ti|H(ti))fθ(yi|H(ti)) (2.22)

2.1.4 Basic intensity functions

Although temporal point process has shown to be useful in modeling events sequences, it is usually

not trivial to come up with a simple yet flexible intensity function. Various works explored different

design choices of intensity function to capture the phenomena of interest. Here we review some

popular hand-crafted design choices:

• Poisson Process. Poisson process [69] is based on the assumption that events happen inde-

pendent of each other where the intensity is a fixed positive constant:

λ(t) = λ > 0, (2.23)

In a more general case, λ could be a function of time λ(t|H(t)) = λ(t), but still independent

of other events, which is called inhomogeneous Poisson process.

• Self-exciting Process (Hawkes process). Self-exciting process [46] assumes that occurrence

of an event increases the probability of other events happening in near future. Here, the inten-

sity function has the functional form of:

λ(t|H(t)) = µ+ α
∑
ti<t

exp(−(t− ti)), (2.24)

where µ and α are positive constants and ti < t are all the events happening before time t.

• Self-correcting Process. In contrast to Hawkes process, self-correcting process [54] is based

on the idea that occurrence of an event decreases the probability of an event happening in near

future, and as time goes this probability will increase. The intensity function of self-correcting

process has the following form:

λ(t|H(t)) = exp(µt−
∑
ti<t

α), (2.25)

where µ and α are positive constants and ti < t are all the events happening before time t.

14

Figure 2.3: From [29]. "Architect of RMTPP. For a given sequence S = ((tj, yj)nj=1), at the j-
th event, the marker yj is first embedded into a latent space. Then, the embedded vector and the
temporal features are fed into the recurrent layer. The recurrent layer learns a representation that
summaries the nonlinear dependency over the previous events. Based on the learned representation
hj , it outputs the prediction for the next marker yj+1 and timing tj+1 to calculate the respective loss
functions"

The key contribution of these models is to find a functional form of intensity that fits data distri-

bution well by making various parametric assumptions on the underlying generative process of the

data. Although shown effective in modeling simple synthetic datasets, these strong parametric as-

sumptions make such frameworks lack the flexibility to model the generative process for real-life

and complex data, hindering wider adoption of TPP-based frameworks. In general, these types of

strong assumptions might not be even true in many real-world scenarios and are only applicable to

the cases where there exists a prior knowledge over the underlying generative process of the system.

2.1.5 Toward Deep Learning Approaches

Recently, learning the intensity function using recurrent neural networks (RNNs) to encode history

information has received an increasing amount of attention [29, 60, 93, 134, 144]. In this line of

work, history information is encoded by utilizing recurrent neural networks and exploited in learning

the intensity of the point process distribution. Here, we review [29] known as RMTPP in detail as

an example representing this line of work.

Du et al. [29] proposed a recurrent temporal model for learning the next event timing and mark

distributions given the history of previous events. In their model, an RNN learns a non-linear map

of history to the intensity function parameters of a marked temporal point process. Figure 2.3 shows

the general architecture of their proposed model. At time-step j, RNN takes timing tj and mark yj
and outputs the parameters of the next event time and mark distribution. For the time distribution,

the output parameters define the intensity function:

λ(t|H(t)) = exp(α.hj + β(t− tj) + b) (2.26)

15

where hj is the hidden state of the RNN at time-step j, and α, β, b are the model parameters which

control the effect of past history, the current input and the prior in the intensity respectively.

For the event’s mark distribution, the output parameters define a multi-nomial distribution i.e.

the probability of occurrence of each action category (mark):

p(yj+1 = k|H(t)) = pk(hj) and
K∑
k=1

pk(hj) = 1 (2.27)

RNN and intensity function parameters are jointly learned by maximizing the log-likelihood of

observed sequences under the predicted distributions.

In this line of literature, the explicit assumption on the forms of dependency over history is re-

laxed. However, the maximum likelihood training criteria on these models still require the intensity

function to be simple for the likelihood to be tractable.

Lately, Omi et al. [96] generalizes previous RNN-based approaches by modeling the evolution

of intensity function using recurrent neural network. Despite previous works where RNN was used

only for representing the effect of history in the intensity function, here, the whole intensity func-

tion is modeled by RNNs. In this approach, first, the integral of the intensity function (cumulative

intensity function) is learned using neural networks:

Λ(τ |hi) =
∫ τ

0
λ(s|hi)ds. (2.28)

where hi is an encoding of the history H(i) at time-step i given by an RNN. Then, the intensity

function is obtained by differentiating the neural network:

λ(τ |hi) = ∂Λ(τ |hi)
∂τ

. (2.29)

In this approach, the intensity function could be highly complex while the likelihood stays

tractable. But this formulation comes with a drawback of a costly sampling from the the proba-

bility density function f(t|H(t)), because of not having an analytical form for the intensity.1

Recently, Chen et al. [13] has opened up a new prospective in modeling temporal sequences by

introducing Neural Ordinary Differential Equations (Neural ODEs) that models the continuous flow

of a sequence in time. With Neural ODEs, each sequence t0, t1, t2, ..., tn is represented by a latent

trajectory zt0 , zt1 , zt2 , ..., ztn , where the continuous transformation of latent state zti over time is

1They need to apply an iterative root finding algorithm to get a sample from the probability density function f(t|H(t)).

16

Figure 2.4: From [13]. "Computation graph of the latent ODE model". Here, hti represents the
hidden state of encoder RNN at time-step i.

modeled as an ODE flow parameterized by a neural network f :

zt0 ∼ p(z0) (2.30)

zt1 , zt2 , ..., ztn = ODESolve(zt0 , f, θf , t0, .., tn) (2.31)

∂z(t)
∂t

= f(z(t), θf) (2.32)

where θf shows the parameters of f. Figure 2.4 shows the computational graph of their proposed la-

tent ODE model. They embed their proposed latent ODE model in a variational autoencoder frame-

work [66] where the posterior network (parametrized by φ) takes a sequence of asynchronous ob-

servation x1, x2, ..., xN backward in time and output the latent distribution qφ(zt0 |x1, x2, ..., xN).

Then, a sample is drawn from the posterior distribution zt0 ∼ qφ(zt0 |x1, .., xN) and latent tra-

jectory zt1 , zt2 , ..., ztn is obtained by ODESolve(zt0 , f, θf , t0, .., tn, ..., tM). For time-step i in the

sequence, the latent state zti is passed to the decoder and it outputs xi ∼ p(xi|zti , θx).

They also model intensity of an inhomogeneous Poisson process as a function of latent state,

where the likelihood of a sequence of observations in an interval [tstart, tend] is as follow:

log p(t1, ..., tn|tstart, tend) =
N∑
i=1

log λ(zti)−
∫ tend

tstart
λ(z(t))dt (2.33)

Most recently, Rubanova et al. [108] extended this approach by replacing the RNNs in the pos-

terior network of Chen et al. [13] model with ODE-RNNs. Unlike standard RNNs where hidden

states are constant between observations, they introduced ODE-RNNs where the hidden states fol-

low a complex trajectory learned by Neural ODEs. Comparison of RNNs vs ODE-RNNs is shown

in Figure 2.5. In ODE-RNNs, the hidden states evolve according to an ODE between observations

instead of being fixed. In other words, it takes the time-gaps between observations into account,

which would be beneficial when working with irregularly sampled time-series data.

17

Figure 2.5: From [108]. ODE-RNN compared to standard RNN. "Standard RNNs have constant or
undefined hidden states between observations. States of Neural ODE follow a complex trajectory
but are determined by the initial state. The ODE-RNN model has states which obey an ODE between
observations, and are also updated at observations"

Both models proposed by Chen et al. [13] and Rubanova et al. [108] lack the ability to model

the effect of event’s history over the dynamic of the system. In other words, the flow trajectory of

the latent state does not depend on the history. Recent work by Jia and Benson [57] addresses this

shortcoming by introducing Neural Jump Stochastic Differential Equations where the dynamic of

the system is governed by a latent state which is history dependent. The system is described by a

latent state z(t), which has a continuous flow until an event happens; occurrence of an event makes

an abrupt jump in the latent trajectory:

dz(t) = f(z(t), θ) + w(z(t), θ).dN(t) (2.34)

λ(t) = λ(z(t), θf) (2.35)

where f controls the continuous flow of the system, w controls the effects of jumps, θ is the set of

f and w parameters, and N(t) is the number of events happened before time t. Although this work

provides a nice design for incorporating history information in modeling point process sequences,

the intensity predicted by the model is a constant, which might not be expressive enough in some

cases.

2.1.6 Intensity-free Point Processes

In general, it might not be necessary to explicitly model the intensity when modeling point pro-

cesses. In this line , a few works have tried to formulate TPP in an intensity-free manner.

WGANTPP [132, 133] introduced an intensity-free framework for modeling point processes

using Wasserstein distance built upon a generative adversarial network (GAN). Two models are

used to play a min-max game; a generator gθ which samples from noise ζ ∼ Pz and tries to change

it into a sample in a way to mimic real point process sequences and a discriminator fw which tries to

discriminate between real sequences and fake sequences generated by the generator. Both generator

18

and discriminator are optimized using Wasserestein distance:

min
θ

max
w∈W,‖fw‖L≤1

Eξ∼Pr [fw(ξ)]−Eζ∼Pz [fw(gθ(ζ))] (2.36)

where Pr denotes the real data distribution. It is worth noting that Pz is a Poisson process and the

generator here, is applying a transformation is the space of counting measure.

In this line, RLPP [79] also proposed a new intensity-free framework exploring connections of

reinforcement learning and temporal point processes. They formulate future event predictions as

actions taken by an agent and the goal is to learn the policy that simulate a point process.

Both WGANTPP and RLPP models are optimized by trying to generate sequences of samples

that are indistinguishable from the ground-truth sequences (by a discriminator in WGANTPP and

policy learning in RLPP). Although these models are capable of generating realistic sequences, such

training criteria results in an intractable likelihood.

2.2 Learning With Partial / Missing Labels.

Multi-label tasks often involve incomplete training data, hence several methods have been proposed

to solve the problem of multi-label learning with missing labels (MLML). The first and simple

approach is to treat the missing labels as negative labels [5, 88, 94, 118, 119, 128]. The MLML

problem then becomes a fully labeled learning problem. This solution is used in most webly su-

pervised approaches [88, 118]. The standard assumption is that only the category of the query is

present (e.g. car in Figure 4.1) and all the other categories are absent. However, performance drops

because a lot of ground-truth positive labels are initialized as negative labels [61]. A second solution

is Binary Relevance (BR) [122], which treats each label as an independent binary classification. But

this approach is not scalable when the number of categories grows and it ignores correlations be-

tween labels and between instances, which can be helpful for recognition. Unlike BR, our proposed

approach allows to learn a single model using partial labels.

To overcome the second problem, several works proposed to exploit label correlations from the

training data to propagate label information from the provided labels to missing labels. [8, 136] used

a matrix completion algorithm to fill in missing labels. These methods exploit label-label correla-

tions and instance-instance correlations with low-rank regularization on the label matrix to complete

the instance-label matrix. Similarly, [141] introduced a low rank empirical risk minimization, [131]

used a mixed graph to encode a network of label dependencies and [25, 94] learned correlation be-

tween the categories to predict some missing labels. Unlike most of the existing models that assume

that the correlations are linear and unstructured, [137] proposed to learn structured semantic correla-

tions. Another strategy is to treat missing labels as latent variables in probabilistic models. Missing

labels are predicted by posterior inference. [62, 124] used models based on Bayesian networks [56]

whereas [18] proposed a deep sequential generative model based on a Variational Auto-Encoder

framework [66] that also allows to deal with unlabeled data.

19

However, most of these works cannot be used to learn a deep ConvNet. They require solving

an optimization problem with the training set in memory, so it is not possible to use a mini-batch

strategy to fine-tune the model. This is limiting because it is well-known that fine-tuning is impor-

tant to transfer a pre-trained architecture [72]. Some methods are also not scalable because they

require to solve convex quadratic optimization problems [131, 137] that are intractable for large-

scale datasets. Unlike these methods, we propose a model that is scalable and end-to-end learnable.

To train our model, we introduce a new loss function that adapts itself to the proportion of known

labels per example. Similar to some MLML methods, we also explore several strategies to fill-in

missing labels by using the learned classifier.

Learning with partial labels is different from semi-supervised learning [12] because in the semi-

supervised learning setting, only a subset of the examples is labeled with all the labels and the other

examples are unlabeled whereas in the partial labels setting, all the images are labeled but only with

a subset of labels. Note that [21] also introduced a partially labeled learning problem (also called

ambiguously labeled learning) but this problem is different: in [21], each example is annotated with

multiple labels but only one is correct.

20

Chapter 3

A Variational Auto-Encoder Model for
Stochastic Point Processes

We propose a novel probabilistic generative model for action sequences. The model is termed the

Action Point Process VAE (APP-VAE), a variational auto-encoder that can capture the distribution

over the times and categories of action sequences. Modeling the variety of possible action sequences

is a challenge, which we show can be addressed via the APP-VAE’s use of latent representations

and non-linear functions to parameterize distributions over which event is likely to occur next in a

sequence and at what time. We empirically validate the efficacy of APP-VAE for modeling action

sequences on the MultiTHUMOS and Breakfast datasets.

This chapter was published as A variational auto-encoder model for stochastic point processes

in the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 2019

[92].

3.1 Overview

Anticipatory reasoning to model the evolution of action sequences over time is a fundamental chal-

lenge in human activity understanding. The crux of the problem in making predictions about the

future is the fact that for interesting domains, the future is uncertain – given a history of actions

such as those depicted in Fig. 3.1, the distribution over future actions has substantial entropy.

In this work, we propose a powerful generative approach that can effectively model the cate-

gorical and temporal variability comprising action sequences. Much of the work in this domain has

focused on taking frame level data of video as input in order to predict the actions or activities that

may occur in the immediate future. There has also been recent interest on the task of predicting the

sequence of actions that occur farther into the future [1, 29, 144].

Time series data often involves regularly spaced data points with interesting events occurring

sparsely across time. This is true in case of videos where we have a regular frame rate but events of

interest are present only in some frames that are infrequent. We hypothesize that in order to model

future events in such a scenario, it is beneficial to consider the history of sparse events (action

21

Figure 3.1: It is difficult to make predictions, especially about the future. Given a history of past ac-
tions, multiple actions are possible in the future. We focus on the problem of learning a distribution
over the future actions – what are the possible action categories and when will they start.

categories and their temporal occurrence in the above example) alone, instead of regularly spaced

frame data. While the history of frames contains rich information over and above the sparse event

history, we can possibly create a model for future events occurring farther into the future by choosing

to only model the sparse sequence of events. This approach also allows us to model high-level

semantic meaning in the time series data that can be difficult to discern from low-level data points

that are regular across time.

Figure 3.2 shows the overall structure of our proposed framework. Our model is formulated in

the variational auto-encoder (VAE) [66] paradigm, a powerful class of probabilistic models that fa-

cilitate generation and the ability to model complex distributions. We present a novel form of VAE

for action sequences under a point process approach. This approach has a number of advantages, in-

cluding a probabilistic treatment of action sequences to allow for likelihood evaluation, generation,

and anomaly detection.

Contribution.
The contributions of this work center around the APP-VAE (Action Point Process VAE), a novel

generative model for asynchronous time action sequences. The contributions of this work include:

• A novel formulation for modeling point process data within the variational auto-encoder

paradigm.

• Conditional prior models for encoding asynchronous time data.

22

Figure 3.2: Given the history of actions, APP-VAE generates a distribution over possible actions
in the next step. APP-VAE can recurrently perform this operation to model diverse sequences of
actions that may follow. The figure shows the distributions for the fourth action in a basketball
game given the history of first three actions.

• A probabilistic model for jointly capturing uncertainty in which actions will occur and when

they will happen.

23

3.2 Related Work

Activity Prediction. Most activity prediction tasks are frame-based, i.e. the input to the model is a

sequence of frames before the action starts and the task is predict what will happen next. Lan et al.

[77] predict future actions from hierarchical representations of short clips by having different classi-

fiers at each level in a max-margin framework. Mahmud et al. [90] jointly predicts future activity as

well as its starting time by a multi-streams framework. Each streams tries to catch different features

for having a richer feature representation for future prediction: One stream for visual information,

one for previous activities and the last one focusing on the last activity.

Farha et al. [1] proposed a framework for predicting the action categories of a sequence of

future activities as well as their starting and ending time. They proposed two deterministic models,

one using a combination of RNN and HMM and the other one is a CNN predicting a matrix which

future actions are encoded in it.

Asynchronous Action Prediction. We focus on the task of predicting future action given a

sequence of previous actions that are asynchronous in time. Du et al. [29] proposed a recurrent

temporal model for learning the next activity timing and category given the history of previous

actions. Their recurrent model learns a non-linear map of history to the intensity function of a

temporal point process framework. Zhong et al. [144] also introduced a hierarchical recurrent

network model for future action prediction for modeling future action timing and category. Their

model takes frame-level information as well as sparse high-level events information in the history

to learn the intensity function of a temporal point process. Xiao et al. [132] introduced an intensity-

free generative method for temporal point process. The generative part of their model is an extension

of Wasserstein GAN in the context of temporal point process for learning to generate sequences of

action.

Early Stage Action Prediction. Our work is related to early stage action prediction. This task

refers to predicting the action given the initial frames of the activity [50, 87, 115]. Our task is differ-

ent from early action prediction, because the model doesn’t have any information about the action

while predicting it. Recently Yu et al. [142] used variational auto-encoder to learn from the frames

in the history and transfer them into the future. Sadegh Aliakbarian et al. [110] combine context and

action information using a multi-stage LSTM model to predict future action. The model is trained

with a loss function which encourages the model to predict action with few observations. Gao et al.

[38] proposed to use a Reinforced Encoder-Decoder network for future activity prediction. Damen

et al. [7] proposed a semi-supervised variational recurrent neural network to model human activity

including classification, prediction, detection and anticipation of human activities.

Video Prediction. Video prediction has recently been studied in several works. Denton and

Fergus [26] use a variational auto-encoder framework with a learned prior to generate future video

frames. He et al. [48] also proposed a generative model for future prediction. They structure the

latent space by adding control features which makes the model able to control generation. Vondrick

et al. [127] uses adversarial learning for generating videos of future with transforming the past

24

pixels. Patraucean et al. [102] describe a spatio-temporal auto-encoder that predicts optical flow as

a dense map, using reconstruction in its learning criterion. Villegas et al. [125] propose a hierarchical

approach to pixel-level video generation, reasoning over body pose before rendering into a predicted

future frame.

25

3.3 Asynchronous Action Sequence Modeling
T

R
A

IN
IN

G
G

E
N

E
R

A
T

IO
N

Figure 3.3: Our proposed recurrent VAE model for asynchronous action sequence modeling. At each
time step, the model uses the history of actions and inter-arrival times to generate a distribution over
latent codes, a sample of which is then decoded into two probability distributions for the next action:
one over possible action labels and one over the inter arrival time.

We first introduce some notations and the problem definition. Then we review the VAE model

and temporal point process that are used in our model. Subsequently, we present our model in detail

and how it is trained.

Problem definition. The input is a sequence of actions x1:n = (x1, . . . , xn) where xn is the n-th

action. The action xn = (an, τn) is represented by the action category an ∈ {1, 2, . . . ,K} (K

discrete action classes) and the inter-arrival time τn ∈ R+. The inter-arrival time is the difference

between the starting time of action xn−1 and xn. We formulate the asynchronous action distribution

modeling task as follows: given a sequence of actions x1:n−1, the goal is to produce a distribution

over what action an will happen next, and the inter arrival time τn. We aim to develop probabilistic

models to capture the uncertainty over these what and when questions of action sequence modeling.

3.3.1 Background: Base Models

Variational Auto-Encoders (VAEs). A VAE [66] describes a generative process with simple prior

pθ(z) (usually chosen to be a multivariate Gaussian) and complex likelihood pθ(x|z) (the parameters

of which are produced by neural networks). x and z are observed and latent variables, respectively.

Approximating the intractable posterior pθ(z|x) with a recognition neural network qφ(z|x), the

parameters of the generative model θ as well as the recognition model φ can be jointly optimized

26

by maximizing the evidence lower bound L on the marginal likelihood pθ(x):

log pθ(x) = KL(qφ‖pθ) + L(θ, φ)

≥ L(θ, φ) = −Eqφ
[
log qφ(z|x)

pθ(z, x)

]
.

(3.1)

Recent works expand VAEs to time-series data including video [2, 26, 48], text [20, 52], or

audio [140]. A popular design choice of such models is the integration of a per time-step VAE

with RNN/LSTM temporal modelling. The ELBO thus becomes a summation of time-step-wise

variational lower bound1:

L(θ, φ, ψ) =
N∑
n=1

[
Eqφ(z1:n|x1:n) [log pθ(xn|x1:n−1, z1:n)]

− KL(qφ(zn|x1:n)||pψ(zn|x1:n−1))
]
. (3.2)

with a “prior" pψ(zn|x1:n−1) that evolves over the N time steps used.

