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Abstract

With new developments in modern technology, data are recorded continuously on a large scale over

finer and finer grids. Such data push forward the development of functional data analysis (FDA),

which analyzes information on curves or functions. Analyzing functional data is intrinsically an

infinite-dimensional problem. Functional partial least squares method is a useful tool for dimension

reduction. In this thesis, we propose a sparse version of the functional partial least squares method

which is easy to interpret. Another problem of interest in FDA is the functional linear regression

model, which extends the linear regression model to the functional context. We propose a new

method to study the truncated functional linear regression model which assumes that the functional

predictor does not influence the response when the time passes a certain cutoff point. Motivated by

a recent study of the instantaneous in-game win probabilities for the National Rugby League, we

develop novel FDA techniques to determine the distributions in a Bayesian model.

Keywords: Functional data analysis; Functional linear regression; Group bridge approach; Penal-

ized B-splines; Functional partial least squares; Locally sparse; Bayesian analysis
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Chapter 1

Introduction

Functional data analysis (FDA) deals with the analysis and theory of samples of curves, images,

or other types of functions rather than scalars or vectors. Analyzing functional data is intrinsically

an infinite-dimensional problem. It involves smoothing, dimension reduction, and regularization. In

this thesis, we propose a sparse version of the functional partial least squares method to achieve

dimension reduction. In FDA one of the most useful models is that of functional linear regression.

We study a truncated functional linear regression model, which is a special case of the conventional

functional linear regression model. Besides, we develop FDA methods to provide instantaneous

in-game win probabilities for the National Rugby League.

The functional linear regression model extends the linear regression model to the functional con-

text. In classical statistics, the linear regression model assumes that the response variable depends

on the predictors in a linear form with random errors. The classic functional linear regression model

relates a scalar response to a functional predictor. A scalar-on-function truncated linear regression

model is a special case of the classic functional linear regression model, which assumes that the

functional predictor does not influence the response when the time passes a certain cutoff point. In

Chapter 2, we propose a new nested group bridge approach to estimate the slope function and the

cutoff time point in the truncated functional linear model. Combined with the B-spline basis ex-

pansion and penalized least squares, the nested group bridge approach can identify the cutoff time

and produce a smooth estimate of the slope function simultaneously. The proposed nested group

bridge estimator is shown to be consistent, while its numerical performance is illustrated by sim-

ulation studies. The proposed nested group bridge method is demonstrated with an application of

determining the effect of the past engine acceleration on the current particulate matter emission.
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For infinite-dimensional functional data, dimension reduction is mandatory. Partial least squares

is a very popular dimension reduction technique that has been successful in spectrometric prediction

in chemometrics community. In Chapter 3 we propose a sparse version of the functional partial least

squares method in the context of the functional linear regression model. The proposed method stud-

ies a functional linear regression model with a slope function that is zero on a substantial portion

of its defining domain, which we call a locally sparse slope function. We expand the slope function

with functional partial least squares basis functions. We aim at achieving locally sparse estimates

for the functional partial least squares basis functions, and more importantly, the locally sparse esti-

mate for the slope function. The new approach applies a functional regularization technique to each

iteration step of the functional partial least squares and implements a computational method that

identifies non-zero subregions on which the slope function is estimated. We illustrate the numerical

performance of the proposed method via simulation studies and two real applications on the oriented

strand board furnish data and the particulate matter emissions data.

In Chapter 4 we develop FDA methods for providing instantaneous in-game win probabilities

for the National Rugby League (NRL). The NRL attempts to add a graphic that displays in-game win

probabilities in a small corner of the screen, and be continually updated as the game circumstances

change. We develop a Bayesian model where our main interest concerns the evaluation of the in-

game posterior win probability. The underlying distributions in the Bayesian model are specified

using novel FDA techniques.

2



Chapter 2

Estimating Truncated Functional Linear
Models with a Nested Group Bridge
Approach

2.1 Introduction

In this chapter we consider a scalar-on-function truncated linear regression model where the

functional predictor Xi(t), i = 1, . . . , n, is defined on a time interval [0, T ] but influences the scalar

response Yi only on [0, δ] for some unknown cutoff time δ ≤ T . Specifically, the model is written

as

Yi = µ+
∫ δ

0
Xi(t)β(t) d t+ εi, (2.1)

where, without loss of generality, Xi(·) is assumed to be centered, i.e., EXi(t) ≡ 0, µ is then the

mean of Yi, β(t) is the slope function (or coefficient function), and εi represents the noise that is

independent of Xi(·).

An example of the scalar-on-function truncated linear regression is to determine the effects of

the past engine acceleration on the current particulate matter emission. The response variable is the

current particulate matter emission and the explanatory function is the smoothed engine accelera-

tion curve for the past 60 seconds. Figure 2.1(a) displays 108 smoothed engine acceleration curves

against the backward time, in which 0 means the current time, while Figure 2.1(b) shows the slope

function estimated by the penalized B-splines method (Cardot et al., 2003). The penalized B-splines

method is detailed in the appendix. We observe from Figure 2.1(b) that the acceleration over the past

20–60 seconds does not have apparent contribution to predicting the current particulate matter emis-
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sion. Intuitively, the particulate matter emissions shall depend on the recent acceleration, but not the

ancient one. Therefore, if a linear relation between the particulate matter emission and the accel-

eration curve is assumed, one might naturally use the truncated linear model (2.1) to analyze such

data, where the task includes identifying the cutoff time beyond which the engine acceleration has

no influence on the current particulate matter emission.

0 10 20 30 40 50 60
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Figure 2.1: (a) 108 smoothed engine acceleration curves. (b) Estimated slope function using the
penalized B-splines approach (Cardot et al., 2003). The arrows indicate the direction of time.

The degenerate case δ = T in model (2.1) corresponds to the classic functional linear regression

that has been studied in vast literature. Hastie and Mallows (1993) pioneered the smooth estimation

of β(t) via penalized least squares and/or smooth basis expansion. Cardot et al. (2003) adopted

B-spline basis expansion, while Li and Hsing (2007) utilized Fourier basis, both with a roughness

penalty to control the smoothness of estimated slope functions. Data-driven bases such as eigen-

functions of the covariance function of the predictor process Xi(t) were considered in Cardot et al.

(2003), Cai and Hall (2006) and Hall and Horowitz (2007). Yuan and Cai (2010) took a reproducing

kernel Hilbert space approach to estimate the slope function. The case of sparsely observed func-

tional data was studied by Yao et al. (2005). These estimation procedures for classic functional linear

regression do not apply to the truncated linear model where δ ≤ T is often assumed. For models

beyond linear regression and a comprehensive introduction to functional data analysis, readers are

referred to the monographs by Ramsay and Silverman (2005), Ferraty and Vieu (2006), Hsing and

4



Eubank (2015) and Kokoszka and Reimherr (2017), as well as the review papers by Morris (2015)

and Wang et al. (2016) and references therein.

Model (2.1) has been investigated by Hall and Hooker (2016) who proposed to estimate β(t)

and δ by penalized least squares with a penalty on δ2. The resulting estimates for β(t) are discon-

tinuous at t = δ̂ where δ̂ stands for the estimator of δ. This feature might not be desirable when β(t)

is a priori assumed to be continuous. For example, it is more reasonable to assume the acceleration

function influences the particulate matter emission in a continuous and smooth manner. Alterna-

tively, we observe that model (2.1) is equivalent to a classic functional linear model with β(t) = 0

for all t ∈ [δ, T ]. Such a slope function β(t) is a special case of locally sparse functions which by

definition are functions being zero in a substantial portion of their defining domains. Locally sparse

slope functions have been studied in Lin et al. (2017), as well as pioneering works of James et al.

(2009) and Zhou et al. (2013). For example, in Lin et al. (2017), a general functional shrinkage

regularization technique, called fSCAD, was proposed and demonstrated to be able to encourage

the local sparseness. Although these endeavors are able to produce a smooth and locally sparse esti-

mate, they do not specifically focus on the tail region [δ, T ]. Therefore, the estimated slope functions

produced by such methods might not be zero in the region that is very close to the endpoint T , in

particular when the boundary effect is not negligible.

In this chapter, we propose a new nested group bridge approach to estimate the slope function

β(t) and the cutoff time δ. Compared to the existing methods, the proposed nested group bridge ap-

proach has two features. First, it is based on the B-spline basis expansion and penalized least squares

with a roughness penalty. Therefore, the resulting estimator of β(t) is continuous and smooth over

the entire domain [0, T ], contrasting the discontinuous estimator of Hall and Hooker (2016). Sec-

ond, it employs a new nested group bridge shrinkage method proposed in Section 2.2 to specifically

shrink the estimated function on the tail region [δ, T ]. Group bridge was proposed in Huang et al.

(2009) for variable selection, and utilized by Wang and Kai (2015) for locally sparse estimation in

the setting of nonparametric regression. In our approach, we creatively organize the coefficients of

B-spline basis functions into a sequence of nested groups and apply the group bridge penalty to

the groups. With the aid from B-spline basis expansion, such nested structure enables us to shrink

the tail of the estimated slope function. This fixes the problem of the aforementioned generic lo-

5



cally sparse estimation procedures. An R package ngr has been developed for implementing the

proposed method and is available at https://github.com/caojiguo/TruFunLM.

We structure the rest of the chapter as follows. In Section 2.2 we present the proposed nested

group bridge estimation method for the slope function and the cutoff time, and also provide com-

putational details. In Section 2.3 we investigate the asymptotic properties of the derived estima-

tors. Simulation studies are discussed in Section 2.4, and an application to the particulate matter

emissions data is given in Section 2.5. Conclusion and discussion are given in Section 2.6. In the

appendix, we provide proofs and additional discussion.

2.2 Methodology

2.2.1 Nested Group Bridge Approach

Our estimation method utilizes B-spline basis functions that are detailed in de Boor (2001). Let

B(t) = (B1(t), . . . , BM+d(t))T be a vector that contains M + d B-spline basis functions defined

on [0, T ] with degree d and M + 1 equally spaced knots 0 = t0 < t1 < · · · < tM = T . For m ≥ 0,

let B(m)(t) = (B(m)
1 (t), . . . , B(m)

M+d(t))T denote the vector of the m-th derivatives of the B-spline

basis functions. Each of these basis functions is a piecewise polynomial of degree d. B-spline basis

functions are well known for their compact support property, i.e., each basis function is positive

over at most d + 1 adjacent subintervals. Due to this compact support property, if we approximate

β(t) by a linear combination of B-spline basis functions, then such approximation is locally sparse

if the coefficients are sparse in groups.

We shall further introduce some notations. Let Ij = (tj−1, tM ), and Aj = {j, j+1, . . . ,M+d}

for j = 1, . . . ,M . Intuitively, each group Aj represents the indices of B-spline basis functions that

are nonzero on Ij . For a vector b = (b1, . . . , bM+d)T of scalars, we denote by bAj = {bk : k ∈ Aj}

the subvector of elements whose indices are in the j-th group Aj . We shall use ‖a‖1 = |a1|+ · · ·+

|aq| to denote the L1 norm of a generic q-dimensional vector a, and use ‖x‖2 to denote the L2 norm

of a generic function x(t). As our focus is on the estimation of β(t) and δ, without loss of generality,

we assume that µ = 0 in model (2.1) in the sequel.
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For a fixed 0 < γ < 1, the historically sparse (zero on the tail region) and smooth estimators for

β and δ are defined as

β̂n(t) = b̂T
nB(t), δ̂n = tJ0−1, (2.2)

where J0 = min{M + 1,min{l : b̂nk = 0, for all k ≥ l}} and b̂n = (b̂n1, . . . , b̂nM+d)T minimizes

the penalized least squares

1
n

n∑
i=1

(
Yi −

M+d∑
k=1

bk

∫ T

0
Xi(t)Bk(t) d t

)2

+ κ
∥∥∥bTB(m)

∥∥∥2

2
+ λ

M∑
j=1

cj
∥∥∥bAj

∥∥∥γ
1
, (2.3)

with known weights cj and nonnegative tuning parameters κ and λ. In the above criterion, the first

term is the ordinary least squares error that encourages the fidelity of model fitting, while the second

term is a roughness penalty that aims to enforce smoothness of the estimate β̂n(t). In practice,

m = 2 is a common choice, which corresponds to measuring the roughness of a function by its

integrated curvature.

The last term in the objective function (2.3) is designed to shrink the estimated slope function

toward zero specifically on the tail region. It originates from the group bridge penalty that was

introduced by Huang et al. (2009) for simultaneous selection of variables at both the group and

within-group individual levels. In (2.3), the groups have a special structure: A1 ⊃ · · · ⊃ AM . In

other words, the groups are nested as a sequence and hence we call the last term in (2.3) nested group

bridge. Due to such nested nature, if k > j, then one can observe in (2.3) that (i) the coefficient

bk appears in all groups where the coefficient bj also appears, and (ii) bk appears in more groups

than bj . As a consequence, bk is always penalized more heavily than bj . These two features suggest

that the nested group bridge penalty spends more effort on shrinking those coefficients of B-spline

basis functions whose support is in a closer proximity to T . As B-spline basis functions enjoy the

aforementioned compact support property and our estimate is represented by a linear combination

of such basis functions as in (2.2), the progressive shrinkage of nested group bridge encourages the

estimate of β(t) to be locally sparse specifically on the tail part of the time domain. Such estimate is

exactly what we are after in the scalar-on-function truncated linear model (2.1). The weights cj are

introduced to adjust the number of elements in the set Aj . A simple choice for cj is cj ∝ |Aj |1−γ ,

where |Aj | denotes the cardinality of Aj (Huang et al., 2009). Borrowing the idea of the adaptive
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lasso (Zou, 2006), we practically choose cj = |Aj |1−γ/‖b(0)
Aj
‖γ2 , where b(0) can be obtained by the

penalized B-splines method (Cardot et al., 2003). As Huang et al. (2009) pointed out, when γ = 1,

the group bridge penalty is the lasso penalty and can only do individual variable selection. When

0 < γ < 1, the group bridge penalty can be used for variable selection at the group and with-in

group individual levels simultaneously. We also conduct a simulation study to compare the lasso

and the nested group bridge penalty; see the appendix for details.

2.2.2 Computational Method

The objective function (2.3) is not convex and thus difficult to optimize. Huang et al. (2009)

suggested the following formulation that was easier to work with. Based on Proposition 1 of Huang

et al. (2009), for 0 < γ < 1, if λ = τ1−γγ−γ(1 − γ)γ−1, then b̂n minimizes (2.3) if and only if

(b̂n, θ̂) minimizes

1
n

n∑
i=1

(
Yi −

M+d∑
k=1

bk

∫ T

0
Xi(t)Bk(t) d t

)2

+ κ
∥∥∥bTB(m)

∥∥∥2

2
+

M∑
j=1

θ
1−1/γ
j c

1/γ
j ‖bAj‖1 + τ

M∑
j=1

θj ,

(2.4)

subject to θj ≥ 0 (j = 1, . . . ,M), where θ = (θ1, . . . , θM )T and θ̂ = (θ̂1, . . . , θ̂M )T. Below we

develop an algorithm following this idea.

LetU denote the n× (M +d) matrix with elements uij =
∫ T

0 Xi(t)Bj(t) d t, and let V denote

the (M+d)×(M+d) matrix with elements vij =
∫ T

0 B
(m)
i (t)B(m)

j (t) d t. Let Y = (Y1, . . . , Yn)T,

then the first term of (2.4) can be expressed as 1/n (Y −Ub)T (Y −Ub) and the second term of

(2.4) yields κbTV b. Since V is a positive semidefinite matrix, we write V = WW , where W is

symmetric. Define

U∗ =

 U

√
nκW

 and Ỹ =

Y
0

 ,
where 0 is the zero vector of length M + d. If we write gk =

∑min{k,M}
j=1 θ

1−1/γ
j c

1/γ
j for k =

1, . . . ,M + d, then (2.4) can be written in the form

1
n

(
Ỹ −U∗b

)T (
Ỹ −U∗b

)
+
M+d∑
k=1

gk|bk|+ τ
M∑
j=1

θj . (2.5)
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Let G be the (M + d) × (M + d) diagonal matrix with the ith diagonal element (ngi)−1. With

notation Ũ = U∗G and b̃ = G−1b, (2.5) can be expressed in a form of lasso problem (Tibshirani,

1996),

1
n

{(
Ỹ − Ũ b̃

)T (
Ỹ − Ũ b̃

)
+
M+d∑
k=1
|b̃k|

}
+ τ

M∑
j=1

θj ,

where b̃k denote the kth element of vector b̃. Now, we take the following iterative approach to

compute b̂n.

Step 1. Obtain an initial estimate b(0).

