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Abstract 

Cytochrome P450cam (CYP101A1) from the soil bacterium Pseudomonas putida oxidizes 

camphor regio- and stereoselectively at the 5-position, to give 5-exo-hydroxycamphor. In 

order to alter the substrate range of P450cam, it has to be mutated. Previously, we have 

randomly mutated P450cam and selected seven mutants on the bicyclic polychlorinated 

pollutant endosulfan (ES). Endosulfan is a pesticide and is a persistent organic pollutant 

(POP). Endosulfan diol (ES diol), which is the major hydrolysis product of endosulfan in 

the environment, is also persistent in the environment, along with endosulfan itself. Here, 

we describe the activity of the P450cam mutants towards biodegradation of endosulfan diol. 

The P450cam mutants convert these substrates to substituted ortho-quinones, which we 

detected using 4-aminoantipyrine (4-AAP) in the assays. Here, we have studied the 

dehalogenation of endosulfan diol catalyzed by the endosulfan – selected P450cam 

mutants, using in vitro kinetics, chloride release assays and 13C labeled endosulfan diol. 

ES7 (V247F/D297N/K314E) was found to be the most active mutant, significantly more 

active than the wild type (WT) towards biodegradation of ES diol. On average ~ 5.2 Cl- 

ions are released per aromatic product detected upon turnover of ES diol. Based on these 

findings, we propose a mechanism that begins with the epoxidation of the ES-substrate’s 

double bond on the norbornene system, proceeds with elimination of six chloride ions and 

loss of the bridge as CO2, to furnish the ortho-quinone. 

The monoterpene β-phellandrene is released by certain species of pine when placed 

under stress. Due to the limited supply of β-phellandrene available from natural sources, 

here we describe a short synthesis of racemic β-phellandrene from readily available β-

pinene. Furthermore, oxidized monoterpenes are known to be released by plants and to 

function as attractants or repellents of insects, so it is of interest to find ways of selectively 

oxidizing β-phellandrene. The compound was found to be a substrate for WT-P450cam and 

the ES7 mutant. In in vitro assays with the cytochrome P450cam, β-phellandrene was 

hydroxylated. 

Keywords:  Cytochrome P450cam CYP101A1; endosulfan biodegradation; persistent 

organic pollutant; β-phellandrene; monoterpene; enzyme kinetics 
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Chapter 1. Introduction 

1.1. Cytochrome P450 

Cytochromes P450 (P450s, CYPs) are a family of heme containing enzymes which 

catalyze a variety of oxidative reactions against wide range of substrates (Cryle & Voss, 

2006; Guengerich, 2001; Lee et al., 2013; Meyer et al., 2014; Roberts & Jones, 2010; 

Sono et al., 1996). These enzymes are called monooxygenases as they activate molecular 

oxygen, incorporate one oxygen atom into an organic substrate, while they use the other 

oxygen atom for the production of a water molecule (Denisov et al., 2005). During the 

catalytic activity of P450s, the electrons are transferred via a NAD(P)H (nicotinamide 

adenine dinucleotide) – driven redox partner system (Girvan & Munro, 2016). The most 

remarkable reaction catalyzed by cytochromes P450, is the activation of a C-H bond 

resulting in hydroxylation of the substrate molecule (Scheme 1.1). 

 

Scheme 1.1  Oxidation of non-activated C-H bond by cytochrome P450 

 

The iron of heme (type-b heme or protoporphyrin IX, Figure 1.1) present in the 

active site, is coordinated to the thiolate of a conserved cysteine residue in P450s 

(Hannemann et al., 2007). The terminology “cytochrome P450” is derived from the 

characteristic spectral properties associated with this thiolate axial ligand, displaying 

typical absorption spectra at 450 nm when the reduced form of this type-b heme (Fe+2) is 

bound to carbon monoxide (CO): cytochrome stands for hemeprotein, P for pigment and 

450 reflects the 450 nm absorption of the reduced CO complex (Klingenberg, 1958; 

Omura & Sato, 1962, 1964). The initial experimental evidence related to cytochromes 

P450 was reported in 1950s using liver microsomal systems to oxidize xenobiotic 

compounds (Axelrod, 1955; Brodie et al., 1955). Since then, cytochromes P450 have been 

found in genomes across biological kingdoms (Nelson, 2018; Sigel et al., 2007). In 

humans, cytochromes P450 play important roles in metabolism of endogenous and 

xenobiotic compounds (such as drugs) (Pikuleva, 2006; Rendic & Guengerich, 2015; 

Zanger & Schwab, 2013). In plants, their role is crucial in synthesizing natural compounds 
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for the plant’s defense mechanism (Irmisch et al., 2014; Keeling & Bohlmann, 2006; 

Neilson et al., 2013; Shang & Huang, 2020). In bacteria, cytochromes P450 play 

significant roles in the degradation of organic compounds, to use them as a carbon source 

(Grogan et al., 1993; Meharenna et al., 2008) and in the production of antibiotic and 

antifungal compounds (Beilen et al., 2005; Fjærvik & Zotchev, 2005). 

