
Explaining Inference Queries with
Bayesian Optimization

by

Brandon Lockhart

B.Sc., University of Victoria, 2019

Thesis Submitted in Partial Fulfillment of the
Requirements for the Degree of

Master of Science

in the
School of Computing Science
Faculty of Applied Sciences

© Brandon Lockhart 2021
SIMON FRASER UNIVERSITY

Spring 2021

Copyright in this work rests with the author. Please ensure that any reproduction
or re-use is done in accordance with the relevant national copyright legislation.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Simon Fraser University Institutional Repository

https://core.ac.uk/display/475266408?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Declaration of Committee

Name: Brandon Lockhart

Degree: Master of Science

Thesis title: Explaining Inference Queries with Bayesian
Optimization

Committee: Chair: Mo Chen
Assistant Professor, Computing Science

Jiannan Wang
Supervisor
Associate Professor, Computing Science

Martin Ester
Committee Member
Professor, Computing Science

Oliver Schulte
Examiner
Professor, Computing Science

ii

Abstract

Obtaining an explanation for an SQL query result can enrich the analysis experience, reveal
data errors, and provide deeper insight into the data. Inference query explanation seeks to
explain unexpected aggregate query results on inference data; such queries are challenging
to explain because an explanation may need to be derived from the source, training, or
inference data in an ML pipeline. In this work, we model an objective function as a black-
box function and propose BOExplain, a novel framework for explaining inference queries
using Bayesian optimization (BO). An explanation is a predicate defining the input tuples
that should be removed so that the query result of interest is significantly affected. BO —
a technique for finding the global optimum of a black-box function — is used to find the
best predicate. We develop two new techniques (individual contribution encoding and warm
start) to handle categorical variables. We perform experiments showing that the predicates
found by BOExplain have a higher degree of explanation compared to those found by the
state-of-the-art query explanation engines. We also show that BOExplain is effective at
deriving explanations for inference queries from source and training data on three real-
world datasets.

Keywords: ML Explanation; SQL Explanation

iii

Table of Contents

Declaration of Committee ii

Abstract iii

Table of Contents iv

List of Tables vi

List of Figures vii

1 Introduction 1

2 Related Work 5

3 Problem Definition 7
3.1 Problem Definition in SQL Explanation . 7

3.1.1 Query . 7
3.1.2 Complaint . 7
3.1.3 Explanation . 8
3.1.4 Objective Function . 8

3.2 Extension to Inference Query Explanation 9

4 The BOExplain Framework 11
4.1 Background . 11

4.1.1 Tree-structured Parzen Estimator (TPE) 11
4.2 Our Framework . 13

4.2.1 Parameter Creation . 13
4.2.2 BOExplain Framework . 14
4.2.3 Why Is TPE Suitable For Query Explanation? 14
4.2.4 Other Implementations of BO . 15

4.3 API Design . 16

5 Supporting Categorical Variables 18
5.1 Individual Contribution Encoding . 18

iv

5.2 Warm Start . 19
5.3 Putting Everything Together . 20

6 Experiments 21
6.1 Experimental Settings . 21
6.2 Explaining SQL-Only Queries . 24
6.3 Explaining Inference Queries . 25

6.3.1 Explanation From Training Data . 26
6.3.2 Supporting Categorical Variables . 27
6.3.3 Explanation From Source Data . 28

7 Conclusion and Future Work 30

Bibliography 32

v

List of Tables

Table 1.1 Comparison of BOExplain and existing approaches. 1

Table 4.1 Example inference data. 14

vi

List of Figures

Figure 1.1 An illustration of using BOExplain to generate an explanation from
source data in an ML pipeline. 2

Figure 4.1 Suppose TPE has observed six pointsD6 = {(−5, 25), (−3, 9), (−1, 1),
(2, 4), (3, 9), (3.5, 9.25)}. This figure illustrates how TPE finds the
next point to evaluate (γ = 35%). 12

Figure 4.2 The BOExplain framework. 15
Figure 4.3 The BOExplain Python API. 17
Figure 4.4 An example of the scikit-optimize (skopt) API. 17

Figure 6.1 ML Pipelines for Adult, House, and Credit. The green box indicates
where to generate an explanation. 23

Figure 6.2 Performance comparison with Scorpion and MacroBase. The goal is
to maximize the objective function. 25

Figure 6.3 Adult: best objective function value, F-score, precision, and recall
found at each 5 second increment, averaged over 10 runs. The goal
is to minimize the objective function. 26

Figure 6.4 House: best objective function value, F-score, precision, and, and re-
call, found at each 5 second increment averaged over 10 runs. The
goal is to minimize the objective function. (IC = Individual Contri-
bution Encoding, WS = Warm Start) 27

Figure 6.5 Credit: best objective function value, F-score, precision, and recall
found at each 5 second increment, averaged over 10 runs. The goal
is to maximize the objective function; larger values are better. . . . 29

vii

Chapter 1

Introduction

Data scientists often need to execute aggregate SQL queries on inference data to inspect a
machine learning (ML) model’s performance. We call such queries inference queries, which
can be seen as an SQL query whose expressions may perform model inference. Consider an
inference dataset with four variables (customer_id, age, sex, M.predict(I)), where M.predict(I)
represents a variable where each value denotes whether the model M predicts the customer
will be a repeat buyer or not. Running the following inference query will return the number
of female (predicted) repeat buyers:

SELECT COUNT(*) FROM InferenceData
WHERE sex = 'female' AND M.predict(I) = 'repeat buyer'

If the query result is surprising, e.g., the number of repeat buyers is higher than ex-
pected, the data scientist may seek an explanation for the unexpected result. One popular
explanation method is to find a subset of the input data such that when this subset is
removed, and the query is re-executed, the unexpected result no longer manifests [49, 37].
This method is known as a provenance or intervention-based explanation [33].

Specifically, there are two types of explanations in the intervention-based setting: fine-
grained (a set of tuples) and coarse-grained (a predicate) [32]. This work focuses on coarse-
grained explanation. Predicates, unlike sets of tuples, provide a comprehensible explanation
and identify common properties of the input tuples that cause the unexpected result. For
the above example, it may return a predicate like sex = ‘female’ AND 20 ≤ age ≤ 25

SQL Explanation Inference Query Explanation
[49, 37, 36, 1] Rain [50] BOExplain

Inference Data Supported Supported Supported
Training Data Not Supported Supported Supported
Source Data Not Supported Not Supported Supported

Explanation Type Coarse-grained Fine-grained Coarse-grained
Methodology White-box White-box Black-box

Table 1.1: Comparison of BOExplain and existing approaches.

1

ID Date Website …
1 12/01/2020 𝑤
2 12/01/2020 𝑥
3 12/01/2020 𝑥
4 12/01/2020 𝑥
5 12/01/2020 𝑤
… … …

Age Sex … Label
37 F one-time
40 M repeat
… … …

Age Sex … 𝑀.predict(I)
48 F repeat
45 F repeat
46 M one-time
… … …

Train a model

Source Data, S

Training Data, T

Inference Data, I

Feature extraction
and transformation

Random forest

PredictQueryThe repeat buyer
rate is too high

(a) Example ML Pipeline and Inference Query
(b) Inference Query Explanation

from Source Data Using BOExplain

Figure 1.1: An illustration of using BOExplain to generate an explanation from source data
in an ML pipeline.

which suggests that if the young female customers are removed from the inference data,
the query result would look normal. Then, the data scientist can look into these customers
more closely and conduct further investigation.

Generating an explanation (i.e., a predicate) from inference data can certainly help to
understand the answer to an inference query. However, an ML pipeline does not only contain
the inference data but also the training and source data. The following example illustrates
a scenario where an explanation should be generated from the source data.

Example 1. CompanyX creates an ML pipeline (Figure 1.1(a)) to predict repeat customers
for a promotional event. CompanyX receives transaction records from several websites that
sell their products and aggregates them into a source data table S. Next, the user-defined
function (UDF) make_training(·) extracts and transforms features into the training dataset
T . Finally, a random forest model is fit to the training data, and the model is applied to the
inference dataset I which updates it with a prediction variable, M.predict(I).

For validation purposes, the data scientist writes a query to compute the percentage of
repeat buyers. The rate is higher than expected, but she wants to double check that the result
is not due to a data error. In fact, it turns out that the source data S contains errors
during Date ∈ [t1, t2], when the website w had network issues; customers confirmed their
transactions multiple times, which led to duplicate records in S. The training data extraction
UDF was coded to label customers with multiple purchases as repeat buyers, and labelled all
of the w customers during the network issue as repeats. The model erroneously predicts
every website w customer as a repeat buyer, and thus leads to the high query result. Ideally,
the data scientist could ask whether the source data contains an error, and an explanation
system would generate a predicate (t1 ≤ Date ≤ t2 AND Website = w).

Unfortunately, existing SQL explanation approaches [49, 37, 36, 1] are ill-equipped to
address this setting (Table 1.1) because they are based on analysis of the query provenance.
Although they can generate a predicate explanation over the inference data, the prove-
nance analysis does not extend across model training nor UDFs, which are prevalent in
data science workflows. The recent system Rain [50] generates fine-grained explanations for

2

inference queries. It relaxes the inference query into a differentiable function over the model’s
prediction probabilities, and leverages influence analysis [23] to estimate the query result’s
sensitivity to a training record. However, Rain returns training records rather than predi-
cates, and estimating the model prediction sensitivity to group-wise changes to the training
data remains an open problem. Further, Rain does not currently support UDFs and uses
a white-box approach that is less amenable to data science programs (Figure 1.1(b)) that
heavily incorporate UDFs.