Step 2. At iteration s, s = 1, 2, . . . , compute

θ
(s)
j =cj

(1− γ
τγ

)γ
‖b(s−1)
Aj

‖γ1 , j = 1, . . . ,M,

g
(s)
k =

min{k,M}∑
j=1

(θ(s)
j )1−1/γc

1/γ
j , k = 1, . . . ,M + d,

G(s) = n−1diag
(
1/g(s)

1 , . . . , 1/g(s)
M+d

)
, Ũ (s) = U∗G

(s).

Step 3. At iteration s, compute

b(s) = G(s)arg min
b̃

(
Ỹ − Ũ (s)b̃

)T (
Ỹ − Ũ (s)b̃

)
+
M+d∑
k=1
|b̃k|. (2.6)

Step 4. Repeat Step 2 and Step 3 until convergence is reached.

A choice for the initial estimate is b(0) = (UTU + nκV )−1UTY , which is obtained by the pe-

nalized B-splines method (Cardot et al., 2003). Once b̂n is produced, the estimates for β and δ are

given in (2.2). As the nested group bridge penalty is not convex, the above algorithm converges to

a local minimizer. It is worth emphasizing that (2.6) is a lasso problem, which can be efficiently

solved by the least angle regression algorithm (Efron et al., 2004).

In our fitting procedure, there are a few tuning parameters including the smoothing parameter

κ, the shrinkage parameter λ, and the parameters for constructing the B-spline basis functions such

as the degree d of the B-spline basis and the number of knots M + 1. Following the schemes of
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Marx and Eilers (1999), Cardot et al. (2003) and Lin et al. (2017), we choose M to be relatively

large to capture the local features of β(t). In addition, δ is estimated by the knot tJ0−1, therefore a

small M may lead to a large bias of the estimator δ̂n. The effect of potential overfitting caused by

a large number of knots can be offset by the roughness penalty. Compared to M , the degree d is of

less importance, and therefore we fix it to a reasonable value, i.e., d = 3.

Once the number of B-spline basis functions is fixed, we can proceed to select the shrinkage

parameter λ, as well as the smoothing parameter κ. In Hall and Hooker (2016) where the idea of

penalized least squares is also employed, the shrinkage parameter is selected to minimize the mean-

squared error of a parametric surrogate estimator of β(t). In our case, for a given finite sample, the

estimator in (2.2), which is represented by a finite number of B-spline basis functions, serves as

such a surrogate. Therefore, we can adopt the same strategy to select λ. Instead of the mean-squared

error, we employ the Bayesian information criterion (BIC) to encourage model sparsity, as follows.

Let b̂n = b̂n(κ, λ) be the estimate based on a chosen pair of κ and λ. Let Uκ,λ denote the

submatrix ofU with columns corresponding to the nonzero b̂n(κ, λ), and Vκ,λ denote the submatrix

of V with rows and columns corresponding to the nonzero b̂n(κ, λ). The approximated degree of

freedom for κ and λ is

df(κ, λ) = trace
(
Uκ,λ(UT

κ,λUκ,λ + nκVκ,λ)−1UT
κ,λ

)
.

Then, Bayesian information criterion (BIC) can be approximated by

BIC(κ, λ) = nlog
(
‖Y −Ub̂n(κ, λ)‖22/n

)
+ log(n)df(κ, λ).

The optimal κ and λ are selected to minimize BIC(κ, λ).

2.3 Asymptotic Properties

Let δ0 and β0(t) be the true values of the cutoff time δ and the slope function β(t), respectively.

We assume that realizations X1, . . . , Xn are fully observed, while notice that the analysis can be

extended to sufficiently densely observed data. Without loss of generality, we assume T = 1. If δ0 =

0, set J1 = 0, and if δ0 = 1, let J1 = M . Otherwise, let J1 be an integer such that δ0 ∈ [tJ1−1, tJ1).
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According to Theorem XII(6) of de Boor (2001), there exists some βs(t) =
∑M+d
j=1 bsjBj(t) =

BTbs with bs = (bs1, . . . , bsM+d)T with infj |bsj | ≥ C ′0M
−p0 , such that ‖βs − β0‖∞ ≤ C0M

−p0

for some positive constants C ′0, C0 and p0. More specifically, if β0(t) satisfies condition C.2, then

p0 = k + ν. Define b0j = bsjI(j≤J1), j = 1, . . . ,M + d. Define Γ as the covariance operator of the

random process X , and Γn as the empirical version of Γ, which is defined by

(Γnx)(v) = 1
n

n∑
i=1

∫ 1

0
Xi(v)Xi(u)x(u) du.

For two functions g and f defined on [0, 1], we define the inner product in the Hilbert space L2 as

〈g, f〉 =
∫ 1

0 g(t)f(t) d t. LetH be the (M+d)×(M+d) matrix with elements hi,j = 〈ΓnBi, Bj〉.

In order to establish our asymptotic properties, we assume that the following conditions are satisfied.

C.1 E‖X‖22 <∞.

C.2 The kth derivative β(k)(t) exists and satisfies the Hölder condition with exponent ν, that is

|β(k)(t′) − β(k)(t)| ≤ c|t′ − t|ν , for some constant c > 0, ν ∈ (0, 1]. Define p = k + ν.

Assume 3/2 < p ≤ d.

C.3 M = o(n1/2), M = ω(n
1

2p ) and κ = o(n−1/2M1/2−2m).

C.4 There are constants Cmax > Cmin > 0 such that

CminM
−1 ≤ ρmin(H) ≤ ρmax(H) ≤ CmaxM−1

with probability tending to one as n goes to infinity, where ρmin and ρmax denote the smallest

and largest eigenvalues of a matrix, respectively.

C.5 λ = O(n−1/2M−1/2η−1), where η =
( J1∑
j=1

c2
j‖b0Aj‖

2γ−2
1 |Aj |

)1/2 with cj ∝ |Aj |1−γ .

C.6
λ

M1−γnγ/2−1 →∞.

The condition C.1 assures the existence of the covariance function of X . The second condition

concerns the smoothness of the slope function β, which has been used by Cardot et al. (2003)

and Lin et al. (2017). In condition C.3 we set the growth rate for the smoothing tuning parameter
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κ. Our analysis applies to m = 0, which is equivalent to Tikhonov regularization in Hall and

Horowitz (2007) and simplifies our analysis. A similar result can be derived for m > 0. The last

two conditions together pose certain constraints on the decay rate of λ. Similar conditions appear

in Wang and Kai (2015). Here, η is a sequence of constants varying with M and determined by

β0 and γ. It can be shown that, when β0(t) 6= 0 for some t, C1M
1/2 ≤ η ≤ C2M

(2−γ)+(1−γ)p

for constants C1, C2 > 0, and otherwise η ≡ 0. These conditions can be realized, for example, by

λ � n−1/2Mγ−(1−γ)p−5/2 and M � n(1−γ)/(8−4γ+2p−2pγ).

Below we state the main results, and relegate their proofs to the appendix. Our first result pro-

vides the convergence rate of the estimator β̂n defined in (2.2).

Theorem 1 (Convergence Rate). Suppose that conditions C.1–C.6 hold. Then, ‖β̂n − β0‖2 =

Op(Mn−1/2 +M−p).

The convergence rate consists of two competing components, the variance term Mn−1/2 and

the bias term M−p. With an increase of M , the approximation to β(t) by B-spline basis functions

is improved, however, at the cost of increased variance.

In addition, we observe that the smoothing parameter κ has negligible impact on the rate of

the proposed estimator when its asymptotic rate is bounded by the threshold stated in the condition

C.3. This is aligned with the classic results for penalized spline estimator (e.g., Claeskens et al.,

2009, Theorem 1). Moreover, as the nested group bridge penalty has the effect of shrinkage, it

also penalizes the roughness of the estimator. This partially explains why the κ shall be chosen

smaller than the one in Claeskens et al. (2009). On the other hand, in practice, as the sample size is

often limited, κ plays an important role in regulating the roughness/variability of the estimator, in

particular when a large number of B-spline basis functions are required to reduce estimation bias.

The next result shows that the null tail of β(t), as well as the cutoff time δ, can be consistently

estimated.

Theorem 2 (Consistency). Suppose that conditions C.1–C.6 hold.

(i) For any ζ ∈ (0, 1− δ0), β̂n(t) = 0 for all t ∈ [δ0 + ζ, 1] with probability tending to 1.

(ii) δ̂n converges to δ0 in probability.
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Figure 2.2: The slope functions in three scenarios. The dashed vertical
lines indicate the true values of δ.

2.4 Simulation Studies

We conduct simulation studies to evaluate the numerical performance of the proposed nested

group bridge method, and compare the results with the penalized B-splines approach (Cardot et al.,

2003), the two truncation methods (Hall and Hooker, 2016), and two locally sparse modeling meth-

ods, the FLiRTI method (James et al., 2009) and the SLoS method (Lin et al., 2017). The truncation

methods first expand the slope function with a sequence of principal component functions and then

penalize δ by adding a penalty on δ2 to the least squares. Two estimation procedures were suggested

by Hall and Hooker (2016). The first one (called Method A) estimates δ and β(t) simultaneously,

while the second one (called Method B) estimates them in an iterative fashion. The FLiRTI method

proposed by James et al. (2009) achieves local sparseness by applying variable selection to vari-

ous derivatives at some discrete grid points. The SLoS method is based on fSCAD, a functional

regularization technique.

In our studies, for the purpose of fair comparison, we consider the same scenarios for β(t) in

Hall and Hooker (2016), namely,

Scenario I. β(t) = I(0≤t<0.5),

Scenario II. β(t) = sin(2πt)I(0≤t<0.5),

Scenario III. β(t) = (cos(2πt) + 1) I(0≤t<0.5),

where I(·) denotes the indicator function. For all cases the slope function β(t) > 0 on (0, 0.5) and

β(t) = 0 on [0.5, 1]. As illustrated in Figure 2.2, the slope function is discontinuous for Scenario I,

and the first and second derivatives of the slope functions are discontinuous for Scenario II and III,
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respectively. The predictor functions Xi(t) are generated by Xi(t) =
∑
aijBj(t), where Bj(t) are

cubic B-spline basis functions defined on 64 (the number 64 is randomly selected between 50 and

100) equally spaced knots over [0, 1], and the coefficients aij are generated independently from the

standard normal distribution. The errors ε are normally distributed and sampled so that the signal-

to-noise ratio equals to 2. We consider sample sizes n = 100 and n = 500. For each of the three

scenarios and for each sample size, we replicate the simulation independently for 200 times. We

also consider smooth functional covariates, which are generated in the same set up, except that

the signal-to-noise ratio is 5 and Xi(t) are generated as a linear combinations of 25 Fourier basis

functions 1, sin(2πt), cos(2πt), . . . , sin(212πt), cos(212πt) defined on [0, 1], with the coefficients

corresponding to the jth Fourier basis function generated independently from the normal distribu-

tion with mean 0 and variance 1/j1.2, j = 1, . . . , 25. The results regarding the smooth functional

covariates are provided in the appendix.

For the proposed nested group bridge method, the penalized B-splines approach and the SLoS

method, we expand the slope function with cubic B-splines with 101 equally spaced knots. For the

FLiRTI method, we use cubic B-splines with the number of knots selected according to the model

selection method introduced in James et al. (2009). For the proposed nested group bridge method,

we follow Huang et al. (2009) and set the group bridge parameter γ = 0.5 in all numerical studies.

We discuss the effect of γ in the appendix. The tuning parameters of the proposed nested group

bridge method are chosen by the procedure reported in Section 2.2.2. The smoothing parameter of

the penalized B-splines approach is chosen by BIC. For the two truncation methods, the number of

empirical principal components is chosen from 2− 15 by BIC. The FLiRTI method is implemented

by the Dantzig selector (Candes and Tao, 2007). The two truncation methods and the FLiRTI and

SLoS estimators are implemented and tuned according to Hall and Hooker (2016), James et al.

(2009) and Lin et al. (2017), respectively.

Table 2.1 summarizes the Monte Carlo mean and standard deviation of δ̂. The results suggest

that the proposed nested group bridge estimator is more accurate than the other methods in Sce-

nario III when the second derivative of the slope function is discontinuous. In Scenario II when

the first derivative of the slope function is discontinuous, the proposed nested group bridge method

is comparable to the truncation methods. In Scenario I when the slope function is discontinuous,
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truncation method A is the most accurate. The FLiRTI and SLoS method do not focus on the tail

region and therefore exhibit larger variability. The results for the smooth functional covariates re-

ported in the appendix are similar. The histograms shown in Figure 2.3 provide more details of the

performance of our method. They indicate that when β(t) is not smooth, the proposed nested group

bridge estimator is conservative, in the sense that the estimate δ̂ > δ0.

To examine the quality of the estimation for β(t), we report the mean integrated squared errors

of the estimated β̂(t) in Table 2.2. It is observed that in general, the proposed nested group bridge

estimator outperforms the other methods. The truncation methods do not regularize the roughness of

the estimated slope function, which leads to a less favorable performance when the predictor func-

tion is relatively rough. The penalized B-splines method, the FLiRTI method and the SLoS method

are comparable to the proposed nested group bridge method in terms of the estimation accuracy of

β(t), but the penalized B-splines method is unable to provide an estimate for δ. The results for the

smooth functional covariates are reported in the appendix, which shows that the FLiRTI method

does not perform as well as the other methods. To display the results more intuitively, we provide

in the appendix the figures that compare the estimated coefficient functions for various methods.

Table 2.1: The mean of estimators for δ based on 200 simulation replications with the corre-
sponding Monte Carlo standard deviation included in parentheses.

NGR TR (Method A) TR (Method B) FLiRTI SLoS True Value
Scenario I
n = 100 0.66 (0.06) 0.48 (0.04) 0.35 (0.07) 0.81 (0.18) 0.69 (0.18) 0.50
n = 500 0.65 (0.05) 0.50 (0.02) 0.48 (0.05) 0.83 (0.17) 0.60 (0.09) 0.50

Scenario II
n = 100 0.60 (0.07) 0.41 (0.04) 0.38 (0.06) 0.77 (0.21) 0.61 (0.18) 0.50
n = 500 0.59 (0.03) 0.45 (0.02) 0.45 (0.03) 0.71 (0.19) 0.55 (0.08) 0.50

Scenario III
n = 100 0.50 (0.09) 0.31 (0.04) 0.30 (0.03) 0.73 (0.25) 0.55 (0.21) 0.50
n = 500 0.51 (0.04) 0.34 (0.03) 0.33 (0.04) 0.72 (0.23) 0.49 (0.08) 0.50

NGR, the proposed nested group bridge method; TR (Method A), the truncation method that estimates δ and β(t)
simultaneously proposed by Hall and Hooker (2016); TR (Method B), the truncation method that estimates δ and β(t)
iteratively (Hall and Hooker, 2016); FLiRTI, the FLiRTI method proposed by James et al. (2009); SLoS, the SLoS
method proposed by Lin et al. (2017).
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Figure 2.3: Histograms of the estimated δ̂ in 200 simulation replications in the three scenarios.
The results were obtained based on 200 Monte Carlo simulations with n = 500. The vertical lines
indicate the true values of δ.

Table 2.2: Mean integrated squared errors of estimators for β(t) based on 200 simulation replications
with the corresponding Monte Carlo standard deviation included in parentheses.

NGR PS TR (Method A) TR (Method B) FLiRTI SLoS
Scenario I (×10−2)
n = 100 2.54 (0.93) 4.57 (1.70) 14.08 (5.13) 28.48 (8.54) 4.97 (2.22) 3.04 (1.21)

n = 500 1.42 (0.38) 1.89 (0.50) 3.34 (1.11) 9.65 (5.17) 1.88 (0.53) 1.38 (0.35)

Scenario II (×10−2)
n = 100 0.64 (0.44) 1.44 (0.70) 5.69 (2.12) 10.33 (4.43) 1.40 (0.93) 0.95 (0.69)

n = 500 0.21 (0.11) 0.24 (0.15) 1.17 (0.41) 3.08 (1.33) 0.30 (0.16) 0.14 (0.10)

Scenario III (×10−2)
n = 100 1.36 (1.05) 2.46 (1.50) 14.55 (6.99) 29.68 (13.91) 4.48 (3.16) 1.97 (1.67)

n = 500 0.34 (0.25) 0.64 (0.44) 4.25 (1.44) 11.68 (5.07) 0.87 (0.52) 0.46 (0.33)

NGR, the proposed nested group bridge method; PS, the penalized B-splines method; TR (Method A), the truncation method
that estimates δ and β(t) simultaneously proposed by Hall and Hooker (2016); TR (Method B), the truncation method that
estimates δ and β(t) iteratively (Hall and Hooker, 2016); FLiRTI, the FLiRTI method proposed by James et al. (2009); SLoS,
the SLoS method proposed by Lin et al. (2017).
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2.5 Application: Particulate Matter Emissions Data

In this subsection, we demonstrate the proposed nested group bridge approach to analyze the

particulate matter emissions data which are taken from the Coordinating Research Councils E55/E59

research project (Clark et al., 2007). In this project, trucks were placed on the chassis dynamometer

bed to mimic inertia and particulate matter was measured by an emission analyzer on standard test

cycles. The engine acceleration of diesel trucks was also recorded. We are interested in determining

the effects of the past engine acceleration on the current particulate matter emission, and in partic-

ular, identifying the cutoff time in the past that has a predicting power on the current particulate

matter emission. The problem was originally addressed by Asencio et al. (2014) in their case study.