Temporal point process. A temporal point process is a stochastic model used to capture the

inter-arrival times of a series of events. A temporal point process is characterized by the conditional

intensity function λ(τn|x1:n−1), which is conditioned on the past events x1:n−1 (e.g. action in this

work). The conditional intensity encodes instantaneous probabilities at time τ . Given the history of

n− 1 past actions, the probability density function for the time of the next action is:

f(τn|x1:n−1) = λ(τn|x1:n−1)e
−
τn∫
0
λ(u|x1:n−1) du

(3.3)

The Poisson process [69] is a popular temporal point process, which assumes that events occur

independent of one another. The conditional intensity is λ(τn|x1:n−1) = λ where λ is a positive

constant. More complex conditional intensities have been proposed like Hawkes Process [46] and

Self-Correcting Process [54]. All these conditional intensity function seek to capture some forms

of dependency on the past action. However, in practice the true model of the dependencies is never

known [93] and the performance depend on the design of the conditional intensity. In this work, we

learn a recurrent model that estimates the conditional intensity based on the history of actions.

3.3.2 Proposed Approach

We propose a generative model for asynchronous action sequence modeling using the VAE frame-

work. Figure 3.3 shows the architecture of our model. Overall, the input sequence of actions and

inter arrival times are encoded using a recurrent VAE model. At each step, the model uses the history

1Note that variants exist, depending on the exact form of the recurrent structure and its VAE instantiation.

27

of actions to produce a distribution over latent codes zn, a sample of which is then decoded into two

probability distributions: one over the possible action categories and another over the inter-arrival

time for the next action. We now detail our model.

Model. At time step n during training, the model takes as input the action xn, which is the target of

the prediction model, and the history of past actions x1:n−1. These inputs are used to compute a con-

ditional distribution qφ(zn|x1:n) from which a latent code zn is sampled. Since the true distribution

over latent variables zn is intractable we rely on a time-dependent inference network qφ(zn|x1:n)
that approximates it with a conditional Gaussian distribution N (µφn , σ2

φn
). To prevent zn from just

copying xn, we force qφ(zn|x1:n) to be close to the prior distribution p(zn) using a KL-divergence

term. Usually in VAE models, p(zn) is a fixed Gaussian N (0, I). But a drawback of using a fixed

prior is that samples at each time step are drawn randomly, and thus ignore temporal dependencies

present between actions. To overcome this problem, a solution is to learn a prior that varies across

time, being a function of all past actions except the current action pψ(zn+1|x1:n). Both prior and

approximate posterior are modelled as multivariate Gaussian distributions with diagonal covariance

with parameters as shown below:

qφ(zn|x1:n) = N (µφn , σ2
φn) (3.4)

pψ(zn+1|x1:n) = N (µψn+1 , σ
2
ψn+1) (3.5)

At step n, both posterior and prior networks observe actions x1:n but the posterior network outputs

the parameters of a conditional Gaussian distribution for the current action xn whereas the prior

network outputs the parameters of a conditional Gaussian distribution for the next action xn+1.

At each time-step during training, a latent variable zn is drawn from the posterior distribution

qφ(zn|x1:n). The output action x̂n is then sampled from the distribution pθ(xn|zn) of our conditional

generative model which is parameterized by θ. For mathematical convenience, we assume the action

category and inter-arrival time are conditionally independent given the latent code zn:

pθ(xn|zn) = pθ(an, τn|zn) = paθ(an|zn)pτθ(τn|zn) (3.6)

where paθ(an|zn) (resp. pτθ(τn|zn)) is the conditional generative model for action category (resp.

inter-arrival time). This is a standard assumption in event prediction [29, 144]. The sequence model

generates two probability distributions: (i) a categorical distribution over the action categories and

(ii) a temporal point process distribution over the inter-arrival times for the next action.

The distribution over action categories is modeled with a multinomial distribution when an can

only take a finite number of values:

paθ(an = k|zn) = pk(zn) and
K∑
k=1

pk(zn) = 1 (3.7)

28

where pk(zn) is the probability of occurrence of action k, and K is the total number of action

categories.

The inter-arrival time is assumed to follow an exponential distribution parameterized by λ(zn),

similar to a standard temporal point process model:

pτθ(τn|zn) =

λ(zn)e−λ(zn)τn if τn ≥ 0

0 if τn < 0
(3.8)

where pτθ(τn|zn) is a probability density function over random variable τn and λ(zn) is the intensity

of the process, which depends on the latent variable sample zn.

Learning. We train the model by optimizing the variational lower bound over the entire sequence

comprised of N steps:

Lθ,φ(x1:N) =
N∑
n=1

(Eqφ(zn|x1:n)[log pθ(xn|zn)] (3.9)

−DKL(qφ(zn|x1:n)||pψ(zn|x1:n−1)))

Because the action category and inter-arrival time are conditionally independent given the latent

code zn, the log-likelihood term can be written as follows:

Eqφ(zn|x1:n)[log pθ(xn|zn)] = (3.10)

Eqφ(zn|x1:n)[log paθ(an|zn)] + Eqφ(zn|x1:n)[log pτθ(τn|zn)]

Given the form of paθ the log-likelihood term reduces to a cross entropy between the predicted

action category distribution paθ(an|zn) and the ground truth label a∗n. Given the ground truth inter-

arrival time τ∗n , we compute its log-likelihood over a small time interval ∆τ under the predicted

distribution.

log
[∫ τ∗

n+∆τ

τ∗
n

pτθ(τn|zn) dτn

]
= log(1− e−λ(zn)∆τ) (3.11)

− λ(zn)τ∗n

We use the re-parameterization trick [66] to sample from the encoder network qφ.

Generation. The goal is to generate the next action x̂n = (ân, τ̂n) given a sequence of past

actions x1:n−1. The generation process is shown on the bottom of Figure 3.3. At test time, an action

at step n is generated by first sampling zn from the prior. The parameters of the prior distribution

are computed based on the past n− 1 actions x1:n−1. Then, an action category ân and inter-arrival

29

time τ̂n are generated as follows:

ân ∼ paθ(an|zn) τ̂n ∼ pτθ(τn|zn) (3.12)

Architecture. We now describe the architecture of our model in detail. At step n, the current

action xn is embedded into a vector representation xembn with a two-step embedding strategy. First,

we compute a representation for the action category (an) and the inter-arrival time (τn) separately.

Then, we concatenate these two representations and compute a new representation xembn of the

action.

aembn =femba (an) τ embn = fembτ (τn) (3.13)

xembn = femba,τ ([aembn , τ embn]) (3.14)

We use a 1-hot encoding to represent the action category label an. Then, we have two branches: one

to estimate the parameters of the posterior distribution and another to estimate the parameters of

the prior distribution. The network architecture of these two branches is similar but we use separate

networks because the prior and the posterior distribution capture different information. Each branch

has a Long Short Term Memory (LSTM) [51] to encode the current action and the past actions into

a vector representation:

hpostn = LSTMφ(xembn , hpostn−1) (3.15)

hpriorn = LSTMψ(xembn , hpriorn−1) (3.16)

Recurrent networks turn variable length sequences into meaningful, fixed-sized representations. The

output of the posterior LSTM hpostn (resp. prior LSTM hpriorn) is passed into a posterior (also called

inference) network fpostφ (resp. prior network fpriorψ) that outputs the parameters of the Gaussian

distribution:

µφn , σ
2
φn = fpostφ (hpostn) (3.17)

µψn , σ
2
ψn = fpriorψ (hpriorn) (3.18)

Then, a latent variable zn is sampled from the posterior (or prior during testing) distribution and is

fed to the decoder networks for generating distributions over the action category an and inter-arrival

time τn.

The decoder network for action category faθ (zn) is a multi-layer perceptron with a softmax

output to generate the probability distribution in Eq. 3.7:

paθ(an|zn) = faθ (zn) (3.19)

30

The decoder network for inter-arrival time f τθ (zn) is another multi-layer perceptron, producing the

parameter for the point process model for temporal distribution in Eq. 3.8:

λ(zn) = f τθ (zn) (3.20)

During training, the parameters of all the networks are jointly learned in an end-to-end fashion.

31

Dataset Model Stoch. Var. LL

Breakfast
APP-LSTM - -6.668
APP-VAE w/o Learned Prior 3 ≥-9.427
APP-VAE 3 ≥-5.944

MultiTUHMOS
APP-LSTM - -4.190
APP-VAE w/o Learned Prior 3 ≥-5.344
APP-VAE 3 ≥-3.838

Table 3.1: Comparison of log-likelihood on Breakfast and MultiTHUMOS datasets.

3.4 Experiments

Datasets. We performed experiments using APP-VAE on two action recognition datasets. We use

the standard training and testing sets for each.

MultiTHUMOS Dataset [139] is a challenging dataset for action recognition, containing 400 videos

of 65 different actions. On average, there are 10.5 action class labels per video and 1.5 actions per

frame.

Breakfast Dataset [73] contains 1712 videos of breakfast preparation for 48 action classes. The

actions are performed by 52 people in 18 different kitchens.

Architecture details. The APP-VAE model architecture is shown in Fig. 3.3. Action category

and inter-arrival time inputs are each passed through 2 layer MLPs with ReLU activation. They are

then concatenated and followed with a linear layer. Hidden state of prior and posterior LSTMs is

128. Both prior and posterior networks are 2 layer MLPs, with ReLU activation after the first layer.

Dimension of the latent code is 256. Action decoder is a 3 layer MLP with ReLU at the first two

layers and softmax for the last one. The time decoder is also a 3 layer MLP with ReLU at the first

two layers, with an exponential non-linearity applied to the output to ensure the parameter of the

point process is positive.

Implementation details. The models are implemented with PyTorch [101] and are trained using

the Adam [65] optimizer for 1,500 epochs with batch size 32 and learning rate 0.001. We split the

standard training set of both datasets into training and validation sets containing 70% and 30% of

samples respectively. We select the best model during training based on the model loss (Eq. 3.10)

on the validation set.

Baselines. We compare APP-VAE with the following models for action prediction tasks.

• Time Deterministic LSTM (TD-LSTM). This is a vanilla LSTM model that is trained to predict

the next action category and the inter-arrival time, comparable with the model proposed by

Farha et al. [1]. This model directly predicts the inter-arrival time and not the distribution

over it. TD-LSTM uses the same encoder network as APP-VAE. We use cross-entropy loss

32

for action category output and perform regression over inter-arrival time using mean squared

error (MSE) loss similar to [1].

• Action Point Process LSTM (APP-LSTM). This baseline predicts the inter-arrival time distri-

bution similar to APP-VAE. The model uses the same reconstruction loss function as in the

VAE model – cross entropy loss for action category and negative log-likelihood (NLL) loss for

inter-arrival time. APP-LSTM does not have the stochastic latent code that allows APP-VAE

to model diverse distributions over action category and inter-arrival time. Our APP-LSTM

baseline encompasses Du et al. [29]’s work. The only difference is the way we model the

intensity function (IF). Du et al. [29] defines IS explicitly as a function of time. This design

choice has been investigated in Zhong et al. [144]; an implicit intensity function is shown to

be superior and thus adapted in our APP-LSTM baseline.

Metrics. We use log-likelihood (LL) to compare our model with the APP-LSTM. We also report

accuracy of action category prediction and mean absolute error (MAE) of inter-arrival time predic-

tion. We calculate accuracy by comparing the most probable action category from the model output

with the ground truth category. To calculate MAE, we use the expected inter-arrival time under the

predicted distribution pτθ(τn|zn):

Epτ
θ
(τn|zn)[τn] =

∞∫
0

τn · pτθ(τn|zn)dτn = 1
λ(zn) (3.21)

The expected value 1
λ(zn) and the ground truth inter-arrival time are used to compute MAE.

Dataset Model Time Loss stoch. var. ↑ accuracy ↓MAE

Breakfast

TD-LSTM MSE - 53.64 173.76
APP-LSTM NLL - 61.39 152.17
APP-VAE w/o Learned Prior NLL 3 27.09 270.75
APP-VAE NLL 3 62.20 142.65

MultiTUHMOS

TD-LSTM MSE - 29.74 2.33
APP-LSTM NLL - 36.31 1.99
APP-VAE w/o Learned Prior NLL 3 8.79 2.02
APP-VAE NLL 3 39.30 1.89

Table 3.2: Accuracy of action category prediction and Mean Absolute Error (MAE) of inter-arrival
time prediction of all model variants. Arrows show whether lower (↓) or higher (↑) scores are
better.

3.4.1 Experiment Results

We discuss quantitative and qualitative results from our experiments. All quantitative experiments

are performed by teacher forcing methodology i.e. for each step in the sequence of actions, the

33

Figure 3.4: Examples of generated sequences. Given the history (shown at left), we generate a dis-
tribution over latent code zn for the subsequent time step. A sample is drawn from this distribution,
and decoded into distributions over action category and time, from which a next action/time pair
by selecting the action with the highest probability and computing the expectation of the generated
distribution over τ (Equation 3.21). This process is repeated to generate a sequence of actions. Two
such sampled sequences (a) and (b) are shown for each history, and compared to the respective
ground truth sequence (in line with history row). We can see that APP-VAE is capable of generating
diverse and plausible action sequences.

models are fed the ground truth history of actions, and likelihood and/or other metrics for the next

action are measured.

Quantitative results. Table 3.1 shows experimental results that compare APP-VAE with the APP-

LSTM. To estimate the log-likelihood (LL) of our model, we draw 1500 samples from the approx-

imate posterior distribution, following the standard approach of importance sampling. APP-VAE

outperforms the APP-LSTM on both MultiTHUMOS and Breakfast datasets. We believe that this is

because the APP-VAE model is better in modeling the complex distribution over future actions.

Table 3.2 shows accuracy and MAE in predicting the future action given the history of previous

actions. APP-VAE outperforms TD-LSTM and APP-LSTM under both the metrics. For each step

in the sequence we draw 1500 samples from the prior distribution that models the next step action.

Given the output distributions, we select the action category with the maximum probability as the

predicted action, and the expected value of inter-arrival time as the predicted inter-arrival time. Out

34

Test sequences with high likelihood

1 NoHuman, CliffDiving, Diving, Jump, BodyRoll, CliffDiving, Diving, Jump, BodyRoll,
CliffDiving, Diving, Jump, BodyRoll, BodyContract, Run, CliffDiving, Diving, Jump, ...,
BodyRoll, CliffDiving, Diving, BodyContract, CliffDiving, Diving, CliffDiving, Diving,
CliffDiving, Diving, Jump, CliffDiving, Diving, Walk, Run, Jump, Jump, Run, Jump

2 CleanAndJerk, PickUp, BodyContract, Squat, StandUp, BodyContract, Squat, CleanAndJerk,
PickUp, StandUp, BodyContract, Squat, CleanAndJerk, PickUp, StandUp, Drop, BodyContract,
Squat, PickUp, ..., Squat, StandUp, Drop, BodyContract, Squat, BodyContract, Squat,
BodyContract, Squat, BodyContract, Squat, BodyContract, Squat, NoHuman

Test sequences with low likelihood

1 NoHuman, TalkToCamera, GolfSwing, GolfSwing, GolfSwing, GolfSwing, NoHuman

2 NoHuman, HammerThrow, TalkToCamera, CloseUpTalkToCamera, HammerThrow,
HammerThrow, HammerThrow, TalkToCamera, ..., HammerThrow, HammerThrow,
HammerThrow, HammerThrow, HammerThrow, HammerThrow, HammerThrow,
HammerThrow, HammerThrow, HammerThrow, HammerThrow, HammerThrow,
HammerThrow

Table 3.3: Example of test sequences with high and low likelihood according to our learned model

Dataset Model Acc MAE

Breakfast APP-VAE - avg 59.02 145.95
APP-VAE - mode 62.20 142.65

MultiTUHMOS APP-VAE - avg 35.23 1.96
APP-VAE - mode 39.30 1.89

Table 3.4: Accuracy (Acc) and Mean Absolute Error (MAE) under mode and averaging over sam-
ples.

of 1500 predictions, we select the most frequent action as the model prediction for that time step,

and compute inter-arrival time by averaging over the corresponding time values.

Table 3.1 and 3.2 also show the comparison of our model with the case where the prior is fixed

in all of the time-steps. In this experiment, we fixed the prior to the standard normal distribution

N (0, I). We can see that the learned prior variant outperforms the fixed prior variant consistently

across all datasets. The model with the fixed prior does not perform well because it learns to predict

the majority action class and average inter-arrival time of the training set, ignoring the history of

any input test sequence.

In addition to the above strategy of selecting the mode action at each step, we also report ac-

tion category accuracy and MAE obtained by averaging over predictions of all 1500 samples. We

summarize these results in Table 3.4.

We next explore the architecture of our model by varying the sizes of the latent variable. Table

3.5 shows the log-likelihood of our model for different sizes of the latent variable. We see that as

we increase the size of the latent variable, we can model a more complex latent distribution which

results in better performance.

35

Figure 3.5: Latent Code Manipulation. The history + ground-truth label of future action for the sub-figures
are: (a) “SIL, crack_egg"→“add_saltnpepper", (b) “SIL, take_plate, crack_egg"→ “add_saltnpepper" and (c)
“SIL, pour_oil, crack_egg"→“add_saltnpepper".

Qualitative Results. Fig. 3.4 shows examples of diverse future action sequences that are gener-

ated by APP-VAE given the history. For different provided histories, sampled sequences of actions

are shown. We note that the overall duration and sequence of actions on the Breakfast Dataset are

reasonable. Variations, e.g. taking the juice squeezer before using it, adding salt and pepper before

cooking eggs, are plausible alternatives generated by our model.

Fig. 3.5 visualizes a traversal on one of the latent codes for three different sequences by uni-

formly sampling one z dimension over
[
µ − 5σ, µ + 5σ

]
while fixing others to their sampled val-

ues. As shown, this dimension correlates closely with the action add_saltnpepper, strifry_egg and

fry_egg.

We further qualitatively examine the ability of the model to score the likelihood of individual

test samples. We sort the test action sequences according to the average per time-step likelihood es-

timated by drawing 1500 samples from the approximate posterior distribution following the impor-

tance sampling approach. High scoring sequences should be those that our model deems as “normal"

while low scoring sequences those that are unusual. Tab. 3.3 shows some example of sequences with

low and high likelihood on the MultiTHUMOS dataset. We note that a regular, structured sequence

of actions such as jump, body roll, cliff diving for a diving action or body contract, squat, clean and

jerk for a weightlifting action receives high likelihood. However, repeated hammer throws or golf

swings with no set up actions receives a low likelihood.

Finally we compare asynchronous APP-LSTM with a synchronous variant (with constant frame

rate) on Breakfast dataset. The synchronous model predicts actions one step at a time and the se-

36

Latent size 32 64 128 256 512

LL (≥) -4.486 -3.947 -3.940 -3.838 -4.098

Table 3.5: Log-likelihood for APP-VAE with different latent variable dimensionality on MultiTHU-
MOS.

quence is post-processed to infer the duration of each action. The performance is significantly worse

for both MAE time (152.17 vs 1459.99) and action prediction accuracy (61.39% vs 28.24%). A

plausible explanation is that LSTMs cannot deal with very long-term dependencies.

37

3.5 Summary

We presented a novel probabilistic model for point process data – a variational auto-encoder that

captures uncertainty in action times and category labels. As a generative model, it can produce ac-

tion sequences by sampling from a prior distribution, the parameters of which are updated based on

neural networks that control the distributions over the next action type and its temporal occurrence.

The model can also be used to analyze given input sequences of actions to determine the likeli-

hood of observing particular sequences. We demonstrate empirically that the model is effective for

capturing the uncertainty inherent in tasks such as action prediction and anomaly detection.

38

Chapter 4

Learning a Deep ConvNet for
Multi-label Classification with Partial
Labels

Deep ConvNets have shown great performance for single-label image classification (e.g. ImageNet),

but it is necessary to move beyond the single-label classification task because pictures of everyday

life are inherently multi-label. Multi-label classification is a more difficult task than single-label

classification because both the input images and output label spaces are more complex. Furthermore,

collecting clean multi-label annotations is more difficult to scale-up than single-label annotations.

To reduce the annotation cost, we propose to train a model with partial labels i.e. only some labels

are known per image. We first empirically compare different labeling strategies to show the potential

for using partial labels on multi-label datasets. Then to learn with partial labels, we introduce a new

classification loss that exploits the proportion of known labels per example. Our approach allows

the use of the same training settings as when learning with all the annotations. We further explore

several curriculum learning based strategies to predict missing labels. Experiments are performed

on three large-scale multi-label datasets: MS COCO, NUS-WIDE and Open Images.

This chapter is published as Learning a Deep ConvNet for Multi-label Classification with Partial

Labels in proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition

(CVPR), June 2019 [30].

4.1 Overview

Recently, Stock and Cisse [116] presented empirical evidence that the performance of state-of-the-

art classifiers on ImageNet [109] is largely underestimated – much of the remaining error is due

to the fact that ImageNet’s single-label annotation ignores the intrinsic multi-label nature of the

images. Unlike ImageNet, multi-label datasets (e.g. MS COCO [82], Open Images [75]) contain

more complex images that represent scenes with several objects (Figure 4.1). However, collecting

multi-label annotations is more difficult to scale-up than single-label annotations [25]. As an alter-

native strategy, one can make use of partial labels; collecting partial labels is easy and scalable with

39

[a] [b] [c]
car 3 3 3

person 3 7

boat 7 7

bear 7 7 7

apple 7 7

Figure 4.1: Example of image with all annotations [a], partial labels [b] and noisy/webly labels [c].
In the partially labeled setting some annotations are missing (person, boat and apple) whereas in the
webly labeled setting one annotation is wrong (person).

crowdsourcing platforms. In this work, we study the problem of learning a multi-label classifier

with partial labels per image.