As a first approach towards addressing the above limitations, and to diverge from ex-
isting white-box explanation approaches [49, 37, 36, 1, 50], this thesis explores a black-box
approach towards inference query explanation. BOExplain models inference query explana-
tion as a hyperparameter tuning problem and adopts Bayesian optimization (BO) to solve
it. In ML, hyperparameters (e.g., the number of trees, learning rate) control the training
process and are tuned in an “outer-loop” that surrounds the model training process. Hy-
perparameter tuning seeks to find the best hyperparameters that maximizes some model
quality measure (e.g., validation score). BOExplain treats predicate constraints (e.g., t1, t2, w
in Example 1) as hyperparameters, and the goal is to assign the optimal value to each con-
straint. By defining a metric that evaluates a candidate explanation’s quality, (e.g., the
decrease of the repeat buyer rate), BOExplain finds the constraint values that correspond
to the highest quality predicate.

A black-box approach offers a number of advantages for inference query explanation. In
terms of usability, a data scientist can derive a predicate from any data involved in an ML
pipeline rather than inference data only. Furthermore, its concise API design is similar to
popular hyperparameter tuning libraries, such as scikit-optimize [20] and Hyperopt [8], that
many data scientists are already very familiar with. Figure 1.1(b) shows an example using
BOExplain’s API to solve Example 1. The data scientist wraps the portion of the program
in an objective function obj whose input is the dataset to generate predicates for, and whose
output is the repeat buyer rate that should be minimized. She also provides hints to focus
on the Date and Website variables. See Section 4.2 for more details.

In terms of adaptability, a black-box approach can potentially be used to generate
explanations for any data science workflow beyond inference queries. The current machine
learning and analytics ecosystem is rapidly evolving. In contrast to white-box approaches,
which must be carefully designed for a specific class of programs, BOExplain can more readily
evolve with API, library, model, and ecosystem changes.

In terms of effectiveness, BOExplain builds on the considerable advances in BO by the
ML community [43], to quickly generate high quality explanations. A secondary benefit is
that BO is a progressive optimization algorithm, which lets BOExplain quickly propose an
initial explanation, and improve it over time.

The key technical challenge is that existing BO approaches [10, 21, 46] cannot be naively
adapted to explanation generation. In the hyperparameter tuning setting, categorical vari-

3

ables typically have very low cardinality (e.g., with 2-3 distinct values [34]). In the query
explanation setting, however, a categorical variable can have many more distinct values. To
address this, we propose a categorical encoding method to map a categorical variable into
a numerical variable. This lets BOExplain estimate the quality of the categorical values that
have not been evaluated. We further propose a warm start approach so that BOExplain can
prioritize predicates with more promising categorical values.

In summary, this thesis makes the following contributions:

• We are the first to generate coarse-grained explanations from the training and source
data to an inference query.

• We argue for a black-box approach to inference query explanation and discuss its advan-
tages over a white-box approach.

• We propose BOExplain, a novel query explanation framework that derives explanations
for inference queries using BO.

• We develop two techniques (categorical encoding and warm start) to improve BOExplain’s
performance on categorical variables.

• We show that BOExplain can generate comparable or higher quality explanations than
state-of-the-art SQL explanation engines (Scorpion [49] and MacroBase [1]) on SQL-only
queries.

• We evaluate BOExplain using inference queries on real-world datasets showing that BOEx-
plain can generate explanations for different input datasets with a higher degree of ex-
planation than random search.

• We implement BOExplain as a Python package and open-source it at https://github.
com/sfu-db/BOExplain.

Thesis outline. First, the related work is discussed in Chapter 2. In Chapter 3, SQL
explanation and the extension to inference query explanation is formally defined. Next,
Bayesian optimization and the BOExplain framework is introduced in Chapter 4. In Chap-
ter 5, we propose two techniques to improve BOExplain for categorical variables. Experimen-
tal results on synthetic and real-world datasets are given in Chapter 6. Finally, in Chapter 7,
we conclude this work and propose possible future directions.

4

https://github.com/sfu-db/BOExplain
https://github.com/sfu-db/BOExplain

Chapter 2

Related Work

This work is mainly related to query explanation, ML pipeline debugging, and Bayesian
optimization.

Query Explanation

BOExplain is most closely related to Scorpion [49] and the work of Roy and Suciu [37].
Both approaches define explanations as predicates. Scorpion uses a space partitioning and
merging process to find the predicates, while Roy and Suciu [37] use a data cube approach.
Both systems make assumptions about the aggregation query’s structure in order to ben-
efit from their white-box optimizations. In contrast, BOExplain supports complex queries,
model training, and user defined functions. Further, BOExplain is a progressive algorithm
that improves the explanation over time. Variations of these ideas include the DIFF op-
erator [1], explanation-ready databases [36], and counterbalances [33]. Finally, a number
of specialized systems focus on explaining specific scenarios, such as streaming data [4],
map-reduce jobs [22], online transaction processing workloads [51], cloud services [38], and
range-radius queries [40].

ML Pipeline Debugging

Rain [50] is designed to resolve a user’s complaint about the result of an inference query
by removing a set of tuples that highly influence the query result. In contrast, BOExplain
removes sets of tuples satisfying a predicate, which can be easier for a user to understand.
In addition, BOExplain is more expressive, and supports UDFs, data science workflows,
and pre-processing functions. Data X-Ray [48] focuses on explaining systematic errors in a
data generative process. Other systems debug the configuration of a computational pipeline
[30, 24, 3, 52].

Bayesian Optimization

Bayesian optimization (BO) is used to optimize expensive black box functions (see [16, 43,
11, 29] for overviews). BO consists of a surrogate model to estimate the expensive, derivative-

5

free objective function, and an acquisition function to determine the next best point. The
most common surrogate model is a Gaussian process (GP), but other models have been
used, including random forests [21], neural networks [45], Student-t processes [42], and tree-
structured Parzen estimators [10, 9]. Expected improvement (EI) [41] is the most common
acquisition function; other functions include upper confidence bound [47] and probability
of improvement [25].

Categorical Bayesian Optimization

A popular method for handling categorical variables in BO is to use one-hot encoding
[18, 17, 15]. However, it does not scale well to variables with many distinct values [39]. BO
may use tree-based surrogate models (e.g., random forests [21], tree Parzen estimators [10])
to handle categorical variables, however their predictive accuracy is empirically poor [17, 34].
Other work optimizes a combinatorial search space [5, 13, 35], and categorical/category-
specific continuous variables [34]. These works consider only categorical variables or focus
on categorical variables with a small number of distinct values, which is unsuitable for the
query explanation setting.

6

Chapter 3

Problem Definition

In this chapter, we first define the SQL explanation problem, and subsequently describe the
extension to inference query explanation.

3.1 Problem Definition in SQL Explanation

3.1.1 Query

We first define the supported queries. In this work, we focus on aggregation queries over a
single table (the extension to multiple tables has been formalized in [37]). An explainable
query is an arithmetic expression over a collection of SQL query results, as formally defined
in Definition 1.

Definition 1 (Supported Queries). Given a relation R, an explainable query Q = E(q1, . . . , qk)
is an arithmetic expression E over queries q1, . . . , qk of the form

qi = SELECT agg(. . .) FROM R WHERE C1 AND/OR . . . AND/OR Cm

where agg is an aggregation operation and Cj is a filter condition.

Example 2. Returning to the running example from Chapter 1, the user queries the pre-
dicted repeat buyer rate. This can be expressed as Q = q1/q2, an arithmetic expression over
q1 and q2 where

q1 = SELECT COUNT(*) FROM I WHERE M.predict(I)=‘repeat buyer’

q2 = SELECT COUNT(*) FROM I

3.1.2 Complaint

After the user executes a query, she may find that the result is unexpected and complain
about its value. In this work, the user can complain about the result being too high or too
low, as done in [37]. We use the notation dir = low (dir = high) to indicate that Q is
unexpectedly high (low).

7

Example 3. In our running example, the user found the repeat buyer rate to be too high.
Therefore, along with the query Q from Example 2, the user specifies dir = low to indicate
that Q should be lower.

3.1.3 Explanation

After the user complains about a query result, BOExplain will return an explanation for the
complaint. In this work, we define an explanation as a predicate over given variables.

Definition 2 (Explanation). Given numerical variables N1, . . . , Nn and categorical vari-
ables C1, . . . , Cm, an explanation is a predicate p of the form

p = l1 ≤ N1 ≤ u1 ∧ · · · ∧ ln ≤ Nn ≤ un ∧ C1 = c1 ∧ · · · ∧ Cm = cm.

The set of all such predicates forms the predicate space S.

Example 4. The source data in Figure 1.1 contains the variables Date and Website. An
example explanation over these variables is

12/01/2020 ≤ Date ≤ 12/10/2020 ∧Website = w.

3.1.4 Objective Function

Next, we define the objective function. The goal of our system is to find the best explanation
for the user’s complaint. Hence, we need to measure the quality of an explanation. For a
predicate p, let σ¬p(R) represent R filtered to contain all tuples that do not satisfy p. We
apply the query to σ¬p(R) and get the new query result. If the user specifies dir = low,
then the smaller the new query result is, the better the explanation is. Hence, we use the
new query result as a measure of explanation quality. The objective function is formally
defined in Definition 3.