As noted in Hall and Hooker (2016), we obtain observation every 10 second after the first 120 sec-

onds to remove dependences in the data. Let Yi be the logarithm of the particulate matter emission

measured at the i-th 10 second after the first 120 seconds, and Xi(t), t ∈ [0, 60], be the correspond-

ing engine acceleration at the past time t. Both Yi and Xi(t) are centered such that EYi ≡ 0 and

EXi(t) ≡ 0. We estimate the functional linear model (2.1), where µ = 0, the engine acceleration in

the past 60 seconds Xi(t) is the predictor curve, and T = 60. In total, we have 108 such samples.

Figure 2.4(a) displays 10 randomly selected smoothed engine acceleration curves recorded on every

second for 60 seconds.

Figure 2.4(b) provides estimates for β(t) obtained by the proposed nested group bridge approach

with the group bridge parameter γ = 0.5 and the penalized B-splines method, respectively, both of

which use cubic B-spline basis functions with 121 knots. We choose the number of knots to be equal

to the number of time points of the observed acceleration, which is 121. With a sample size 108 and

number of knots 121, the roughness penalty plays an important role of reducing the variability of

the estimates. The proposed nested group bridge estimate β̂(t) is zero over [20, 60] and the estimate

for δ is 20s. It suggests that the engine acceleration influences particulate matter emission for no

longer than 20 seconds. A similar trend can be observed for the penalized B-splines method which,

however, does not give a clear cutoff time of the influence of acceleration on particulate matter

emission. Hall and Hooker (2016) suggested that the point estimate for δ is 13s using Method A and

15s using Method B, both of which are more aggressive than our estimator.
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Figure 2.4: (a) 10 randomly selected smoothed acceleration curves. (b) Estimated β̂(t) using the
penalized B-splines method (dashed line) and the proposed nested group bridge approach (solid
line).

2.6 Conclusion and Discussion

In this chapter, we consider to study the relation between a scalar response and a functional

predictor in a truncated functional linear model. We propose a nested group bridge approach to

achieve the historical sparseness, which reduces the variability and enhances the interpretability.

Compared with the truncation methods by Hall and Hooker (2016), the proposed nested group

bridge approach is able to provide a smooth and continuous estimate for the coefficient function

and performs much better when the coefficient function tends to zero more smoothly. The proposed

nested group bridge estimator of the cutoff time enjoys the estimation consistency. We demonstrate

in simulation studies and a real data application that the proposed nested group bridge approach

performs well for predictor functions that are not very smooth. We also show that even when the

signal to noise ratio is low, the proposed nested group bridge approach can still accommodate the

situation very well.

The question then arises as to in practice whether to use the proposed nested group bridge

method or the truncation methods. We believe it depends on how smoothly the coefficient function

tends to zero and how smooth the functional covariates are. Based on our simulation studies, we

know that when the coefficient function is discontinuous at the cutoff time, the truncation methods

perform better than the proposed nested group bridge method in terms of estimating the cutoff time.
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However, for relatively rough functional covariates, the truncation methods estimate the coefficient

function less accurately than the proposed method. When the coefficient function goes to zero more

smoothly, the proposed nested group bridge method outperforms the truncation methods in both

estimating the cutoff time and the coefficient function. In practice, we can first obtain an estimate

of β(t) using penalized B-splines method. If the estimated β̂(t) does not have a steep slope at the

tail region, the proposed nested group bridge method is recommended. When the estimated β̂(t)

goes steeply to the tail region, for more accurate estimate of the cutoff time, the truncation methods

should be applied. However, if the functional covariates are relatively rough, the proposed nested

group bridge method provides more accurate estimate for the coefficient function.

2.7 Appendix

2.7.1 Penalized B-Splines Method

Let SdM be the linear space spanned by the B-spline basis functions {Bk(t) : k = 1, . . . ,M+d}

with degree d and M + 1 equally spaced knots defined on [0, T ]. The penalized B-splines estimator

of β(t) proposed by Cardot et al. (2003) is the one in SdM which is defined as

β̂PS(t) =
M+d∑
k=1

b̂kBk(t) = b̂TB(t)

where b̂ minimizes the penalized least squares

1
n

n∑
i=1

(
Yi −

M+d∑
k=1

bk

∫ T

0
Xi(t)Bk(t) d t

)2

+ κ
∥∥∥bTB(m)

∥∥∥2

2
,

with smoothing parameter κ > 0. The tuning parameter κ can be chosen by cross validation, AIC

or BIC.

2.7.2 Effect of the Group Bridge Parameter γ in Section 2.4

We conduct a simulation study to numerically investigate the effect of the group bridge param-

eter γ. The setting is the same as Scenario III with the functional covariates generated by a linear

combination of B-spline basis functions, the signal-to-noise ratio 2 and the sample size n = 100.
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We can observe that the results are similar when 0 < γ < 1, and they are better than the results

based on γ = 1.

Table 2.3: Investigation of effect of the group bridge parameter γ on δ̂ and mean integrated squared
errors (ISE) of estimators for β(t). The results are obtained based on 200 simulation replications
with the corresponding Monte Carlo standard deviations included in parentheses.

γ δ̂ True δ ISE (×10−2)

0.2 0.48 (0.11) 0.50 1.50 (1.32)

0.5 0.50 (0.09) 0.50 1.36 (1.05)

0.8 0.51 (0.06) 0.50 1.38 (1.03)

1 0.66 (0.15) 0.50 1.54 (1.21)

2.7.3 Additional Simulation Results in Section 2.4

In Table 2.4 and 2.5, we display the simulation results for the smooth functional covariates

discussed in Section 2.4. We compare the estimated coefficient curves for various methods with

rough functional covariates in Figure 2.5 and smooth functional covariates in Figure 2.6.
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Table 2.4: The mean of estimators for δ based on 200 simulation replications with the corre-
sponding Monte Carlo standard deviation included in parentheses.

NGR TR (Method A) TR (Method B) FLiRTI SLoS True Value

Scenario I

n = 100 0.64 (0.07) 0.46 (0.06) 0.50 (0.09) 0.59 (0.13) 0.59 (0.16) 0.50

n = 500 0.63 (0.04) 0.49 (0.03) 0.52 (0.05) 0.69 (0.19) 0.61 (0.08) 0.50

Scenario II

n = 100 0.56 (0.06) 0.41 (0.05) 0.42 (0.06) 0.56 (0.16) 0.53 (0.16) 0.50

n = 500 0.55 (0.03) 0.43 (0.02) 0.45 (0.04) 0.56 (0.14) 0.55 (0.06) 0.50

Scenario III

n = 100 0.49 (0.07) 0.31 (0.03) 0.35 (0.09) 0.55 (0.20) 0.48 (0.11) 0.50

n = 500 0.49 (0.03) 0.30 (0.01) 0.39 (0.07) 0.58 (0.18) 0.50 (0.08) 0.50

NGR, our proposed nested group bridge method; TR (Method A), the truncation method that estimates δ and β(t)

simultaneously proposed by Hall and Hooker (2016); TR (Method B), the truncation method that estimates δ and β(t)

iteratively (Hall and Hooker, 2016); FLiRTI, the FLiRTI method proposed by James et al. (2009); SLoS, the SLoS

method proposed by Lin et al. (2017).
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Table 2.5: Mean integrated squared errors of estimators for β(t) based on 200 simulation repli-
cations with the corresponding Monte Carlo standard deviation included in parentheses.

NGR PS TR (Method A) TR (Method B) FLiRTI SLoS

Scenario I

n = 100 0.06 (0.06) 0.08 (0.03) 0.08 (0.15) 0.07 (0.05) 0.50 (0.30) 0.20 (0.27)

n = 500 0.03 (0.01) 0.04 (0.01) 0.02 (0.02) 0.04 (0.01) 0.20 (0.19) 0.03 (0.02)

Scenario II

n = 100 0.02 (0.04) 0.05 (0.02) 0.04 (0.03) 0.03 (0.02) 0.13 (0.11) 0.07 (0.10)

n = 500 0.01 (0.00) 0.02 (0.02) 0.03 (0.00) 0.01 (0.01) 0.02 (0.04) 0.00 (0.00)

Scenario III

n = 100 0.03 (0.05) 0.04 (0.02) 0.10 (0.02) 0.08 (0.05) 0.50 (0.50) 0.03 (0.05)

n = 500 0.01 (0.01) 0.01 (0.01) 0.09 (0.01) 0.04 (0.01) 0.15 (0.18) 0.01 (0.01)

NGR, our proposed nested group bridge method; PS, the penalized B-splines method; TR (Method A), the trun-

cation method that estimates δ and β(t) simultaneously proposed by Hall and Hooker (2016); TR (Method B),

the truncation method that estimates δ and β(t) iteratively (Hall and Hooker, 2016); FLiRTI, the FLiRTI method

proposed by James et al. (2009); SLoS, the SLoS method proposed by Lin et al. (2017).
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Figure 2.5: Estimated coefficient functions with rough functional covariates and n = 500 in one ran-
domly selected simulation replicate for various methods ( , the proposed nested group bridge
method; , the penalized B-splines method; , the truncation method A; , the trun-
cation method B; , the FLiRTI method; , the SLoS method; , the true β(t)).
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Figure 2.6: Estimated coefficient functions with smooth functional covariates and n = 500 in one
randomly selected simulation replicate for various methods ( , the proposed nested group
bridge method; , the penalized B-splines method; , the truncation method A; ,
the truncation method B; , the FLiRTI method; , the SLoS method; , the true
β(t)).

2.7.4 Proofs in in Section 2.3

Without of loss of generality, we assume that T = 1. We will first collect some remarks on

notations that are used in the sequel. Boldface symbol is used to denote matrix or vector. If 0 < q <

∞, Lq is defined as the space of functions f(t) over the interval [0, 1] such that
∫ 1

0 |f(t)|q d t <∞.

Two functions g(t) and f(t) are identified as the same if g(t) = f(t) almost everywhere over

[0, 1] with respect to the usual Lebesgue measure. With this convention, Lq is treated as a Banach

space with the norm ‖f‖q = (
∫ 1

0 |f(t)|q d t)1/q. When q = 2, we get the Hilbert space L2 with the

inner product 〈g, f〉 =
∫ 1

0 g(t)f(t) d t and the L2 norm ‖ · ‖2. Since Rm for a positive integer m

is also a Hilbert space, we use the same notation 〈u,v〉 = u
′
v and ‖u‖2 = (u′u)1/2 to denote

the inner product and the norm of vector u and v. Here, u
′

is used to denote the transpose of u.

To reduce notational burden and make our presentation concise, we use 〈f,B〉 to denote the vector

(〈f,B1〉, 〈f,B2〉, . . . , 〈f,BM 〉). The supremum norm of a function f(t) is conventionally denoted

by ‖f‖∞ and defined as ‖f‖∞ = sup{|f(t)| : t ∈ [0, 1]}. Similarly, the supremum norm of a

vector u = (u1, u2, . . . , um) ∈ Rm is also denoted by ‖u‖∞ and defined as ‖u‖∞ = max{|ui| :

i = 1, 2, . . . ,m}. The operator norm of a linear operator Λ on a Hilbert space H, is traditionally

denoted by ‖Λ‖ and defined as ‖Λ‖ = sup{‖Λf‖2 : f ∈ H, ‖f‖2 = 1}. Here, H could be L2 or

Rm.
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As our estimator is based on B-spline basis, before we dive into proofs of the theorems, we

briefly discuss some basic properties of B-spline basis that are used in our proofs. A detailed

treatment of B-spline can be found in de Boor (2001). The B-spline basis has a local support

property, which means each B-spline basis function is nonzero over no more than d + 1 adja-

cent subintervals. Also, each B-spline basis function is non-negative and they form a partition of

unity, that is,
∑M+d
j=1 Bj(t) = 1 for all t ∈ [0, 1]. Assume β0(t) satisfies condition C.2, accord-

ing to Theorem XII(6) of de Boor (2001), there exists some βs(t) =
M+d∑
j=1

bsjBj(t) = B
′
bs with

bs = (bs1, . . . , bs,M+d)
′
, such that ‖βs − β0‖∞ ≤ C0M

−p for some positive constant C0 and p.

Define b0j = bsjI(j≤J1) and put β0s(t) =
M+d∑
j=1

b0jBj(t) = B
′
b0, where b0 = (b01, . . . , b0,M+d)

′
.

It is easy to see that b0j = 0 if the support of Bj(t) is contained in [δ0, 1]. It is obvious that

‖β0s − β0‖∞ ≤ C1M
−p for some positive constant C1.

The following lemmas are established to prove the theorems in Section 2.3.

Lemma 1. If C.1 and C.3 hold, then for some positive constants Cρ1 and Cρ2 ,

P (Cρ1κn/M < ρmin(U ′U + nκV ) ≤ ρmax(U ′U + nκV ) < Cρ2n/M)→ 1, (2.7)

where ρmin and ρmax denote the smallest and largest eigenvalues of a matrix, respectively.

Proof. This is a consequence of Lemma 6.1 and 6.2 of Cardot et al. (2003).

Lemma 2. supi,j |vij | = O(M2m−1).

Proof. Let Bjd denote the jth normalized B-spline defined on [0, 1] with degree d and M + 1

equispaced knots 0 = t0 < t1 < ... < tM = 1, j = 1, ...,M + d. The knots divide [0, 1] into

M subintervals with equal length ∆ = 1/M . Now consider Bd+1,d, Bd+2,d, ... , and BM,d that are

positive on d+ 1 such subintervals. Let B
′
jd and B

′′
jd denote the first and second derivatives of Bjd

respectively. Then it follows from X(8) of de Boor (2001) that

B
′
jd(t) = 1

∆(Bj−1,d−1(t)−Bj,d−1(t))

= M(Bj−1,d−1(t)−Bj,d−1(t)), j = d+ 1, ...,M, (2.8)
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Since 0 ≤ Bj(t) ≤ 1, |B′jd| ≤M . By taking derivative of (2.8), we have

B
′′
jd(t) = 1

∆(B′j−1,d−1(t)−B′j,d−1(t))

= 1
∆2 (Bj−2,d−2(t)− 2Bj−1,d−2(t) +Bj,d−2(t))

= M2(Bj−2,d−2(t)− 2Bj−1,d−2(t) +Bj,d−2(t)).

and hence |B′′jd| ≤ 2M2. Then we can deduce that |B(m)
jd | ≤ CmM

m, where Cm is some con-

stant depending on m. Since |B(m)
jd | ≥ 0 on at most d + 1 subintervals,

∥∥∥B(m)
jd

∥∥∥
2
≤ 2Cm(d +

1)1/2∆1/2Mm. This further implies that

sup
i,j
|vij | = sup

i,j
|〈B(m)

id , B
(m)
jd 〉| ≤ sup

i,j

∥∥∥B(m)
id

∥∥∥
2

∥∥∥B(m)
jd

∥∥∥
2
≤ 4C2

m(d+ 1)M2m−1, (2.9)

which yields the conclusion of the lemma.

Let `(b) = n−1(Y −Ub)′(Y −Ub) + κb
′
V b. We can write `(b) as

`(b) = 1
n

n∑
i=1

(
〈β,Xi〉 − 〈B

′
b, Xi〉+ εi

)2
+ κb

′
V b

= 1
n

n∑
i=1

(
〈β −B′b, Xi〉2 + 2εi〈β −B

′
b, Xi〉+ ε2

i

)
+ κb

′
V b

= 〈Γn(β −B′b), β −B′b〉+ 2
n

n∑
i=1

εi〈β −B
′
b, Xi〉+ 1

n

n∑
i=1

ε2
i + κb

′
V b,

where Γn is the empirical version of the covariance operator Γ of X , and is defined by

(Γnx)(v) = 1
n

n∑
i=1

∫ 1

0
Xi(v)Xi(u)x(u) du.

Let H be the (M + d) × (M + d) matrix with element hi,j = 〈ΓnBi, Bj〉. Then the gradient of `

with respect to b is
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∇`(b) = 2Hb− 2〈Γnβ,B〉 −
2
n

n∑
i=1

εi〈Xi,B〉+ 2κV b

and the Hessian is

∇2`(b) = 2H + 2κV .