The two main (and complementary) strategies to improve image classification performance are:

(i) designing / learning better model architectures [31, 32, 33, 49, 83, 99, 103, 117, 120, 135, 146,

147] and (ii) learning with more labeled data [88, 118]. However, collecting a multi-label dataset

is more difficult and less scalable than collecting a single label dataset [25], because collecting a

consistent and exhaustive list of labels for every image requires significant effort. To overcome this

challenge, [80, 88, 118] automatically generated the labels using web supervision. But the drawback

of these approaches is that the annotations are noisy and not exhaustive, and [143] showed that

learning with corrupted labels can lead to very poor generalization performance. To be more robust

to label noise, some methods have been proposed to learn with noisy labels [123].

An orthogonal strategy is to use partial annotations. This direction is actively being pursued by

the research community: the largest publicly available multi-label dataset is annotated with partial

clean labels [75]. For each image, the labels for some categories are known but the remaining labels

are unknown (Figure 4.1). For instance, we know there is a car and there is not a bear in the image,

but we do not know if there is a person, a boat or an apple. Relaxing the learning requirement for ex-

haustive labels opens better opportunities for creating large-scale datasets. Crowdsourcing platforms

like Amazon Mechanical Turk1 and Google Image Labeler2 or web services like reCAPTCHA3 can

scalably collect partial labels for a large number of images.

To our knowledge, this is the first work to examine the challenging task of learning a multi-

label image classifier with partial labels on large-scale datasets. Learning with partial labels on

large-scale datasets presents novel challenges because existing methods [122, 131, 136, 137] are

not scalable and cannot be used to fine-tune a ConvNet. We address these key technical challenges

by introducing a new loss function and a method to fix missing labels.

1https://www.mturk.com/

2https://crowdsource.google.com/imagelabeler/category

3https://www.google.com/recaptcha/

40

Our first contribution is to empirically compare several labeling strategies for multi-label datasets

to highlight the potential for learning with partial labels. Given a fixed label budget, our experiments

show that partially annotating all images is better than fully annotating a small subset.

As a second contribution, we propose a scalable method to learn a ConvNet with partial labels.

We introduce a loss function that generalizes the standard binary cross-entropy loss by exploiting

label proportion information. This loss automatically adapts to the proportion of known labels per

image and allows to use the same training settings as when learning with all the labels.

Our last contribution is a method to predict missing labels. We show that the learned model

is accurate and can be used to predict missing labels. Because ConvNets are sensitive to noise

[143], we propose a curriculum learning based model [4] that progressively predicts some missing

labels and adds them to the training set. To improve label predictions, we develop an approach

based on Graph Neural Networks (GNNs) to explicitly model the correlation between categories. In

multi-label settings, not all labels are independent, hence reasoning about label correlation between

observed and unobserved partial labels is important.

41

4.2 Related Work

Learning with partial / missing labels. Multi-label tasks often involve incomplete training data,

hence several methods have been proposed to solve the problem of multi-label learning with missing

labels (MLML). The first and simple approach is to treat the missing labels as negative labels [5,

88, 94, 118, 119, 128]. The MLML problem then becomes a fully labeled learning problem. This

solution is used in most webly supervised approaches [88, 118]. The standard assumption is that

only the category of the query is present (e.g. car in Figure 4.1) and all the other categories are

absent. However, performance drops because a lot of ground-truth positive labels are initialized as

negative labels [61]. A second solution is Binary Relevance (BR) [122], which treats each label as an

independent binary classification. But this approach is not scalable when the number of categories

grows and it ignores correlations between labels and between instances, which can be helpful for

recognition. Unlike BR, our proposed approach allows to learn a single model using partial labels.

To overcome the second problem, several works proposed to exploit label correlations from the

training data to propagate label information from the provided labels to missing labels. [8, 136] used

a matrix completion algorithm to fill in missing labels. These methods exploit label-label correla-

tions and instance-instance correlations with low-rank regularization on the label matrix to complete

the instance-label matrix. Similarly, [141] introduced a low rank empirical risk minimization, [131]

used a mixed graph to encode a network of label dependencies and [25, 94] learned correlation be-

tween the categories to predict some missing labels. Unlike most of the existing models that assume

that the correlations are linear and unstructured, [137] proposed to learn structured semantic correla-

tions. Another strategy is to treat missing labels as latent variables in probabilistic models. Missing

labels are predicted by posterior inference. [62, 124] used models based on Bayesian networks [56]

whereas [18] proposed a deep sequential generative model based on a Variational Auto-Encoder

framework [66] that also allows to deal with unlabeled data.

However, most of these works cannot be used to learn a deep ConvNet. They require solving

an optimization problem with the training set in memory, so it is not possible to use a mini-batch

strategy to fine-tune the model. This is limiting because it is well-known that fine-tuning is impor-

tant to transfer a pre-trained architecture [72]. Some methods are also not scalable because they

require to solve convex quadratic optimization problems [131, 137] that are intractable for large-

scale datasets. Unlike these methods, we propose a model that is scalable and end-to-end learnable.

To train our model, we introduce a new loss function that adapts itself to the proportion of known

labels per example. Similar to some MLML methods, we also explore several strategies to fill-in

missing labels by using the learned classifier.

Learning with partial labels is different from semi-supervised learning [12] because in the semi-

supervised learning setting, only a subset of the examples is labeled with all the labels and the other

examples are unlabeled whereas in the partial labels setting, all the images are labeled but only with

a subset of labels. Note that [21] also introduced a partially labeled learning problem (also called

42

ambiguously labeled learning) but this problem is different: in [21], each example is annotated with

multiple labels but only one is correct.

Curriculum Learning / Never-Ending Learning. To predict missing labels, we propose an iter-

ative strategy based on Curriculum Learning [4]. The idea of Curriculum Learning is inspired by

the way humans learn: start to learn with easy samples/subtasks, and then gradually increase the

difficulty level of the samples/subtasks. But, the main problem in using curriculum learning is to

measure the difficulty of an example. To solve this problem, [74] used the definition that easy sam-

ples are ones whose correct output can be predicted easily. They introduced an iterative self-paced

learning (SPL) algorithm where each iteration simultaneously selects easy samples and updates the

model parameters. [58] generalizes the SPL to different learning schemes by introducing differ-

ent self-paced functions. Instead of using human-designed heuristics, [59] proposed MentorNet, a

method to learn the curriculum from noisy data. Similar to our work, [44] recently introduced the

CurriculumNet that is a model to learn from large-scale noisy web images with a curriculum learn-

ing approach. However this strategy is designed for multi-class image classification and cannot be

used for multi-label image classification because it uses a clustering-based model to measure the

difficulty of the examples.

Our approach is also related to the Never-Ending Learning (NEL) paradigm [95]. The key idea

of NEL is to use previously learned knowledge to improve the learning of the model. [78] proposed

a framework that alternatively learns object class models and collects object class datasets. [9, 95]

introduced the Never-Ending Language Learning to extract knowledge from hundreds of millions

of web pages. Similarly, [14, 15] proposed the Never-Ending Image Learner to discover structured

visual knowledge. Unlike these approaches that use a previously learned model to extract knowledge

from web data, we use the learned model to predict missing labels.

43

4.3 Learning with Partial Labels

Our goal in this work is to train ConvNets given partial labels. We first introduce a loss function to

learn with partial labels that generalizes the binary cross-entropy. We then extend the model with a

Graph Neural Network to reason about label correlations between observed and unobserved partial

labels. Finally, we use these contributions to learn an accurate model that it is used to predict missing

labels with a curriculum-based approach.

Notation. We denote by C the number of categories and N the number of training examples.

We denote the training data by D = {(I(1),y(1)), . . . , (I(N),y(N))}, where I(i) is the ith im-

age and y(i) = [y(i)
1 , . . . , y

(i)
C] ∈ Y ⊆ {−1, 0, 1}C the label vector. For a given example i and

category c, y(i)
c = 1 (resp. −1 and 0) means the category is present (resp. absent and unknown).

y = [y(1); . . . ; y(N)] ∈ {−1, 0, 1}N×C is the matrix of training set labels. fw denotes a deep Con-

vNet with parameters w. x(i) = [x(i)
1 , . . . , x

(i)
C] = fw(I(i)) ∈ RC is the output (before sigmoid) of

the deep ConvNet fw on image I(i).

4.3.1 Binary cross-entropy for partial labels

The most popular loss function to train a model for multi-label classification is binary cross-entropy

(BCE). To be independent of the number of categories, the BCE loss is normalized by the number of

classes. This becomes a drawback for partially labeled data because the back-propagated gradient

becomes small. To overcome this problem, we propose the partial-BCE loss that normalizes the loss

by the proportion of known labels:

`(x,y) = g(py)
C

C∑
c=1

[
1[yc=1] log

(1
1 + exp(−xc)

)
(4.1)

+1[yc=−1] log
(exp(−xc)

1 + exp(−xc)

)]

where py ∈ [0, 1] is the proportion of known labels in y and g is a normalization function with

respect to the label proportion. Note that the partial-BCE loss ignores the categories for unknown

labels (yc = 0). In the standard BCE loss, the normalization function is g(py) = 1. Unlike the stan-

dard BCE, the partial-BCE gives the same importance to each example independent of the number

of known labels, which is useful when the proportion of labels per image is not fixed. This loss

adapts itself to the proportion of known labels. We now explain how we design the normalization

function g.

Normalization function g . The function g normalizes the loss function with respect to the label

proportion. We want the partial-BCE loss to have the same behavior as the BCE loss when all the

44

Figure 4.2: Examples of the weight function g (Equation 4.2) for different values of hyperparameter
γ with the constraint g(0.1) = 5. γ controls the behavior of the normalization with respect to the
label proportion py.

labels are present i.e. g(1) = 1. We propose to use the following normalization function:

g(py) = αpγy + β (4.2)

where α, β and γ are the hyperparameters that allow to generalize several standard functions. For

instance with α = 1, β = 0 and γ = −1, this function weights each example inversely proportional

to the proportion of labels. This is equivalent to normalizing by the number of known classes instead

of the number of classes. Given a γ value and the weight for a given proportion (e.g. g(0.1) = 5), we

can find the hyperparameters α and β that satisfy these constraints. The hyperparameter γ controls

the behavior of the normalization with respect to the label proportion. In Figure 4.2 we show this

function for different values of γ given the constraint g(0.1) = 5. For γ = 1 the normalization

is linearly proportional to the label proportion, whereas for γ = −1 the normalization value is

inversely proportional to the label proportion. We analyse the importance of each hyperparameter

in Sec.4.4. This normalization has a similar goal to batch normalization [53] which normalizes

distributions of layer inputs for each mini-batch.

45

4.3.2 Multi-label classification with GNN

To model the interactions between the categories, we use a Graph Neural Network (GNN) [41, 112]

on top of a ConvNet. We first introduce the GNN and then detail how we use GNN for multi-label

classification.

GNN. For GNNs, the input data is a graph G = {V, E} where V (resp. E) is the set of nodes

(resp. edges) of the graph. For each node v ∈ V , we denote the input feature vector xv and its

hidden representation describing the node’s state at time step t by htv. We use Ωv to denote the set

of neighboring nodes of v. A node uses information from its neighbors to update its hidden state.

The update is decomposed into two steps: message update and hidden state update. The message

update step combines messages sent to node v into a single message vector mt
v according to:

mt
v =M({htu|u ∈ Ωv}) (4.3)

whereM is the function to update the message. In the hidden state update step, the hidden states

htv at each node in the graph are updated based on messages mt
v according to:

ht+1
v = F(htv,mt

v) (4.4)

where F is the function to update the hidden state.M and F are feedforward neural networks that

are shared among different time steps. Note that these update functions specify a propagation model

of information inside the graph.

GNN for multi-label classification. For multi-label classification, each node represents one cat-

egory (V = {1, . . . , C}) and the edges represent the connections between the categories. We use

a fully-connected graph to model correlation between all categories. The node hidden states are

initialized with the ConvNet output. We now detail the GNN functions used in our model. The

algorithm and additional information are given in the supplementary material.

Message update functionM. We use the following message update function:

mt
v = 1
|Ωv|

∑
u∈Ωv

fM(htu) (4.5)

where fM is a multi-layer perceptron (MLP). The message is computed by first feeding hidden

states to the MLP fM and then taking the average over the neighborhood.

Hidden state update function F . We use the following hidden state update function:

ht+1
v = GRU(htv,mt

v) (4.6)

46

which uses a Gated Recurrent Unit (GRU) [16]. The hidden state is updated based on the incoming

messages and the previous hidden state.

47

4.3.3 Prediction of unknown labels

In this section, we propose a method to predict some missing labels with a curriculum learning

strategy [4]. We formulate our problem based on the self-paced model [58, 74] and the goal is to

optimize the following objective function:

min
w∈Rd,v∈{0,1}N×C

J(w,v) = β‖w‖2 +G(v; θ) (4.7)

+ 1
N

N∑
i=1

1
C

C∑
c=1

vic`c(fw(I(i)), y(i)
c)

where `c is the loss for category c and vi ∈ {0, 1}C is a vector to represent the selected labels for

the i-th sample. vic = 1 (resp. vic = 0) means that the c-th label of the i-th example is selected

(resp. unselected). The function G defines a curriculum, parameterized by θ, which defines the

learning scheme. Following [74], we use an alternating algorithm where w and v are alternatively

minimized, one at a time while the other is held fixed. The algorithm is shown in Algorithm 1.

Initially, the model is learned with only clean partial labels. Then, the algorithm uses the learned

model to add progressively new “easy” weak (i.e. noisy) labels in the training set, and then uses the

clean and weak labels to continue the training of the model. We analyze different strategies to add

new labels:

[a] Score threshold strategy. This strategy uses the classification score (i.e. ConvNet) to estimate

the difficulty of a pair category-example. An easy example has a high absolute score whereas a hard

example has a score close to 0. We use the learned model on partial labels to predict the missing

labels only if the classification score is larger than a threshold θ > 0. When w is fixed, the optimal

v can be derived by:

vic = 1[x(i)
c ≥ θ] + 1[x(i)

c < −θ] (4.8)

The predicted label is y(i)
c = sign(x(i)

c).

[b] Score proportion strategy. This strategy is similar to the strategy [a] but instead of labeling the

pair category-example higher than a threshold, we label a fixed proportion θ of pairs per mini-batch.

To find the optimal v, we sort the examples by decreasing order of absolute score and label only the

top-θ% of the missing labels.

[c] Predict only positive labels. Because of the imbalanced annotations, we only predict positive

labels with strategy [a]. When w is fixed, the optimal v can be derived by:

vic = 1[x(i)
c ≥ θ] (4.9)

[d] Ensemble score threshold strategy. This strategy is similar to the strategy [a] but it uses an

ensemble of models to estimate the confidence score. We average the classification score of each

model to estimate the final confidence score. This strategy allows to be more robust than the strategy

48

Algorithm 1 Curriculum labeling
Input: Training data D

1: Initialize v with known labels
2: Initialize w: learn the ConvNet with the partial labels
3: repeat
4: Update v (fixed w): find easy missing labels
5: Update y: predict the label of easy missing labels
6: Update w (fixed v): improve classification model with the clean and easy weak annotations
7: until stopping criteria

[a]. When w is fixed, the optimal v can be derived by:

vic = 1[E(I(i))c ≥ θ] + 1[E(I(i))c < −θ] (4.10)

where E(I(i)) ∈ RC is the vector score of an ensemble of models. The predicted label is y(i)
c =

sign(E(I(i))c).

[e] Bayesian uncertainty strategy. Instead of using the classification score as in [a] or [d], we es-

timate the bayesian uncertainty [64] of each pair category-example. An easy pair category-example

has a small uncertainty. When w is fixed, the optimal v can be derived by:

vic = 1[U(I(i))c ≤ θ] (4.11)

where U(I(i)) is the bayesian uncertainty of category c of the i-th example. This strategy is similar

to strategy [d] except that it uses the variance of the classification scores instead of the average to

estimate the difficulty.

49

Pascal VOC 2007 MS COCO NUS-WIDE

Figure 4.3: The first row shows MAP results for the different labeling strategies. On the second row,
we shows the comparison of the BCE and the partial-BCE. The x-axis shows the proportion of clean
labels.

4.4 Experiments

Static Image Datasets. We perform experiments on several standard multi-label datasets: Pas-

cal VOC 2007 [36], MS COCO [82] and NUS-WIDE [19]. For each dataset, we use the standard

train/test sets introduced respectively in [36], [98], and [39] (see Section 4.5.2 for more details).

From these datasets that are fully labeled, we create partially labeled datasets by randomly dropping

some labels per image. The proportion of known labels is between 10% (90% of labels missing)

and 100% (all labels present). We also perform experiments on the large-scale Open Images dataset

[75] that is partially annotated: 0.9% of the labels are available during training.

Metrics. To evaluate the performances, we use several metrics: mean Average Precision (MAP)

[3], 0-1 exact match, Macro-F1 [138], Micro-F1 [121], per-class precision, per-class recall, overall

precision, overall recall. These metrics are standard multi-label classification metrics and are pre-

sented in Section 4.5.3. We mainly show the results for the MAP metric but results for other metrics

are shown in Section 4.5.

Implementation details. We employ ResNet-WELDON [33] as our classification network. We

use a ResNet-101 [49] pretrained on ImageNet as the backbone architecture, but we show results

for other architectures in Section 4.5. The models are implemented with PyTorch [101]. The hyper-

parameters of the partial-BCE loss function are α = −4.45, β = 5.45 (i.e. g(0.1) = 5) and γ = 1.

To predict missing labels, we use the bayesian uncertainty strategy with θ = 0.3.

50

4.4.1 What is the best strategy to annotate a dataset?

In the first set of experiments, we study three strategies to annotate a multi-label dataset. The goal

is to answer the question: what is the best strategy to annotate a dataset with a fixed budget of clean

labels? We explore the three following scenarios:

• Partial labels. This is the strategy used in this paper. In this setting, all the images are used

but only a subset of the labels per image are known. The known categories are different for

each image.

• Complete image labels or dense labels. In this scenario, only a subset of the images are

labeled, but the labeled images have the annotations for all the categories. This is the standard

setting for semi-supervised learning [12] except that we do not use a semi-supervised model.

• Noisy labels. All the categories of all images are labeled but some labels are wrong. This sce-

nario is similar to the webly-supervised learning scenario [88] where some labels are wrong.

To have fair comparison between the approaches, we use a BCE loss function for these experiments.

The results are shown in Figure 4.3 for different proportion of clean labels. For each experiment,

we use the same number of clean labels. 100% means that all the labels are known during training

(standard classification setting) and 10% means that only 10% of the labels are known during train-

ing. The 90% of other labels are unknown labels for the partial labels and the complete image labels

scenarios and are wrong labels for the noisy labels scenario. Similar to [118], we observe that the

performance increases logarithmically based on proportion of labels. From this first experiment, we

can draw the following conclusions: (1) Given a fixed number of clean labels, we observe that learn-

ing with partial labels is better than learning with a subset of dense annotations. The improvement

increases when the label proportion decreases. A reason is that the model trained in the partial labels

strategy “sees” more images during training and therefore has a better generalization performance.

(2) It is better to learn with a small subset of clean labels than a lot of labels with some incorrect

labels. Both partial labels and complete image labels scenarios are better than the noisy label sce-

nario. For instance on MS COCO, we observe that learning with only 20% of clean partial labels is

better than learning with 80% of clean labels and 20% of wrong labels.

Noisy web labels. Another strategy to generate a noisy dataset from a multi-label dataset is to

use only one positive label for each image. This is a standard assumption made when collecting

data from the web [80] i.e. the only category present in the image is the category of the query.

From the clean MS COCO dataset, we generate a noisy dataset (named noisy+) by keeping only

one positive label per image. If the image has more than one positive label, we randomly select

one positive label among the positive labels and switch the other positive labels to negative labels.

The results are reported in Table 4.1 for three scenarios: clean (all the training labels are known

and clean), 10% of partial labels and noisy+ scenario. We also show the percentage of clean and

noisy labels for each experiment. The noisy+ approach generates a small proportion of noisy labels

51

model clean partial 10% noisy+

clean / noisy labels 100 / 0 10 / 0 97.6 / 2.4
MAP (%) 79.22 72.15 71.60

Table 4.1: Comparison with a webly-supervised strategy (noisy+) on MS COCO. Clean (resp. noisy)
means the percentage of clean (resp. noisy) labels in the training set.

(2.4%) that drops the performance by about 7pt with respect to the clean baseline. We observe that a

model trained with only 10% of clean labels is slightly better than the model trained with the noisy

labels. This experiment shows that the standard assumption made in most of the webly-supervised

datasets is not good for complex scenes / multi-label images because it generates noisy labels that

significantly decrease generalization.