Definition 3 (Objective Function). Given a predicate p, relation R, and query Q =
E(q1, . . . , qk), the objective function obj(p,R,Q)→ R applies Q on the relation σ¬p(R).

With the definition of objective function, the problem of searching for the best explana-
tion is equivalent to finding a predicate that minimizes or maximizes the objective function.

Definition 4 (SQL Explanation Problem). Given a relation R, query Q = E(q1, . . . , qk),
direction dir, and predicate space S, find the predicate

p∗ = arg min
p∈S

obj(p,R,Q)

if dir = low (use arg max if dir = high).

8

It may appear that minimizing the above objective function runs the risk of overfitting to
the user’s complaint (perhaps with an overly complex predicate) or finding a trivial solution
(e.g., returning only one record). However, a regularization term can be placed within the
objective function—for instance, SQL explanation typically regularizes using the number
of tuples that satisfy the predicate [49]. Since Q is an arithmetic expression over multiple
queries, one of those queries may simply be the regularization term.

3.2 Extension to Inference Query Explanation

For inference query explanation, we focus on three input datasets that the user can generate
explanations from: source, training, and inference1. The query processing pipeline is as
follows (Figure 1.1(a)):

1. Transform and featurize the source data into the training data.

2. Train an ML model over the training data.

3. Use the model to predict a variable from the inference dataset.

4. Issue a query over the inference dataset.

From the above workflow, we can find that there are two differences between SQL and
inference query explanations: 1) the query for inference query explanation is evaluated from
the model predictions as well as the input data, and 2) in inference query explanation,
the user may want an explanation for the input dataset at any step of the workflow (e.g.,
the source, training, or inference dataset), while SQL explanation only consider the query’s
direct input.

We next extend the objective function from SQL explanation to inference query expla-
nation. Let Q be the query issued by the user over the updated inference data, with the
same form as in Definition 1. Let R be the data that we want to derive an explanation from
(it can be source, training, or inference data) and p be an explanation (i.e., predicate) over
R. We measure the quality of p like in SQL explanation: filter the data by p, then get the
new query result. Note that for inference query explanation, the query is issued over the
updated inference data. Hence, we define P as the subset of the ML pipeline that takes as
input the dataset R that we wish to generate an explanation from, and that outputs the
updated inference data which is used as input to the SQL query. Note that when R is the
updated inference data P is a no-op , and the inference query explanation problem degrades
to the SQL explanation problem. The extended objective function is defined in Definition 5.

1In general, any intermediate dataset is acceptable, however, we focus on these three due to their preva-
lence and for simplicity.

9

Definition 5 (Objective Function). Given a subset of an ML pipeline P, a predicate p,
relation R, and query Q, the objective function obj(p,R,P, Q) → R feeds σ¬p(R) through
P, and then applies Q on the inference data.

Finally, we define the inference query explanation problem.

Definition 6 (Inference Query Explanation Problem). Given a relation R, query Q, direc-
tion dir, pipeline P, and predicate space S, find the predicate

p∗ = arg min
p∈S

obj(p,R,Q,P)

if dir = low (use arg max if dir = high).

10

Chapter 4

The BOExplain Framework

This chapter introduces Bayesian optimization (BO), presents the BOExplain framework,
and describes the API design of the Python implementation of BOExplain.

4.1 Background

Black-box optimization aims to find the global minima (or maxima) of a black-box function
f over a search space X ,

x∗ = min
x∈X

f(x).

BO is a sequential model-based optimization strategy to solve the problem, where sequential
means that BO is an iterative algorithm and model-based means that BO builds surrogate
models to estimate the behavior of f . The term Bayesian in Bayesian optimization refers
to the fact that a prior model of the objective function is used.

4.1.1 Tree-structured Parzen Estimator (TPE)

The tree-structured Parzen estimator [10, 9] (TPE) is a type of Bayesian optimization that
uses kernel density estimation to approximate a black-box function f , and the Expected
Improvement [41] acquisition function to select the next sample. At a high level, TPE
splits the evaluated points into two sets: good points and bad points (as determined by
the objective function). It then creates two distributions, one for each set, and finds the
next point to evaluate which has a high probability in the distribution over the good points
and low probability in the distribution over the bad points. Figure 4.1 shows an example
iteration of TPE. We next formally define the TPE algorithm.

Initially, ninit samples are selected uniformally at random from the search space X , and
subsequently a model is used to guide the selection to the optimal location. TPE models
each dimension of the search space independently using univariate Parzen window density
estimation (or kernel density estimation) [44]. Assume for now that the search space is
one-dimensional, i.e., X = [a, b] ⊂ R. Rather than model the posterior probability p(y | x)
directly (where y = f(x)), TPE exploits Bayes’ rule, p(y | x) ∝ p(x | y)p(y), and models

11

-6 -4 -2 0 2 4 6

10

20

30

35%-percentile

Good-point set: 𝐷!={-1, 2}
Bad-point set: 𝐷"={-5, -3, 3, 3.5}

Step (1)

x

f(x)

-6 -4 -2 0 2 4 6

0.1

0.2

x

Density

𝑔(𝑥): the density over 𝐷!

𝑏(𝑥): the density over 𝐷"

Step (2)

-6 -4 -2 0 2 4 6

1

3

x

𝒈(𝒙)/𝒃(𝒙)

𝑔(𝑥)/𝑏(𝑥): acquisition function
The next point

Step (3)

2

4

Figure 4.1: Suppose TPE has observed six points D6 = {(−5, 25), (−3, 9), (−1, 1), (2, 4),
(3, 9), (3.5, 9.25)}. This figure illustrates how TPE finds the next point to evaluate (γ =
35%).

the likelihood p(x | y) and the prior p(y). To model the likelihood p(x | y), the observations
Dt = {(xi, yi = f(xi))}ti=1 are first split into two sets, Dg

t and Db
t , based on their quality

under f : Dg
t contains the γ−quantile highest quality points, and Db

t contains the remaining
points. Next, density functions g(x) and b(x) are created from the samples in Dg

t and Db
t

respectively. For each point x ∈ Dg
t , a Gaussian distribution is fit with mean x and standard

deviation set to the greater of the distances to its left and right neighbor. g(x) is a uniform
mixture of these distributions. The same process is performed to create the distribution
b(x) from the points in Db

t . Formally, for a minimization problem, we have the likelihood

p(x | y) =

g(x) if y < y∗

b(x) if y ≥ y∗

where y∗ is the γ−quantile of the observed values The prior probability is p(y < y∗) = γ.
TPE uses the prior and likelihood models to derive the Expected Improvement [41] (EI)

acquisition function. As the name suggests, EI involves computing how much improvement
the objective function is expected to achieve over some threshold y∗ by sampling a given
point. Formally, EI under some model M of f is defined as

EIy∗(x) =
∫ ∞
−∞

max{y∗ − y, 0}pM (y | x)dy. (4.1)

For TPE, it follows from Equation 4.1 that

EIy∗(x) ∝
(
γ + b(x)

g(x)(1− γ)
)−1

(4.2)

the proof of which can be found in [10]. This means that a point with high probability in g(x)
and low probability in b(x) will maximize the EI. To find the next point to evaluate, TPE

12

Algorithm 1: Tree-structured Parzen Estimator
Input: f,X , ninit, niter, nEI , γ
Output: The best performing point found by TPE

1 Initialize: Select ninit points uniformally at random from X , and create
Dninit = {(xi, f(xi))}ninit

i=1
2 for t← ninit to niter do
3 Determine the γ-quantile point, y∗
4 Split Dt into Dg

t and Db
t based on y∗

5 for i← 1 to d do
6 Estimate g(x) on the ith dimension of Dg

t

7 Estimate b(x) on the ith dimension of Db
t

8 Sample nEI points from g(x)
9 Find the sampled point xit+1 with highest g(x)/b(x)

10 end
11 Update Dt+1 ← Dt ∪ {(xt+1, f(xt+1))}
12 end
13 return (x, y) ∈ Dniter with the best objective function value

samples nEI candidate points from g(x). Each of these points is evaluated by g(x)/b(x),
and the point with the highest value is suggested as the next point to be evaluated by f .

For a d−dimensional search space, d > 1, TPE is performed independently for each
dimension on each iteration. The full TPE algorithm is given in Algorithm 1.

Categorical Variables

TPE models categorical variables by using categorical distributions rather than kernel den-
sity estimation. Consider a categorical variable with four distinct values: Website ∈ {w1,
w2, w3, w4}. To build g(Website), TPE estimates the probability of wi based on the fraction
of its occurrences in Dg; the distribution is smoothed by adding 1 to the count of occur-
rences for each value. For instance, if the occurrences are 2, 0, 1, 0, then the distribution
g(Website) will be {P (w1), P (w3), P (w3), P (w4)} = {3/7, 1/7, 2/7, 1/7}.

4.2 Our Framework

In this section, we describe the BOExplain framework.

4.2.1 Parameter Creation

Given a predicate space, we need to map it to a parameter search space (the parameters
and their domains). Suppose a predicate space is defined over variables A1, A2, . . . , An.