At the point b = b0, the gradient of ` can be written as

∇`(b0) = 2Hb0 − 2〈Γnβ,B〉 −
2
n

n∑
i=1

εi〈Xi,B〉+ 2κV b0

= 2〈ΓnB, β0s〉 − 2〈Γnβ,B〉 −
2
n

n∑
i=1

εi〈Xi,B〉+ 2κV b0

= 2〈Γnβ0s,B〉 − 2〈Γnβ,B〉 −
2
n

n∑
i=1

εi〈Xi,B〉+ 2κV b0

= 2〈Γn(β0s − β),B〉 − 2〈 1
n

n∑
i=1

εiXi,B〉+ 2κV b0.

In other words, for each j = 1, 2, . . . ,M + d,

∂`(b0)
∂b0j

= 2〈Γn(β0s − β), Bj〉 − 2〈 1
n

n∑
i=1

εiXi, Bj〉+ 2κVjb0, (2.10)

where Vj represents the jth row of V .

Below we first provide bounds of ∂`(b0)
∂b0j

and ∇2`(b) in Lemma 3 and 4, respectively.

Lemma 3. For any ε > 0, there exists a constant C2 such that

P

(
sup
j

∣∣∣∣∣∂`(b0)
∂b0j

∣∣∣∣∣ ≤ C2M
−1/2n−1/2

)
> 1− ε (2.11)

holds for all sufficiently large M and n.

Proof. Below we will develop bounds for each term in (2.10). In the first term, Γn converges to

Γ almost surely according to Proposition 1 in Dauxois et al. (1982). Thus, ‖Γn‖ converges to ‖Γ‖

almost surely, since the operator norm is continuous. Recall that, the function β0s is chosen to

satisfy ‖β0s − β‖∞ ≤ C1M
−p, where C1 is a positive constant. This implies that ‖β0s − β‖2 =
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√∫ 1
0 (β0s(t)− β(t))2 d t ≤

√∫ 1
0 (C1M−p)2 d t = C1M

−p. We know that each B-spline basis func-

tion is nonzero over no more than d + 1 adjacent subintervals. Also, each B-spline basis function

is non-negative and the basis functions form a partition of unity. The two properties together imply

that

‖Bj‖22 =
∫ 1

0
B2
j (t) d t ≤ (d+ 1)M−1. (2.12)

Applying Cauchy-Schwarz inequality and (2.12) yields

sup
j
|〈Γn(β0s − β), Bj〉| ≤ sup

j
‖Γn‖ ‖β0s − β‖2 ‖Bj‖2 ≤ C1(d+ 1)1/2M−p−1/2‖Γn‖.

Since ‖Γn‖ converges to ‖Γ‖ almost surely and hence in probability, we conclude that, for any

given ε > 0, there is a constant ρ1(ε) depending on ε, such that for all sufficiently large n and M ,

P

(
sup
j
|〈Γn(β0s − β), Bj〉| ≤ ρ1(ε)M−p−1/2

)
> 1− ε. (2.13)

For the second term, by Condition C.1 and CLT (Aldous, 1976),
√
n
(

1
n

∑n
i=1 εiXi

)
converges

to a Gaussian random element in L2([0, 1]) in distribution, whose mean is 0. This implies that, for

any given ε > 0, there is a constant ρ2(ε) which only depends on ε, such that for sufficiently large

n,

P

(
√
n

∥∥∥∥∥ 1
n

n∑
i=1

εiXi

∥∥∥∥∥
2
< ρ2(ε)

)
> 1− ε.

Each Xi is a mapping from sample space Ω to the space L2([0, 1]). Specifically, we let Xω
i ∈

L2([0, 1]) be the image of the sample ω ∈ Ω under the mapping Xi. We then denote Ωε ⊂ Ω

the set of ω that makes
∥∥∥ 1
n

∑n
i=1 εiX

ω
i

∥∥∥
2
< ρ2(ε)n−1/2 hold. Thus, P (Ωε) > 1 − ε. Then by

Cauchy-Schwarz inequality, on Ωε, it holds

sup
j

∣∣∣∣∣〈 1n
n∑
i=1

εiX
ω
i , Bj〉

∣∣∣∣∣ ≤ sup
j

∥∥∥∥∥ 1
n

n∑
i=1

εiX
ω
i

∥∥∥∥∥
2
‖Bj‖2 ≤ ρ2(ε)(d+ 1)1/2n−1/2M−1/2. (2.14)

For the third term, according to lemma 2, we first have supij |vij | ≤ 4C2
m(d+1)M2m−1 and the

number of non-zero elements in each row of V is at most 2d+ 1. For b0, we have ‖b0‖∞ ≤ C3 for
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some positive constant C3 that does not depend on M . This conclusion can be derived from the fact

that β0s(t) = B
′(t)b0, continuity of β(t) and the discussion on page 145-149 of de Boor (2001).

Given these bounds, we have supj |Vjb0| ≤ 4C3C
2
m(d+ 1)(2d+ 1)M2m−1. Combining this result

with (2.13) and (2.14), and using Condition C.3, we deduce (2.11).

We write u = ΘP (v) if u/v is bounded away from 0 and ∞ with probability tending to one.

The next result concerns the order of∇2`(b).

Lemma 4. ∇2`(b) is positive-definite and ‖∇2`(b)‖ = ΘP (M−1). Furthermore, supij |
∂2`(b)
∂bi∂bj

| =

OP (M−1).

Proof. By Condition C.4, ρmin(H) = ΘP (M−1) and ρmax(H) = ΘP (M−1). Since ρmax(κV ) =

O(κM−1) and κ = o(1) according to the condition C.3, we then have ‖∇2`(b)‖ = ΘP (M−1).

By Cauchy-Schwarz inequality and (2.12), we have

sup
ij
|hij | = sup

ij
|〈ΓnBi, Bj〉| ≤ ‖Γn‖‖Bi‖2‖Bj‖2 = OP (M−1).

Combining this result with (2.9), and using the Condition C.3, we conclude that supij |
∂2`(b)
∂bi∂bj

| =

OP (M−1).

Lemma 5. Suppose C.1 - C.5 hold. Then ‖b̂n − b0‖2 = Op(Mn−1/2).

Proof. Let b̂n = b0 +δnuwith ‖u‖ = 1. Therefore, it is sufficient to show that δn = Op(Mn−1/2).

Denote D(u) = Q(b0 + δnu) − Q(b0), where Q is the objective function (2.3). Then D(u)

is the sum of D1 ≡ `(b0 + δnu) − `(u) and D2 ≡ λ
∑M
j=1 cj‖b̂nAj‖

γ
1 − λ

∑M
j=1 cj‖b0Aj‖

γ
1 . For

D1, according to Lemma 3 and Lemma 4, also noting that it is a quadratic function of b, by Taylor

expansion, we can show that

D1 = `(b0 + δnu)− `(b0)

= δn∇
′
`(b0)u+ 1

2δ
2
nu
′∇2`(b0)u

≥ δnOP (M−1/2n−1/2) + C4δ
2
nM

−1
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for some constant C4 > 0 with probability tending to one. Since bγ − aγ ≤ 2(b − a)bγ−1 for

0 ≤ a ≤ b, we have

−D2 ≤ 2λ
M∑
j=1

cj‖b0Aj‖
γ−1
1

(
‖b0Aj‖1 − ‖b̂nAj‖1

)

≤ 2λ
M∑
j=1

cj‖b0Aj‖
γ−1
1

(
|Aj |‖b0Aj − b̂nAj‖22

)

≤ 2λη

 M∑
j=1
‖b0Aj − b̂nAj‖22

1/2

≤ 2ληδnM1/2.

Since b̂n minimizesQ(b), we haveD1+D2 ≤ 0. According to condition C.5, λη = O(n−1/2M−1/2).

Then

δnOP (M−1/2n−1/2) + C4δ
2
nM

−1 −O(δnn−1/2) ≤ 0

with probability tending to one, which implies that δn = Op(Mn−1/2). Thus the conclusion of the

lemma follows.

Lemma 6. Suppose conditions C.1 - C.6 hold. Then P
(
b̂nAj = 0 for j > J1

)
→ 1.

Proof. Define b̃n = (b̃n1, ..., b̃n,M+d)
′

by b̃nk = b̂nkI(k≤J1), k = 1, ...,M + d. We have θ̂1−1/γ
j =

λγc
1−1/γ
j ‖b̂nAj‖

γ−1
1 . The Karush-Kuhn-Tucker condition for (2.6) implies

2(Y −Ub̂n)′Uk − 2nκb̂′nVk =
min{k,M}∑

j=1
nθ̂

1−1/γ
j c

1/γ
j sgn(b̂nk), b̂nk 6= 0,

where Uk is the kth column ofU and Vk is the kth column of V . Observe that ‖b̂nAj‖1−‖b̃nAj‖1 =
M+d∑

k=max{j,J1+1}
|b̂nk| and (b̂nk − b̃nk)sgn(b̂nk) = |b̂nk|I(k≥J1+1). Thus

2(Y −Ub̂n)′U(b̂n − b̃n) = 2nκ
M+d∑
k=1

(b̂nk − b̃nk)b̂
′
nVk + nλγ

M∑
j=1

M+d∑
k=max{j,J1+1}

cj‖b̂nAj‖
γ−1
1 |b̂nk|

= 2nκ
M+d∑
k=1

(b̂nk − b̃nk)b̂
′
nVk + nλγ

M∑
j=1

cj‖b̂nAj‖
γ−1
1 (‖b̂nAj‖1 − ‖b̃nAj‖1).
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Since γbγ−1(b− a) ≤ bγ − aγ for 0 ≤ a ≤ b, for j ≤ J1 , we have

γ‖b̂nAj‖
γ−1
1 (‖b̂nAj‖1 − ‖b̃nAj‖1) ≤ ‖b̂nAj‖

γ
1 − ‖b̃nAj‖

γ
1 ,

Observe that ‖b̃nAj‖1 = 0 for j > J1. Thus

2(Y −Ub̂n)′U(b̂n − b̃n) (2.15)

≤ 2nκ
M+d∑
k=1

(b̂nk − b̃nk)b̂
′
nVk + nλ

J1∑
j=1

cj(‖b̂nAj‖
γ
1 − ‖b̃nAj‖

γ
1) + nλγ

M∑
j=J1+1

cj‖b̂nAj‖
γ
1 .

By the optimality of b̂n, we have

‖Y −Ub̂n‖22 + nκb̂
′
nV b̂n + nλ

M∑
j=1

cj‖b̂nAj‖
γ
1

≤‖Y −Ub̃n‖22 + nκb̃
′
nV b̃n + nλ

M∑
j=1

cj‖b̃nAj‖
γ
1 . (2.16)

It follows from (2.15) and (2.16) that

2(Y −Ub̂n)′U(b̂n − b̃n) + (1− γ)nλ
M∑

j=J1+1
cj‖b̂nAj‖

γ
1

≤nλ
M∑
j=1

cj‖b̂nAj‖
γ
1 − nλ

M∑
j=1

cj‖b̃nAj‖
γ
1 + 2nκ

M+d∑
k=J1+1

b̂
′
nVk b̂nk

≤‖Y −Ub̃n‖22 − ‖Y −Ub̂n‖22 + nκb̃
′
nV b̃n − nκb̂

′
nV b̂n + 2nκ

M+d∑
k=1

(b̂nk − b̃nk)b̂
′
nVk

=‖U(b̂n − b̃n)‖22 + 2(Y −Ub̂n)′U(b̂n − b̃n) + nκ(b̂n − b̃n)′V (b̂n − b̃n).

Consequently,

(1− γ)nλ
M∑

j=J1+1
cj‖b̂nAj‖

γ
1 ≤ (b̂n − b̃n)′(U ′U + nκV )(b̂n − b̃n).
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By (2.7) and condition C.3,

(1− γ)nλ
M∑

j=J1+1
cj‖b̂nAj‖

γ
1 ≤ Op(nM−1)‖b̂n − b̃n‖22. (2.17)

Given |Aj | = M+d−j+1 and b(0), which can be obtained by the penalized B-splines method

(Cardot et al., 2003), the constants cj = |Aj |1−γ/‖b(0)
Aj
‖γ2 can be scaled so that minj≤J cj ≥ 1 and

M∑
j=J1+1

cj‖b̂nAj‖
γ
1 ≥

 M∑
j=J1+1

‖b̂nAj‖1

γ ≥ ‖b̂n − b̃n‖γ1 ≥ ‖b̂n − b̃n‖γ2 . (2.18)

If ‖b̂nAJ1+1‖2 > 0 which is equivalent to ‖b̂n − b̃n‖2 > 0, combination of (2.17) and (2.18) yields

(1− γ)nλ ≤ Op(nM−1)‖b̂n − b̃n‖2−γ2 .

Together with Lemma 5 and the fact that ‖b̂n − b̃n‖2 ≤ ‖b̂n − b0‖2, this implies that (1− γ)nλ ≤

Op(M1−γnγ/2). Now, by condition C.6,

P (‖b̂nAJ1+1‖2 > 0) ≤ P
(

λ

M1−γnγ/2−1 ≤ Op(1)
)
→ 0.

Then the conclusion of the lemma follows.

Proof of Theorem 1. By Lemma 5, ‖β̂n − β0s‖22 ≤ ‖b̂n − b0‖22
∑M+d
j=1

∫ 1
0 B

2
k(t)dt = Op(M2n−1).

Since ‖β0 − β0s‖∞ = O(M−p), ‖β0s − β0‖2 ≤ O(M−p). Thus ‖β̂n − β0‖2 ≤ ‖β̂n − β0s + β0s −

β0‖2 ≤ ‖β̂n − β0s‖2 + ‖β0s − β0‖2 = Op(Mn−1/2 +M−p).

Proof of Theorem 2. (i) We know that δ0 ∈ [tJ1−1, tJ1). By the compact support property of B-

spline basis functions, for all t ∈ [tJ1 , 1], β̂n(t) =
M+d∑
j=1

b̂njBj(t) =
M+d∑
j=J1+1

b̂njBj(t). If b̂nAJ1+1 =

0, then β̂n(t) = 0 on [tJ1 , 1]. Thus by Lemma 6,P
(
β̂n(t) = 0 on [tJ1 , 1]

)
≥ P

(
‖b̂nAJ1+1‖2 = 0

)
→

1. Therefore, given 0 < ζ1 < 1− δ0, for M sufficiently large, δ0 + ζ1 > tJ1 . Then

P
(
β̂n(t) = 0 on [δ0 + ζ1, 1]

)
≥ P

(
β̂n(t) = 0 on [tJ1 , 1]

)
≥ P

(
‖b̂nAJ1+1‖2 = 0

)
→ 1

.
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(ii) We first argue that P (b̂nAJ1−d
= 0) → 0. To see that, for some fixed ζ2 > 0, β0(t) 6= 0

for some t ∈ (δ0 − ζ2, δ0). Since ‖βs − β0‖∞ = O(M−p), for sufficiently large M , there is

some K such that tK ≥ δ0 − ζ2. We also have |b̂nK | 6= 0 with probability tending to one, which

further implies that P (δ0 − ζ2 ≤ tK ≤ δ̂n)→ 1. On the other hand, from Lemma 6 we deduce that

P (δ̂n ≤ δ0 +ζ2)→ 1. Therefore, together we obtain the claim that δ̂n converges to δ0 in probability,

by noting that ζ2 > 0 is arbitrary.
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Chapter 3

Sparse Functional Partial Least Squares
Regression

3.1 Introduction

In this chapter, we develop a sparse version of the functional partial least squares in the context

of the functional linear regression model. Our proposed method provides locally sparse estimators

for the functional partial least squares basis functions. More importantly, the proposed method is

able to produce a sparse estimate for the slope function in the functional linear regression model.

This work is motivated by oriented strand board (OSB) furnish research conducted by FPIn-

novations. In this study, a novel laboratory spectroscopy technique was developed for determining

species identification of OSB strands and the relative proportions of sound wood, rot and bark in

OSB fines samples. The log section samples were first retrieved from Canadian OSB mills and then

separated into sound wood, rot and bark groups. A laboratory disk strander was used to prepare

strands and a laboratory grinder ground the samples into coarse powder. Vis-NIR (visible and near

infrared) spectroscopy measurement techniques were applied to acquire the spectra traces of the

samples with 2150 individual wavelengths ranging from 350-2500nm.

Figure 3.1(a) displays spectra traces of 182 OSB fines samples. Currently mills do not monitor

the key raw material constituents (sound wood, rot and bark) that play a major role in produc-

tion operating efficiency and final product attributes. Periodically monitoring raw material can help

mills identify problems associated with rot in logs, debarking inefficiency and species variability.

Measurements can also provide data to assist in process adjustments and production planning and

budgeting. Figure 3.1(b) illustrates spectra traces of OSB fines samples with different proportions
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of compositions of sound wood. It can be observed from Figure 3.1(b) that samples with differ-

ent proportions of sound wood have distinct spectra traces and thereby we focus on predicting the

proportions of sound wood in OSB fines samples from their spectra traces.
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Figure 3.1: (a) Spectra traces of 182 OSB fines samples. (b) Selected spectra traces of OSB fines
samples with different proportions of sound wood ( , 100%; , 80%; , 40%;
0%).