Relabeling MAP 0-1 Macro-F1 Micro-F1 label prop. TP TN GNN

2 steps (no curriculum) -1.49 6.42 2.32 1.99 100 82.78 96.40 3

[a] Score threshold θ = 2 0.34 11.15 4.33 4.26 95.29 85.00 98.50 3

[b] Score proportion θ = 80% 0.17 8.40 3.70 3.25 96.24 84.40 98.10 3

[c] Postitive only - score θ = 5 0.31 -4.58 -1.92 -2.23 12.01 79.07 - 3

[d] Ensemble score θ = 2 0.23 11.31 4.16 4.33 95.33 84.80 98.53 3

[e] Bayesian uncertainty θ = 0.3 0.34 10.15 4.37 3.72 77.91 61.15 99.24

[e] Bayesian uncertainty θ = 0.1 0.36 2.71 1.91 1.22 19.45 38.15 99.97 3

[e] Bayesian uncertainty θ = 0.2 0.30 10.76 4.87 4.66 57.03 62.03 99.65 3

[e] Bayesian uncertainty θ = 0.3 0.59 12.07 5.11 4.95 79.74 68.96 99.23 3

[e] Bayesian uncertainty θ = 0.4 0.43 10.99 4.88 4.46 90.51 70.77 98.57 3

[e] Bayesian uncertainty θ = 0.5 0.45 10.08 3.93 3.78 94.79 74.73 98.00 3

Table 4.2: Analysis of the labeling strategy of missing labels on Pascal VOC 2007 val set. For each
metric, we report the relative scores with respect to a model that does not label missing labels. TP
(resp. TN) means true positive (resp. true negative) rate. For the strategy [c], we report the label
accuracy instead of the TP rate.

4.4.2 Learning with partial labels

In this section, we compare the standard BCE and the partial-BCE and analyze the importance of

the GNN.

BCE vs partial-BCE. The Figure 4.3 shows the MAP results for different proportion of known

labels on three datasets. For all the datasets, we observe that using the partial-BCE significantly

improves the performance: the lower the label proportion, the better the improvement. We observe

the same behavior for the other metrics (Section 4.5.6). In Table 4.3, we show results on the Open

Images dataset and we observe that the partial-BCE is 4 pt better than the standard BCE. These

experiments show that our loss learns better than the BCE because it exploits the label proportion

52

BCE partial-BCE GNN + partial-BCE

MAP (%) 79.01 83.05 83.36

Table 4.3: MAP results on Open Images.

Figure 4.4: MAP (%) improvement with respect to the proportion of known labels on MS COCO
for the partial-BCE and the GNN + partial-BCE. 0 means the result for a model trained with the
standard BCE.

information during training. It allows to learn efficiently while keeping the same training setting as

with all annotations.

GNN. We now analyze the improvements of the GNN to learn relationships between the cate-

gories. We show the results on MS COCO in Figure 4.4. We observe that for each label proportion,

using the GNN improves the performance. Open Images experiments (Table 4.3) show that GNN

improves the performance even when the label proportion is small. This experiment shows that

modeling the correlation between categories is important even in case of partial labels. However,

we also note that a ConvNet implicitly learns some correlation between the categories because some

learned representations are shared by all categories.

4.4.3 What is the best strategy to predict missing labels?

In this section, we analyze the labeling strategies introduced in Section 4.3.3 to predict missing

labels. Before training epochs 10 and 15, we use the learned classifier to predict some missing

53

BCE fine-tuning partial-BCE GNN relabeling MAP 0-1 exact match Macro-F1 Micro-F1

3 66.21 17.53 62.74 67.33
3 3 72.15 22.04 65.82 70.09

3 3 75.31 24.51 67.94 71.18
3 3 3 75.82 25.14 68.40 71.37
3 3 3 75.71 30.52 70.13 73.87
3 3 3 3 76.40 32.12 70.73 74.37

Table 4.4: Ablation study on MS COCO with 10% of known labels.

labels. We report the results for different metrics on Pascal VOC 2007 validation set with 10% of

labels in Table 4.2. We also report the final proportion of labels, the true postive (TP) and true

negative (TN) rates for predicted labels. Additional results are shown in Section 4.5.9.

First, we show the results of a 2 steps strategy that predicts all missing labels in one time.

Overall, we observe that this strategy is worse than curriculum-based strategies ([a-e]). In partic-

ular, the 2 steps strategy decreases the MAP score. These results show that predicting all missing

labels at once introduced too much label noise, decreasing generalization performance. Among the

curriculum-based strategies, we observe that the threshold strategy [a] is better than the proportion

strategy [b]. We also note that using a model ensemble [d] does not significantly improve the per-

formance with respect to a single model [a]. Predicting only positive labels [c] is a poor strategy.

The bayesian uncertainty strategy [e] is the best strategy. In particular, we observe that the GNN

is important for this strategy because it decreases the label uncertainty and allows the model to be

robust to the hyperparameter θ.

4.4.4 Method analysis

In this section, we analyze the hyperparameters of the partial-BCE and perform an ablation study

on MS COCO.

Partial-BCE analysis. To analyze the partial-BCE, we use only the training set. The model is

trained on about 78k images and evaluated on the remaining 5k images. We first analyse how to

choose the value of the normalization function given a label proportion of 10% i.e. g(0.1) (it is

possible to choose another label proportion). The results are shown in Figure 4.5. Note that for

g(0.1) = 1, the partial-BCE is equivalent to the BCE and the loss is normalized by the num-

ber of categories. We observe that the normalization value g(0.1) = 1 gives the worst results.

The best score is obtained for a normalization value around 20 but the performance is similar for

g(0.1) ∈ [3, 50]. Using a large value drops the performance. This experiment shows that the pro-

posed normalization function is important and robust. These results are independent of the network

architectures (Section 4.5.7).

Given the constraints g(0.1) = 5 and g(1) = 1, we analyze the impact of the hyperparameter γ.

This hyperparameter controls the behavior of the normalization with respect to the label proportion.

54

Figure 4.5: Analysis of the normalization value for a label proportion of 10% (i.e. g(0.1)). (x-axis
log-scale)

Using a high value (γ = 3) is better than a low value (γ = −1) for large label proportions but is

slighty worse for small label proportions. We observe that using a normalization that is proportional

to the number of known labels (γ = 1) works better than using a normalization that is inversely

proportional to the number of known labels (γ = −1).

Ablation study. Finally to analyze the importance of each contribution, we perform an ablation

study on MS COCO for a label proportion of 10% in Table 4.4. We first observe that fine-tuning is

important. It validates the importance of building end-to-end trainable models to learn with miss-

ing labels. The partial-BCE loss function increases the performance against each metric because

it exploits the label proportion information during training. We show that using GNN or relabel-

ing improves performance. In particular, the relabeling stage significantly increases the 0-1 exact

match score (+5pt) and the Micro-F1 score (+2.5pt). Finally, we observe that our contributions are

complementary.

55

Figure 4.6: Analysis of hyperparameter γ on MS COCO.

56

4.5 Implementation Details and Analysis

4.5.1 Multi-label classification with GNN

In this subsection, we give additional information about the Graph Neural Networks (GNN) used

in our work. We first show the algorithm used to predict the classification scores with a GNN in

Algorithm 2. The input x ∈ RC of the GNN is the ConvNet output, where C is the number of

categories.

The fM function in the message update function M is a fully connected layer followed by a

ReLU. Because the graph is fully-connected, the message update function M averages on all the

nodes of the graph excepts the current node v i.e. Ωv = V \ {v}. Similarly to [104], the final

prediction uses both first and last hidden states. We observe that using both first and last hidden

states is better than using only the last hidden state. According to [104], we use T = 3 iterations in

our experiments.

Algorithm 2 Graph Neural Network (GNN)
Input: ConvNet output x

1: Initialize the hidden state of each node v ∈ V with the output of the ConvNet.

h0
v = [0, . . . , 0, xv, 0, . . . , 0] ∀v ∈ V (4.12)

2: for t = 0 to T-1 do
3: Update message of each node v ∈ V based on the hidden states

mt
v =M({htu|u ∈ Ωv}) = 1

|Ωv|
∑
u∈Ωv

fM(htu) (4.13)

4: Update hidden state of each node v ∈ V based on the messages

ht+1
v = F(htv,mt

v) = GRU(htv,mt
v) (4.14)

5: end for
6: Compute the output based on the first and last hidden states

ȳ = s(h0
v,hTv) = h0

v + hTv (4.15)

Output: ȳ

4.5.2 Experimental details

Datasets. We perform experiments on large publicly available multi-label datasets: Pascal VOC

2007 [36], MS COCO [82] and NUS-WIDE [19]. Pascal VOC 2007 dataset contains 5k/5k train-

val/test images of 20 objects categories. MS COCO dataset contains 123k images of 80 objects cat-

egories. We use the 2014 data split with 83k train images and 41k val images. NUS-WIDE dataset

57

contains 269,648 images downloaded from Flickr that have been manually annotated with 81 visual

concepts. We follow the experimental protocol in [39] and use 150k randomly sampled images for

training and the rest for testing. The results on NUS-WIDE cannot be directly comparable with the

other works because the number of total images is different (209,347 in [39], 200,261 in [81]). The

main reason is that some provided URLs are invalid or some images have been deleted from Flickr.

For our experiments, we collected 216,450 images.

We also performs experiments on the largest publicly available multi-label dataset: Open Images

[75]. This dataset is partially annotated with human labels and machine generated labels. For our

experiments, we use only human labels on the 600 boxable classes. On the training set, only 0.9%
of the labels are available.

Implementation details. The hyperparameters of the WELDON pooling function are k+ = k− =
0.1. The models are implemented with PyTorch [101] and are trained with SGD during 20 epochs

with a batch size of 16. The initial learning rate is 0.01 and it is divide by 10 after 10 epochs.

During training, we only use random horizontal flip as data augmentation. Each image is resized to

448× 448 with 3 color channels. On Open Images dataset, unlike [75] we do not train from scratch

the network. We use a similar protocol that on the others datasets: we fine-tune a model pre-train

on ImageNet but stop the training when the validation performance does not increase. Because the

training set has 1.7M images, the model converge in less than 5 epochs.

4.5.3 Multi-label metrics

In this subsection, we introduce the metrics used to evaluate the performances on multi-label datasets.

We note y(i) = [y(i)
1 , . . . , y

(i)
C] ∈ Y ⊆ {−1, 0, 1}C the ground truth label vector and ŷ(i) =

[ŷ(i)
1 , . . . , ŷ

(i)
C] ∈ {−1, 1}C the predicted label vector of the i-th example.

Zero-one exact match accuracy (0-1). This metric considers a prediction correct only if all the

labels are correctly predicted:

m0/1(D) = 1
N

N∑
i=1

1[y(i) = ŷ(i)] (4.16)

where 1[.] is an indicator function.

Per-class precision/recall (PC-P/R).

mPC−P (D) = 1
C

C∑
c=1

N correct
c

Npredict
c

(4.17)

mPC−R(D) = 1
C

C∑
c=1

N correct
c

Ngt
c

(4.18)

58

whereN correct
c is the number of correctly predicted images for the c-th label,Npredict

c is the number

of predicted images, Ngt
c is the number of ground-truth images. Note that the per-class measures

treat all classes equal regardless of their sample size, so one can obtain a high performance by

focusing on getting rare classes right.

Overall precision/recall (OV-P/R). Unlike per-class metrics, the overall metrics treat all samples

equal regardless of their classes.

mOV−P (D) =
∑C
c=1N

correct
c∑C

c=1N
predict
c

(4.19)

mOV−R(D) =
∑C
c=1N

correct
c∑C

c=1N
gt
c

(4.20)

Macro-F1 (M-F1). The macro-F1 score [138] is the F1 score [107] averaged across all categories.

mMF1(D) = 1
C

C∑
c=1

F c1 (4.21)

Given a category c, the F1 measure, defined as the harmonic mean of precision and recall, is com-

puted as follows:

F c1 = 2P cRc

P c +Rc
(4.22)

where the precision (P c) and the recall (Rc) are calculated as follows:

P c =
∑N
i=1 1[y(i)

c = ŷ
(i)
c]∑N

i=1 ŷ
(i)
c

(4.23)

Rc =
∑N
i=1 1[y(i)

c = ŷ
(i)
c]∑N

i=1 y
(i)
c

(4.24)

and y(i)
c ∈ {0, 1}

Micro-F1 (m-F1). The micro-F1 score [121] is computed using the equation of F c1 and consider-

ing the predictions as a whole

mmF1(D) = 2
∑C
c=1

∑N
i=1 1[y(i)

c = ŷ
(i)
c]∑C

c=1
∑N
i=1 y

(i)
c +

∑C
c=1

∑N
i=1 ŷ

(i)
c

(4.25)

According to the definition, macro-F1 is more sensitive to the performance of rare categories while

micro-F1 is affected more by the major categories.

59

4.5.4 Analysis of the initial set of labels

In this subsection, we analyse the initial set of labels for the partial label scenario. We report the

results for 4 random seeds to generate the initial set of partial labels. The experiments are performed

on MS COCO val2014 with a ResNet-101 WELDON. The results are shown in Table 4.5 and

Figure 4.7 for different label proportions and metrics. For every label proportion and every metric,

we observe that the model is robust to the initial set of labels.

60

m
et

ri
c

la
be

lp
ro

po
rt

io
n

10
%

20
%

30
%

40
%

50
%

60
%

70
%

80
%

90
%

10
0%

M
A

P
72
.2

0±
0.

04
74
.4

9±
0.

02
75
.7

7±
0.

02
76
.5

7±
0.

03
77
.2

1±
0.

01
77
.7

3±
0.

01
78
.1

6±
0.

02
78
.5

3±
0.

03
78
.8

5±
0.

02
79
.1

4±
0.

05
M

-F
1

65
.8

4±
0.

01
69
.3

2±
0.

04
70
.6

6±
0.

02
71
.3

7±
0.

02
71
.8

8±
0.

03
72
.2

9±
0.

04
72
.6

1±
0.

03
72
.8

9±
0.

03
73
.0

5±
0.

06
73
.2

4±
0.

02
m

-F
1

70
.1

3±
0.

04
73
.9

7±
0.

01
75
.3

6±
0.

01
76
.0

7±
0.

03
76
.5

4±
0.

01
76
.9

1±
0.

02
77
.1

7±
0.

04
77
.4

2±
0.

04
77
.5

8±
0.

05
77
.7

5±
0.

04
0-

1
22
.2

1±
0.

12
30
.4

4±
0.

03
34
.2

6±
0.

11
36
.1

8±
0.

07
37
.4

4±
0.

05
38
.4

6±
0.

04
39
.1

6±
0.

07
39
.8

3±
0.

12
40
.3

4±
0.

04
40
.6

7±
0.

02
PC

-P
59
.8

2±
0.

05
68
.4

5±
0.

10
72
.5

6±
0.

03
74
.8

8±
0.

11
76
.4

5±
0.

04
77
.7

0±
0.

07
78
.5

9±
0.

05
79
.2

8±
0.

10
79
.8

0±
0.

02
80
.2

2±
0.

05
PC

-R
74
.7

4±
0.

04
71
.1

4±
0.

07
69
.6

6±
0.

04
68
.9

6±
0.

06
68
.6

4±
0.

04
68
.3

5±
0.

04
68
.2

6±
0.

07
68
.2

3±
0.

08
68
.1

2±
0.

09
68
.1

6±
0.

04
O

V
-P

62
.6

6±
0.

09
72
.3

6±
0.

06
76
.8

1±
0.

04
79
.2

4±
0.

10
80
.7

5±
0.

06
82
.0

1±
0.

08
82
.7

9±
0.

14
83
.4

4±
0.

10
83
.9

4±
0.

06
84
.3

6±
0.

04
O

V
-R

79
.6

2±
0.

04
75
.6

6±
0.

04
73
.9

7±
0.

05
73
.1

4±
0.

04
72
.7

4±
0.

04
72
.4

0±
0.

03
72
.2

1±
0.

04
72
.1

4±
0.

01
72
.0

7±
0.

05
72
.1

5±
0.

06

Ta
bl

e
4.

5:
A

na
ly

si
s

of
th

e
in

iti
al

se
to

fl
ab

el
s

fo
rt

he
pa

rt
ia

ll
ab

el
sc

en
ar

io
.T

he
re

su
lts

ar
e

av
er

ag
ed

fo
r4

se
ed

s
on

M
S

C
O

C
O

va
l2

01
4.

61

MAP 0-1 exact match

Macro-F1 Micro-F1

Per-class Precision Per-class Recall

Overall Precision Overall Recall

Figure 4.7: Results for different metrics on MS COCO val2014 to analyze the sensibility of the
initial label set.

62

architecture labels
label proportion

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

ResNet-50
partial 61.26 63.78 65.21 66.22 66.97 67.60 68.16 68.58 69.01 69.33
dense 54.29 59.67 62.50 64.28 65.60 66.68 67.55 68.26 68.80 69.32
noisy - - - - 3.75 39.77 56.82 62.93 66.24 69.33

ResNet-50 WELDON
partial 69.91 72.37 73.74 74.53 75.25 75.77 76.25 76.66 77.02 77.28
dense 62.16 68.04 71.14 73.01 74.17 75.14 75.83 76.42 76.88 77.28
noisy - - - - 3.73 52.99 67.08 72.03 74.69 77.29

ResNet-101 WELDON
partial 72.15 74.49 75.76 76.56 77.22 77.73 78.17 78.53 78.84 79.22
dense 65.22 71.00 73.80 75.44 76.59 77.44 78.08 78.61 78.90 79.24
noisy - - - - 3.63 53.10 69.09 74.06 76.85 79.18

ResNeXt-101 WELDON
partial 75.74 77.80 78.95 79.64 80.22 80.61 80.94 81.24 81.48 81.69
dense 69.03 74.58 77.13 78.50 79.38 80.15 80.65 81.05 81.40 81.71
noisy - - - - 3.63 49.26 70.16 75.22 78.28 81.66

Table 4.6: Comparison of the labeling strategies for different label proportions and different archi-
tectures on MS COCO val2014.

4.5.5 Analysis of the labeling strategies

In this subsection we analysis the labeling strategies for different network architectures. The results

are shown in Table 4.6 and Figure 4.8 on MS COCO dataset. Overall, the results are very similar.

For a given proportion of labels, we observe that the partial labels strategy is better that the complete

image labels. The improvement increases when the label proportion decreases. The performance of

a model learned with noisy labels drops significantly, even for large proportion of clean labels.

In Figure 4.9, we also show the results for different metrics. For MAP, Macro-F1 and Micro-

F1, we observe a similar behaviour: the partial labels strategy has better performances than the

complete image labels strategy. For the 0-1 exact match metric, we observe that the complete image

labels strategy has better performances than the complete image labels strategy. For this metric,

the predictions of all the categories must be corrected, so it advantages the complete image labels

strategy because some training images have all the labels whereas in the partial labels strategy,

none of the training images have all labels. For the precision and recall metrics, the behaviours

are different for the complete image labels strategy and the partial labels strategy. We note that the

complete image labels strategy has a better per-class/overall precision than the partial labels strategy

but is has a lower per-class/overall recall than the partial labels strategy.

Comparison to noisy+ strategy. In Table 4.7, we show results for the noisy+ strategy on Pascal

VOC 2007, MS COCO and NUS-WIDE for different metrics. For every dataset, we observe that

the noisy+ strategy drops the performances of all the metrics with respect to the model learned with

only 10% of clean labels.

63

ResNet-50 ResNet-50 WELDON

ResNet-101 WELDON ResNeXt-101 WELDON

Figure 4.8: Comparison of the labeling strategies for different label proportions and different archi-
tectures on MS COCO val2014.

dataset strategy clean label noisy label MAP 0-1 M-F1 m-F1 PC-P PC-R OV-P OV-R

VOC 2007
clean 100 0 93.93 79.16 88.90 91.12 90.72 87.34 93.40 88.95
noisy+ 97.1 2.9 90.94 62.21 78.11 78.62 95.41 68.64 97.20 66.00
partial 10% 10 0 89.09 47.46 74.55 77.84 63.35 94.16 66.02 94.81

MS COCO
clean 100 0 79.22 40.69 73.26 77.80 80.16 68.21 84.31 72.23
noisy+ 97.6 2.4 71.60 20.28 38.62 33.72 91.76 28.17 97.34 20.39
partial 10% 10 0 72.15 22.04 65.82 70.09 59.76 74.78 62.56 79.68

NUS-WIDE
clean 100 0 54.88 42.29 51.88 71.15 58.54 49.33 73.83 68.66
noisy+ 98.6 1.4 47.44 36.07 18.83 28.53 59.71 13.95 83.72 17.19
partial 10% 10 0 51.14 25.98 51.36 65.52 41.80 69.23 53.62 84.19

Table 4.7: Comparison with a webly-supervised strategy (noisy+) on MS COCO. Clean (resp. noisy)
means the percentage of clean (resp. noisy) labels in the training set. Noisy+ is a labeling strategy
where there is only one positive label per image.

64

MAP 0-1 exact match

Macro-F1 Micro-F1

Per-class Precision Per-class Recall

Overall Precision Overall Recall

Figure 4.9: Comparison of the labeling strategies for different metrics on MS COCO val2014.