If Ai is numerical (e.g., age, date), two parameters are created that serve as the bounds
on the range constraint. Specifically, the parameters Aimin and Ailength define the lower bound

13

Age Sex City State Occupation M.predict(I)
48 F Mesa AZ Athlete repeat
45 F Miami FL Artist repeat
46 M Mesa AZ Writer one-time
40 M Miami FL Athlete repeat
42 F Miami FL Athlete repeat

Table 4.1: Example inference data.

and the length of the range constraint, respectively. Aimin and Ailength have interval domains
[min(Ai),max(Ai)] and [0,max(Ai)−min(Ai)], respectively.

If Ai is categorical (e.g., sex, website), one categorical parameter is created with a
domain consisting of all unique values in Ai.

Example 5. Suppose the user defines a predicate space over State and Age in Table 4.1.
BOExplain creates three parameters: one categorical parameter for State with domain {AZ,
FL}, and two numerical parameters for Age with domains [40, 48] and [0, 8], respectively.

4.2.2 BOExplain Framework

Figure 4.2 walks through the BOExplain framework. In step 0 , the user provides an objective
function obj, a relation S, and predicate variables A1, . . . , An (Figure 1.1(b), line 10). Step
1 creates the parameters and their domains. Step 2 runs one iteration of TPE, starting
with the parameters from step 1 , and outputs a predicate. Steps 3 and 4 evaluate the
predicate by removing those tuples from the input dataset, and evaluating obj on the filtered
data. The result is passed to TPE for the next iteration, and possibly yielded to the user
as an intermediate or final predicate explanation.

Consider the example code in Figure 1.1(b). Once it is executed, BOExplain first cre-
ates three parameters: Datemin, Datelength, and Website along with the corresponding do-
mains. Then, it iteratively calls TPE to propose predicates (e.g., “12/01/2020 ≤ Date ≤
12/02/2020 AND Website = w”). BOExplain obtains S_filtered by removing the tuples that
satisfy this predicate from S. Next, it applies obj(·) to S_filtered which will rerun the
pipeline (Figure 1.1(a)) to compute the updated repeat buyer rate. The predicate and the
updated rate are passed to TPE to use when selecting the predicate on the next iteration.
This iterative process will repeat until the time budget is reached. When the user stops
BOExplain, or when the optimization has converged, the predicate with the lowest repeat
buyer rate is returned.

4.2.3 Why Is TPE Suitable For Query Explanation?

Recent work [6, 27, 31] has suggested that random search is a competitive strategy for
hyperparameter tuning across a variety of challenging machine learning tasks. However, we
find that TPE is more effective for query explanation because it is designed for problems

14

Parameter
creation

Predicate

Remove tuples
satisfying predicateobj(S_filtered)

Result

Filtered
data

0 1

34

Parameters
and domains

Best predicate

TPE
2

Figure 4.2: The BOExplain framework.

where similar parameter values tend to have similar objective values (e.g., model accuracy).
TPE can leverage this property to prune poor regions of the search space. As a trivial
example, suppose a hyperparameter controls the number of trees in a random forest. If
values 10, 12, 14 have resulted in a poor objective value, then TPE will down-weigh similar
values (e.g., 9, 16) since the prior distribution will have lower weight in that region.

This property tends to hold in query explanation, because similar predicates tend to
have similar objective values: similar predicates define similar sets of tuples, and removing
similar sets of tuples from the dataset usually results in comparable objective values. For
instance, we would expect that the predicate age ∈ [10, 20] will exhibit a similar objective
to age ∈ [10, 19] and age ∈ [10, 21]. If the former has a poor objective value, the latter two
may be pruned.

Another consideration is that TPE (and BO in general) is generally used for compu-
tationally expensive black-box functions, which is not necessarily the case for inference
queries. Even still, we find that the cost of updating the surrogate models and maximizing
the EI is negligible compared to the cost of evaluating the inference query. Moreover, TPE
is a derivative-free optimization algorithm, which is necessary for inference queries.

4.2.4 Other Implementations of BO

The most common implementation of BO is using Gaussian process (GP) [16] for the sur-
rogate model and the expected improvement (EI) [41] acquisition function. There are two
reasons we chose to use TPE rather than GP+EI: First, GPs scale cubically in |Dt| and
linearly in the number of variables, whereas TPE scales linearly in |Dt| and linearly in the
number of variables [10]. Second, GPs generally support categorical variables by a one-hot
encoding method [17], which can be prohibitively expensive for high cardinality categorical
columns.

Another approach is based on random forests which can handle numerical and categor-
ical variables [21]. A random forest is trained on Dt = {(xi, yi)}ti=1 to form the surrogate
model. For the acquisition function, variants of the best performing previous configurations

15

and randomly selected configurations are evaluated by the surrogate model, and the con-
figurations that perform the best are evaluated by the objective function. However, it has
been shown that the predictive distribution of random forests is empirically poor [17, 34].

Ultimately, our interest is in applying BO for query explanation, and the specific imple-
mentation is not fundamental in our framework. TPE is used in the popular HT libraries
Optuna [2] and Hyperopt [8, 7]. But other BO methods can be used for query explanation,
and we leave the exploration of these to future work.

4.3 API Design

In this section, we detail the API design of our Python implementation of BOExplain,
which is open-sourced at https://github.com/sfu-db/BOExplain. The design is inspired
by hyperparameter tuning (HT) libraries. The API consists of two functions, fmin and
fmax, which are respectively used to minimize and maximize the objective function. The
user defines an objective function which is passed to fmin (or fmax) along with a pandas
DataFrame, search variable names, and evaluation budget. A filtered DataFrame is returned
from fmin (and fmax) with the tuples satisfying the best predicate found by BOExplain
removed. The objective function takes a DataFrame as input and outputs a number.

Example 6. We show how the BOExplain API can be used to derive explanations from
the three data stages in the context of the running example. Figure 4.3b shows an objec-
tive function which constructs training data from the filtered source data, trains a random
forest classifier, and returns the predicted repeat buyer rate. Since the data scientist found
the repeat buyer rate to be unexpectedly high, she calls fmin and passes the objective func-
tion, source data S, variables Date and Website over which to produce a predicate, and the
evaluation budget of 100 iterations of BO as parameters (Figure 4.3a).

To derive an explanation from training or inference data, the corresponding subset of
the ML pipeline simply needs to be put in the objective function. Figures 4.3c and 4.3d show
the setup for deriving an explanation from training and inference data, respectively.

We will next compare BOExplain’s API design with the design of a popular Python HT
library scikit-optimize [20]. Figure 4.4 shows a simple HT example using scikit-optimize.
Similar to fmin, the function gp_minimize takes an objective function as input which
should be minimized. Although the design of BOExplain is inspired by HT libraries such
as scikit-optimize, we made two changes to make it more user friendly for inference query
explanation: (1) the objective function passed to fmin takes a DataFrame as input whereas
the objective function passed to gp_minimize takes parameter assignments, (2) fmin takes
a DataFrame and variable names as input whereas gp_minimize takes the domains of the
parameters to be optimized. If BOExplain’s objective function took a parameter assignment
as input, the user would need to filter the DataFrame to consist of all tuples that do not

16

https://github.com/sfu-db/BOExplain

S_new = fmin(
f=obj,
data=S,
columns=['Date', 'Website'],
n_trials=100)

(a) Use the BOExplain function fmin to minimize
the objective function.

def obj(S_filtered):
features, labels = \

make_training(S_filtered)
rf = RandomForestClassifier()
rf.fit(features, labels)
return rf.predict(I).mean()

(b) Derive an explanation from source data, S.

T = make_training(S)
def obj(T_filtered):

features = T_filtered[features]
labels = T_filtered['label']
rf = RandomForestClassifier()
rf.fit(features, labels)
return rf.predict(I).mean()

(c) Derive an explanation from training data, T.

features, labels = make_training(S)
rf = RandomForestClassifier()
rf.fit(features, labels)
I['pred'] = rf.predict(I)
def obj(I_filtered):

return I_filtered['pred'].mean()

(d) Derive an explanation from inference data, I.

Figure 4.3: The BOExplain Python API.

satisfy the corresponding predicate inside the objective function, which could be difficult
and error-prone. Also, we decided that BOExplain should define the parameters and compute
their domains rather than the user since it is a well-defined process given the DataFrame
variables (see Section 4.2.1).

from skopt import gp_minimize
def obj(x):

return (x[0] + x[1]) ** 2
gp_minimize(func=obj, dimensions=[(0, 1), (0, 1)], n_calls=100)

Figure 4.4: An example of the scikit-optimize (skopt) API.

17

Chapter 5

Supporting Categorical Variables

In this chapter, we present our techniques to enable BOExplain to support categorical vari-
ables more effectively.

5.1 Individual Contribution Encoding

Recall from Section 4.1, TPE models numerical and categorical variables using kernel den-
sity estimation and categorical distributions, respectively. The advantage of kernel density
estimation over a categorical distribution is that it can estimate the quality of unseen
points based on the points that are close to them. To benefit from this advantage, we map
a categorical variable to a numerical variable. We call this idea categorical encoding. In the
following, we present our categorical encoding approach, called individual contribution (IC)
encoding.