Partial least squares (PLS) regression searches for components from the perspective of predic-

tion and takes the response into account, and is often used in spectrometric prediction in chemo-

metrics. Cook and Forzani (2019) pointed out that the best asymptotic behavior of PLS is reached

in abundant regressions, which occurs in chemometrics applications. For instance, in the OSB fur-

nish study, the spectra traces were acquired at 2150 individual wavelengths from 350-2500nm. On

the one hand, we can treat the spectra as 2150 separate variables and apply the PLS method. How-

ever, this approach ignores the continuity, smoothness and order of the 2150 measurements. For this

reason, instead of considering them as separate variables, we treat the spectra traces from 2150 indi-

vidual wavelengths as realizations of a stochastic process. Therefore we aim to develop a functional

partial least squares method. At the same time, we are also interested in detecting the subranges of

the wavelengths that have no effect on the proportions of constituents.

The literature on PLS is abundant; see Wold (1975), Helland (1990) and Garthwaite (1994),

for example. The PLS first gained popularity in chemometrics (e.g., Frank and Friedman, 1993;

Martens and Næs, 1992), and more recently has been applied to other fields, such as bioinformatics

(Boulesteix and Strimmer, 2006) and image detection (Schwartz et al., 2009). The PLS method was
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also extended to process functional data by Preda et al. (2007) and Delaigle and Hall (2012a) for

classification. Escabias et al. (2007) adapted PLS to the functional logit model. In addition, PLS

was employed in functional linear models by Preda and Saporta (2005) to determine the slope func-

tion. Reiss and Ogden (2007) proposed a smooth estimator of the slope function by combining the

smoothing method and the PLS in the functional linear regression model. Delaigle and Hall (2012b)

developed an alternative formulation of PLS in the functional setting that led to detailed theoretical

results. Although these endeavors can produce satisfactory estimates for the slope function, they do

not specifically focus on the locally sparse estimation based on the functional partial least squares

method.

To address the aforementioned problem, we develop a new method, which we call sparse func-

tional partial least squares method (SpaFunPLS), that simultaneously produces locally sparse es-

timates for the functional partial least squares (FunPLS) basis functions and the slope function in

the functional linear regression model. Achieving locally sparse estimates for the FunPLS basis

functions is not difficult. However, the locally sparse estimates for the FunPLS basis functions do

not directly lead to a locally sparse estimate for the slope function, because the estimated sparse

subregions of each basis function may not overlap. Our proposed SpaFunPLS method combines

the ideas of the dimension reduction via PLS, the B-spline expansion, and the fSCAD (Lin et al.,

2017) penalty. Similar to PLS, the SpaFunPLS method is an iterative procedure. In each iteration,

we obtain a locally sparse FunPLS basis by employing the fSCAD penalty and identify the non-zero

subregions, called active regions. On the subspace of the active regions, we update all the FunPLS

basis functions and estimate the slope function. This is motivated by Chun and Keleş (2010), who

proposed a sparse partial least squares method for simultaneous dimension reduction and variable

selection.

The functional linear regression has been studied in vast literature. For example, Hastie and

Mallows (1993) developed the smooth estimation of β(t) via penalized least squares and/or smooth

basis expansion, Cardot et al. (2003) and Li and Hsing (2007) used B-spline basis expansion and

Fourier basis, respectively, both with a roughness penalty to control the smoothness of estimated

slope functions, and Cardot et al. (2003), Cai and Hall (2006) and Hall and Horowitz (2007) con-

sidered to use the eigenfunctions of the covariance function of the predictor process as the bases.
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Yao et al. (2005) extended the scope of the problem to study sparse longitudinal data. James et al.

(2009) pioneered the locally sparse estimation of the slope functions. Lin et al. (2017) and Zhou

et al. (2013) studied the locally sparse slope functions. Hall and Hooker (2016) and Guan et al.

(2020) investigated the truncated functional linear regression models. Comparing to the existing

methods, our proposed method makes multiple contributions. First, we propose a new method to

provide locally sparse estimates for the functional partial least squares bases. Second, we produce

a locally sparse estimate for the slope function via the locally sparse functional partial least squares

bases. Third, we develop an efficient algorithm to implement the proposed method.

We structure the rest of the chapter as follows. In Section 3.2, we introduce the proposed Spa-

FunPLS method and provide its computational details. In Section 3.3, simulation results are pre-

sented to evaluate the performance of the proposed method. Applications of the SpaFunPLS ap-

proach to the OSB furnish data and the particulate matter emissions data are given in Section 3.4.

Section 3.5 concludes the chapter. Additional discussions are provided in the appendix.

3.2 Methodology

3.2.1 The First Sparse Functional Partial Least Squares Basis Function

We consider the first functional partial least squares (FunPLS) basis function here and discuss

estimation of the other basis functions in a separate subsection. Suppose we observe data pairs

(X1, Y1), ..., (Xn, Yn), which are independently and identically distributed as (X,Y ), where X

is a random function defined on an interval [0, T ] and Y is a random scalar generated by Y =

µ+
∫ T

0 X(t)β(t) d t + ε, with µ being the intercept, β(t) the slope function, and ε representing the

noise that is independent of X . The first FunPLS basis function might be found by

max
w

Cov2
(
Y,

∫ T

0
X(t)w(t) d t

)
,

subject to ‖w‖22 = 1. (3.1)

To estimate w(t), we utilize B-spline basis functions that are detailed in de Boor (2001). Let

B(t) = (B1(t), . . . , BM+d(t))T be a vector that containsM+dB-spline basis functions. Each basis

function is defined on [0, T ] with degree d and M + 1 equally spaced knots 0 = t0 < t1 < · · · <
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tM = T , which is a piecewise polynomial of degree d. B-spline basis functions are well known

for their compact support property, i.e., each basis function is positive over at most d + 1 adjacent

subintervals. We approximate w(t) by bTB(t) with b = (b1, . . . , bM+d)T. Let Y = (Y1, . . . , Yn)T

and denote by U the n× (M + d) matrix with elements uij =
∫ T

0 Xi(t)Bj(t) d t. If we denote V0

the (M +d)× (M +d) matrix with the elements v0ij =
∫ T

0 Bi(t)Bj(t) d t, then b can be estimated

by

max
b

bTHb

subject to bTV0b = 1,

whereH = UTY Y TU .

To derive the first sparse FunPLS basis function, we introduce a surrogate r(t) of w(t) and

impose the fSCAD penalty on the surrogate r(t). We approximate the surrogate function r(t) by

cTB(t), where c = (c1, . . . , cM+d)T. Form > 0, letB(m)(t) =
(
B

(m)
1 (t), . . . , B(m)

M+d(t)
)T

denote

the vector of the m-th derivatives of the B-spline basis functions. The first sparse functional partial

least squares basis function is then obtained by

ŵ(t) = ĉT

‖ĉ‖2
B(t), (3.2)

where ĉ = (ĉ1, . . . , ĉM+d)T solves

min
b,c

−κbTHb+ (1− κ)(b− c)TH(b− c) + γ
∥∥∥cTB(m)

∥∥∥2

2
+ M

T

∫ T

0
pλ (|cTB(t)|) d t+ δ ‖cTB‖2

2 ,

subject to bTV0b = 1, (3.3)

with non-negative parameters κ, γ, λ and δ. In this formulation, pλ(·) is a SCAD penalty function

proposed by Fan and Li (2001), which is defined on [0,∞] as

pλ(u) =



λu if 0 ≤ u ≤ λ

−u2−2aλu+λ2

2(a−1) if λ < u < aλ

(a+1)λ2

2 if u ≥ aλ,
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where a is a constant suggested to be 3.7. In (3.2), we use the rescaled ĉ as the B-spline coefficients,

which has a norm 1.

In the objective function, the first term measures the interaction between the response and the

latent component, while the second term enforces the surrogate function to be close to the functional

partial least squares basis function in the same context. The third term is a roughness penalty that

controls the smoothness of the estimated surrogate function. In practice, we choose m = 2, which

corresponds to measuring the roughness of a function by its integrated curvature. The fourth term

is the fSCAD penalty which is designed to regularize the sparseness of the estimated surrogate

function. The last term in the objective function aims to stabilize the estimation procedure. The

objective function is concave due to the first term, therefore we shall use a small κ to alleviate the

concaveness.

Let V denote the (M + d)× (M + d) matrix with the elements vij =
∫ T

0 B
(m)
i (t)B(m)

j (t) d t.

The roughness penalty term yields γcTV c. We follow Lin et al. (2017) to approximate the fSCAD

penalty. Let V0j =
∫ tj
tj−1 B(t)BT(t) d t and define

Gλ
(
r(0)

)
=

M∑
l=1

pλ

∥∥r(0)
[l]
∥∥

2√
T/M

− 1
2

M∑
l=1

p′λ

∥∥r(0)
[l]
∥∥

2√
T/M

 ∥∥r(0)
[l]
∥∥

2√
T/M

,

Q
(0)
λ = 1

2

M∑
l=1

p′λ
(∥∥r(0)

[l]
∥∥

2
√
M/T

)
∥∥r(0)

[l]
∥∥

2
√
T/M

V0l

 ,

where
∥∥r(0)

[l]
∥∥

2 =
(∫ tl

tl−1

∣∣∣r(0)(t)
∣∣∣2 d t

)1/2
. Then

M

T

∫ T

0
pλ (|cTB|) d t ≈ cTQ

(0)
λ c+Gλ

(
r(0)

)
.

A choice for r(0) is the first FunPLS basis function obtained by solving (3.1). We may write the last

term in the objective function as δcTV0c. Therefore the objective function in (3.3) can be expressed

as

−κbTHb+ (1− κ)(b− c)TH(b− c) + γcTV c+ cTQ
(0)
λ c+Gλ

(
r(0)

)
+ δcTV0c. (3.4)
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3.2.2 Computational Method

To solve (3.3), we iterate between solving for b for fixed c and solving for c for fixed b. Esti-

mating b given c becomes the following problem

min
b
− κbTHb+ (1− κ)(b− c)TH(b− c),

subject to bTV0b = 1.

Since V0 is symmetric and positive definite, we can write V0 = W0W0, where W0 is symmetric.

Let b∗ = W0b and c∗ = W0c. Define Z = W−1
0 UTY . For 0 < κ < 1/2, b can be obtained by

W−1
0 min

b∗

(
ZTb∗ − κ′ZTc∗

)T (
ZTb∗ − κ′ZTc∗

)
,

subject to bT
∗b∗ = 1, (3.5)

where κ′ = (1− κ)/(1− 2κ). Now if we fix b in (3.4), c can be estimated by solving

min
c

(1− κ)(b− c)TH(b− c) + γcTV c+ cTQ
(0)
λ c+ δcTV0c.

Based on Theorem 3 of Chun and Keleş (2010), for 0 < κ ≤ 1/2 and a fixed c, the solution of (3.5)

is b̂ = W−1
0 Z/‖Z‖2, which does not depend on c. Therefore the solution to (3.3) is

ĉ = (1− κ)
(
(1− κ)H + γV +Q(0)

λ + δV0
)−1

Hb̂.

Once ĉ is produced, the estimate for the first empirical sparse FunPLS basis function is given in

(3.2).

3.2.3 An Algorithm for the Sparse Functional Partial Least Squares

Incorporating the formulation of the first sparse FunPLS basis into the iterative conventional

FunPLS algorithm (see the appendix) enables us to obtain the subsequent sparse FunPLS basis

functions. However, the sparse FunPLS basis functions derived this way are unlikely to have the

same zero subregions and therefore the estimated slope function might not be sparse. To see this,
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without loss of generality, we assumeX(·) and Y are centered, i.e., EX(t) ≡ 0 and EY ≡ 0, so that

µ is zero. Assume w1(t), . . . , wK(t) are the first K sparse FunPLS basis functions. We express the

slope function in terms of the sparse FunPLS bases, which can be written as β(t) =
∑K
k=1 αkwk(t).

Let S be the n × K matrix with elements sij =
∫ T

0 Xi(t)wj(t) d t. The columns of S represent

the scores. The coefficient vector α = (α1, . . . , αK)T can be estimated using ordinary least squares

by α̂ = (STS)−1STY . It is obvious that if the basis functions w1(t), . . . , wK(t) do not have

overlapping zero subregions, then β̂(t) =
∑K
k=1 α̂kwk(t) is not a locally sparse estimator.

To address the above problem, we propose the following algorithm. At each iteration, we first

produce a sparse FunPLS basis function by solving (3.2) and (3.3), based on which we define an

active region A, and then we update all the FunPLS basis functions on A. The slope function in the

functional linear regression model is expanded by the FunPLS basis functions and is not zero only

on the active region A. Define XA(t) = X(t)I(t∈A), where I(·) denotes the indicator function, and

let XA = {X1A, . . . , XnA}. We first set the initial estimate β̂(0)(t) = 0 for all 0 ≤ t ≤ T and set

A(0) = ∅. Set Y (1) = Y . The algorithm is outlined below. For k = 1, . . . ,K,

1. Find ŵ(t) by solving (3.2) and (3.3) withH =
(
UTY (k)

) (
UTY (k)

)T
.

2. Update A(k) as {t : ŵ(t) 6= 0} ∪ A(k−1).

3. Update the first k FunPLS basis functions with Y andXA(k) using the conventional FunPLS

method detailed in the appendix.

4. Update β̂(k)(t) by using the estimated FunPLS basis functions obtained in the step 3.

5. Update Y (k) =
(
Y

(k)
1 , . . . , Y

(k)
n

)T
with Y (k)

i = Yi −
∫ T

0 Xi(t)β̂(k)(t) d t.

The non-zero active region is updated at each iteration. For k = K, A(K) is a combination of the

non-zero regions for the first K sparse FunPLS basis functions. After completion of steps 1 to 5 for

k = 1, . . . ,K, the estimated sparse FunPLS basis functions are obtained in step 3 when k = K, the

estimated slope function β̂SpaFunPLS(t) = β̂(K)(t), and the estimated non-zero region for the slope

function is A(K).

In our fitting procedure, there are a few tuning parameters including κ, γ, λ, δ, K, and the

parameters for constructing the B-spline basis functions such as the degree d of the B-spline basis
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and the number of knotsM+1. The crucial tuning parameters are the shrinkage parameter λ and the

number of latent components K and the smoothing parameter γ. Cardot et al. (2003) suggested that

the choice of M is not important due to the roughness penalty and suggested a relatively large value

for M to capture the local features of the functions; see also Marx and Eilers (1999) and Lin et al.

(2017). The degree d, which is also of less importance, is fixed to a reasonable value, i.e., d = 3.

As discussed in Section 3.2.1, we choose κ to be small to reduce the effect of the concaveness

of the objective function. We set δ to a sensible value to stabilize the estimation procedure. The

roughness penalty in (3.3) regularizes the smoothness of the surrogate function, the zero subregions

of which determine the active region A. In other words, if the roughness parameter γ is very small,

the resulting active region will be very irregular and scattered; see the appendix for more details.

The above algorithm implies that the sparse estimation of the slope function depends highly on the

shrinkage parameter λ and the numberK of components. Observe thatA(1) ⊆ · · · ⊆ A(K) ⊆ [0, T ],

a large number of components may not lead to a sparse estimation of β(t). To encourage model

sparsity, the parameters γ, λ and K are tuned by minimizing the Bayesian information criterion

(BIC). We follow Krämer and Sugiyama (2011) to calculate the degree of freedom of the model and

BIC. Readers are referred to the appendix for a discussion on the effects of κ, γ and δ.

3.3 Simulation Studies

In this subsection we numerically illustrate the performance of the proposed method via sim-

ulations. We also compare the method with the conventional FunPLS method described in the ap-

pendix, the regularized version of the functional partial least squares (FPLSR) proposed by Reiss

and Ogden (2007), and the functional principal component regression (FPCR) which is also detailed

in the appendix. The FPLSR method adopts B-spline basis expansion and incorporates a roughness

penalty in the regression. The roughness penalty parameter of FPLSR is selected by fitting a linear

mixed model through restricted maximum likelihood (REML) estimation (Reiss and Ogden, 2007).

We consider the following three scenarios for β(t):

Scenario I: β(t) = I(0≤t<0.5). β(t) is a discontinuous function with a flat non-zero part on

[0, 0.5). The zero subregion is [0.5, 1].
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Scenario II: β(t) = sin(2πt)I(0≤t<0.5). β(t) is a continuous function with a trigonometric

non-zero part on (0, 0.5). The zero subregion is [0.5, 1].

Scenario III: β(t) = 3t+ et
2cos(3πt) + 1. β(t) is a continuous function without zero subre-

gions.