65

4.5.6 Comparison of the loss functions

In this subsection, we analyse the performances of the BCE and partial-BCE loss functions for

different metrics. The results on MS COCO (resp. Pascal VOC 2007) are shown in Figure 4.11

(resp. Figure 4.13) and the improvement of the partial-BCE with respect to the BCE is shown in

Figure 4.12 (resp. Figure 4.14). We observe that the partial-BCE significantly improves the perfor-

mances for MAP, 0-1 exact match, Macro-F1 and Micro-F1 metrics. We note that the improvement

is bigger when the label proportion is lower. The proposed loss also improves the (overall and

per-class) recall for both datasets. On Pascal VOC 2007, it also improves the overall and per-class

precision. However, we observe that the

We observe that decreasing the proportion of known labels can slightly improves the perfor-

mances with respect to the model trained with all the annotations. This phenomenon is because of

the tuning of the learning rate and the hyperparameter γ (Figure 4.6). Note that the BCE and the

partial-BCE have the same results for the label proportion 100% because they are equivalent by def-

inition. We used the same training setting (learning rate, weight decay, etc.) as [33] for each model

and dataset. In Figure 4.10, we observe that using a learning rate of 0.02 increases the performance

and leads to a monotone increase of the performance with respect to the label proportion, but the

optimal learning rate depends on the dataset. It is possible to improve the results by tuning carefully

these hyperparameters, but we observe that the partial-BCE is still better than the BCE for a large

range of LRs and for small label proportions which is the main focus of this work.

Figure 4.10: Analysis of the learning rate on MS COCO dataset.

66

MAP 0-1 exact match

Macro-F1 Micro-F1

Per-class Precision Per-class Recall

Overall Precision Overall Recall

Figure 4.11: Results for different metrics on MS COCO val2014.

67

MAP 0-1 exact match

Macro-F1 Micro-F1

Per-class Precision Per-class Recall

Overall Precision Overall Recall

Figure 4.12: Improvement analysis between partial-BCE and BCE for differents metrics on MS
COCO val2014.

68

MAP 0-1 exact match

Macro-F1 Micro-F1

Per-class Precision Per-class Recall

Overall Precision Overall Recall

Figure 4.13: Results for different metrics on Pascal VOC 2007.

69

MAP 0-1 exact match

Macro-F1 Micro-F1

Per-class Precision Per-class Recall

Overall Precision Overall Recall

Figure 4.14: Improvement analysis between partial-BCE and BCE for differents metrics on Pascal
VOC 2007.

70

4.5.7 Analysis of the loss function

In this subsection, we analyze the hyperparameter of the loss function for several network architec-

tures. The models are trained on the train2014 set minus 5000 images that are used as validation

set to evaluate the performances. The Figure 4.15 shows the results on MS COCO. We observe a

similar behavior for all the architectures. Overall, using a normalization value g(0.1) between 3

and 50 significantly improves the performances with respect to the normalization by the number of

categories (g(0.1) = 1). The loss is robust to the value of this hyperparmeter.

ResNet-50 ResNet-50 WELDON

ResNet-101 ResNet-101 WELDON

Figure 4.15: Analysis of the normalization value for 10% of known labels (i.e. g(0.1)) on MS
COCO. (x-axis log-scale)

71

4.5.8 Comparison to existing model for missing labels

As pointed out in the related work subsection, most of the existing models to learn with missing

labels are not scalable and do not allow experiments on large-scale dataset like MS COCO and NUS-

WIDE. We compare our model with the APG-Graph model [137] that models structured semantic

correlations between images on the Pascal VOC 2007 dataset. Unlike our method, the APG-Graph

model does not allow to fine-tune the ConvNet.

Figure 4.16: Comparison with APG-Graph model on Pascal VOC 2007 for different proportion of
known labels.

4.5.9 What is the best strategy to predict missing labels?

This subsection extends the subsection 4.3 of this chapter. First, to compute the Bayesian uncer-

tainty, we use the setting used in the original paper [64]. The results for different strategies and

hyperparameters are shown in Table 4.8. G defines how the examples are selected during training.

In Section 4.3.3, we only explain how to find the solution with respect to v. G depends on the

strategy and is defined as:

G(v; θ) = −
N∑
i=1

C∑
c=1

vic log
(1

1 + e−θ

)

for strategy [a].

For strategy [a] and [d], we observe that using a small threshold is better than a large threshold.

On the contrary, for strategy [c] we observe that using a large threshold is better than a small thresh-

old, but the results are worse than strategy [a]. For strategy [b], labeling a large proportion of labels

per mini-batch is better than labeling a small proportion of labels. For strategy [e], we note that

using a GNN improves the performances of the model and the model is more robust to the threshold

hyperparameter θ.

72

Relabeling MAP 0-1 Macro-F1 Micro-F1 label prop. TP TN GNN

2 steps (no curriculum) -1.49 6.42 2.32 1.99 100 82.78 96.40 3

[a] Score threshold θ = 1 0.00 11.31 3.71 4.25 97.87 82.47 97.84 3

[a] Score threshold θ = 2 0.34 11.15 4.33 4.26 95.29 85.00 98.50 3

[a] Score threshold θ = 5 0.31 5.02 2.60 1.83 70.98 96.56 99.44 3

[b] Score proportion θ = 0.1 0.45 -1.20 -0.28 -0.68 26.70 99.28 99.19 3

[b] Score proportion θ = 0.2 0.36 0.20 0.70 0.10 42.09 98.35 99.33 3

[b] Score proportion θ = 0.3 0.28 0.91 1.09 0.37 55.63 97.82 99.38 3

[b] Score proportion θ = 0.4 0.55 2.95 2.33 1.28 67.41 96.87 99.38 3

[b] Score proportion θ = 0.5 0.22 4.02 2.76 1.74 77.40 95.52 99.30 3

[b] Score proportion θ = 0.6 0.41 6.17 3.63 2.52 85.37 93.16 99.15 3

[b] Score proportion θ = 0.7 0.35 7.49 3.83 3.07 91.69 89.40 98.81 3

[b] Score proportion θ = 0.8 0.17 8.40 3.70 3.25 96.24 84.40 98.10 3

[c] Postitive only - score θ = 1 -1.61 -31.75 -18.07 -18.92 16.79 36.42 - 3

[c] Postitive only - score θ = 2 -0.80 -21.31 -10.93 -12.08 14.71 47.94 - 3

[c] Postitive only - score θ = 5 0.31 -4.58 -1.92 -2.23 12.01 79.07 - 3

[d] Ensemble score θ = 1 -0.31 10.16 3.61 3.94 97.84 82.12 97.76 3

[d] Ensemble score θ = 2 0.23 11.31 4.16 4.33 95.33 84.80 98.53 3

[d] Ensemble score θ = 5 0.27 3.78 2.38 1.53 70.77 96.56 99.44 3

[e] Bayesian uncertainty θ = 0.1 0.26 1.84 1.36 0.64 22.63 25.71 99.98
[e] Bayesian uncertainty θ = 0.2 0.29 8.49 4.05 3.66 60.32 48.39 99.82
[e] Bayesian uncertainty θ = 0.3 0.34 10.15 4.37 3.72 77.91 61.15 99.24
[e] Bayesian uncertainty θ = 0.4 0.30 9.05 4.17 3.37 87.80 68.56 98.70
[e] Bayesian uncertainty θ = 0.5 0.26 8.32 3.83 3.05 92.90 70.96 98.04

[e] Bayesian uncertainty θ = 0.1 0.36 2.71 1.91 1.22 19.45 38.15 99.97 3

[e] Bayesian uncertainty θ = 0.2 0.30 10.76 4.87 4.66 57.03 62.03 99.65 3

[e] Bayesian uncertainty θ = 0.3 0.59 12.07 5.11 4.95 79.74 68.96 99.23 3

[e] Bayesian uncertainty θ = 0.4 0.43 10.99 4.88 4.46 90.51 70.77 98.57 3

[e] Bayesian uncertainty θ = 0.5 0.45 10.08 3.93 3.78 94.79 74.73 98.00 3

Table 4.8: Analysis of the labeling strategy of missing labels on Pascal VOC 2007 val set. For each
metric, we report the relative scores with respect to a model that does not label missing labels. TP
(resp. TN) means true positive (resp. true negative). Label proportion is the proportion of training
labels (clean + weak labels) used at the end of the training. For the strategy labeling only positive
labels, we report the label accuracy instead of the TP rate.

73

4.5.10 Final results

In Figure 4.17, we show the results of our final model that uses the partial-BCE loss, the GNN and

the labeling of missing labels. We compare our model to two baselines: (a) a model trained with

the standard BCE where the data are labeled with the partial labels strategy (blue) and (b) a model

trained with the standard BCE where the data are labeled with the complete image labels strategy

(red). We observe that our model has better performances than the two baselines for most of the

metrics. In particular, our final model has significantly better 0-1 exact match performance than the

baseline (b), whereas the baseline with partial labels (a) has lower performance than the baseline

(b). We note that the overall precision of our model is worse than the baseline (b), but the overall

recall of our model is largely better than the baseline (b).

74

MAP 0-1 exact match

Macro-F1 Micro-F1

Per-class Precision Per-class Recall

Overall Precision Overall Recall

Figure 4.17: The results of our final model with two baselines (complete image labeling and BCE
with partial labels) for different metrics on MS COCO val2014.

75

4.6 Summary

In this work, we present a scalable approach to end-to-end learn a deep network with partial labels.

More specifically, we propose a framework for learning from partially labeled image data with a

multi-label classifier. We show that our curriculum learning model using bayesian uncertainty is an

accurate strategy to label missing labels. In the future work, one could combine several datasets

whith shared categories to learn with more training data.

76

Chapter 5

A Flexible Flow-Based Latent Variable
Model for Asynchronous Action
Sequences

This chapter focuses on the asynchronous action prediction problem. Given a history of previous

actions, the goal is to model the distribution of future actions, including action times as well as

action categories. Unlike existing approaches that rely on restrictive parametric distributions, our

approach makes use of the normalizing flow model to generate flexible distributions of event inter-

arrival times. Furthermore, with temporal latent variables, our model is also capable of capturing

highly complex temporal dependence structures. The proposed model is evaluated on benchmark

action sequence datasets and shows superior performance over existing methods.

This chapter is published as Point Process Flows in Learning with Temporal Point Processes,

NeurIPS 2019 workshop [91].

5.1 Overview

Predicting action sequences of both what and when to happen is a fundamental inference task in

human activity understanding. We argue that the challenge of this task stems from four aspects: 1)

the complex dependence between the past and the future actions; 2) the complex structure of an

action, i.e. how the timing of an action is related to its label or vice versa; 3) the multi-modal nature

of future uncertainty, i.e. given a sequence of past actions, multiple different sequences of future

events could be of substantial possibility; 4) the diverse and complex distributions of future action

times.

Previous models, especially video frame-based ones, deal with the problem on a regularly

spaced time grid with short intervals between time stamps [1, 63, 89, 126]. However, actions are

usually sparsely and irregularly spaced in terms of time. Such frame-based approaches could be

computationally inefficient and limit the model’s ability to make long-term predictions across mul-

tiple actions.

77

Recently, there has been growing interest in Temporal Point Process (TPP) models in the ma-

chine learning and vision communities [29, 92, 97, 114]. A TPP models asynchronous action se-

quences by directly modeling the distribution of the time intervals between actions. We argue that

the temporal point process approach, through directly modeling the time intervals between actions,

can work around the limits of a predefined time grid due to the sparse and irregular nature of action

timing.

An important variant of TPP for action anticipation is the Marked Temporal Point Process

(MTPP), which models future action timing in the same way as TPP, and more importantly, pro-

vides a framework for modeling action categories. However, existing works directly model the

marginal distributions of future action time and action category by making oversimplified inde-

pendence assumptions about the joint distribution. They also neglect the multi-modal possibility of

the future [29, 114]. Recently, Mehrasa et al. [92] proposed a marked temporal point process-based

approach to model the sequence of action times and categories for action anticipation. However,

the model assumes that the time of the next action follows an exponential distribution, and future

actions are conditionally independent of the past given the latent variable. We hypothesize that these

assumptions restrict the model’s expressiveness in modeling the time distributions of actions as well

as anticipatory reasoning of future actions based on history.

In this work, we propose a recurrent latent variable model for action sequence generation and an-

ticipation (see Figure 5.1) that directly addresses the challenges mentioned before. In our proposed

framework, the stochastic latent variable encodes high-level information about possible future ac-

tions as well as how the future action times and categories are correlated. When this latent code

is combined with the history of actions, it can be decoded into independent action category and

time distributions that are consistent with the past actions. It also helps to produce a flexible distri-

bution for future action times, which can be further improved by utilizing the normalizing flow to

construct complex time distributions. The proposed model can be trained in a variational filtering

framework; it uses a separate inference network to propose the posterior distribution of the latent

variable conditioned on current observations and maximizes a variational lower bound. The recur-

rent latent variable model achieves state-of-the-art performance on various tasks including density

estimation, short-term prediction, and long-term conditional generation.

In summary, the contributions of this work are:

• We propose a flexible flow-based latent variable model for action sequences capable of captur-

ing (1) the complex dependency between past and future actions; (2) multi-modal distribution

of future actions; (3) complex time distribution (3) complex structure of an action timing and

label.

• Through a wide range of experiments, we demonstrate how our proposed model can be used

for density estimation, short-term prediction, and long-term conditional generation.

78

210s100s

Crack EggPour Oil

Add Sa
lt/P

ep
per

Fry
 Eg

g

Tak
e P

lat
e

Put E
gg

2 Plat
e

Fry Egg

400s

400s

Take Plate

110s

100s

Fry
 Eg

g

Tak
e P

lat
e

Put E
gg

2 Plat
e

Add Sa
lt/P

ep
per

Add Salt & Pepper

Fry
 Eg

g

Tak
e P

lat
e

Put E
gg

2 Plat
e

70s

Add Sa
lt/P

ep
per

70s

History of Actions Future Action Sequences Distributions

Add Sa
lt/P

ep
per

Fry
 Eg

g

Tak
e P

lat
e

Put E
gg

2 Plat
e

Fry Egg

300s

300s

Figure 5.1: We propose a flexible flow-based recurrent latent variable model for action sequences.
Our framework takes a sequence of actions as observations and models the distribution of future
actions which enables down-stream tasks such as density estimation, short-term prediction and long-
term conditional generation.

79

5.2 Related work

Action Anticipation. In activity anticipation, the goal is to predict the next action before it starts

[1, 63, 89, 92, 113, 126]. Vondrick et al. [126] propose a framework for learning a representation for

future frames in a video, which is used to infer what type of action is going to happen next. Mahmud

et al. [89] propose a hierarchical model for jointly predicting the next activity type and starting time

in a video. Their model consists of three branches that aim to capture scene context, relationships

of past activities in the sequence, and inter-activity time context to predict future action. Sener et al.

[113] introduce a hierarchical zero-shot action prediction framework that generalizes instructional

knowledge from text-corpora and transfers the knowledge to the visual domain to anticipate future

actions.

Fraha et al. [1] propose two methods for long-term activity predictions: (1) An RNN-based

framework that takes the history of past activities and predicts the next action label and duration.

In order to predict multiple steps in the future, the predicted activities are fed back to the RNN

as observations. (2) The second approach is a CNN-based model that predicts a fixed sequence of

future activities in one shot, in the form of a matrix encoding future action labels and duration.

Recently, Ke et al. [63] propose a time-conditioned framework for long-term action anticipation.

The model also utilizes a multi-scale attention mechanism to extract features from the observed

sequence of actions. Recent work by Mehrasa et al. [92] introduce a conditional variational auto-

encoder model for modeling future action timing and category. More specifically, in a sequence,

their model predicts two distributions over the next action label and timing: a categorical distribution

for action label and an exponential distribution for action timing.

Different from previous works which are frame-based [1, 63, 89, 113, 126] or make simplified

assumptions on action timing distribution [1, 92], we address the problem of modeling future ac-

tion timing and label distribution in asynchronous action sequences and employ normalizing flow

in constructing a time distribution which makes our model capable of capturing highly complex

temporal distributions.

Early Action Prediction. Early action recognition is the task of recognizing an ongoing action

as early as possible before its fully executed. Many efforts have been developed for early action

prediction [37, 71, 84, 111, 129]. Kong et al. [71] propose a deep sequential context network to

capture the evolution of video frames and reconstruct missing frames of partial observations for

action prediction. Gammulle et al. [37] introduce a recurrent generative adversarial network (GAN)

framework that jointly learns to predict future video frames as well as action anticipation. Wang et

al. [129] propose a teacher-student learning framework for early action prediction. A teacher model

aims to recognize activity from fully observed videos, and a student model aims to recognize an

ongoing action as early as possible given partially observed videos. A teacher-student block is also

utilized for distilling knowledge from teacher to student. Our work is different from early action

prediction since we anticipate the occurrence of an action before it starts.

80

Event Prediction in Asynchronous Sequences. Event prediction has a very rich literature in

Marked Temporal point processes (MTPPs) [22]. In MTPP, the task of event prediction refers to

predicting the conditional distribution of the next event in a sequence given the history of past

observations. More specifically, MTPP models the conditional joint distribution of event time and

mark, given the history of past events. In this formulation, mark represents any information attached

to an event, which in the case of action prediction, we are interested in representing action label as

a mark. In this line of work, classic work designs a functional form for a point process based on

a prior knowledge over the underlying generative mechanism of the system [46, 54, 69]. Recently,

learning point process distributions using recurrent neural networks (RNNs) to encode the history

information, has received an increasing amount of attention [29, 60, 93, 144, 145]. In this line of

work, history information is encoded and exploited in learning the parameters of the event’s timing

and category distribution. In very recent work, Shchur et al. [114] proposed to estimate the time

distribution of point processes with a mixture of Gaussian distribution where the parameters are

obtained via an RNN encoding the history. They also use the representation (provided by RNN) to

learn the parameters of a categorical distribution for mark (action label).

81

5.3 Preliminaries

5.3.1 Temporal point process

A temporal point process (TPP) [22] is a mathematical framework for modeling asynchronous se-

quences of actions. It is a stochastic process whose realization is a sequence of discrete events in

time t1:n = (t1, t2, ..., tn) where tn is the time when the nth event occurred.

A temporal point process distribution is most commonly modeled by specifying the probability

density function of the time of the next event:

f(t|Ht) = λ(t|Ht) exp
{
−
∫ t

tn−1
λ(u|Hu) du

}
, (5.1)

where λ(t|Ht) is the conditional intensity function which encodes the expected rate of an event

happening in a small area around t and Ht is the history of past events up to time t i.e. Ht =
{t1, t2, ..., tn−1|tn−1 < t}. Various methods explored different design choices of intensity function

to capture the phenomena of interest [46, 54, 69]. Recently, there has been growing interest in the

deep learning community to model the distribution of time intervals between events in temporal

point processes [29, 60, 93, 134, 145].

A related extension of temporal point processes to action anticipation, is Marked Temporal Point

Process (MTPP) which contains a discrete event label xi marked at each time step ti. Human activity

sequences with discrete action labels perfectly fit in the framework of MTPP. Intuitively, the internal

dynamics of a system often call for events of specific types to take place at specific times. We argue

that learning a good representation of the internal state of a system from observations is critical to

modeling and generating asynchronous marked event sequences.

5.3.2 Normalizing flow

Normalizing flows are generative models that allow both density estimation and sampling. They

map simple distributions to complex ones using bijective functions. Specifically, if our interest is

to estimate the density function pX of a random vector X ∈ Rd, then normalizing flows assume

X = gθ(Z), where gθ : Rd → Rd is a bijective function, and Z ∈ Rd is a random vector with a

tractable density function pZ . We further denote the inverse of gθ by fθ. On one hand, the probability

density function can be evaluated using the change of variables formula:

pX(x) = pZ(fθ(x))
∣∣∣∣det

(
∂fθ
∂x

)∣∣∣∣ , (5.2)

where ∂fθ/∂x denotes the Jacobian matrix of fθ. On the other hand, sampling from pX can be

done by first drawing a sample from the simple distribution z ∼ pZ , and then apply the bijection

x = gθ(z).

Given the expressive power of deep neural networks, it is natural to construct gθ as a neural

network. However, it requires the bijection gθ to be invertible, and the determinant of the Jacobian

82

matrix should be efficient to compute. Several methods have been proposed along this research

direction [27, 28, 67, 68, 100, 106]. An extensive overview of normalizing flow models is given by

[70].

5.3.3 Continuous normalizing flow

From a dynamical systems perspective, the residual network can be regarded as the discretization

of an ordinary differential equation (ODE) [11, 45, 85]. Inspired by that, Chen et al. [13] propose

neural ODE, where the continuous dynamics of hidden units is parameterized using an ordinary

differential equation specified by a neural network:

dz(t)
dt

= h(z(t), t, θ). (5.3)

The neural ODE can be used to construct a continuous normalizing flow. The invertibility is natu-

rally guaranteed by the theorem of the existence and uniqueness of the solution of the ODE. Further-

more, using the instantaneous change of variables formula, similar to Equation 5.2, the log-density

can be evaluated by solving the following ODE:

∂ log p(z(t))
∂t

= −tr
(

∂h
∂z(t)

)
. (5.4)

Grathwohl et al. [42] propose an improved version of neural ODE, named FFJORD, which has a

lower computational cost by using an unbiased stochastic estimation of the trace of a matrix.