A good encoding method should put similar categorical values close to each other.
Intuitively, two categorical values are similar if they have a similar contribution to the
objective function value. Based on this intuition, we rank the categorical values by their
individual contribution to the objective function value. Specifically, consider a categorical
variable C with domain(C) = {c1, . . . , cn}. For each value ci, we obtain the filtered dataset
σC 6=ci

(S) w.r.t. the predicate C = ci. Next, the objective function is evaluated on the relation
σC 6=ci

(S) which returns a number. This number can be interpreted as the contribution of the
categorical value on the objective function. After repeating for all values ci, the categorical
values are mapped to consecutive integers in order of their IC. BOExplain will then use a
numerical rather than categorical variable to model C.

Example 7. Suppose we would like an explanation from the inference data in Table 4.1.
Suppose the objective function value is the repeat buyer rate and the predicate space is
defined over the Occupation variable. Note that the Occupation variable has the domain
{Athlete, Artist, Writer}. The IC of Athlete is determined by removing the tuples where
Occupation=“Athlete” and computing the objective function on the filtered dataset, which
gives 0.5 (since only one of the two tuples in the filtered dataset is a repeat buyer). Similarly,

18

the ICs of Artist and Writer are 0.75 and 1 respectively. Finally, we sort the categorical
values by their objective function value and encode the values as integers: Athlete → 1,
Artist → 2, Writer → 3.

5.2 Warm Start

We next propose a warm-start approach to further enhance BOExplain’s performance for
categorical variables. Since an IC score has been computed for each categorical value, we
can prioritize predicates that are composed of well performing individual categorical values.
Rather than selecting ninit points at random to initialize the TPE algorithm, we select the
ninit combinations of categorical values with the best combined score. More precisely, for
a variable Ci, we consider the tuple pairs (variable value, IC) as computed in Section 5.1,
SiIC = {(cj , IC(cj))}ni

j=1, where ni is the number of unique values in variable Ci. Next, we
compute and materialize the d−ary Cartesian product and add the ICs for each combination
SIC = S1

IC × · · · × SdIC = {((ci1 , . . . , cid), IC(ci1) + · · · + IC(cid)) | ij ∈ {1, . . . , nj}}. The
actual joint contribution is not computed because it is too computationally expensive: the
number of invocations of the objective function isO(mc) for the joint contribution wherem is
the maximum number of distinct values across all categorical columns and c is the number of
categorical columns, whereas our approach requires O(mc) invocations. To see why adding
the ICs can be useful for prioritizing good predicates, suppose we want to minimize the
objective function, and that C1 = c1 and C2 = c2 have small ICs. Then it is likely that
C1 = c1 ∧ C2 = c2 has a small value. So we choose to sum the IC values as it encodes this
property. Finally, we select ninit valid predicates with the best combined IC score. Recall
the user defines the direction that the objective function should be optimized. Therefore,
we select the predicates with the smallest (largest) IC score if the objective function should
be minimized (maximized). If the predicate also contains numerical variables, values are
selected at random to initialize the range constraint parameters.

Example 8. The IC for values in the variable Occupation were computed in Example 7,
SOccupation
ic = {(Athlete, 0.5), (Artist, 0.75), (Writer, 1)}, and for the variable Sex we have
SSex
ic = {(F, 0.5), (M, 1)}. Next, we compute the combined IC score for each combination

of predicates: SIC = {((Athlete, F), 1), . . . , ((Writer, M), 2)}. Recall, we want to minimize
the objective function, so the smaller the combined IC score the better. Suppose ninit = 2,
then on the first and second iteration of BO we evaluate the predicates Occupation =
“Athlete” ∧ Sex = “F” and Occupation = “Artist” ∧ Sex = “F” respectively. Note that
Occupation = “Athlete”∧Sex = “F” is the best predicate, so adding IC scores can be useful
at prioritizing good explanations.

19

Algorithm 2: BOExplain
Input: Objective function obj, data S, variables A1, . . . , An
Output: A predicate and the corresponding objective value

1 foreach categorical variable C do
2 Compute the IC of all unique values in C
3 end
4 Create the parameters and domains
5 Compute the predicted high quality combinations based on IC for the warm start
6 Initialize TPE: Perform ninit iterations using a warm start to create

Dninit = {(xi, obj(σ¬xi(S))}ninit
i=1 .

7 for t← ninit to niter do
8 Split Dt into Dg

t and Db
t based on the splitting threshold γ

9 for i← 1 to d do
10 Estimate g(x) on the ith dimension of Dg

t

11 Estimate b(x) on the ith dimension of Db
t

12 Sample nEI points from g(x)
13 Find the sample xt+1 with the highest g(x)/b(x)
14 end
15 Update Dt+1 ← Dt ∪ {(xt+1, obj(σ¬xt+1(S)))}
16 end
17 return (x, obj(σ¬x(S))) ∈ Dniter with the best objective value

5.3 Putting Everything Together

We lastly present the full BOExplain algorithm in Algorithm 2. First, the ICs for the cate-
gorical variables are computed in lines 1-3. Next, the parameters and domains are created
in line 4. In line 5, the IC values are used to prioritize predicted high quality predicates, and
in line 6 TPE is initialized for ninit iterations with the predicted high quality predicates.
Starting from line 7, we use a model to select the next points. In line 8, the previously
evaluated points are split into good and bad sets based on γ. Next, from line 9, a value
is selected for each parameter. In lines 10 and 11, distributions of the good and bad sets
are modelled, respectively. In line 12, points are sampled from the good distribution, and
the sampled point with the largest expected improvement is selected as the next parame-
ter value (line 13). In line 15, the objective function is evaluated based on the parameter
assignment, and the set of observation-value pairs is updated.

20

Chapter 6

Experiments

In the previous chapters, we presented a novel approach for explaining SQL and inference
queries. In this chapter, we aim to experimentally evaluate the proposed approach. Specifi-
cally, we are interested in answering the following questions:

1. How does BOExplain compare to current state-of-the-art query explanation engines
for numerical variables?

2. Are the IC encoding and warm start heuristics effective?

3. How effective is BOExplain at deriving explanations from source and training data?

6.1 Experimental Settings
Baselines

For SQL-only queries, we compare BOExplain with the explanation engines Scorpion [49]
and MacroBase [1, 4] which return predicates as explanations. For inference queries, no
predicate-based explanation engines exist, so we compare with a random search baseline [6].
Scorpion [49] is a framework for explaining group-by aggregate queries. The authors define
a function to measure the quality of a predicate, which can be implemented as BOExplain’s
objective function. Each continuous variable’s domain is split into 15 equi-sized ranges
as set in the original paper. We use the author’s open-source code1 to run the Scorpion
experiments.
MacroBase [4] (later, the DIFF SQL operator [1]) is an explanation engine that considers
combinations of variable-values pairs, similar to a CUBE query [19], as candidate explana-
tions. The utility of each explanation is determined by one or more difference metrics each
having a utility threshold; explanations that satisfy the utility threshold are outputted. In

1https://github.com/sirrice/scorpion

21

https://github.com/sirrice/scorpion

Section 2.3 in [1], the authors describe how to use the DIFF operator for Scorpion’s influ-
ence metric. We implemented it in the author’s open-source code2. The user needs to define
how numerical variables are discretized; we tuned the bin size from 2 to 15 and report the
best result.

In [1], MacroBase was shown to outperform other explanation engines including Data
X-ray [48] and Roy and Suciu [36], and so we do not compare with these approaches.
Random search is a competitive method for hyperparameter tuning [6]. The parameters
are chosen independently and uniformly at random for numerical and categorical variables
from the domains described in Section 4.2.

Real-world Datasets and ML Pipelines

The following lists the three datasets and ML pipelines used in our experiments. The
pipelines can be visualized in Figure 6.1, and we put a green box around the data where an
explanation is derived in each pipeline. In Adult and House, an explanation is derived from
training data, and in Credit an explanation is derived from source data.
Adult income dataset [14]. This dataset contains 32,561 rows and 15 human variables from
a 1994 census. Figure 6.1(a) shows the pipeline where the data is prepared for modelling,
and a random forest classifier is then used to predict whether a person makes over $50K a
year. We split the data into 80% for training and 20% for inference.
House price prediction [12]. This dataset was published already split into training (1460
rows) and inference (1459 rows) tables. It contains 79 variables of a house which are used
to train a support vector regression model to predict the house price. The pipeline denoting
how to prepare the data for modelling is given in Figure 6.1(b).
Credit card approval prediction3. The source data consists of two tables: application_record
(438,557 rows, 18 variables), which contains information about previous applicants, and
credit_record (1,048,575 rows, 3 variables), which contains information about the credit
history of the applicants. The pipeline to prepare the data for modelling is given in Fig-
ure 6.1(c), and a decision tree classifier is trained to predict whether a customer will default
on their credit card payment. We set aside 20% of the data to use for the inference query,
and 80% for training.

Metrics

To measure the quality of an explanation, we plot the best objective function value achieved
by each time point t. The systems are run for a fixed number of seconds rather than a
fixed number of iterations since random search does not have the overhead of updating the

2https://github.com/stanford-futuredata/macrobase

3https://www.kaggle.com/rikdifos/credit-card-approval-prediction

22

https://github.com/stanford-futuredata/macrobase
https://www.kaggle.com/rikdifos/credit-card-approval-prediction

ID Month Status
1 January paid
… … …

credit_record

ID Sex …
1 F
… …

application_record

Get the worst
status for each
ID which serves
as label ID Label

1 0
… …

ID

Feature Engineering
• Select features
• One-hot encode
• Bin numerical variables

using quantile and
equi-range bins

• Group categorical
values

ID Sex … label
1 F 0
… … …

Female … label
1 0
… …

Decision
Tree
Classifier

(c) Credit

HoueStyle … SalePrice
1story 208500
… …

Feature Engineering
• Impute missing values
• Combine columns to

form new features
• One-hot encode

source table

HoueStyle_1story … SalePrice
1 208500
… …

Support
Vector
Regression

(b) House

Age … Income
35 >50K
… …

Feature Engineering
• Impute missing values
• Encode categorical

variables and feature

source table

Random
Forest
Classifier

(a) Adult

Age … Income
35 1
… …

Figure 6.1: ML Pipelines for Adult, House, and Credit. The green box indicates where to
generate an explanation.