The function β(t) in these scenarios are plotted in Figure 3.2 and 3.3. The functional predictors

Xi(t) are generated byXi(t) =
∑
aijBj(t), whereBj(t) are cubic B-spline basis functions defined

on 50 equally spaced knots over [0, 1], and the coefficients aij are sampled from the standard normal

distribution. The errors εi are independently generated from normal distributions so that the signal-

to-noise ratio equals 5. In each study we run the simulation independently for 100 times with sample

sizes n = 100 and n = 500. For each simulation replicate we also generate a separate test dataset

with a sample size of 5000.

For the SpaFunPLS method and the FPLSR method, we expand the slope function with cubic B-

splines with 101 equally spaced knots. The FunPLS method adopts cubic B-splines with the number

of knots and the number of components selected by Cross-Validation (CV) and BIC. The number of

knots selected by the FunPLS method will be used in step 4 of the proposed SpaFunPLS algorithm

introduced in Section 3.2.3 to reduce the computational complexity. We select the tuning parameters

of the FPCR by CV and BIC. For the FunPLS method, the results based on BIC are better than CV

and for the FPCR method the results based on CV are slightly better than BIC. Therefore, we provide

results for FunPLS and FPCR method based on BIC and CV, respectively. For the FPLSR method,

the number of components is chosen by fivefold CV, while the roughness parameter is selected by

REML. For the SpaFunPLS method, we set κ = 0.1 and δ = 0.1 in all numerical studies. In the

appendix, we discuss the effects of κ, γ and δ. The smoothing parameter γ, the sparse parameter λ

and the number of components K of the SpaFunPLS method are chosen by the approach presented

in Section 3.2.3.

The performance of the estimated β̂(t) is evaluated by the integrated squared errors on the zero

subregions and the entire domain, which are, respectively, defined as

ISE0 = 1
l0

∫
I0

(
β̂(t)− β(t)

)2
d t and ISE = 1

l

∫
I

(
β̂(t)− β(t)

)2
d t,
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where I0 denotes the zero subregions of β(t), I denotes the entire domain of β(t), and l0 and l

are the lengths of the zero subregions and the entire region, respectively. In all scenarios, we have

I = [0, 1] and l = 1, and for Scenario I and II, I0 = [0.5, 1] and l0 = 0.5.

Table 3.1 summarizes the ISE0 of the estimators. The results in Table 3.1 indicate that the

proposed SpaFunPLS method outperforms all the other methods on the zero subregions, thanks to

the sparse penalty. In addition, the results in Table 3.2 indicate that the proposed SpaFunPLS method

has the best performance in estimating the slope functions. In Scenario III when there is no zero

subregion, the SpaFunPLS method has nearly identical results as the FunPLS method, as expected.

It is also observed that the FPLSR approach exhibits relatively larger errors. In terms of prediction,

Table 3.3 suggests that, in general, the proposed SpaFunPLS method has better performance than

the other methods. The FunPLS and the FPCR methods are comparable to the proposed method.

Table 3.1: Mean integrated squared error, ISE0, defined on the null region
for β̂(t) based on 100 simulation replications with the corresponding Monte
Carlo standard deviation included in parentheses.

SpaFunPLS FunPLS FPLSR FPCR

Scenario I (×10−2)

n = 100 0.39 (0.57) 2.76 (1.06) 3.89 (1.28) 2.31 (1.33)

n = 500 0.25 (0.25) 0.95 (0.26) 0.93 (0.33) 0.85 (0.38)

Scenario II (×10−3)

n = 100 0.43 (1.67) 6.85 (4.95) 17.97 (5.63) 6.91 (7.36)

n = 500 0.12 (0.35) 1.45 (0.83) 3.45 (1.28) 1.86 (1.38)

SpaFunPLS, the proposed sparse functional partial least squares method; FunPLS, the func-

tional partial least squares method; FPLSR, the regularized-regression version of the func-

tional partial least squares proposed by Reiss and Ogden (2007); FPCR, the functional princi-

pal component regression method.
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Table 3.2: Mean integrated squared errors, ISE, defined on the entire region
for β̂(t) based on 100 simulation replications with the corresponding Monte
Carlo standard deviation included in parentheses.

SpaFunPLS FunPLS FPLSR FPCR

Scenario I (×10−2)

n = 100 2.37 (1.42) 3.28 (1.04) 6.55 (1.63) 2.94 (1.33)

n = 500 1.37 (0.47) 1.49 (0.26) 2.67 (0.66) 1.34 (0.28)

Scenario II (×10−3)

n = 100 4.78 (4.27) 7.76 (4.83) 27.12 (8.89) 7.38 (8.29)

n = 500 1.13 (0.82) 1.46 (0.66) 8.56 (4.47) 1.87 (1.54)

Scenario III (×10−1)

n = 100 1.53 (1.28) 1.54 (1.29) 7.85 (2.20) 1.64 (1.74)

n = 500 0.34 (0.17) 0.34 (0.17) 2.55 (1.08) 0.40 (0.28)

SpaFunPLS, the proposed sparse functional partial least squares method; FunPLS, the func-

tional partial least squares method; FPLSR, the regularized-regression version of the functional

partial least squares proposed by Reiss and Ogden (2007); FPCR, the functional principal com-

ponent regression method.
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Table 3.3: The prediction mean squared errors on test data based on 100 sim-
ulation replications with the corresponding Monte Carlo standard deviation
included in parentheses.

SpaFunPLS FunPLS FPLSR FPCR

Scenario I (×10−3)

n = 100 2.14 (0.16) 2.31 (0.16) 2.68 (0.29) 2.26 (0.17)

n = 500 1.99 (0.06) 2.02 (0.06) 2.13 (0.11) 2.01 (0.06)

Scenario II (×10−3)

n = 100 1.08 (0.07) 1.14 (0.08) 1.42 (0.17) 1.14 (0.11)

n = 500 1.03 (0.03) 1.04 (0.03) 1.16 (0.09) 1.04 (0.03)

Scenario III (×10−2)

n = 100 3.29 (0.23) 3.29 (0.23) 4.17 (0.44) 3.31 (0.25)

n = 500 3.09 (0.09) 3.09 (0.09) 3.42 (0.23) 3.10 (0.09)

SpaFunPLS, the proposed sparse functional partial least squares method; FunPLS, the func-

tional partial least squares method; FPLSR, the regularized-regression version of the func-

tional partial least squares proposed by Reiss and Ogden (2007); FPCR, the functional prin-

cipal component regression method.

To visualize the performance of the proposed SpaFunPLS method, Figure 3.2 compares the es-

timated β̂(t) for various methods. We can see that the SpaFunPLS, FunPLS and FPCR methods

provide smooth estimates for the slope function. However, for Scenario I and Scenario II, only the

SpaFunPLS estimate is capable of correctly identifying a major portion of the zero subregions. For

Scenario III where there is no zero subregions, the SpaFunPLS and FunPLS estimates are iden-

tical. It also shows that FPLSR method might not have sufficient roughness regularization of the

estimated slope function, which leads to less favorable performance. In Figure 3.3, we present the

SpaFunPLS estimates for all simulation replicates with n = 100. The plots suggest that in general,

the SpaFunPLS method locates the zero subregions with considerable accuracy and does a good job

of estimating the slope function.
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Figure 3.2: Estimated β̂(t) for various methods ( , the SpaFunPLS
method; , FunPLS method; , FPLSR method; , the

FPCR method; , the true β(t)) in a randomly selected simulation
replicate with n = 100.
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Figure 3.3: Estimated slope function β̂(t) by the SpaFunPLS method
( ) with n = 100 along with the true β(t) ( ).

3.4 Applications

3.4.1 OSB Furnish Data

We apply our method to a novel dataset provided by FPInnovations which collected wood ma-

terial from Canadian OSB mills. In total, 60 cookies from 60 different logs were collected with 10

from each of the following types of logs: aspen with core rot, sound aspen with bark, balsam poplar

with core rot, balsam poplar with bark, birch with core rot and birch with bark. Then the bark and rot

were removed from all samples and segregated into separate sample bags. Sound wood, rot and bark

material from each species were ground into powder. Each sample was then oven dried to minimize

the measurement error due to moisture variation and stored in a sealed sample bag. In the end, 182

mixtures with different proportions of sound wood were prepared.
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The powder samples were scanned by a benchtop Vis/NIR (visible and near infrared) spectrom-

eter ASD 5000 from Analytical Spectral Devices for acquiring spectra. Vis/NIR spectroscopy is

an industrial proven measurement technique for classifying and quantifying the composition and

properties of organic materials including wood. In the visible range from 350 − 700nm the colour

composition of the measured sample was recorded. The records in the NIR range from 700−2500nm

reveal special interactions between light at specific wavelengths and target sample molecular struc-

tures, from which specific sample constituents can be chemically identified and quantified. Specif-

ically, for each sample, a spectral file was generated comprised of log inverse reflectance versus

wavelength for 2150 individual wavelengths ranging from 350nm to 2500nm. For each of the 182

samples, two spectra replicates were acquired.

The objective of this study is to examine the relation between the spectral trajectories and the

proportions of the sound wood in OSB fines samples. In the functional linear regression model, for

the ith fine mixture sample, the response Yi is the proportion of sound wood content and Xi(t), t ∈

[350, 2500] is its spectral curve. Both Yi andXi(t) are centered such that EYi ≡ 0 and EXi(t) ≡ 0.

Figure 3.4(a) displays 10 randomly selected smoothed centered spectral curves.
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Figure 3.4: (a) 10 randomly selected smoothed centered spectral curves. (b) Estimated β̂(t) using
the conventional FunPLS method ( ) and the proposed SpaFunPLS approach ( ).

Figure 3.4(b) depicts estimates for β(t) obtained by the proposed SpaFunPLS approach and the

conventional FunPLS method. The SpaFunPLS method uses cubic B-spline basis functions with

101 equally spaced knots. We set κ = 0.1, δ = 0.1, and select γ,λ and the number of components
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K by BIC. The SpaFunPLS estimate for the slope function is zero over wavelengths 715− 2070nm,

which suggests the relationship between the sound wood proportions and spectra in the low and

high ends of the wavelengths. The FunPLS method provides a similar estimate without giving clear

subregions on which the spectra are not related to the sound wood proportions.

3.4.2 Particulate Matter Emissions Data

We further illustrate our proposed procedure by analyzing the particulate matter emissions (PM)

data, which was studied in Asencio et al. (2014), Hall and Hooker (2016) and Guan et al. (2020).

The data are detailed in the Coordinating Research Councils E55/E59 research project (Clark et al.,

2007). In the experiment, drivers drove the trucks through a pre-set series of driving cycles on a

chassis dynamometer test bed which was employed to simulate inertia, wind drag and tire rolling

resistance. The particulate matter emissions were measured every second by an emission analyzer

which was attached to the truck exhaust pipe. The engine acceleration of diesel trucks was also

collected. Our interest here is to estimate the effects of the past engine acceleration on the cur-

rent particulate matter emission. Intuitively, we expect earlier engine acceleration to have a smaller

impact on the current particulate matter emission.

To remove dependences in the data, we follow Hall and Hooker (2016) to use PM observation

every 10 seconds after the first 120 seconds. The response is the logarithm of the PM measured

every 10 seconds after the first 120 seconds and the functional covariates are the engine acceleration

for the past 60 seconds. We center both the PM and engine acceleration. Figure 3.5(a) illustrates 10

randomly selected smoothed centered engine acceleration curves recorded on every second for 60

seconds.

The proposed SpaFunPLS approach uses cubic B-spline basis functions with 101 equally spaced

knots with κ = 0.1 and δ = 0.1. The smoothing parameter γ, the sparse parameter λ and the number

of components K are chosen by BIC. Figure 3.5(b) presents the SpaFunPLS and FunPLS estimates

for β(t). The FunPLS estimate suggests that the engine acceleration greatly influences the PM for

the past 20 seconds. Compared to the FunPLS method, the SpaFunPLS method provides a more

insightful and interpretable result. The SpaFunPLS estimate indicates a positive relationship that

tapers to zero from second 0 to 16. This suggests that the engine acceleration has contribution to

predicting PM for no longer than 16 seconds.
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Figure 3.5: (a) 10 randomly selected smoothed centered acceleration curves. (b) Estimated β̂(t)
using the conventional FunPLS method ( ) and the proposed SpaFunPLS approach ( ).

3.5 Conclusion

We proposed a sparse functional partial least squares regression to achieve a locally sparse esti-

mate for the slope function in a functional linear regression model. The proposed method is effective

in identifying nonactive subregion in the regression model. In practice, although there are a few tun-

ing parameters to select, most of them can be fixed to a reasonable value. The important parameters

are the smoothing parameter, the shrinkage parameter and the number of components. From our sim-

ulation studies we found that the proposed SpaFunPLS method improves the conventional FunPLS

method and performs well for continuous/discontinuous and locally sparse/nonsparse functions. The

real data applications show that the proposed method provides more interpretable estimates of the

slope function.

3.6 Appendix

3.6.1 Functional Partial Least Squares Regression

In this subsection we introduce the functional partial least squares method (FunPLS) for esti-

mating the slope function in the functional linear regression model. Without loss of generality, we

assume that µ = 0 in the functional linear regression model Yi = µ+
∫ T

0 Xi(t)β(t) d t + εi in the

sequel. Given w1, . . . , wk−1, the kth FunPLS basis function wk is obtained by
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max
w

Cov2
(
Y,

∫ T

0
X(t)w(t) d t

)
,

subject to Cov
(∫ T

0
X(t)wj(t) d t,

∫ T

0
X(t)w(t) d t

)
= 0 for j = 1, . . . , k − 1 and

‖w‖22 = 1. (3.6)

To estimate the FunPLS basis functions, we utilize B-spline basis functions that are detailed

in de Boor (2001). Let B(t) = (B1(t), . . . , BM+d(t))T be a vector that contains M + d B-spline

basis functions. Each basis function is defined on [0, T ] with degree d and M + 1 equally spaced

knots 0 = t0 < t1 < · · · < tM = T , which is a piecewise polynomial of degree d. Let SdM

denote the linear space spanned by the B-spline basis functions {Bj(t) : j = 1, . . . ,M + d}.

In (3.6), we can approximate w(t) and wj(t) by bTB(t) and bT
jB(t) with b = (b1, . . . , bM+d)T

and bj = (bj1, . . . , bjM+d)T, which are elements in SdM . Let Uj =
∫ T

0 X(t)Bj(t) d t and U =

(U1, . . . , UM+d), then Cov
(∫ T

0 X(t)wj(t) d t,
∫ T

0 X(t)w(t) d t
)

yields Cov (Ubj , Ub) and ‖w‖22

is estimated by bTV0b, where V0 denote the (M + d) × (M + d) matrix with the elements v0ij =∫ T
0 Bi(t)Bj(t) d t. Since V0 is positive definite, we can write V0 = W0W0, where W0 is symmet-

ric. Let b∗ = W0b and b∗j = W0bj , then b∗ is obtained by maximizing

Cov2
(
Y, UW−1

0 b∗
)
,

subject to Cov
(
UW−1

0 b∗j , UW
−1
0 b∗

)
= 0, for j = 1, . . . , k − 1 and

bT
∗b∗ = 1. (3.7)

(3.7) is the criterion to construct the kth PLS weight vector of response Y and covariates UW−1
0 .

Let Y = (Y1, . . . , Yn)T and denote by U the n × (M + d) matrix with elements uij =∫ T
0 Xi(t)Bj(t) d t. The empirical version of (3.7) based on Y and UW−1

0 can be obtained effi-

ciently using SIMPLS (de Jong, 1993) or NIPALS (Wold, 1966) algorithms. Let b̂∗1, . . . , b̂∗K de-

note the first K empirical weight vectors and putRK = (b̂∗1, . . . , b̂∗K). Then the first K empirical

FunPLS scores T ∈ Rn×K is T = UW−1
0 RK . Consider a linear regression model with response

Y and covariates matrix T . Let α = (α1, . . . , αK)T be the corresponding coefficients. The slope
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function in the functional linear regression model can be estimated by

β̂FunPLS(t) = α̂TRT
KW

−1
0 B(t),

where α̂ is an estimate of α (e.g., ordinary least squares estimator).

To obtain a smooth estimate for the slope function, we need to tune the number of componentsK

and the parameters of the B-spline basis functions d and M , which are used to expand the FunPLS

basis functions. The degree d, which is of less importance, is fixed it to a reasonable value, i.e.,

d = 3, whereas K and M can be chosen by Cross-Validation (CV) or the information criteria, such

as the Bayesian information criterion (BIC).