83

ℎ"#$

%"#$

&"#$

ℎ"

%"

&"

ℎ"'$

%"'$

&"'$

(a) Generation

ℎ"#$

%"#$

&"#$

ℎ"

%"

&"

ℎ"'$

%"'$

&"'$

(b) Inference

Figure 5.2: Graphical model illustration of our proposed framework during inference and genera-
tion.

5.4 Method

5.4.1 Problem definition

The input data is a sequence of actions y1:n = (y1, y2, .., yn), where each action yi = (ti, ci)
is a tuple of the time of occurrence ti ∈ R≥0 and the action category ci ∈ {1, 2, . . . ,K}. An

alternative representation of the data is to use the inter-arrival time instead of the time of occurrence.

That is, x1:n = (x1, x2, .., xn) and xi = (τi, ci), where τi = ti − ti−1 represents the inter-arrival

time between actions xi−1 and xi; we define t0 = 0 for consistency. It is obvious that the two

representations x1:n and y1:n are equivalent.

The task is to model the joint distribution of x1:n by maximizing the log-likelihood log p(x1:n).

Furthermore, the model should also be able to perform action prediction. Specifically, it can predict

p(xn+1|x1:n), the conditional distribution of the next action xn+1 given the history x1:n.

5.4.2 Generative model

As a common approach to modeling time-series data, we use an RNN model, in particular an LSTM

model, to encode the history. At any time step 1 ≤ i ≤ n, the hidden state hi is a compressed rep-

resentation of the past actions x1:i. The update step is defined as follows: hi = LSTMθ(xi, hi−1).
We also introduce a latent variable zi at each step i. The prior distribution p(zi|x1:i−1) is a multi-

variate Gaussian distribution with a diagonal covariance matrix. It is modeled by an MLP with the

hidden state hi−1 as the input. The generating distribution is p(xi|zi, x1:i−1) = p(τi, ci|zi, x1:i−1).

Part(a) of Figure 5.2 shows the graphical model representation during generation. We further as-

sume that the latent variable zi contains discriminative high-level information such that τi and ci are

conditionally independent given zi and the history x1:i−1, i.e.

p(xi|zi, x1:i−1) = p(τi|zi, x1:i−1) p(ci|zi, x1:i−1). (5.5)

84

Therefore, the log-likelihood can be written as

log p(x1:n) =
n∑
i=1

log p(xi|x1:i−1), (5.6)

where

p(xi|x1:i−1) =
∫
p(xi, zi|x1:i−1)dzi =

∫
p(xi|zi, x1:i−1)p(zi|x1:i−1)dzi. (5.7)

Now we further elaborate on the two conditional distributions on the right-hand side of Equa-

tion 5.5. For the conditional distribution of the action category p(ci|zi, x1:i−1), it is a discrete distri-

bution and its support is {1, 2, . . . ,K}. It is modeled by an MLP followed by a softmax layer with

zi and hi−1 as input.

We use a normalizing flow fθ : R≥0 → R to model the conditional distribution of the inter-

arrival time p(τi|zi, x1:i−1). Specifically, we use a continuous normalizing flow model based on

neural ODEs. The normalizing flow is able to model complex distributions. It allows exact compu-

tation of log-likelihood and supports efficient sampling from the distribution. The base distribution

pbase(·|zi, x1:i−1) is multivariate Gaussian with a diagonal covariance matrix. It is a network that

takes the latent variable zi and the hidden state hi−1 as input. Using the change of variables formula,

the conditional distribution of τi can be written as:

p(τi|zi, x1:i−1) = pbase(fθ(τi)|zi, x1:i−1)
∣∣∣∣det

(
∂fθ
∂τi

)∣∣∣∣ . (5.8)

5.4.3 Inference with variational filtering

Directly optimizing the log-likelihood in Equation 5.6 is computationally intractable. Following

the variational inference framework, we use a variational distribution qφ(zi|x1:i) to approximate the

true posterior distribution p(zi|x1:i). Part (b) of Figure 5.2 shows the inference process of our model.

Similar to the prior distribution, the variational distribution is a multivariate Gaussian distribution

with a diagonal covariance matrix and is parameterized by an MLP with the hidden state hi as input.

A variational lower bound of the log-likelihood can be derived as follows:

log p(x1:n) ≥
n∑
i=1

Eqφ(zi|x1:i)
[
log p(xi|zi, x1:i−1)−KL(qφ(zi|x1:i) ‖ p(zi|x1:i−1))

]
.

The right-hand side is known as the evidence lower bound (ELBO).

5.4.4 Action prediction

The proposed model can easily perform action prediction. That is, given the observed action se-

quence x1:n, we want to predict the distribution of the next action xn+1 = (τn+1, cn+1). It is simply

85

a marginalization over the latent variable zn+1:

p(xn+1|x1:n) = Ep(zn+1|x1:n)p(xn+1|zn+1, x1:n)

= Ep(zn+1|x1:n)
[
p(τn+1|zn+1, x1:n)p(cn+1|zn+1, x1:n)

]
. (5.9)

It also provides a way to estimate the conditional distributions of τn+1 and cn+1 via Monte Carlo

sampling. We first draw N samples {ẑ(j)
n+1}Nj=1 from the prior distribution p(zn+1|x1:n). Then the

distribution of action category cn+1 can be estimated by

p̂(cn+1|zn+1, x1:n) = 1
N

N∑
j=1

p(cn+1|ẑ(j)
n+1, x1:n). (5.10)

For the inter-arrival time, we can further draw M samples {τ̂ (j,k)
n+1 }Mk=1 from p(τn+1|ẑ(j)

n+1, x1:n)
for each j = 1, 2, . . . , N . Those MN samples represent the conditional distribution of τn+1, and

various statistics can be computed from them; for example, the point estimation is

τ̂n+1 = 1
MN

N∑
j=1

M∑
k=1

τ̂
(j,k)
n+1 . (5.11)

86

5.5 Experiments

To show the effectiveness of our approach, we evaluate the performance of our model on challeng-

ing tasks of density estimation, short-term action anticipation, and long-term action anticipation,

i.e. predicting a sequence of future actions. We perform experiments on two challenging activity

datasets: (I) Breakfast dataset [73] contains 1712 videos with 48 action classes related to break-

fast preparation. (II) Multithumos dataset [139] contains 400 videos of 65 action classes. In this

dataset, the average density of actions per label is 1.5, which makes it very challenging since mul-

tiple actions might happen at the same time.

5.5.1 Baselines

We compare our proposed approach with state-of-the-art activity prediction and temporal point

process models:

(I) TD-LSTM is an LSTM that takes the history of past activities and predicts the next action

inter-arrival time and category. We use the mean squared error (MSE) for regression loss on time and

the cross-entropy for category prediction. This model is comparable with the RNN-based framework

proposed in [1].

(III) APP-VAE [92] is a latent variable framework for activity prediction. Given a history of past

actions, APP-VAE generates two distributions for the next action: one point process distribution over

its timing (by predicting the conditional intensity and using it to define point process distributions),

and one over its category by predicting the parameters of a categorical distribution over possible

action labels. The action time distribution modeled by the APP-VAE model is always an exponential

distribution.

(IV) IFL [114] is a recurrent model that takes the history of past actions and models next

action timing distribution by density estimation using a mixture of Gaussians. An LSTM encodes

history and predicts the parameters of the mixture distribution. It also predicts the parameters of a

categorical distribution for the next action label.

(V) Majority Prediction is a simple baseline that predicts the most frequent action label at all

time-steps regardless of history.

(VI) Average Time Prediction This baseline predicts the mean of inter-arrival time in the

dataset at all time-steps.

We compute the most frequent action label and average inter-arrival time with respect to the

training split.

5.5.2 Evaluation metrics

Log-likelihood. We report the negative log-likelihood (NLL) of conditional activity prediction for

all models except for TD-LSTM. It measures the ability to model both the distribution of imme-

diate next actions conditioned on history and entire sequences due to the way the joint probability

of sequential data is factorized. The negative log-likelihood of an action sequence can be directly

87

evaluated by IFL in closed form. For our proposed model and APP-VAE baseline, we report the im-

portance weighted autoencoder (IWAE) bound [6], which is a lower bound of the true log-likelihood.

To compute IWAE, at each time-step, we draw samples from the VAE’s posterior distribution and

follow the standard procedure for computing IWAE. The value is averaged by the total number of

time steps across all the test sequences.

Error in time prediction. We also report the mean absolute error (MAE) between model’s mean

estimation of future event time and ground truth to evaluate the model’s timing performance, i.e.

|Eτi+1∼p(τi+1|x1:i)(τi+1) − τ∗i+1|. The mean prediction is estimated by sampling from models for

IFL, APP-VAE, and our proposed models. It is straightforward to take samples from IFL models.

Due to the latent variable, sampling from APP-VAE and our model consists of two stages: (1) First,

we draw samples from the prior distribution zi+1 ∼ p(zi+1|x1:i). Then, we pass the samples of zi+1

to the decoder along with encoded history and (2) draw samples from each predicted distribution

τi+1 ∼ p(τi+1|zi+1, x1:i). As TD-LSTM models are optimized using MSE loss, we directly take

the prediction of the TD-LSTM model as the mean of a predicted Gaussian distribution.

Accuracy in category prediction. We also report the accuracy of the model’s prediction of future

event labels. In one-step-ahead prediction, we directly take the most probable class of the categorical

distribution output by IFL and TD-LSTM as the predicted class of the future step. For APP-VAE and

our proposed model, we predict the label of the next action through a similar two-stage sampling. In

the first stage, we sample a latent code z from the prior distribution. Then, we take the most probable

category predicted by our model conditioned on the latent code as the prediction associated with that

sample of z. We take the mode of predictions over all the samples of z as the prediction of our model

for the next step.

5.5.3 Experimental results

Table 5.1: Short-term Action Anticipation Results

Model
Breakfast Multithumos

Acc.↑ MAE↓ NLL↓ Acc.↑ MAE↓ NLL↓

TD-LSTM [1] 56.79 172.09 – 36.19 1.97 –
APP-VAE [92] 57.44 159.17 8.82 39.82 1.88 3.57
IFL [114] 57.96 284.43 7.64 39.88 1.96 3.41
Proposed 55.61 154.14 7.89 40.29 1.78 3.37

Short-term action anticipation. Correctly predicting one-step-ahead is the essential building block

of generating long-term sequences for sequential models. We report the performance of our model

in anticipating the next action label and time with the accuracy and MAE metrics. We also report

the negative log-likelihood (NLL) in estimating the density of action sequences. The negative log-

likelihood is estimated by the IWAE bound with 1000 samples of the latent variable. The sample size

for predicting the next action’s time and category is also 1000. Table 5.1 shows the experimental

88

results. On the Multithumos dataset, our proposed model outperforms the baselines on all short-

term anticipation metrics. On the Breakfast dataset, it also shows superior performance on sequence

density estimation and time prediction with action category prediction performance close to the

best-performing model. It is worth noting that despite IFL showing better performance on density

estimation, the NLL of our model is estimated by an upper bound of the true NLL while IFL can

evaluate the exact NLL values. However, the performance of IFL on the point estimate of next

action’s time is inferior to all the other models We argue that our model strikes a good balance

between modeling the distribution of action sequences and accurately predicting near-future events.

This good balance combined with the expressive power of latent variables and flexibility of time

distribution contributes to superior performance on long-term prediction tasks.

Long-term action anticipation. We evaluate the performance of our proposed framework in pre-

dicting multiple-steps into the future. We show that our model is better at predicting multiple steps

ahead into the future than baseline models given contextual history information. For the Breakfast

dataset, we report anticipation results within 5 steps in the future given the observation of first 3 ac-

tions in a sequence. In the Multithumos dataset, since the sequences are longer with a median length

of 49.5 compared to breakfast dataset, we expand the observation window to 50 actions and, pre-

diction window to 6 steps ahead. The method of estimating mean and mode of predicted actions is

extended to the multiple-step scenario on a sampling basis by feeding samples from previous steps

back to the model to generate samples for future steps. We present more details of the sampling

method in subsubsection 5.5.9.3. Except for TD-LSTM, we sample 1000 samples, feed them back

to the model and obtain 1 new sample in the following time step for each sample of the previous

step. In this method, we can sample 100 sequences from the model. In APP-VAE and our proposed

model, we sample 10 latent codes z and 100 category and action pair conditioned on each z at the

first step of prediction. We use the sampled sequences to estimate the mean of action time at each

step and take the mode of all the sample labels at each step as the prediction. Table 5.5.3 provides

the result for Breakfast and Multithumos datasets. The results indicate the better capability of our

model in long-term action anticipation. We can see that our model consistently outperforms baseline

models across different prediction windows. Compared with latent variable models, including APP-

VAE and our proposed model, the IFL model which predicts time and action category independently

deteriorates much more quickly. We hypothesize that this independence assumption could make the

model generate samples with action time and category inconsistent with each other and this incon-

sistency could accumulate across time steps causing the model’s performance to deteriorate quickly.

5.5.4 Study on structure of action time and label prediction

In this experiment, we empirically show that the latent variable model combined with history per-

mits us to model the distribution of the action category and time independently even though without

the abstract latent variable, knowing one of the action categories and time would be informative

about the other. In this study, we try two variants of our proposed model: a) we give the action cate-

gory as the additional input to the time decoder that proposed the base distribution of the normalizing

89

Metric Model
Breakfast (3 Actions) Multithumos (50 Actions)

2 3 4 5 2 3 4 5 6

Acc.↑

MAJE. 17.73 18.07 19.29 19.71 11.51 10.48 10.00 9.73 9.71
TD-LSTM [1] 55.25 51.03 47.45 45.16 31.86 28.45 26.82 25.33 24.35
APP-VAE [92] 51.94 48.58 47.45 46.97 39.83 33.24 30.46 27.34 25.74
IFL [114] 41.99 37.55 33.11 32.73 27.43 23.35 19.77 18.53 17.57
Proposed 54.15 51.03 48.81 47.28 41.16 35.33 32.50 30.46 28.20

MAE↓

AVG. 260.81 274.61 278.81 285.77 1.97 2.08 2.17 2.14 2.17
TD-LSTM [1] 248.52 255.9 285.64 317.84 1.84 1.95 2.06 2.04 2.08
APP-VAE [92] 243.29 258.24 273.93 304.22 1.88 2.01 2.14 2.11 2.14
IFL [114] 260.95 292.17 302.98 326.22 2.03 2.10 2.43 2.67 6.30
Proposed 229.33 242.54 257.22 287.22 1.80 1.95 2.11 2.07 2.11

Table 5.2: Long-term Action Prediction Results Conditioned on History. The number in the
parenthesis in the first row shows the number of actions in the observation window. The number in
the second row shows the number of actions in the observation window.

flow; b) we concatenate the time of the next action with the hidden state and latent code as input to

the action category decoder. All the other components of the model are exactly the same. Teacher

forcing uses teacher forcing during training and testing, which means the ground-truth value of the

additional input was fed to the model. The experiment results are presented in Table 5.3 As we can

see, the model’s performance on density estimation is not significantly impacted by the additional

inputs to the time action category decoder. However, both variants’ performance on next action cat-

egory prediction is significantly impacted. The model variant that conditions the action decoder on

time also shows substantial performance decay on estimating the next action’s time as measured by

MAE. The experiment results corroborate our hypothesis that given a latent variable, we can model

the distribution of action time and category independently. In contrast, on the Multithumos dataset,

we see that conditioning the action category prediction on time in IFL models significantly improves

its action category prediction accuracy and conditioning action time prediction on the category also

improves its time prediction performance. These results further support our arguments that the in-

dependence assumption between time and action label given only history is oversimplified but we

can model the distributions of time and action label independently given a latent space.

5.5.5 Ablation study on complexity of time decoder

VAE models have shown the power to model complex and multi-modal distributions, e.g. MNIST,

CelebA due to the expressive latent space. In this study we empirically show that even with an

expressive latent space, applying a proper normalizing flow model to the distribution proposed by

the time decoder could still improve the model’s performance, especially the estimation of next

action’s time. As a baseline, we evaluate the performance of a model without normalizing flow

blocks by directly predicting a log-normal distribution. We also evaluated the performance of mod-

els with normalizing flows of different complexity by varying the number of neural ODE blocks in

the normalizing flow. The results are presented in Table 5.4. With a simple normalizing flow model

containing 1 block, we see significant performance gain on short-term estimation of next action’s

90

Dataset
Conditioning Structure IFL [114] Proposed

History Action Time Acc.↑ MAE ↓ NLL↓ Acc.↑ MAE ↓ NLL↓

Breakfast
3 57.96 284.43 7.64 55.61 154.14 7.89
3 3 57.96 174.35 7.76 42.86 157.62 7.96
3 3 56.01 164.51 7.91 42.86 174.54 8.02

Multithumos
3 39.88 1.99 3.41 40.29 1.78 3.37
3 3 34.45 1.93 3.45 37.72 2.00 3.22
3 3 41.44 2.70 3.33 37.73 1.84 3.28

Table 5.3: Study on Predefined Structured Prediction. Experimental results on Breakfast dataset
for assuming a pre-defined structured framework for IFL and Proposed Model. We pass the Ground-
truth as the condition for time/action to the model during test time. Models with action box checked
by a 3means the time decoder is conditioned on action. Models with time box checked by 3means
the action decoder is conditioned on time. Models with only history box checked by 3are the orig-
inal/proposed model.

time, as well as improvements on density estimation and action prediction. The performance on

short-term time estimation continues to improve as we increase the complexity of the normalizing

flow model. However when the number of blocks in the normalizing flow reaches 10, the density

estimation and category prediction’s performance decays on the breakfast dataset, showing signs of

overfitting while the performance improvements continues on the multithumos dataset. We report

the results using a model with 5 blocks in the normalizing flow in previous experiments on both

datasets for consistency.

Flow Blocks
Breakfast Multithumos

Acc.↑ MAE↓ NLL↓ Acc.↑ MAE↓ NLL↓

0 54.31 176.25 8.07 40.64 1.95 3.68
1 55.78 157.78 7.87 39.24 1.89 3.27
5 55.61 154.14 7.89 40.29 1.78 3.37
10 42.96 152.67 8.00 40.64 1.72 3.17

Table 5.4: Normalizing Flow Complexity Study Results. The model output parameters of a log-
normal distribution for zero blocks in the normalizing flow module.

5.5.6 Qualitative results of future actions anticipation

Figure 5.3 shows action sequences generated by our model on Breakfast dataset. For each example,

we illustrate the observation provided for the model (action history), two generated sequences by

our model, and the ground-truth of future actions. We can see that our model is able to generate

action sequences comparable to ground-truth sequences as well as other plausible action sequences.

Results indicate the ability of our model in capturing the multi-modal underlying distribution of

future actions.

91

Observation

Take Knife Take Topping Smear Butter

156 13555 720

Predictions

Ground-Truth

Put Topping On Top

Cut Orange Pour JuiceSqueeze Orange Take Glass

447298 105

157

Cut Bun Smear Butter Put Topping on Top

141

Cut Bun

38

58 444

Observation

Crack Egg Add Salt/Pepper Put Egg into PlateStir Fry Egg

38 604254 1031

Predictions

Ground-Truth

Take Plate

482

Add Salt/Pepper Put Egg into PlateStir Fry Egg Take Plate

418397 298 168

172 183 361 748

Spoon Floor Pour Milk Stir Dough Pour Dough to Pan Fry Pancake

199

Figure 5.3: Qualitative results of sequence generation on Breakfast dataset.

92

5.5.7 Multiple Run Results of Long-term Action Anticipation

Due to the relatively large uncertainty in long-term predictions, we further provide the mean and

standard deviation of long-term action prediction results on 4 runs with different random seeds. The

experiment results are presented in Table 5.5 and Table 5.6 for Breakfast [73] and Multithumos [139]

datasets respectively. The two naive baselines, majority prediction and average time prediction, are

not affected by random seeds and therefore the standard deviations for them are zero.

Metric Model
Breakfast (3 Actions)

2 3 4 5

Acc.↑

MAJE. 17.73±0.00 18.07±0.00 19.29±0.00 19.71±0.00
TD-LSTM [1] 54.56±0.53 50.72±0.40 47.02±0.33 44.78±0.30
APP-VAE 52.68±1.16 49.26±1.03 47.90±1.05 47.28±0.53
IFL [114] 41.58±0.28 37.25±0.21 33.62±0.66 32.65±0.52
Proposed 53.87±0.32 51.22±0.24 48.72±0.17 47.20±0.15

MAE↓

AVG. 260.81±0.00 274.61±0.00 278.81±0.00 285.77±0.00
TD-LSTM [1] 248.07±0.41 255.75±0.29 274.80±7.24 317.93±0.24
APP-VAE [92] 243.51±1.37 258.09±0.91 274.00±1.07 303.49±0.96
IFL [114] 261.88±1.29 292.01±0.74 303.38±0.80 326.43±0.23
Proposed 230.29±1.21 243.79±1.48 258.59±0.99 288.89±1.17

Table 5.5: Long-term Action Prediction Multiple Run Results Conditioned on History for
Breakfast Dataset. The number in the parenthesis in the first row shows the number of actions
in the observation window. The number in the second row shows the number of actions in the ob-
servation window.