23

models. The length of the run is chosen to be long enough for the systems to converge.
For Scorpion and MacroBase we plot, the objective function value corresponding to their
output predicate as a line that begins when the system finishes. To evaluate the effectiveness
at identifying data errors, we measure the F-score, precision, and recall on the real-world
datasets. We synthetically corrupt data defined by a predicate, and use that data as ground
truth. Precision is the number of selected corrupted tuples divided by the total number of
selected tuples. Recall is the number of selected corrupted tuples divided by the total number
of corrupted tuples. F-score is the harmonic mean of precision and recall. For BOExplain
and Random, each result is averaged over 10 runs.

Implementation

BOExplain was implemented in Python 3.9. The code is open-sourced at https://github.
com/sfu-db/BOExplain. We modify the TPE algorithm in the Optuna library [2] with
our optimization for categorical variables. The ML models in Section 6.3 are created with
sklearn. The experiments were run single-threaded on a MacBook Air (OS Big Sur, 8GB
RAM). In the TPE algorithm, we set ninit = 10, nei = 24, and γ = 0.1 for all experiments.

6.2 Explaining SQL-Only Queries

We compare BOExplain with Scorpion and MacroBase using the synthetic data and corre-
sponding query from Scorpion’s paper [49]. The dataset consists of a single group by variable
Ad, an aggregate variable Av, and search variables A1, . . . , An with domain(Ai) = [0, 100] ⊂
R, i ∈ [n]. Ad contains 10 unique values (or 10 groups) each corresponding to 2000 tu-
ples randomly distributed in the n dimensions. 5 groups are outlier groups and the other
5 are holdout groups. Each Av value in a holdout group is drawn from N (10, 10). Outlier
groups are created with two n dimensional hyper-cubes over the n variables, where one is
nested inside the other. The inner cube contains 25% of the tuples and Av ∼ N (µ, 10),
and the outer cube contains 25% of the tuples in the group and Av ∼ N (µ+10

2 , 10),
else Av ∼ N (10, 10). µ is set to 80 for the “easy” setting (the outliers are more pro-
nounced), and 30 for the “hard” setting (the outliers are less pronounced). The query is
SELECT SUM(Av) FROM synthetic GROUP BY Ad. The arithmetic expression over the
SQL query is defined in Section 3 of [49] that forms an objective function to be maximized.
The penalty c = 0.2 was used to penalize the number of tuples removed as described in
Section 7 of [49]. We used n = 2 and n = 3 since 3 is the maximum number of variables
supported by MacroBase.

The results are shown in Figure 6.2. BOExplain outperforms Scorpion and MacroBase in
terms of optimizing the objective function in each experiment. This is because BOExplain
can refine the constraint values of the range predicate which enables it to outperform Scor-
pion and MacroBase which discretize the range. The results are the same in the easy and

24

https://github.com/sfu-db/BOExplain
https://github.com/sfu-db/BOExplain

0 5 10 15 20 25 30
Time (seconds)

0

2,000

4,000

6,000

M
ea

n
O

bj
ec

tiv
e

Fu
nc

tio
n

Va
lu

e

2D Easy

0 10 20 30 40 50 60
Time (seconds)

0

2,000

4,000

6,000
3D Easy

0 5 10 15 20 25 30
Time (seconds)

0
500

1,000
1,500

M
ea

n
O

bj
ec

tiv
e

Fu
nc

tio
n

Va
lu

e

2D Hard

0 10 20 30 40 50 60
Time (seconds)

0
500

1,000
1,500
2,000

3D Hard

BOExplain MacroBase Scorpion

Figure 6.2: Performance comparison with Scorpion and MacroBase. The goal is to maximize
the objective function.

hard settings. MacroBase performs poorly because the predicates formed by discretizing the
variable domains into equi-sized bins, and computing the cube, do not optimize this objec-
tive function. This exemplifies a known limitation of MacroBase that binning continuous
variables is difficult [1].

BOExplain also outperforms Scorpion in terms of running time. BOExplain achieves Scor-
pion’s objective function value in around half the time on each experiment.
Note. The focus of this work is not on SQL-only queries, thus we did not conduct a
comprehensive comparison with Scorpion and MacroBase. This experiment aims to show
that a black-box approach (BOExplain) can even outperform white-box approaches (Scorpion
and MacroBase) for SQL-only queries in some situations.

6.3 Explaining Inference Queries

We evaluate BOExplain’s performance of explaining inference queries in various settings.
We start with an experiment on Adult where an explanation is derived from training data
(Section 6.3.1), then we investigate BOExplain’s approach for categorical variables on House
(Section 6.3.2), and finally we evaluate BOExplain in a complex ML pipeline on Credit,
where an explanation is derived from source data (Section 6.3.3).

25

Jaccard Similarity

0 50 100 150 200
Time (seconds)

0.2

0.5

0.8

F-score

0 50 100 150 200
Time (seconds)

0.2

0.5

0.8

Precision

0 50 100 150 200
Time (seconds)

0.2

0.5

0.8

Recall

BOExplain Random

Jaccard Similarity

0 50 100 150 200
Time (seconds)

0.2

0.5

0.8

F-score

0 50 100 150 200
Time (seconds)

0.2

0.5

0.8

Precision

0 50 100 150 200
Time (seconds)

0.2

0.5

0.8

Recall

BOExplain Random

0 50 100 150 200
Time (seconds)

0.00
0.02
0.04
0.06
0.08

M
ea

n
O

bj
ec

tiv
e

Fu
nc

tio
n

Va
lu

e

BOExplain Random

Figure 6.3: Adult: best objective function value, F-score, precision, and recall found at each
5 second increment, averaged over 10 runs. The goal is to minimize the objective function.

6.3.1 Explanation From Training Data

In this experiment, we create an error region by flipping the training labels on Adult where
8 ≤ Education-Num ≤ 10 ∧ 30 ≤ Age ≤ 40 which affects 16% of the training data. On the
inference data, we query the average predicted value for the group Male. To asses whether
BOExplain can accurately remove the corrupted data, we define the objective function to
compute the distance between the query result on the passed data and the query result if ex-
ecuted on the data after filtering out the corrupted tuples, and then define that the objective
function should be minimized. We use the two numerical search variables Education-Num
and Age which have domains [1, 16] and [17, 90], respectively, and the size of the search
space is 1.4× 106.

Each method is run for 200 seconds, and the results are shown in Figure 6.3. BOExplain
on average achieves an objective function result lower than Random before 45 seconds
compared to Random’s result at 200 seconds. This shows that it is effective for BOExplain
to exploit promising regions, whereas random search that just explores the space cannot
find a good predicate as quickly. BOExplain also outperforms Random in terms of F-score
and precision. The recall is high for both approaches since it is likely that a predicate is
produced with large ranges that cover all of the corrupted tuples. On average, BOExplain
(Random) completed 348.9 (295.6) iterations. BOExplain performed more iterations because
as it exploited the promising region, it removed more training data than a random predicate,
and so the model took less time to retrain.

26

Jaccard Similarity

0 50 100 150 200
Time (seconds)

0.2

0.5

0.8

F-score

0 50 100 150 200
Time (seconds)

0.2

0.5

0.8

Precision

0 50 100 150 200
Time (seconds)

0.2

0.5

0.8

Recall

BOExplain BOExplain (w/o IC and WS)
BOExplain (w/o IC) Random

Jaccard Similarity

0 50 100 150 200
Time (seconds)

0.2

0.5

0.8

F-score

0 50 100 150 200
Time (seconds)

0.2

0.5

0.8

Precision

0 50 100 150 200
Time (seconds)

0.2

0.5

0.8

Recall

BOExplain BOExplain (w/o IC and WS)
BOExplain (w/o IC) Random

0 50 100 150 200
Time (seconds)

0

5,000

10,000

M
ea

n
O

bj
ec

tiv
e

Fu
nc

tio
n

Va
lu

e

BOExplain BOExplain (w/o IC and WS)

BOExplain (w/o IC) Random

Figure 6.4: House: best objective function value, F-score, precision, and, and recall, found
at each 5 second increment averaged over 10 runs. The goal is to minimize the objective
function. (IC = Individual Contribution Encoding, WS = Warm Start)

6.3.2 Supporting Categorical Variables

In this experiment, we assess BOExplain’s method for handling categorical variables on
House. The data is corrupted by setting the tuples satisfying Neighbourhood=‘CollgCr’
∧ Exterior1st=‘VinylSd’ ∧ 2000 ≤ YearBuilt ≤ 2010 to have their sale price multiplied
by 10, affecting 6.16% of the data. We query the average predicted house price and seek
an explanation for why it is high. To assess BOExplain’s efficacy at removing the corrupted
tuples, we define the objective function to minimize the distance between the queried result
on the passed data and the result of the query issued on the data with the corrupted tuples
removed. We use two categorical search variables Neighbourhood and Exterior1st which
have 25 and 15 distinct values respectively, and one numerical search variable YearBuilt
which has domain [1872, 2010]. The search space size is 7.25× 106.