3.6.2 Functional Principal Component Regression

Let G(s, t) = Cov{X(s), X(t)} be the covariance function of the random process X . Assume

that
∫ T

0 E(X2) <∞. Then we can write an orthogonal expansion of G as

G(s, t) =
∞∑
k=1

θkφk(s)φk(t),

where φ1, φ2, . . . are the eigenfunctions of the linear operator with kernel G and the θ1 ≥ θ2 ≥

· · · ≥ 0 are the corresponding eigenvalues. We can estimate G and expand it by

Ĝ(s, t) = 1
n

n∑
i=1
{(Xi(s)− X̄(s))(Xi(t)− X̄(t))}

=
∞∑
k=1

θ̂kφ̂k(s)φ̂k(t),

where X̄(t) = n−1∑n
i=1Xi(t). The estimator for the slope function β(t) is defined as

β̂(t) =
p∑

k=1
b̂kφ̂k(t) = b̂Tφ̂(t),
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where φ̂(t) = (φ̂1(t), . . . , φ̂p(t))T, p ≤ n is a positive integer, and b̂ = (b̂1, . . . , b̂p)T minimizes the

least squares

1
n

n∑
i=1

(
Yi −

p∑
k=1

bk

∫ T

0
Xi(t)φ̂k(t) d t

)2

.

Let Uφ denote the n × p matrix with elements uijφ =
∫ T

0 Xi(t)φ̂j(t) d t. The estimated b̂ =

(UT
φUφ)−1UT

φY . In practice, we penalize the roughness in principal components; see Chapter 9

in Ramsay and Silverman (2005) for more details regarding smoothing the functional principal

components. The truncation number p and the smoothing parameter can be chosen by the Akaike

information criterion (AIC), the Bayesian information criterion (BIC) or CV.

3.6.3 Effect of the parameter κ in Section 3.3

We conduct a simulation study to numerically investigate the effect of κ. The setting is the same

as Scenario I with the functional covariates generated by a linear combination of B-spline basis

functions, the signal-to-noise ratio 5 and the sample size n = 500. We can observe that the results

based on different κ are very similar.

Table 3.4: Investigation of effect of κ on ISE0 and ISE for the estimators of β(t), and the predic-
tion mean squared errors (PMSE) on test data. The results are obtained based on 100 simulation
replications with the corresponding Monte Carlo standard deviations included in parentheses.

κ ISE0 (×10−2) ISE (×10−2) PMSE (×10−3)

0.01 0.26 (0.25) 1.34 (0.34) 1.99 (0.06)

0.1 0.25 (0.25) 1.37 (0.47) 1.99 (0.06)

0.2 0.24 (0.25) 1.37 (0.47) 1.99 (0.06)

0.3 0.24 (0.24) 1.37 (0.49) 1.99 (0.06)

0.4 0.24 (0.24) 1.37 (0.50) 1.99 (0.06)

0.5 0.25 (0.24) 1.38 (0.52) 1.99 (0.06)

3.6.4 Effect of the smoothing parameter γ in Section 3.3

We conduct a simulation study to numerically investigate the effect of γ. The setting is the same

as Scenario II with the functional covariates generated by a linear combination of B-spline basis
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functions, the signal-to-noise ratio 5 and the sample size n = 500. In Figure 3.6, we present the

estimated slope functions by the SpaFunPLS method using different values of γ in one randomly

selected simulation replicate. We can observe that small values for γ (when γ = 10−30 and γ =

10−10) lead to discontinuous, irregular and scattered zero subregions for estimated β̂(t), whereas

relatively large values for γ (when γ = 1 and γ = 105) result in estimates that are not locally sparse.

For γ within a certain range (e.g., γ = 10−5 and γ = 10−3), the proposed method has a favorable

performance.
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Figure 3.6: Estimated slope functions by SpaFunPLS method using
different values of γ for Scenario II with n = 500 in one randomly

selected simulation replicate.

3.6.5 Effect of the parameter δ in Section 3.3

In this subsection, we conduct a simulation study to numerically investigate the effect of δ. The

setting is the same as Scenario II with the functional covariates generated by a linear combination

of B-spline basis functions, the signal-to-noise ratio 5 and the sample size n = 500. The figure

illustrates that the estimated slope functions are similar with different values for δ.
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Figure 3.7: Estimated slope functions by the SpaFunPLS method using
different values of δ for Scenario II with n = 500 in one randomly

selected simulation replicate.

54



Chapter 4

In-game Win Probabilities for the
National Rugby League

4.1 Introduction

In recent years, analytics have made a profound impact in sport where great investments have

been made in the “big” professional sports of basketball (the National Basketball Association), foot-

ball (the National Football league), soccer (major European leagues), hockey (the National Hockey

League) and baseball (Major League Baseball). Many teams now have their own analytics staff

where decisions are scrutinized in many areas of the sporting operation including strategy, drafting,

salaries, player evaluation, and marketing. For a survey of some of the work that has been done in

sports analytics, see Albert et al. (2017).

Whereas the National Rugby League (NRL) may be considered big sport (it has the greatest

television viewership of any sport in Australia), the NRL is underrepresented in the sports analytics

literature. For example, in a search of the archives of the Journal of Quantitative Analysis in Sports

(founded in 2005), the authors were unable to find a single article devoted to rugby league. However,

there have been many papers written on rugby league from the sports science perspective, and a

small sample of these include Glassbrook et al. (2019), Booth and Orr (2017), Seitz et al. (2014),

King et al. (2009) and Gabbett (2005).

In an attempt to grow the game, the NRL is adding an analytics focus to the sport (see www.

nrl.com.stats). In particular, to provide additional excitement to the television viewing expe-

rience, the NRL would like to include in-game win probabilities. The idea is that such a graphic may

be presented in a small corner of the screen, and be continually updated as the game circumstances
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change. The graphic would be appealing to the NRL fan base and also to punters. The continual

update precludes highly computational techniques, and of course, the predictions of the in-game

win probabilities would need to be accurate.

The NRL has provided us with four seasons of detailed event data (2016 − 2019) which we

use to inform the in-game win probabilities. Our approach is Bayesian where our main interest

concerns the evaluation of the in-game posterior win probability. The challenge is the development

of an accurate model for which the posterior probability can be evaluated in real-time. The accuracy

provided by the model relies on domain knowledge of the sport; hence we search for data and

covariates that have high predictive capability.

The distributions that are specified in our Bayesian model are determined via functional data

analysis (FDA). FDA is a relatively new branch of statistics where regression methods are extended

to the study of functions ((Ramsay and Silverman, 2005); (Ferraty and Vieu, 2006)). For a practical

introduction to FDA, see Ramsay et al. (2009). In sport, FDA techniques were used by Chen and

Fan (2018) who investigated score differentials in basketball. FDA also has many applications in

other areas. For instance, Ainsworth et al. (2011) applied FDA for ecosystem research, in which

they studied the relationship between river flow and salmon abundance. Luo et al. (2013) estimated

the intensity of ward admission and investigated its effect on emergency department access block in

public hospitals by using some FDA methods.

The functional aspect of our problem is that a rugby league match is 80 minutes in duration and

that circumstances change over the duration of the match. Therefore, the in-game win probability is

a function of the time of the match. In FDA, a typical application involves the analysis of a sample

of realizations from independent and identically distributed (iid) functions. A novelty in our work is

that the matches are not iid, because each match is conditional on a unique kickoff win probability of

the home team. We propose a weighted least squares method to estimate the functional parameters

of each match by borrowing the information from matches with similar kickoff probabilities.

A key feature of our work is that the general approach for estimating in-game win probabilities

may be used in any sport that has event data. Event data consists of a chronological record of well-

defined events that occur during a match which are relevant to the match and are recorded with a
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time stamp. The necessary modifications would involve the determination of the relevant event data

which is predictive and sport specific.

In Section 4.2, we begin with a discussion of the data that is at our disposal. We then outline the

Bayesian model from which we obtain the in-game posterior win probability. In the Bayesian model,

there are distributions that are specified via FDA methods. The FDA methodology is explained

in detail. In particular, we develop novel estimation techniques to address the complexity of the

problem. In Section 4.3, we consider the utilization of the event data to provide good predictions.

There are many potential insights from a game that are relevant. We use the domain knowledge

from the rugby league for the specification. We then demonstrate that our estimated in-game win

probabilities change during a match in expected ways. In Section 4.4, we demonstrate that our

estimated win probabilities are reliable. We conclude with a short discussion in Section 4.5.

4.2 Model Development

4.2.1 Available Data

The NRL consists of 16 teams. Each team plays 24 games during the regular season. The NRL

has gratiously given us access to event data for the resultant 769 regular-season matches which have

taken place during the four seasons 2016 − 2019. Event data is detailed match data that goes well

beyond box score data. With event data, every time an event occurs during a match (e.g. field goal,

try, tackle, etc), characteristics of the event are recorded (e.g. location on the pitch, players involved,

time of the match, etc). In the NRL, 2.1 events are recorded on average per second. The events and

characteristics are obtained through cameras and optical recognition software that carry out the data

collection process in real-time. In total, we have 8, 144, 905 events obtained over the four seasons.

An important component of our work is the determination of relevant event data to inform in-

game win probabilities. In our development and without loss of generality, win probabilities and data

will refer to the home team. For the time being, for a particular match, we will refer to X(t) as data

arising from the game’s event log at time t = 1, . . . , 80. Note that X(t) may be multivariate. For

example, it is obvious that the average field position by the home team is a measure of dominance

and it may be a good predictor of the home team’s chance of winning the match.
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Another important predictor of the in-game win probability of the home team is the current score

differential. We will refer to D(t) as the number of points by which the home team is defeating the

road team at time t. Note that D(t) < 0 indicates that the road team is winning by |D(t)| points at

time t.

Finally, another important predictor of the in-game win probability of the home team is a

measure of its strength relative to the road team. This is not something immediately available

from the event data, and therefore we sourced an additional dataset. The website http://www.

aussportsbetting.com/data/historical-nrl-results-and-odds-data/ gives

closing betting odds of NRL matches immediately prior to kickoff. A nice feature of the betting odds

is that they take into account everything that is relevant to a match including home team advantage,

injuries, travel, etc. Betting odds are also known to be efficient; otherwise sportsbooks would not

exist. Therefore, we can rely on the betting odds as providing reliable information concerning the

win-probability of the home team at the time of kickoff.

Betting odds arise in various formats, and we will refer to odds provided in the European format.

Odds oh on the home team indicate that a winning bet of $1 on the home team will result in a

payout of $oh. Clearly, oh ≥ 1. Similarly, odds or on the road team indicate that a winning bet of

$1 on the road team will result in a payout of $or. We ignore the rare event that a match can end

in a draw as this does not affect the subsequent calculations. Draws occur roughly 4.94% of the

time in the NRL. Now, some simple probability calculations involving expectations yield that the

probability of the home team winning is ph = 1/oh and the probability of the road team winning

is pr = 1/or. However, these calculations do not take into account the vigorish (i.e. the expected

profit) by the sportsbook, and therefore ph + pr > 1. We therefore remove the vigorish and set the

kickoff probability that the home team wins the match as p0 = ph/(ph + pr).

Therefore, to review, the inputs to our Bayesian model which we use to estimate in-game win

probabilities for the home team are given by:

X(t) ≡ event data relative to the home team at time t = 1, . . . , 80,

D(t) ≡ score differential in favour of the home team at time t = 1, . . . , 80,

p0 ≡ kickoff probability of home team winning based on sportsbook odds.

(4.1)
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4.2.2 Model Overview

In this subsection, we present a Bayesian model based on the inputs given by (4.1). We let W

denote the event that the home team wins the match, and it is the posterior probability of W which

is our quantity of interest. Further, we use the notation [A | B] to denote the generic conditional

density of A given B. We therefore obtain the expression

Prob(W | X(t), D(t), p0) = [X(t),D(t)|W,p0] Prob(W |p0)
[X(t),D(t)|W,p0] Prob(W |p0) + [X(t),D(t)|W,p0] Prob(W |p0)

= [X(t),D(t)|W,p0] p0
[X(t),D(t)|W,p0] p0 + [X(t),D(t)|W,p0] (1−p0) .

(4.2)

We observe that (4.2) is a simple expression. However, for the application to television broad-

casts, we emphasize that it is necessary that the component distributions in (4.2) need to be evaluated

instantaneously.

4.2.3 Estimation of Model Components using FDA

This is the most technical portion of this chapter where a nonstandard FDA structure is in-

troduced and novel estimation techniques are developed to determine the probability distributions

[X(t), D(t) | W,p0] and [X(t), D(t) | W,p0] in (4.2). We illustrate the methodology with uni-

variate X(t) although the methods can be extended to multivariate X(t). This subsection may be

skimmed while still retaining the overall intent of the chapter.

We begin by focusing on the [X(t), D(t) | W,p0] term where [X(t), D(t) | W,p0] is handled

in a similar fashion. We assume that

X(t|W,p0) = µX(t|W,p0) + εX(t),

D(t|W,p0) = µD(t|W,p0) + εD(t),

where µX(t|W,p0) is the expected value of the event data X(t) conditional on the home team

winning and having a kickoff win probability of p0. Similarly, µD(t|W,p0) is the expected value

of the score differential D(t) conditional on the home team winning and having a kickoff win

probability of p0.
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In Section 4.3, we consider various choices for X(t) that affect the variance assumption and the

resultant estimation procedure. Suppose for now that εX(t) is a random variable which consists of

independent incremental contributions up to time t. Therefore, we assume that εX(t) has mean 0

and variance tσ2
X . However, we note that the following theory may be modified to accommodate

other variance assumptions such as a constant variance. With respect to εD(t), we also assume that

it is based on a white noise process where we recognize that the score differential consists of incre-

mental contributions during the match up to time t. Therefore, assuming that these contributions are

independent and identically distributed, it is appropriate that εD(t) have mean 0 and variance tσ2
D.

Therefore, at time t, the noises are distributed as

εX(t)

εD(t)

 ∼ Normal


0

0

 , t
 σ2

X ρσXσD

ρσXσD σ2
D


 . (4.3)

For different time points t and t′, we assume that εX(t) and εD(t′) are independent.

We further assume that µX(t|W,p0) and µD(t|W,p0) are continuous smooth functions, and we

approximate these functions as linear combinations of basis functions as follows

µX(t|W,p0) =
∑K
k=1 ak(W,p0)bk(t),

µD(t|W,p0) =
∑K
k=1 ck(W,p0)bk(t), (4.4)

where the bk(t) are predetermined basis functions. Up until this point, except for the variance as-

sumptions associated with the noise terms, this is a standard setup in FDA applications (see, Chapter

3 in Ramsay and Silverman (2005), for example).

With our initial concentration on the specification of [X(t), D(t) |W,p0], we restrict our data to

matches where the home team has won (i.e. W is observed). For a particular match i, we therefore

have functional data {xi(tij), di(tij) : i = 1, . . . , N ; j = 1, . . . , ni} where xi(tij) is the event data

recorded at time tij (i.e. the realization of Xi(tij)), and di(tij) is the score differential at time tij

(i.e. the realization of Di(tij)). We also have the kickoff win probability pi0 associated with the ith

match.
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An aspect of our problem that makes it different from a typical FDA application is that the

functional data are not iid. Specifically, the functional distribution of the ith match is conditional

on pi0 (the kickoff win probability of the home team in the ith match). Therefore, to address the

estimation of the a’s and c’s in (4.4), we minimize the functions

Ha(a) =
∑N
i=1

∑ni
j=1

1
tij

[
xi(tij)−

∑K
k=1 ak(W,p0)bk(t)

]2
exp

{
−(p0−pi0)2

γ

}
Hc(c) =

∑N
i=1

∑ni
j=1

1
tij

[
di(tij)−

∑K
k=1 ck(W,p0)bk(t)

]2
exp

{
−(p0−pi0)2

γ

}
(4.5)

where a = (a1(W,p0), . . . , aK(W,p0))T , c = (c1(W,p0), . . . , cK(W,p0))T , and γ > 0 is a tun-

ing parameter. The term exp
{
−(p0 − pi0)2/γ

}
assigns more weight to matches that have similar

kickoff win probabilities to the generic value p0.

The proposed estimation procedure based on the minimization of the functions Ha and Hc in

(4.5) is nonstandard. However, it is motivated by least squares and maximum likelihood considera-

tions (since the X’s and D’s are normally distributed). What makes the equations in (4.5) unusual

is that E(Xi(tij)) and E(Di(tij)) do not equal the specified parametric expressions. Equality would

only exist if the xi and di were observed under the generic value p0, where again, we emphasize

that the functional data are not iid. This provides the motivation for the exponential terms; we assign

more weight to observations for which the generic p0 is closer to the observed pi0.

With a little bit of work, it can be shown that for fixed γ, the minimization of Ha and Hc yields

the analytic expressions

â(p0) =
(∑N

i=1 viBT
i GiBi

)−1 (∑N
i=1 viBT

i Gixi
)
,

ĉ(p0) =
(∑N

i=1 viBT
i HiBi

)−1 (∑N
i=1 viBT

i Hidi
)
, (4.6)

where â(p0) = (â1(W,p0), . . . , âK(W,p0))T , ĉ(p0) = (ĉ1(W,p0), . . . , ĉK(W,p0))T , vi = vi(p0) =

exp
{
−(p0 − pi0)2/γ

}
, Bi is the ni × K matrix with (j, k)th element bk(tij), Gi and Hi are

ni × ni diagonal matrices with the jth diagonal element 1/tij , xi = (xi(ti1), . . . , xi(tini))
T and

di = (di(ti1), . . . , di(tini))
T .