Metric Model
Multithumos (50 Actions)

2 3 4 5 6

Acc.↑

MAJE. 11.51±0.00 10.48±0.00 10.00±0.00 9.73±0.00 9.71±0.00
TD-LSTM [1] 31.09±0.76 27.85±0.43 26.43±0.39 25.42±0.19 24.47±0.24
APP-VAE [92] 38.39±1.75 32.49±1.14 29.83±1.11 27.12±0.87 25.62±0.96
IFL [114] 28.43±0.92 22.38±0.90 20.12±0.40 18.21±0.28 17.38±0.30
Proposed 40.49±0.77 34.73±0.88 32.05±0.81 30.41±0.46 28.35±0.28

MAE↓

AVG. 1.97±0.00 2.08±0.00 2.17±0.00 2.14±0.00 2.17±0.00
TD-LSTM [1] 1.84±0.01 1.96±0.01 2.06±0.01 2.04±0.01 2.08±0.01
APP-VAE [92] 1.90±0.03 2.02±0.02 2.15±0.02 2.12±0.01 2.14±0.01
IFL [92] 2.03±0.02 2.10±0.01 3.13±0.69 3.41±0.96 4.29±1.49
Proposed 1.82 ±0.02 1.96±0.01 2.08±0.02 2.05±0.02 2.08±0.01

Table 5.6: Long-term Action Prediction Multiple Run Results Conditioned on History for Mul-
tithumos Dataset. The format of this table is similar to Table 5.5.

5.5.8 Unconditional Generation Qualitative Results

In our model, we assume that the prior distribution over the latent code in the first step of the

sequence follows a Normal Distribution z1 ∼ N (0, 1). Figure 5.4 shows examples of action se-

quences generated by sampling the first action from this prior. In order to do so, we have two stages

93

Crack Egg Add Salt/Pepper Put Egg into PlateFry Egg

41 194422 1236

Take Cup Pour Coffee Pour Milk

38 48592

Cut Orange Squeeze Orange Pour Juice

28 208 505

Take Cup

12 94

Add Tea Bag Pour Water

485

Figure 5.4: Qualitative results of sequence generation on Breakfast dataset. In this setting, no action
is observed and sequences are generated by sampling from the prior distribution of the first step in
the sequence.

of sampling: (1) First, samples of the prior distribution z1 ∼ N (0, 1) are passed to the decoders

which produce inter-arrival time p(τ1|z1) and category p(a1|z1) distributions for the first action; (2)

Then, samples are taken from each time τ1 ∼ p(τ1|z1) and category a1 ∼ p(a1|z1) distributions

and construct the time and category of first action in the sequence. To generate action sequences

of multiple steps, the sampled action label and times are fed back to the model as observations to

get a sample of the next step. Sequences in Figure 5.4 are obtained from the model trained on the

Breakfast dataset. We can see that the generated categories and temporal occurrence are diverse and

reasonable.

5.5.9 Experimental Details

5.5.9.1 Model Architecture

Proposed model. We use an LSTM of hidden state size 128 for the prior and posterior networks.

The dimension of the latent space is set to 256. Before passing the action label and time to the model,

we pass them through two embedding networks at each time step. We pass the 1-hot encoding of

the action label to an MLP with two layers of size 64 and 128, respectively. A separate MLP with

a similar architecture is used for encoding action inter-arrival time. The final representation for

the action is obtained by passing the concatenation of action time and label embeddings through a

linear transformation. The dimension of the final representation is 256. To get the parameters of the

prior and posterior distributions in the latent space, we pass the hidden states of prior and posterior

LSTM cells at the corresponding time steps to two separate MLPs, respectively. Both MLPs have

two hidden layers of size 256. We use an MLP containing two hidden layers of size 256 as the action

decoder; it receives the concatenation of the latent variable and the hidden state of the prior LSTM,

and decodes it into a categorical distribution of action labels. The time decoder is an MLP with a

94

similar architecture. It proposes a base distribution that will be further processed by the normalizing

flow module to produce the final distribution of action time.

Continuous normalizing flow. We adopt the continuous normalizing flow based on neural ODE as

the normalizing flow model to produce the distribution of action time distribution. The neural ODE

implementations provided by Grathwohl et al. [42]1 and Chen et al. [13]2 are used. We compose a

stack of 5 MLPs, each with 3 hidden layers of size 64 for the neural ODE model f−1
θ in Equation 8.

To make sure that our model generates positive inter-arrival times τi ∈ R+, we apply an additional

exponential transformation and accordingly, the Jacobian term is added to training objective and

evaluation criterion. An affine transformation is applied right before the exponential transformation

to mitigate numerical instability.

Baseline models. To ensure a fair comparison, we share the same architecture for the embedding,

LSTM cells, and action and time decoder networks across all the models. We also share a similar

pipeline of applying an affine and exponential transformation in the normalizing flow of the IFL

model.

5.5.9.2 Training Details

The training set of each dataset is split into subsets for training and validation by the ratio of 8:2.

We train all the models for 1500 epochs and use early stopping based on loss on the validation set.

We select the model with the minimum validation loss (ELBO) for evaluation. Adam optimizer [65]

with a learning rate of 0.001 is used for all the models.

5.5.9.3 Sampling Details in Evaluation

Short-term action anticipation. For all the models except TD-LSTM, we use 1000 samples to

evaluate the models for the short-term action anticipation task. For the IFL model, we use 1000

samples from the output distribution to estimate the mean of the time of the immediate next action.

We directly take the category with the largest probability as the predicted class of the next action. For

latent variable models, including APP-VAE and our proposed model, 1000 samples from the latent

space are used to evaluate the log-likelihood and short-term action label prediction. To generate

1000 samples to estimate the mean of the next-step action’s time, we sample 10 zs from the latent

space and sample 100 samples of τ for each latent code at each time step.

Long-term action anticipation. We use 1000 sampled sequences in long-term prediction evalua-

tion. For IFL models, we sample 1000 pairs of action time and label at the first future step to predict

and obtained 1000 sequences of actions that differ by the action of the last step only. For each se-

quence, we feed it back into the model and sample 1 pair of label/action time at every following step

to obtain 1000 action time and label sequences of the desired length. A similar approach is followed

1https://github.com/rtqichen/torchdiffeq

2https://github.com/rtqichen/ffjord

95

https://github.com/rtqichen/torchdiffeq
https://github.com/rtqichen/ffjord

for TD-LSTM. The only difference is at the first time-step of prediction. Since TD-LSTM predicts

the time in a deterministic way, in the first step of prediction, 1000 samples of action category

distribution are taken and each is paired with the predicted time.

For APP-VAE and our proposed model, we sample 10 z’s from the latent distribution and 100

pairs of action time and label for each latent code to obtain 1000 samples at the first future step to

predict. The 1000 action sequences are fed back to the model as inputs and we sample one latent

code and one pair of action time and label for each action sequence at each following step. In this

way, we can sample 1000 sequences from the latent variable models.

5.5.9.4 Data Pre-Processing Details

For both Breakfast and Multithumos datasets, we use the annotation of videos in the dataset to create

sequences of categories and timing of actions. In the breakfast dataset, each action is annotated by

its action category and a frame number indicating when the action starts. We use the frame numbers

as our time scale and compute the inter-arrival times based on the difference between the starting

frames of actions. In all the videos of this dataset, the first action is ‘SIL’ and starts at the first

frame in the video. In our data preparation, we drop this action from each sequence. APP-VAE [92]

follows a different data processing: it works with the original action sequences i.e. all sequences

start with the action ‘SIL’ happening at the first frame.

Similarly, in the Multithumos dataset, we use the annotation of videos to create action se-

quences. Each action is annotated by its category and the time it starts. The scale of action timing is

in seconds with 1 decimal point precision. In Multithumos, actions might happen at the same time.

In our data pre-processing, for concurrent actions, we use a fixed alphabetical ordering based on

action categories and shift the starting time of each concurrent action by an offset = 0.1. We find

using a too small offset for concurrent actions could cause numerical instability for the ODE solver.

We believe that the difference between the reported results of Mehrasa et al. [92] and the results

reported in this chapter arises from following a different data pre-processing approach.

96

5.6 Summary

We propose a recurrent latent variable model for asynchronous action sequence modeling. The

model utilizes an expressive latent space to capture complex dependencies between action time and

label across steps and a normalizing flow model to generate a flexible distribution of inter-arrival

time between actions. We use a standard variational lower bound to optimize the model with a fil-

tering inference network. The model can generate high-quality samples of human action sequences

and also shows superior performance on sequence density estimation, short-term prediction and

especially long-term action sequence conditional generation.

97

Chapter 6

Conclusion

In this dissertation, we contribute in two main directions: modeling events in asynchronous time-

series data and learning from partial labels:

• Event Analysis in Asynchronous Time-series Data. We propose novel probabilistic models

based on framework of point processes. Temporal point process provides us a rich framework

describing the generative process of event sequence data, which enables various down-stream

tasks such as future prediction, sequence generation, density estimation, anomaly detection,

and etc. We study point processes under the prospective of deep generative models aiming

to improve flexibility and expressiveness of current approaches in modeling complex real-

world event sequences. First, we formulate our model with variational auto encoder (VAE)

paradigm, a powerful class of probabilistic models, and present a novel form of VAE mod-

eling the distribution of timing and categories of event sequences. Second, we connect the

fields of point processes and neural density estimation and propose a recurrent latent variable

framework that directly models point processes distribution by utilizing normalizing flows.

This approach is capable of capturing highly complex temporal distribution and does not

rely on any restrictive parametric forms. We evaluate our proposed frameworks in challeng-

ing tasks of future event prediction, sequences density estimation, conditional generation,

and anomaly detection. Comparison with the state-of-the-art baseline models on challenging

real-life datasets show that our proposed frameworks are effective at modeling discrete event

sequences.

• Learning from Partially Labeled Data. In this direction, we introduce an end-to-end learn-

ing scheme from partially labeled image data with a multi-label classifier. Our first contribu-

tion is to empirically compare several labeling strategies to highlight the potential for learning

with partial labels. Second, we contribute a new loss function that enables end-to-end learning

of a classifier from partially labeled data. Thirds, we develop a method that uses graph neural

networks to capture correlation between different categories to improve label prediction, and

we use our model to predict missing labels.

98

Despite the promising progress and success in modelling time-series and learning from partially

labeled data, the assumptions of which these problems are defined and formulated on restricts the

generality of these methods and limits their performance in real-world scenarios. Removing these

constraints and tackling more general problem setups still remain open and is an active research area.

For example, in our work, on learning partial-labels, we focused on multi-labels classification task.

However, dealing with partially annotated data is a common problem in many different domains. An

interesting future direction could be to investigate learning from partial-labels in other settings such

as time-series and event sequences. In time-series, annotation cost is much more heavier compared

to annotation of image datasets due to the sequential nature, and having a framework defined for it

would have many applications. On modelling human actions sequences and event prediction, one

future direction in visual recognition application could be using visual data as mark in the frame-

work of mark temporal point process. Visual data carry rich contextual information about ongoing

actions and would be beneficial in building more powerful prediction frameworks. Exploring more

powerful and expressive generative models in modelling events sequences could be another research

direction, for example one limitation of our VAE-based frameworks is that we are not able to per-

form exact likelihood inference, to address this issue, exploring end-to-end flow-based generative

model could be an interesting future direction .

99

Bibliography

[1] Yazan Abu Farha, Alexander Richard, and Juergen Gall. When Will You Do What? - An-
ticipating Temporal Occurrences of Activities. In IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2018.

[2] Mohammad Babaeizadeh, Chelsea Finn, Dumitru Erhan, Roy H. Campbell, and Sergey
Levine. Stochastic Variational Video Prediction. In International Conference on Learning
Representations (ICLR), 2018.

[3] Ricardo A. Baeza-Yates and Berthier Ribeiro-Neto. Modern Information Retrieval. 1999.

[4] Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. Curriculum learn-
ing. In International Conference on Machine Learning (ICML), 2009.

[5] S. S. Bucak, R. Jin, and A. K. Jain. Multi-label learning with incomplete class assignments.
In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2011.

[6] Yuri Burda, Roger Grosse, and Ruslan Salakhutdinov. Importance weighted autoencoders.
arXiv preprint arXiv:1509.00519, 2015.

[7] Judith Bütepage, Hedvig Kjellström, and Danica Kragic. Classify, predict, detect, anticipate
and synthesize: Hierarchical recurrent latent variable models for human activity modeling.
arXiv preprint arXiv:1809.08875, 2018.

[8] Ricardo S. Cabral, Fernando Torre, Joao P. Costeira, and Alexandre Bernardino. Matrix Com-
pletion for Multi-label Image Classification. In Advances in Neural Information Processing
Systems (NeurIPS), 2011.

[9] Andrew Carlson, Justin Betteridge, Bryan Kisiel, Burr Settles, Estevam R. Hruschka Jr., and
Tom M. Mitchell. Toward an Architecture for Never-Ending Language Learning. In Confer-
ence on Artificial Intelligence (AAAI), 2010.

[10] Micael Carvalho, Remi Cadene, David Picard, Laure Soulier, Nicolas Thome, and Matthieu
Cord. Cross-modal retrieval in the cooking context: Learning semantic text-image embed-
dings. In The 41st International ACM SIGIR Conference on Research and Development in
Information Retrieval, SIGIR ’18, pages 35–44, New York, NY, USA, 2018. ACM.

[11] Bo Chang, Lili Meng, Eldad Haber, Lars Ruthotto, David Begert, and Elliot Holtham. Re-
versible architectures for arbitrarily deep residual neural networks. In AAAI Conference on
Artificial Intelligence, 2018.

[12] Olivier Chapelle, Bernhard Schlkopf, and Alexander Zien. Semi-Supervised Learning. 2010.

100

[13] Tian Qi Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary
differential equations. In Advances in neural information processing systems, pages 6571–
6583, 2018.

[14] X. Chen, A. Shrivastava, and A. Gupta. Neil: Extracting visual knowledge from web data. In
IEEE International Conference on Computer Vision (ICCV), 2013.

[15] Xinlei Chen, Abhinav Shrivastava, and Abhinav Gupta. Enriching visual knowledge bases
via object discovery and segmentation. In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2014.

[16] Kyunghyun Cho, B van Merrienboer, Dzmitry Bahdanau, and Yoshua Bengio. On the prop-
erties of neural machine translation: Encoder-decoder approaches. In Eighth Workshop on
Syntax, Semantics and Structure in Statistical Translation (SSST-8), 2014.

[17] Kyunghyun Cho, Bart Van Merriënboer, Dzmitry Bahdanau, and Yoshua Bengio. On
the properties of neural machine translation: Encoder-decoder approaches. arXiv preprint
arXiv:1409.1259, 2014.

[18] Hong-Min Chu, Chih-Kuan Yeh, and Yu-Chiang Frank Wang. Deep Generative Models for
Weakly-Supervised Multi-Label Classification. In European Conference on Computer Vision
(ECCV), 2018.

[19] Tat-Seng Chua, Jinhui Tang, Richang Hong, Haojie Li, Zhiping Luo, and Yantao Zheng.
NUS-WIDE: A Real-world Web Image Database from National University of Singapore. In
ACM International Conference on Image and Video Retrieval (CIVR), 2009.

[20] Junyoung Chung, Kyle Kastner, Laurent Dinh, Kratarth Goel, Aaron C Courville, and Yoshua
Bengio. A recurrent latent variable model for sequential data. In Advances in neural infor-
mation processing systems, pages 2980–2988, 2015.

[21] Timothee Cour, Ben Sapp, and Ben Taskar. Learning from Partial Labels. Journal of Machine
Learning Research (JMLR), 2011.

[22] Daryl J Daley and David Vere-Jones. An introduction to the theory of point processes: volume
II: general theory and structure. Springer Science & Business Media, 2007.

[23] Andreas Damianou and Neil Lawrence. Deep gaussian processes. In Artificial Intelligence
and Statistics, pages 207–215, 2013.

[24] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-
scale hierarchical image database. In 2009 IEEE conference on computer vision and pattern
recognition, pages 248–255. Ieee, 2009.

[25] Jia Deng, Olga Russakovsky, Jonathan Krause, Michael S. Bernstein, Alex Berg, and Li Fei-
Fei. Scalable Multi-label Annotation. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, 2014.

[26] Emily Denton and Rob Fergus. Stochastic Video Generation with a Learned Prior. In Inter-
national Conference on Machine Learning (ICML), 2018.

[27] Laurent Dinh, David Krueger, and Yoshua Bengio. NICE: Non-linear independent compo-
nents estimation. arXiv preprint arXiv:1410.8516, 2014.

101

[28] Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. Density estimation using Real NVP.
In International Conference on Learning Representations (ICLR), 2017.

[29] Nan Du, Hanjun Dai, Rakshit Trivedi, Utkarsh Upadhyay, Manuel Gomez-Rodriguez, and
Le Song. Recurrent marked temporal point processes: Embedding event history to vector. In
Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, pages 1555–1564. ACM, 2016.

[30] Thibaut Durand, Nazanin Mehrasa, and Greg Mori. Learning a deep convnet for multi-label
classification with partial labels. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 647–657, 2019.

[31] Thibaut Durand, Taylor Mordan, Nicolas Thome, and Matthieu Cord. WILDCAT: Weakly
Supervised Learning of Deep ConvNets for Image Classification, Pointwise Localization and
Segmentation. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2017.

[32] Thibaut Durand, Nicolas Thome, and Matthieu Cord. WELDON: Weakly Supervised Learn-
ing of Deep Convolutional Neural Networks. In IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2016.

[33] Thibaut Durand, Nicolas Thome, and Matthieu Cord. Exploiting Negative Evidence for Deep
Latent Structured Models. In IEEE Transactions on Pattern Analysis and Machine Intelli-
gence (TPAMI), 2018.

[34] Tal El-Hay, Nir Friedman, Daphne Koller, and Raz Kupferman. Continuous time markov
networks. arXiv preprint arXiv:1206.6838, 2012.

[35] Yariv Ephraim and Neri Merhav. Hidden markov processes. IEEE Transactions on informa-
tion theory, 48(6):1518–1569, 2002.

[36] M. Everingham, S. M. A. Eslami, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisser-
man. The Pascal Visual Object Classes Challenge: A Retrospective. International Journal of
Computer Vision (IJCV), 2015.

[37] Harshala Gammulle, Simon Denman, Sridha Sridharan, and Clinton Fookes. Predicting the
future: A jointly learnt model for action anticipation. In The IEEE International Conference
on Computer Vision (ICCV), October 2019.

[38] Jiyang Gao, Zhenheng Yang, and Ram Nevatia. RED: reinforced encoder-decoder networks
for action anticipation. CoRR, abs/1707.04818, 2017.

[39] Yunchao Gong, Yangqing Jia, Thomas Leung, Alexander Toshev, and Sergey Ioffe. Deep
Convolutional Ranking for Multilabel Image Annotation. In International Conference on
Learning Representations (ICLR), 2014.

[40] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil
Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In Advances in
neural information processing systems, pages 2672–2680, 2014.

[41] Marco Gori, Gabriele Monfardini, and Franco Scarselli. A new model for learning in graph
domains. In IEEE International Joint Conference on Neural Networks (IJCNN), 2005.

102

[42] Will Grathwohl, Ricky T. Q. Chen, Jesse Bettencourt, and David Duvenaud. Scalable re-
versible generative models with free-form continuous dynamics. In International Conference
on Learning Representations, 2019.

[43] Will Grathwohl, Ricky TQ Chen, Jesse Betterncourt, Ilya Sutskever, and David Duvenaud.
Ffjord: Free-form continuous dynamics for scalable reversible generative models. arXiv
preprint arXiv:1810.01367, 2018.

[44] Sheng Guo, Weilin Huang, Haozhi Zhang, Chenfan Zhuang, Dengke Dong, Matthew R.
Scott, and Dinglong Huang. CurriculumNet: Weakly Supervised Learning from Large-Scale
Web Images. In European Conference on Computer Vision (ECCV), 2018.

[45] Eldad Haber and Lars Ruthotto. Stable architectures for deep neural networks. Inverse
Problems, 34(1):014004, 2017.

[46] Alan G Hawkes. Spectra of some self-exciting and mutually exciting point processes.
Biometrika, 1971.

[47] Jiawei He, Andreas Lehrmann, Joseph Marino, Greg Mori, and Leonid Sigal. Probabilistic
video generation using holistic attribute control. In Proceedings of the European Conference
on Computer Vision (ECCV), pages 452–467, 2018.

[48] Jiawei He, Andreas Lehrmann, Joseph Marino, Greg Mori, and Leonid Sigal. Probabilistic
video generation using holistic attribute control. In The European Conference on Computer
Vision (ECCV), September 2018.

[49] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016.

[50] M. Hoai and F. De la Torre. Max-margin early event detectors. In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2012.

[51] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Comput., 1997.

[52] Zhiting Hu, Zichao Yang, Xiaodan Liang, Ruslan Salakhutdinov, and Eric P Xing. Toward
controlled generation of text. In International Conference on Machine Learning, pages 1587–
1596, 2017.