In this experiment, we compare three strategies for dealing with categorical variables.
The first, BOExplain, is our algorithm with both of the IC encoding and warm-start (WS)
optimizations proposed in Chapter 5. To determine whether encoding categorical values to
integers based on IC and using a numerical distribution is effective, we consider a second
approach, BOExplain (w/o IC), which uses the warm start optimization from Section 5.2,
but uses the TPE categorical distribution to model the variables rather than encoding. The
third, BOExplain (w/o IC and WS), is BOExplain without any optimizations.

27

Each method is run for 200 seconds, and the results are shown in Figure 6.4. The benefit
of the warm start is apparent since BOExplain and BOExplain (w/o IC) outperform the other
baselines much sooner. Also, BOExplain significantly outperforms BOExplain (w/o IC) which
shows that encoding the categorical values, and using a numerical distribution to model the
parameter, leads to BO learning the good region which can optimize the objective function
when exploited. The F-score, precision, and recall also demonstrate how BOExplain can
significantly outperform the baselines. In this experiment, BOExplain completed on average
274.3 iterations, whereas random completed 1148.4 iterations.

6.3.3 Explanation From Source Data

In the last experiment, we derive an explanation from source data on Credit. We cor-
rupt the source data by setting all applicant records satisfying −23000 ≤ DAYS_BIRTH ≤
−17000∧2 ≤ CNT_FAM_MEMBERS ≤ 3 to have a “bad” credit status, which affects 20.1% of the
data. Corrupting the data decreases the accuracy of the model, and we define the objective
function to increase the model accuracy. We derive an explanation from the source data ta-
ble application_record with the variables DAYS_BIRTH and CNT_FAM_MEMBERS
which have domains [-25201, -7489] and [1, 15], respectively, and the size of the search space
is 7.06× 1010.

The experiment is run for 200 seconds, and the results are shown in Figure 6.5. On
average, BOExplain completes 246.8 iterations and random search completes 319.6 itera-
tions during the 200 seconds. BOExplain significantly outperforms Random at optimizing
the objective function, as BOExplain on average attains an objective function value at 51
seconds that is higher than the average value Random attains at 200 seconds. This shows
that exploiting promising regions can lead to better explanations, and that BOExplain is
effective at deriving explanations from source data that passes through an ML pipeline. Al-
though random search can find an explanation with high precision, BOExplain significantly
outperforms Random in terms of F-score.

28

Jaccard Similarity

0 50 100 150 200
Time (seconds)

0.2

0.5

0.8

F-score

0 50 100 150 200
Time (seconds)

0.2

0.5

0.8

Precision

0 50 100 150 200
Time (seconds)

0.2

0.5

0.8

Recall

BOExplain Random

Jaccard Similarity

0 50 100 150 200
Time (seconds)

0.2

0.5

0.8

F-score

0 50 100 150 200
Time (seconds)

0.2

0.5

0.8

Precision

0 50 100 150 200
Time (seconds)

0.2

0.5

0.8

Recall

BOExplain Random

0 50 100 150 200
Time (seconds)

0.70
0.75
0.80
0.85
0.90

M
ea

n
O

bj
ec

tiv
e

Fu
nc

tio
n

Va
lu

e

BOExplain Random

Figure 6.5: Credit: best objective function value, F-score, precision, and recall found at each
5 second increment, averaged over 10 runs. The goal is to maximize the objective function;
larger values are better.

29

Chapter 7

Conclusion and Future Work

In this thesis, a novel framework for explaining inference queries using Bayesian optimiza-
tion, called BOExplain, was proposed. This framework treats the inference query along with
an ML pipeline as a black-box which enables explanations to be derived from complex
pipelines with UDFs. We considered predicates as explanations, and treated the predicate
constraints as parameters to be tuned. TPE was used to tune the parameters, and we pro-
posed a novel individual contribution encoding and warm start heuristic to improve the
performance of categorical variables. We performed experiments showing that i) BOExplain
can even outperform Scorpion and Macrobase for explaining SQL-only queries in certain
situations, ii) the proposed IC and warm start techniques were effective, iii) BOExplain
significantly outperformed random search for explaining inference queries.
Future Directions. There are several future directions for this work. First, we would like
to make BOExplain support a richer set of explanations. For example, extending the equality
constraint for categorical variables to a set containment clause would help to identify multi-
ple categorical values that contribute to the unexpected query result. This extension would
be difficult since it involves going from a constraint having c possibilities (c is the number
of distinct values in the column) to 2c possibilities, and determining a good relationship
or notion of similarity between sets is nontrivial. For numerical variables, it would be use-
ful to support explanations with multiple range constraints over the same variable. Also,
currently BOExplain requires the user to specify the exact variables over which to derive
an explanation; extending BOExplain to derive an explanation from a subset of variables
would free the user from having to know the variables that can provide an explanation be-
forehand. A conditional hyperparameter optimization solution [26] could be applied where
a parameter selects which variables appear in the predicate, and conditioned on the output
of this parameter, the variable values are then selected.

It would be useful to explore further optimizations to BOExplain for categorical variables
that have many distinct values. The cost of the individual contribution encoding — which
requires evaluating the objective function for every distinct categorical value — may be
prohibitively expensive. One direction is to use a data sample so that evaluating the objective

30

function requires less time. Alternatively, it may be possible in certain situations to consider
only frequently occurring categorical values that are likely to make a significant impact on
the objective function.

Finally, a future direction is to explore other optimization strategies such as Bayesian
optimization using Gaussian Processes [46] or random forests [21], or a multi-armed bandit
approach like HyperBand [28]. It would be particularly useful to model potential relation-
ships between parameters, such as between the parameters for the lower and upper bounds
on a range constraint, that TPE does not model.

31

Bibliography

[1] Firas Abuzaid, Peter Kraft, Sahaana Suri, Edward Gan, Eric Xu, Atul Shenoy, Asvin
Ananthanarayan, John Sheu, Erik Meijer, Xi Wu, et al. Diff: a relational interface for
large-scale data explanation. The VLDB Journal, pages 1–26, 2020.

[2] Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori Koyama.
Optuna: A next-generation hyperparameter optimization framework. In Proceedings
of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining, pages 2623–2631, 2019.

[3] Cyrille Artho. Iterative delta debugging. International Journal on Software Tools for
Technology Transfer, 13(3):223–246, 2011.

[4] Peter Bailis, Edward Gan, Samuel Madden, Deepak Narayanan, Kexin Rong, and Sa-
haana Suri. Macrobase: Prioritizing attention in fast data. In Proceedings of the 2017
ACM International Conference on Management of Data, pages 541–556, 2017.

[5] Ricardo Baptista and Matthias Poloczek. Bayesian optimization of combinatorial struc-
tures. arXiv preprint arXiv:1806.08838, 2018.

[6] James Bergstra and Yoshua Bengio. Random search for hyper-parameter optimization.
The Journal of Machine Learning Research, 13(1):281–305, 2012.

[7] James Bergstra, Brent Komer, Chris Eliasmith, Dan Yamins, and David D Cox. Hy-
peropt: a python library for model selection and hyperparameter optimization. Com-
putational Science & Discovery, 8(1):014008, 2015.

[8] James Bergstra, Dan Yamins, and David D Cox. Hyperopt: A python library for
optimizing the hyperparameters of machine learning algorithms. In Proceedings of the
12th Python in science conference, volume 13, page 20. Citeseer, 2013.

[9] James Bergstra, Daniel Yamins, and David Cox. Making a science of model search:
Hyperparameter optimization in hundreds of dimensions for vision architectures. In
International conference on machine learning, pages 115–123, 2013.

[10] James S Bergstra, Rémi Bardenet, Yoshua Bengio, and Balázs Kégl. Algorithms for
hyper-parameter optimization. In Advances in neural information processing systems,
pages 2546–2554, 2011.

[11] Eric Brochu, Vlad M Cora, and Nando De Freitas. A tutorial on bayesian optimization
of expensive cost functions, with application to active user modeling and hierarchical
reinforcement learning. arXiv preprint arXiv:1012.2599, 2010.

32

[12] Dean De Cock. Ames, iowa: Alternative to the boston housing data as an end of
semester regression project. Journal of Statistics Education, 19(3), 2011.

[13] Aryan Deshwal, Syrine Belakaria, and Janardhan Rao Doppa. Scalable combi-
natorial bayesian optimization with tractable statistical models. arXiv preprint
arXiv:2008.08177, 2020.

[14] Dheeru Dua and Casey Graff. UCI machine learning repository, 2017.

[15] Matthias Feurer and Frank Hutter. Hyperparameter optimization. In Automated Ma-
chine Learning, pages 3–33. Springer, Cham, 2019.

[16] Peter I Frazier. A tutorial on bayesian optimization. arXiv preprint arXiv:1807.02811,
2018.

[17] Eduardo C Garrido-Merchán and Daniel Hernández-Lobato. Dealing with categorical
and integer-valued variables in bayesian optimization with gaussian processes. Neuro-
computing, 380:20–35, 2020.