61



With estimated vectors â and ĉ, we now turn to more traditional estimation procedures. Let

âik = âk(W,pi0) and ĉik = ĉk(W,pi0). Based on the data and the modelling assumption (4.3), the

resulting profile likelihood is given by

L(σX , σD, ρ
∣∣W,p0)

=
N∏
i=1

ni∏
j=1

1
2π tijσXσD

√
1− ρ2 exp

{
− 1

2(1− ρ2)

[(
xi(tij)−

∑K
k=1 âikbk(tij)

)2

tijσ2
X

−

2ρ
(
xi(tij)−

∑K
k=1 âikbk(tij)

) (
di(tij)−

∑K
k=1 ĉikbk(tij)

)
tijσXσD

+

(
di(tij)−

∑K
k=1 ĉikbk(tij)

)2

tijσ2
D

]}
.

The profile likelihood can then be maximized to provide estimates

σ̂2
X = Dxx / v0,

σ̂2
D = Ddd / v0,

ρ̂ = Dxd /
√
DxxDdd ,

where

v0 =
N∑
i=1

ni,

Dxx =
N∑
i=1

ni∑
i=1

(
xi(tij)−

K∑
k=1

âikbk(tij)
)2
/tij

=
N∑
i=1

(
xi −Biâi

)T
Gi

(
xi −Biâi

)
, (4.7)

Dxd =
N∑
i=1

ni∑
j=1

(
xi(tij)−

K∑
k=1

âikbk(tij)
)(

di(tij)−
K∑
k=1

ĉikbk(tij)
)
/tij

=
N∑
i=1

(
xi −Biâi

)T√
Hi

√
Gi

(
di −Biĉi

)
, (4.8)

Ddd =
N∑
i=1

ni∑
j=1

(
di(tij)−

K∑
k=1

ĉikbk(tij)
)2

/tij

=
N∑
i=1

(
di −Biĉi

)T
Hi

(
di −Biĉi

)
,
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with âi = (âi1, . . . , âiK)T and ĉi = (ĉi1, . . . , ĉiK)T . Finally, the parameter γ is tuned as described

in Section 4.3.

Putting this all together, suppose that there is a new match l with kickoff probability pl0, and we

observe event data xl(t) and score differential dl(t) at time t. Then

[xl(t), dl(t)|W,pl0] = 1
2π tσ̂X σ̂D

√
1− ρ̂2 exp

{
− 1

2(1− ρ̂2)

[(
xl(t)−

∑K
k=1 âk(W,pl0)bk(t)

)2

tσ̂2
X

−

2ρ̂
(
xl(t)−

∑K
k=1 âk(W,pl0)bk(t)

) (
dl(t)−

∑K
k=1 ĉk(W,pl0)bk(t)

)
tσ̂X σ̂D

+

(
dl(t)−

∑K
k=1 ĉk(W,pl0)bk(t)

)2

tσ̂2
D

]}
.

Similarly, we can obtain [xl(t), dl(t)|W,pl0]. Then using (4.2), we can simply estimate the posterior

in-game win probability at time t for match l.

4.3 Results

We begin by considering appropriate choices for the event data X(t). When a game is being

viewed, there are often indications that one of the teams is gaining an upper hand in the match. The

variable X(t) is chosen to quantitatively reflect this sort of dominance as a predictor of winning the

match. In Table 4.1, we propose several choices that are intended to reflect dominance by the home

team. All of the variables presented in Table 4.1 are recorded with respect to the home team.

Table 4.1: Potential choices of event data where all variables are measured with respect to the home
team and larger values denote increasing superiority.

Event Data Description
X1(t) tackle differential up to time t
X2(t) tackle differential during the most recent 10 minutes
X3(t) missed tackle differential up to time t
X4(t) missed tackle differential during the most recent 10 minutes

Now, we are not suggesting that the variables proposed in Table 4.1 are the best choices. For

clarity, a missed tackle is one where a player on the team of interest may have been tackled, but the

tackle was unsuccessful. Therefore, the missed tack differential with respect to the home team is

63



favourable to the home team if the variable is positive. For example, Parmar et al. (2017) investigate

key performance indicators in professional rugby league. However, the variables in Table 4.1 are

easy to calculate based on live match data. We imagine that experts with detailed domain knowledge

of the rugby league may be able to propose improved variables from the point of view of prediction.

However, to illustrate the proposed methods, we will hereafter use the variable X3(t) in Table 4.1

as the event data of interest. For ease of notation, we denote X3(t) as X(t).

We also emphasize that the choice of the event data impacts the modelling distribution (4.3) and

the estimation equations given by (4.5), (4.6), (4.7), and (4.8). For example, the noise terms εX(t)

associated with X2 and X4 in Table 4.1 have constant variances. In this case, Gi = Ini , where

Ini is an ni × ni identity matrix. On the other hand, X1 and X3 lead to noise variances that are

proportional to t, where Gi is the ni × ni matrix with the jth diagonal element 1/tij .

The basis functions bk(t) introduced in (4.4) are cubic B-splines. For details on B-spline ap-

proximation, see de Boor (2001). Specifically, we choose 9 equally spaced knots over the interval

[0, 80] minutes and this results in K = 11 cubic basis functions as depicted in Figure 4.1. This

selection of knots and splines leads to flexible shapes that can be used to express µX(t|W,p0) and

µD(t|W,p0) in (4.4).

Before proceeding to estimation, it is good to have a sense of the data. We exclude 38 matches

that ended in draws from the 769 regular-season matches which have taken place during the four

seasons 2016 − 2019. In Table 4.2 and 4.3, we provide descriptive statistics of data collected from

the remaining 731 NRL regular season matches from 2016−2019. We observe that there is indeed a

home-field advantage as the average score differential in favour of the home team is 1.8 points. We

also observe that the average missed tackle differential is positive which is also evidence of the home

team advantage. The score differential curves and the missed tackle differential curves for the 731

matches are plotted in Figure 4.2 and 4.3 respectively. On average, it seems that both the differential

and missed tackle differential are linear with respect to the time of the match. This is consistent with

a process whereby the better team separates itself from the weaker team in a consistent manner over

the course of a match.

Having specified the basis functions, the procedure in Section 4.2.3 first requires the estimation

of the parameters σX , σD and ρ as specified in the multivariate normal distribution (4.3). We first
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Figure 4.1: Cubic B-spline basis functions defined on 9 equally spaced knots over the interval [0, 80]
minutes.

Table 4.2: Descriptive statistics of the scores corresponding to the 731 matches from the four regular
seasons (2016− 2019) of the NRL.

Variable Min Value Max Value Average Std Dev
Home Team Score 0 64 21.1 10.8
Road Team Score 0 62 19.2 10.1
Score Differential wrt Home Team -62 58 1.8 16.9

restrict estimation to data where the home team has won (i.e. W ) and we note that there are 311

matches corresponding to the training data (2016 − 2018 seasons) that fit this criterion. Based on

the specification of the tuning parameter γ = 0.01, the chosen basis functions and the determination

of the ak and ck terms, we obtain

σ̂X = 0.90,

σ̂D = 1.39,

ρ̂ = 0.40 .
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Table 4.3: Descriptive statistics of the missed tackles corresponding to the 731 matches from the
four regular seasons (2016− 2019) of the NRL.

Variable Min Value Max Value Average Std Dev
Home Team Missed Tackle 8 48 23.5 6.7
Road Team Missed Tackle 8 44 22.5 6.2
Missed Tackle Differential wrt Home Team -31 34 1.0 9.6
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Figure 4.2: The score differential curves for the 731 matches.

These estimates appear to be sensible in terms of the descriptive statistics provided in Table 4.2 and

4.3. In particular, we note a positive correlation ρ̂ which suggests that X(t) and D(t) tend to work

in tandem.

Using the training data (2016− 2018 seasons) where the home team has not won (i.e. W ), there

are 241 matches, and we similarly obtain

σ̂X = 0.84,

σ̂D = 1.30,

ρ̂ = 0.40 .

Our estimation procedure involves a tuning parameter γ. We select the tuning parameter by

fivefold Cross-Validation. Specifically, we randomly split the 2016 − 2018 season matches into
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Figure 4.3: The missed tackle differential curves for the 731 matches.

five groups. For each unique group, we take it as a hold out data set and fit the model parameters

(a, c, σX , σD, ρ) as described above for a particular γ on the remaining groups. We then estimated

home team win probabilities for the hold out data set at time t. If, for a given match at time t, the

estimated winning probability is larger (smaller) than 0.5 and the home team eventually won (lost)

the match, then the prediction was considered to be correct. We repeated this procedure over all

matches in the test set and all times t to give the overall rate of correct predictions. The choice

γ = 0.01 yielded the highest average overall rate of correct predictions over all the five hold out

groups. In Figure 4.4, we show the estimated mean functions of the X and D processes based on

γ = 0.01 with various p0. We observe that the plots exhibit the expected behaviors. For example,

in matches where the home team wins, mean differentials in both X and D increase as the game

progresses. When a curve is wiggly, we attribute this to lack of data. For example in the upper right

plot where p0 = 0.8, there are not many matches where the home team is heavily favored and they

lose.

4.4 Model Validation

Obviously, there is a random component to sport and this is part of its appeal. If matches were

perfectly predictable, then there would be no point in holding sporting competitions. Therefore, our
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Figure 4.4: Upper left: estimated µ̂X(t|W,p0). Upper right: estimated µ̂X(t|W,p0). Lower left:
estimated µ̂D(t|W,p0). Lower right: estimated µ̂D(t|W,p0).

investigation in this section involves an assessment of whether our predictions are reasonable - they

cannot and should not be perfect predictions.

We should not use the same data to both fit models and carry out the model assessment. We

therefore fit our model using the first three seasons 2016 − 2018 of the event data, and we use the

fitted model to predict outcomes for the 2019 season for which there are 179 matches. We then

compare the actual 2019 match outcomes with the predicted outcomes.

In Figure 4.5, we investigate the predictive capability of our method. We consider the estimated

probability that the home team wins at times t = 1, . . . , 75 for the 2019 data. It is sensible to only

consider predictions up to the 75th minute as many sportsbooks terminate in-match betting towards
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the end of matches. A reason for this is that possession of the ball near the end of a close match is

critical and becomes more important than both X and D in the determination of fair betting odds.

Punters could exploit this situation. If a probability exceeds 0.5, then this indicates a prediction in

favour of the home team. At time t, we compare the 2019 match predictions with the actual match

results, and obtain the correct prediction rate. As one would expect, Figure 4.5 demonstrates that

the correct prediction rate improves as matches progress in time. We observe that our method yields

good results exceeding 80% accuracy by the 55th minute.
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Figure 4.5: The correct prediction rate for the 2019 NRL season.

To investigate whether our estimated in-game win probabilities are reliable, we randomly se-

lected four matches from the 2019 season where the home team won. In Figure 4.6, the solid curves

are the predicted in-game win probabilities annotated with scoring events (dashed vertical lines).

Sensibly, we observe that the predicted win probabilities are impacted by scoring (discontinuous

jumps) and that match outcomes have more extreme probabilities near the 80th minute. Similarly,

Figure 4.7 shows the predictions of the in-game win probabilities of four randomly selected matches
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from the 2019 season where the home team lost. Figure 4.7 also shows patterns that correspond to

common sense.
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Figure 4.6: Predicted instantaneous in-game win probabilities for four randomly selected matches
from the 2019 season where the home team won. The dashed horizontal lines indicate the values of
0, 0.5, and 1. The dashed vertical lines indicate the times when the score changed.

To see how X(t) impacts the estimation procedure, we consider two scenarios. Scenario I pre-

dicts the in-game win probabilities using both the event data X and the score differential D. Sce-

nario II predicts the in-game win probabilities using only the score differentialD. We select a match

played on 6th April 2019 between the Melbourne Storm (home) and the Canterbury-Bankstown

Bulldogs. The half time score is 6 (Storm) - 12 (Bulldogs) and the full time score is 18 (Storm) -

16 (Bulldogs). More details about the match can be found at https://www.nrl.com/draw/

nrl-premiership/2019/round-4/storm-v-bulldogs/.

In Figure 4.8, we present the predicted instantaneous in-game win probabilities for the match

under Scenario I and Scenario II together with the score differentials. In Figure 4.9, the in-game

win probabilities predicted by Scenario I and Scenario II are displayed together with the missed
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Figure 4.7: Predicted instantaneous in-game win probabilities for four randomly selected matches
from the 2019 season where the home team lost. The dashed horizontal lines indicate the values of
0, 0.5, and 1. The dashed vertical lines indicate the times when the score changed.

tackle differential. In Figures 4.8 and 4.9, the solid curves represent the predictions based on both

X and D, and the dotted curves represent the predictions based on D only. The kickoff probability

p0 = 0.85 indicates that the Storm were heavily favored. We can see from Figure 4.8 that the

road team scored on the 6th minute of the match, and after that, the predicted in-game probabilities

based only on D quickly decreased to around 0.6. In contrast, Figure 4.9 shows that the missed

tackle differences keep positive for most of the time in the first half of the match. This indicates that

even though the Storm were trailing, there was reason to be hopeful that they would turn the match

around. We observe that the predicted in-game probabilities based on Scenario I are greater than

those based on Scenario II for the entire game except for the short time interval between the 24th

and 32nd minute. Clearly, the example demonstrates the added value in the event data X(t) through

the superiority of Scenario I over Scenario II.
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Figure 4.8: Predicted instantaneous in-game win probabilities for the match Storm versus Bulldogs
on 6th April 2019 by Scenario I ( ) and Scenario II ( ). The grey bars indicate the score
differentials of the match.

4.5 Conclusion

We have developed a Bayesian model that provides instantaneous in-game win probabilities for

the National Rugby League. The model has distributional components that are informed by novel

FDA estimation techniques.

There are various future research directions associated with our work. First, the approach is

general and is applicable to other sports whenever suitable event data X(t) are available. Second,

there are obvious gambling questions that may be explored with respect to our predictions. Finally,

the choice of event data X(t) impacts our estimation procedure, and we have focused on missed

tackle differential. We believe that experts with detailed domain knowledge of rugby league may

be able to propose better predictive choices for X(t). Although we illustrate the use of univariate

X(t), our methods can be extended to multivariate settings.
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Figure 4.9: Predicted instantaneous in-game win probabilities for the match Storm versus Bulldogs
on 6th April 2019 by Scenario I ( ) and Scenario II ( ). The grey bars indicate the missed
tackle differentials of the match.
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Chapter 5

Summary and Future Work

With the development in modern technology and advances in data collection methods, FDA has

become increasingly important in statistical research. In this thesis, we mainly focus on developing

some new methods and models in functional data analysis (FDA).

A new nested group bridge approach to estimate a scalar-on-function truncated linear regression

model was proposed in Chapter 2. Based on the B-spline basis expansion and penalized least squares

with a roughness penalty, we proposed a new nested group bridge method to specifically shrink the

tail region of the estimated function. The proposed nested group bridge estimator of the cutoff time is

consistent. Moreover, compared with the truncation methods by Hall and Hooker (2016), we found

that the proposed nested group bridge estimator of the slope function is smooth and continuous. The

nested group bridge method can be generalized to other statistical contexts. For example, motivated

by a Hong Kong horse racing dataset, we are currently studying a conditional logit regression with

functional covariates via a nested group bridge method. The study aims to correctly predict the

winner of a race and identify the cutoff time beyond which the longitudinal trajectory of the past

rank of the horse has no prediction power.

Although the partial least squares method has been applied in the functional data context, little

has been done on the locally sparse modelling of the functional partial least squares. In Chapter

3, we proposed a sparse version of the functional partial least squares regression. We estimated a

locally sparse slope function in the functional linear regression model based on sparse functional

partial least squares bases. The proposed method imposes sparsity in the dimension reduction stage,

which simultaneously performs dimension reduction and locally sparse modelling. We applied the

proposed method to quickly determine the relative proportions of rot, bark and sound wood in
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oriented strand board (OSB) fines samples from their Vis/NIR (visible and near-infrared) spectra,

which offers an opportunity for commercial mills to identify problems associated with rot in logs,

debarking inefficiency, and species variability.

Chapter 4 addresses the modelling of the in-game win probabilities for the National Rugby

League. We developed a Bayesian model with the distributions determined based on FDA. To deal

with the non-iid matches, a weighted least squares method was proposed to estimate the functional

parameters of each match by borrowing the information from matches with similar kickoff proba-

bilities. Our proposed predictions can be done in real-time and the proposed methods are applicable

to other sports. In this work, we used univariateX(t). A future direction is to generalize our method

to the multivariate settings.
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