[53] Sergey Ioffe and Christian Szegedy. Batch Normalization: Accelerating Deep Network Train-
ing by Reducing Internal Covariate Shift. In International Conference on Machine Learning
(ICML), 2015.

[54] Valerie Isham and Mark Westcott. A self-correcting point process. Stochastic Processes and
their Applications, 1979.

[55] Jacques Janssen and Nikolaos Limnios. Semi-Markov models and applications. Springer
Science & Business Media, 2013.

[56] Finn V. Jensen and Thomas D. Nielsen. Bayesian Networks and Decision Graphs. 2007.

[57] Junteng Jia and Austin R Benson. Neural jump stochastic differential equations. In Advances
in Neural Information Processing Systems 32, pages 9843–9854. Curran Associates, Inc.,
2019.

103

[58] Lu Jiang, Deyu Meng, Qian Zhao, Shiguang Shan, and Alexander G Hauptmann. Self-Paced
Curriculum Learning. In Conference on Artificial Intelligence (AAAI), 2015.

[59] Lu Jiang, Zhengyuan Zhou, Thomas Leung, Li-Jia Li, and Li Fei-Fei. MentorNet: Learning
Data-Driven Curriculum for Very Deep Neural Networks on Corrupted Labels. In Interna-
tional Conference on Machine Learning (ICML), 2018.

[60] How Jing and Alexander J Smola. Neural survival recommender. In Proceedings of the Tenth
ACM International Conference on Web Search and Data Mining, pages 515–524. ACM,
2017.

[61] Armand Joulin, Laurens van der Maaten, Allan Jabri, and Nicolas Vasilache. Learning visual
features from large weakly supervised data. In European Conference on Computer Vision
(ECCV), 2016.

[62] Ashish Kapoor, Raajay Viswanathan, and Prateek Jain. Multilabel classification using
bayesian compressed sensing. In Advances in Neural Information Processing Systems
(NeurIPS), 2012.

[63] Qiuhong Ke, Mario Fritz, and Bernt Schiele. Time-conditioned action anticipation in one
shot. In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June
2019.

[64] Alex Kendall and Yarin Gal. What uncertainties do we need in bayesian deep learning for
computer vision? In Advances in Neural Information Processing Systems (NeurIPS), 2017.

[65] Diederick P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Inter-
national Conference on Learning Representations (ICLR), 2015.

[66] Diederik P Kingma and Max Welling. Auto-Encoding Variational Bayes. In International
Conference on Learning Representations (ICLR), 2014.

[67] Durk P Kingma and Prafulla Dhariwal. Glow: Generative flow with invertible 1x1 convolu-
tions. In Advances in Neural Information Processing Systems, pages 10215–10224, 2018.

[68] Durk P Kingma, Tim Salimans, Rafal Jozefowicz, Xi Chen, Ilya Sutskever, and Max Welling.
Improved variational inference with inverse autoregressive flow. In Advances in neural in-
formation processing systems, pages 4743–4751, 2016.

[69] J.F.C. Kingman. Poisson Processes. Oxford Studies in Probability. Clarendon Press, 1992.

[70] Ivan Kobyzev, Simon Prince, and Marcus A Brubaker. Normalizing flows: Introduction and
ideas. arXiv preprint arXiv:1908.09257, 2019.

[71] Yu Kong, Zhiqiang Tao, and Yun Fu. Deep sequential context networks for action prediction.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages
1473–1481, 2017.

[72] Simon Kornblith, Jonathon Shlens, and Quoc V. Le. Do Better ImageNet Models Transfer
Better? 2018.

104

[73] Hilde Kuehne, Ali Arslan, and Thomas Serre. The Language of Actions: Recovering the
Syntax and Semantics of Goal-Directed Human Activities. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2014.

[74] M. P. Kumar, Benjamin Packer, and Daphne Koller. Self-paced learning for latent variable
models. In Advances in Neural Information Processing Systems (NeurIPS), 2010.

[75] Alina Kuznetsova, Hassan Rom, Neil Alldrin, Jasper Uijlings, Ivan Krasin, Jordi Pont-Tuset,
Shahab Kamali, Stefan Popov, Matteo Malloci, Tom Duerig, and Vittorio Ferrari. The Open
Images Dataset V4: Unified image classification, object detection, and visual relationship
detection at scale. 2018.

[76] Tian Lan, Tsung-Chuan Chen, and Silvio Savarese. A hierarchical representation for future
action prediction. In European Conference on Computer Vision (ECCV), 2014.

[77] Tian Lan, Tsung-Chuan Chen, and Silvio Savarese. A hierarchical representation for future
action prediction. In European Conference on Computer Vision (ECCV), 2014.

[78] L. J. Li, G. Wang, and Li Fei-Fei. OPTIMOL: automatic Online Picture collecTion via Incre-
mental MOdel Learning. In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2007.

[79] Shuang Li, Shuai Xiao, Shixiang Zhu, Nan Du, Yao Xie, and Le Song. Learning temporal
point processes via reinforcement learning. In Advances in Neural Information Processing
Systems (NeurIPS). 2018.

[80] Wen Li, Limin Wang, Wei Li, Eirikur Agustsson, Jesse Berent, Abhinav Gupta, Rahul Suk-
thankar, and Luc Van Gool. WebVision Challenge: Visual Learning and Understanding With
Web Data. In arXiv 1705.05640, 2017.

[81] Yuncheng Li, Yale Song, and Jiebo Luo. Improving Pairwise Ranking for Multi-label Image
Classification. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2017.

[82] Tsung-Yi Lin, Michael Maire, Serge Belongie, Lubomir Bourdev, Ross Girshick, James
Hays, Pietro Perona, Deva Ramanan, C. Lawrence Zitnick, and Piotr Dollár. Microsoft
COCO: Common Objects in Context. 2014.

[83] Chenxi Liu, Barret Zoph, Jonathon Shlens, Wei Hua, Li-Jia Li, Li Fei-Fei, Alan Yuille,
Jonathan Huang, and Kevin Murphy. Progressive Neural Architecture Search. In European
Conference on Computer Vision (ECCV), 2018.

[84] Jun Liu, Amir Shahroudy, Gang Wang, Ling-Yu Duan, and Alex C Kot. Ssnet: Scale selection
network for online 3d action prediction. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 8349–8358, 2018.

[85] Yiping Lu, Aoxiao Zhong, Quanzheng Li, and Bin Dong. Beyond finite layer neural net-
works: Bridging deep architectures and numerical differential equations. In International
Conference on Machine Learning, pages 3282–3291, 2018.

[86] Helmut Lütkepohl. Comparison of criteria for estimating the order of a vector autoregressive
process. Journal of time series analysis, 6(1):35–52, 1985.

105

[87] S. Ma, L. Sigal, and S. Sclaroff. Learning activity progression in lstms for activity detection
and early detection. In cvpr, 2016.

[88] Dhruv Mahajan, Ross Girshick, Vignesh Ramanathan, Kaiming He, Manohar Paluri, Yix-
uan Li, Ashwin Bharambe, and Laurens van der Maaten. Exploring the Limits of Weakly
Supervised Pretraining. In European Conference on Computer Vision (ECCV), 2018.

[89] T. Mahmud, M. Hasan, and A. K. Roy-Chowdhury. Joint prediction of activity labels and
starting times in untrimmed videos. In 2017 IEEE International Conference on Computer
Vision (ICCV), pages 5784–5793, Oct 2017.

[90] Tahmida Mahmud, Mahmudul Hasan, and Amit K. Roy-Chowdhury. Joint prediction of
activity labels and starting times in untrimmed videos. In IEEE International Conference on
Computer Vision (ICCV), 2017.

[91] Nazanin Mehrasa, Ruizhi Deng, Mohamed Osama Ahmed, Bo Chang, Jiawei He, Thibaut
Durand, Marcus Brubaker, and Greg Mori. Point process flows. Learning with Temporal
Point Processes, NeurIPS Workshop), 2019.

[92] Nazanin Mehrasa, Akash Abdu Jyothi, Thibaut Durand, Jiawei He, Leonid Sigal, and Greg
Mori. A variational auto-encoder model for stochastic point processes. In The IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR), June 2019.

[93] Hongyuan Mei and Jason Eisner. The Neural Hawkes Process: A Neurally Self-Modulating
Multivariate Point Process. In Advances in Neural Information Processing Systems
(NeurIPS), 2017.

[94] Minmin Chen and Alice Zheng and Kilian Weinberger. Fast image tagging. In International
Conference on Machine Learning (ICML), 2013.

[95] T. Mitchell, W. Cohen, E. Hruschka, P. Talukdar, J. Betteridge, A. Carlson, B. Dalvi, M. Gard-
ner, B. Kisiel, J. Krishnamurthy, N. Lao, K. Mazaitis, T. Mohamed, N. Nakashole, E. Platan-
ios, A. Ritter, M. Samadi, B. Settles, R. Wang, D. Wijaya, A. Gupta, X. Chen, A. Saparov,
M. Greaves, and J. Welling. Never-Ending Learning. In Conference on Artificial Intelligence
(AAAI), 2015.

[96] Takahiro Omi, naonori ueda, and Kazuyuki Aihara. Fully neural network based model for
general temporal point processes. In Advances in Neural Information Processing Systems 32,
pages 2120–2129. Curran Associates, Inc., 2019.

[97] Takahiro Omi, naonori ueda, and Kazuyuki Aihara. Fully neural network based model for
general temporal point processes. In Advances in Neural Information Processing Systems,
pages 2122–2132, 2019.

[98] Maxime Oquab, Léon Bottou, Ivan Laptev, and Josef Sivic. Learning and Transferring Mid-
Level Image Representations using Convolutional Neural Networks. In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2014.

[99] Maxime Oquab, Leon Bottou, Ivan Laptev, and Josef Sivic. Is Object Localization for Free?
- Weakly-Supervised Learning With Convolutional Neural Networks. In IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 2015.

106

[100] George Papamakarios, Theo Pavlakou, and Iain Murray. Masked autoregressive flow for
density estimation. In Advances in Neural Information Processing Systems, pages 2338–
2347, 2017.

[101] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary De-
Vito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentia-
tion in pytorch. In Advances in Neural Information Processing Systems (NIPS), 2017.

[102] Viorica Pătrăucean, Ankur Handa, and Roberto Cipolla. Spatio-temporal video autoen-
coder with differentiable memory. In International Conference on Learning Representations
(ICLR) Workshop, 2016.

[103] Hieu Pham, Melody Y. Guan, Barret Zoph, Quoc V. Le, and Jeff Dean. Faster Discovery of
Neural Architectures by Searching for Paths in a Large Model. In International Conference
on Learning Representations (ICLR), 2018.

[104] Xiaojuan Qi, Renjie Liao, Jiaya Jia, Sanja Fidler, and Raquel Urtasun. 3D Graph Neural Net-
works for RGBD Semantic Segmentation. In IEEE International Conference on Computer
Vision (ICCV), 2017.

[105] Jakob Gulddahl Rasmussen. Temporal point processes: the conditional intensity function.
Lecture Notes, Jan, 2011.

[106] Danilo Rezende and Shakir Mohamed. Variational inference with normalizing flows. In
International Conference on Machine Learning, pages 1530–1538, 2015.

[107] C. J. Van Rijsbergen. Information Retrieval. 1979.

[108] Yulia Rubanova, Tian Qi Chen, and David K Duvenaud. Latent ordinary differential equa-
tions for irregularly-sampled time series. In Advances in Neural Information Processing
Systems 32, pages 5321–5331. Curran Associates, Inc., 2019.

[109] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-
Fei. ImageNet large scale visual recognition challenge. International Journal of Computer
Vision (IJCV), 2015.

[110] Mohammad Sadegh Aliakbarian, Fatemeh Sadat Saleh, Mathieu Salzmann, Basura Fernando,
Lars Petersson, and Lars Andersson. Encouraging LSTMs to Anticipate Actions Very Early.
In IEEE International Conference on Computer Vision (ICCV), 2017.

[111] Mohammad Sadegh Aliakbarian, Fatemeh Sadat Saleh, Mathieu Salzmann, Basura Fernando,
Lars Petersson, and Lars Andersson. Encouraging lstms to anticipate actions very early. In
IEEE International Conference on Computer Vision (ICCV), 2017.

[112] Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfar-
dini. The graph neural network model. IEEE Transactions on Neural Networks, 2009.

[113] Fadime Sener and Angela Yao. Zero-shot anticipation for instructional activities. In The
IEEE International Conference on Computer Vision (ICCV), October 2019.

[114] Oleksandr Shchur, Marin Biloš, and Stephan Günnemann. Intensity-free learning of temporal
point processes. In International Conference on Learning Representations, 2020.

107

[115] Yuge Shi, Basura Fernando, and Richard Hartley. Action anticipation with rbf kernelized
feature mapping rnn. In The European Conference on Computer Vision (ECCV), September
2018.

[116] Pierre Stock and Moustapha Cisse. ConvNets and ImageNet Beyond Accuracy: Understand-
ing Mistakes and Uncovering Biases. In European Conference on Computer Vision (ECCV),
2018.

[117] Chen Sun, Manohar Paluri, Ronan Collobert, Ram Nevatia, and Lubomir Bourdev. ProNet:
Learning to Propose Object-Specific Boxes for Cascaded Neural Networks. In IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR), 2016.

[118] Chen Sun, Abhinav Shrivastava, Saurabh Singh, and Abhinav Gupta. Revisiting Unreason-
able Effectiveness of Data in Deep Learning Era. In IEEE International Conference on
Computer Vision (ICCV), 2017.

[119] Yu-Yin Sun, Yin Zhang, and Zhi-Hua Zhou. Multi-label Learning with Weak Label. In
Conference on Artificial Intelligence (AAAI), 2010.

[120] Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, and Alex Alemi. Inception-v4,
inception-resnet and the impact of residual connections on learning. In Conference on Artifi-
cial Intelligence (AAAI), 2017.

[121] Lei Tang, Suju Rajan, and Vijay K. Narayanan. Large scale multi-label classification via
metalabeler. In WWW, 2009.

[122] Grigorios Tsoumakas and Ioannis Katakis. Multi-label classification: An overview. Interna-
tional Journal of Data Warehousing and Mining (IJDWM), 2007.

[123] Arash Vahdat. Toward robustness against label noise in training deep discriminative neural
networks. In Advances in Neural Information Processing Systems (NeurIPS), 2017.

[124] Deepak Vasisht, Andreas Damianou, Manik Varma, and Ashish Kapoor. Active Learning for
Sparse Bayesian Multilabel Classification. In ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, 2014.

[125] Ruben Villegas, Jimei Yang, Yuliang Zou, Sungryull Sohn, Xunyu Lin, and Honglak Lee.
Learning to Generate Long-term Future via Hierarchical Prediction. In International Confer-
ence on Machine Learning (ICML), 2017.

[126] Carl Vondrick, Hamed Pirsiavash, and Antonio Torralba. Anticipating visual representations
from unlabeled video. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 98–106, 2016.

[127] Carl Vondrick and Antonio Torralba. Generating the future with adversarial transformers. In
The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), July 2017.

[128] Qifan Wang, Bin Shen, Shumiao Wang, Liang Li, and Luo Si. Binary Codes Embedding for
Fast Image Tagging with Incomplete Labels. In European Conference on Computer Vision
(ECCV), 2014.

108

[129] Xionghui Wang, Jian-Fang Hu, Jian-Huang Lai, Jianguo Zhang, and Wei-Shi Zheng. Pro-
gressive teacher-student learning for early action prediction. In The IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), June 2019.

[130] Greg Welch, Gary Bishop, et al. An introduction to the kalman filter. 1995.

[131] Baoyuan Wu, Siwei Lyu, and Bernard Ghanem. ML-MG: Multi-Label Learning With Miss-
ing Labels Using a Mixed Graph. In IEEE International Conference on Computer Vision
(ICCV), 2015.

[132] Shuai Xiao, Mehrdad Farajtabar, Xiaojing Ye, Junchi Yan, Le Song, and Hongyuan Zha.
Wasserstein learning of deep generative point process models. In Advances in Neural Infor-
mation Processing Systems (NeurIPS), 2017.

[133] Shuai Xiao, Hongteng Xu, Junchi Yan, Mehrdad Farajtabar, Xiaokang Yang, Le Song, and
Hongyuan Zha. Learning conditional generative models for temporal point processes. In
Thirty-Second AAAI Conference on Artificial Intelligence, 2018.

[134] Shuai Xiao, Junchi Yan, Xiaokang Yang, Hongyuan Zha, and Stephen M Chu. Modeling
the intensity function of point process via recurrent neural networks. In Thirty-First AAAI
Conference on Artificial Intelligence, 2017.

[135] Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and Kaiming He. Aggregated Resid-
ual Transformations for Deep Neural Networks. In IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2017.

[136] Miao Xu, Rong Jin, and Zhi-Hua Zhou. Speedup Matrix Completion with Side Information:
Application to Multi-Label Learning. In Advances in Neural Information Processing Systems
(NeurIPS), 2013.

[137] Hao Yang, Joey Tianyi Zhou, and Jianfei Cai. Improving Multi-label Learning with Missing
Labels by Structured Semantic Correlations. In European Conference on Computer Vision
(ECCV), 2016.

[138] Yiming Yang. An evaluation of statistical approaches to text categorization. 1999.

[139] Serena Yeung, Olga Russakovsky, Ning Jin, Mykhaylo Andriluka, Greg Mori, and Li Fei-Fei.
Every Moment Counts: Dense Detailed Labeling of Actions in Complex Videos. Interna-
tional Journal of Computer Vision (IJCV), 2017.

[140] Li Yingzhen and Stephan Mandt. Disentangled sequential autoencoder. In International
Conference on Machine Learning, 2018.

[141] Hsiang-Fu Yu, Prateek Jain, Purushottam Kar, and Inderjit S. Dhillon. Large-scale Multi-
label Learning with Missing Labels. In International Conference on Machine Learning
(ICML), 2014.

[142] Runsheng Yu, Zhenyu Shi, and Laiyun Qing. Unsupervised learning aids prediction: Using
future representation learning variantial autoencoder for human action prediction. CoRR,
abs/1711.09265, 2017.

109

[143] Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Under-
standing deep learning requires rethinking generalization. In International Conference on
Learning Representations (ICLR), 2017.

[144] Y. Zhong, B. Xu, G.-T. Zhou, L. Bornn, and G. Mori. Time Perception Machine: Temporal
Point Processes for the When, Where and What of Activity Prediction. In arXiv 1808.04063,
2018.

[145] Yatao Zhong, Bicheng Xu, Guang-Tong Zhou, Luke Bornn, and Greg Mori. Time perception
machine: Temporal point processes for the when, where and what of activity prediction. arXiv
preprint arXiv:1808.04063, 2018.

[146] Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva, and Antonio Torralba. Learning
Deep Features for Discriminative Localization. In IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2016.

[147] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V. Le. Learning transferable
architectures for scalable image recognition. In IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2018.

[148] Walter Zucchini, Iain L MacDonald, and Roland Langrock. Hidden Markov models for time
series: an introduction using R. CRC press, 2017.

110

	Declaration of Committee
	Abstract
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Motivation
	Event Analysis in Asynchronous Time-series Data.
	Learning from Partially Labeled Data.

	Contributions
	A Variational Auto-Encoder Model for Stochastic Point Process
	A Flexible Flow-Based Latent Variable Model for Asynchronous Action Sequences
	Learning Deep Networks with Partially Labeled Data

	Background and Related Works
	Event Analysis in Asynchronous Time-Series Data
	Temporal Point Process
	Mark Temporal Point Process
	Learning
	Basic intensity functions
	Toward Deep Learning Approaches
	Intensity-free Point Processes

	Learning With Partial / Missing Labels.

	A Variational Auto-Encoder Model for Stochastic Point Processes
	Overview
	Related Work
	Asynchronous Action Sequence Modeling
	Background: Base Models
	Proposed Approach

	Experiments
	Experiment Results

	Summary

	Learning a Deep ConvNet for Multi-label Classification with Partial Labels
	Overview
	Related Work
	Learning with Partial Labels
	Binary cross-entropy for partial labels
	Multi-label classification with GNN
	Prediction of unknown labels

	Experiments
	What is the best strategy to annotate a dataset?
	Learning with partial labels
	What is the best strategy to predict missing labels?
	Method analysis

	Implementation Details and Analysis
	Multi-label classification with GNN
	Experimental details
	Multi-label metrics
	Analysis of the initial set of labels
	Analysis of the labeling strategies
	Comparison of the loss functions
	Analysis of the loss function
	Comparison to existing model for missing labels
	What is the best strategy to predict missing labels?
	Final results

	Summary

	A Flexible Flow-Based Latent Variable Model for Asynchronous Action Sequences
	Overview
	Related work
	Preliminaries
	Temporal point process
	Normalizing flow
	Continuous normalizing flow

	Method
	Problem definition
	Generative model
	Inference with variational filtering
	Action prediction

	Experiments
	Baselines
	Evaluation metrics
	Experimental results
	Study on structure of action time and label prediction
	Ablation study on complexity of time decoder
	Qualitative results of future actions anticipation
	Multiple Run Results of Long-term Action Anticipation
	Unconditional Generation Qualitative Results
	Experimental Details

	Summary

	Conclusion
	Bibliography