[18] Daniel Golovin, Benjamin Solnik, Subhodeep Moitra, Greg Kochanski, John Karro,
and D Sculley. Google vizier: A service for black-box optimization. In Proceedings
of the 23rd ACM SIGKDD international conference on knowledge discovery and data
mining, pages 1487–1495, 2017.

[19] Jim Gray, Surajit Chaudhuri, Adam Bosworth, Andrew Layman, Don Reichart, Murali
Venkatrao, Frank Pellow, and Hamid Pirahesh. Data cube: A relational aggregation
operator generalizing group-by, cross-tab, and sub-totals. Data mining and knowledge
discovery, 1(1):29–53, 1997.

[20] Tim Head, MechCoder, Gilles Louppe, Iaroslav Shcherbatyi, fcharras, Zé Vinícius, cm-
malone, Christopher Schröder, nel215, Nuno Campos, Todd Young, Stefano Cereda,
Thomas Fan, rene rex, Kejia (KJ) Shi, Justus Schwabedal, carlosdanielcsantos, Hvass-
Labs, Mikhail Pak, SoManyUsernamesTaken, Fred Callaway, Loïc Estève, Lilian
Besson, Mehdi Cherti, Karlson Pfannschmidt, Fabian Linzberger, Christophe Cauet,
Anna Gut, Andreas Mueller, and Alexander Fabisch. scikit-optimize/scikit-optimize:
v0.5.2, March 2018.

[21] Frank Hutter, Holger H Hoos, and Kevin Leyton-Brown. Sequential model-based op-
timization for general algorithm configuration. In International conference on learning
and intelligent optimization, pages 507–523. Springer, 2011.

[22] Nodira Khoussainova, Magdalena Balazinska, and Dan Suciu. Perfxplain: debugging
mapreduce job performance. arXiv preprint arXiv:1203.6400, 2012.

[23] Pang Wei Koh and Percy Liang. Understanding black-box predictions via influence
functions. In International Conference on Machine Learning, pages 1885–1894. PMLR,
2017.

[24] Rahul Krishna, Md Shahriar Iqbal, Mohammad Ali Javidian, Baishakhi Ray, and
Pooyan Jamshidi. Cadet: A systematic method for debugging misconfigurations us-
ing counterfactual reasoning. arXiv preprint arXiv:2010.06061, 2020.

33

[25] Harold J Kushner. A new method of locating the maximum point of an arbitrary
multipeak curve in the presence of noise. 1964.

[26] Julien-Charles Lévesque, Audrey Durand, Christian Gagné, and Robert Sabourin.
Bayesian optimization for conditional hyperparameter spaces. In 2017 International
Joint Conference on Neural Networks (IJCNN), pages 286–293. IEEE, 2017.

[27] Liam Li and Ameet Talwalkar. Random search and reproducibility for neural archi-
tecture search. In Uncertainty in Artificial Intelligence, pages 367–377. PMLR, 2020.

[28] Lisha Li, Kevin Jamieson, Giulia DeSalvo, Afshin Rostamizadeh, and Ameet Talwalkar.
Hyperband: A novel bandit-based approach to hyperparameter optimization. The Jour-
nal of Machine Learning Research, 18(1):6765–6816, 2017.

[29] Daniel James Lizotte. Practical bayesian optimization. University of Alberta, 2008.

[30] Raoni Lourenço, Juliana Freire, and Dennis Shasha. Bugdoc: A system for debugging
computational pipelines. In Proceedings of the 2020 ACM SIGMOD International
Conference on Management of Data, pages 2733–2736, 2020.

[31] Horia Mania, Aurelia Guy, and Benjamin Recht. Simple random search provides a com-
petitive approach to reinforcement learning. arXiv preprint arXiv:1803.07055, 2018.

[32] Alexandra Meliou, Sudeepa Roy, and Dan Suciu. Causality and explanations in
databases. Proc. VLDB Endow., 7(13):1715–1716, August 2014.

[33] Zhengjie Miao, Qitian Zeng, Boris Glavic, and Sudeepa Roy. Going beyond provenance:
Explaining query answers with pattern-based counterbalances. In Proceedings of the
2019 International Conference on Management of Data, pages 485–502, 2019.

[34] Dang Nguyen, Sunil Gupta, Santu Rana, Alistair Shilton, and Svetha Venkatesh.
Bayesian optimization for categorical and category-specific continuous inputs. In AAAI,
pages 5256–5263, 2020.

[35] Changyong Oh, Jakub Tomczak, Efstratios Gavves, and Max Welling. Combinato-
rial bayesian optimization using the graph cartesian product. In Advances in Neural
Information Processing Systems, pages 2914–2924, 2019.

[36] Sudeepa Roy, Laurel Orr, and Dan Suciu. Explaining query answers with explanation-
ready databases. Proc. VLDB Endow., 9(4):348–359, December 2015.

[37] Sudeepa Roy and Dan Suciu. A formal approach to finding explanations for database
queries. In Proceedings of the 2014 ACM SIGMOD International Conference on Man-
agement of Data, SIGMOD ’14, page 1579–1590, New York, NY, USA, 2014. Associa-
tion for Computing Machinery.

[38] Sudip Roy, Arnd Christian König, Igor Dvorkin, and Manish Kumar. Perfaugur: Robust
diagnostics for performance anomalies in cloud services. In 2015 IEEE 31st Interna-
tional Conference on Data Engineering, pages 1167–1178. IEEE, 2015.

[39] Binxin Ru, Ahsan Alvi, Vu Nguyen, Michael A Osborne, and Stephen Roberts.
Bayesian optimisation over multiple continuous and categorical inputs. In Interna-
tional Conference on Machine Learning, pages 8276–8285. PMLR, 2020.

34

[40] Fotis Savva, Christos Anagnostopoulos, and Peter Triantafillou. Explaining aggregates
for exploratory analytics. In 2018 IEEE International Conference on Big Data (Big
Data), pages 478–487. IEEE, 2018.

[41] Matthias Schonlau, William J Welch, and Donald R Jones. Global versus local search in
constrained optimization of computer models. Lecture Notes-Monograph Series, pages
11–25, 1998.

[42] Amar Shah, Andrew Wilson, and Zoubin Ghahramani. Student-t processes as alter-
natives to gaussian processes. In Artificial intelligence and statistics, pages 877–885,
2014.

[43] Bobak Shahriari, Kevin Swersky, Ziyu Wang, Ryan P Adams, and Nando De Freitas.
Taking the human out of the loop: A review of bayesian optimization. Proceedings of
the IEEE, 104(1):148–175, 2015.

[44] Bernard W Silverman. Density estimation for statistics and data analysis, volume 26.
CRC press, 1986.

[45] Jasper Snoek, Oren Rippel, Kevin Swersky, Ryan Kiros, Nadathur Satish, Narayanan
Sundaram, Mostofa Patwary, Mr Prabhat, and Ryan Adams. Scalable bayesian opti-
mization using deep neural networks. In International conference on machine learning,
pages 2171–2180, 2015.

[46] Jasper Roland Snoek. Bayesian optimization and semiparametric models with applica-
tions to assistive technology. PhD thesis, Citeseer, 2013.

[47] Niranjan Srinivas, Andreas Krause, Sham M Kakade, and Matthias Seeger. Gaussian
process optimization in the bandit setting: No regret and experimental design. arXiv
preprint arXiv:0912.3995, 2009.

[48] Xiaolan Wang, Xin Luna Dong, and Alexandra Meliou. Data x-ray: A diagnostic tool
for data errors. In Proceedings of the 2015 ACM SIGMOD International Conference
on Management of Data, pages 1231–1245, 2015.

[49] Eugene Wu and Samuel Madden. Scorpion: Explaining away outliers in aggregate
queries. Proc. VLDB Endow., 6(8):553–564, June 2013.

[50] Weiyuan Wu, Lampros Flokas, Eugene Wu, and Jiannan Wang. Complaint-driven
training data debugging for query 2.0. In Proceedings of the 2020 ACM SIGMOD
International Conference on Management of Data, pages 1317–1334, 2020.

[51] Dong Young Yoon, Ning Niu, and Barzan Mozafari. Dbsherlock: A performance di-
agnostic tool for transactional databases. In Proceedings of the 2016 International
Conference on Management of Data, pages 1599–1614, 2016.

[52] Jiaqi Zhang, Lakshminarayanan Renganarayana, Xiaolan Zhang, Niyu Ge, Vasanth
Bala, Tianyin Xu, and Yuanyuan Zhou. Encore: Exploiting system environment and
correlation information for misconfiguration detection. In Proceedings of the 19th inter-
national conference on Architectural support for programming languages and operating
systems, pages 687–700, 2014.

35

	Declaration of Committee
	Abstract
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Related Work
	Problem Definition
	Problem Definition in SQL Explanation
	Query
	Complaint
	Explanation
	Objective Function

	Extension to Inference Query Explanation

	The BOExplain Framework
	Background
	Tree-structured Parzen Estimator (TPE)

	Our Framework
	Parameter Creation
	BOExplain Framework
	Why Is TPE Suitable For Query Explanation?
	Other Implementations of BO

	API Design

	Supporting Categorical Variables
	Individual Contribution Encoding
	Warm Start
	Putting Everything Together

	Experiments
	Experimental Settings
	Explaining SQL-Only Queries
	Explaining Inference Queries
	Explanation From Training Data
	Supporting Categorical Variables
	Explanation From Source Data

	Conclusion and Future Work
	Bibliography