 

 

Figure 1.1  Type-b heme (protoporphyrin IX) showing iron atom (FeIII) 
coordinated to thiolate of cysteine residue in P450s. 

 

1.1.1. Nomenclature of Cytochromes P450 

Cytochromes P450 are found throughout nature, catalyzing diverse types of 

reactions such as hydroxylation (Benveniste et al., 1982; Gelb, Heimbrook, et al., 1982; 

Girhard et al., 2010; Groves et al., 1978; Maier et al., 2001), epoxidation (Chiu et al., 2019; 

Gelb et al., 1982; Hagmann & Grisebach, 1984; Jin et al., 2003; Lin et al., 2014; Ruettinger 

& Fulco, 1981; Sauveplane et al., 2009), O-, and N-dealkylations (Lee et al., 2013; Meyer 

et al., 2014; Roberts & Jones, 2010; Smith & Mortimer, 1985), sulfoxidation (Baciocchi et 

al., 1997; Watanabe et al., 1982), and others. With the increasing number of cytochromes 

P450 identified in all biological kingdoms, and with many individual P450s involved in 

multiple reactions, classification of these enzymes is challenging. Therefore, a systematic 

nomenclature has been developed based on sequence identity and phylogenetic 

relationship (Nelson et al., 1996). According to this system, members under the same 

family share more than 40% of sequence identity while members in the same subfamily 

share more than 55% sequence identity (Nelson, 2018; Nelson et al., 1996). Each 
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Cytochrome P450 gene of a superfamily is named with an abbreviated CYP followed by 

a number representing the family (CYP1, CYP2, CYP101 and others), a letter representing 

the subfamily and a number for the individual gene (for example CYP101A1 for P450cam, 

CYP102A1 for P450-BM3) (Nelson et al., 1996; Ortiz de Montellano, 2015). Over 300,000 

cytochrome P450 genes have been collected in a database by Dr. Nelson, of which, 

nomenclature has been assigned to more than 41,000 cytochromes P450 categorized in 

2252 families (Nelson, 2018). 

1.1.2. Classes of cytochrome P450 

Cytochromes P450 catalyse a vast number of reactions in nature. During their 

catalytic activity, electrons are sourced from nicotinamide adenine dinucleotide phosphate 

(NADPH), or nicotinamide adenine dinucleotide (NADH) for reductive cleavage of oxygen 

(O2) bound to heme-Fe resulting in insertion of one oxygen atom into the substrate at the 

final stage, hence these enzymes are called monooxygenase. Most of the cytochromes 

P450 interact with one or more redox partners for the transfer of electrons from NAD(P)H. 

For example, the membrane bound adrenal mitochondrial P450s use adrenodoxin 

reductase (flavin adenine dinucleotide (FAD) containing) and adrenodoxin (2Fe-2S 

containing) for electron transfer from NAD(P)H (Ohashi & Omura, 1978; Omura et al., 

1966), while the liver microsomal P450s use FAD and FMN (flavin mononucleotide) 

containing reductase for transfer of electrons from NAD(P)H (Black & Coon, 1982; Iyanagi 

& Mason, 1973). The first bacterial cytochrome P450 to be isolated came from 

Pseudomonas putida (P450cam, CYP101A1). This enzyme catalyzes NADH-dependent 

oxidation of camphor (Bradshaw et al., 1959; Hedegaard & Gunsalus, 1965). The 

cytochrome P450cam requires a soluble P450 reductase system comprised of 

putidaredoxin reductase (FAD containing, PdR) and putidaredoxin (2Fe-2S containing, 

PdX) similar to mitochondrial ones (Katagiri et al., 1968). Later, the first self-sufficient, 

P450-reductase fusion in a single polypeptide chain, the cytochrome P450BM3 (CYP102) 

was found in Bacillus megaterium (Narhi & Fulco, 1986, 1987). 

With the increasing numbers of cytochromes P450 that have been found, different 

types of these redox partners and electron transfer systems have been discovered. Most 

of the cytochromes P450 belong to two main classes: the mitochondrial/ bacterial type 

and the microsomal type. In addition, with consideration of the protein components 
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involved in electron transfer reactions, cytochromes P450 have been divided into the 

following classes by Hannemann et al. (Hannemann et al., 2007). 

Class I 

Class I P450s are found in bacteria and in the membrane of mitochondria in 

eukaryotes. This class of cytochromes P450 has three separate protein components: (1) 

the cytochrome P450, (2) a flavin adenine dinucleotide (FAD) containing reductase, which 

accepts electrons from NAD(P)H or NADH and reduces the second component of the 

system, (3) an iron-sulfur protein (2Fe-2S, ferredoxin), which shuttles the electron from 

the flavoprotein to the cytochrome P450 to reduce heme-iron at two points in the catalytic 

cycle. All these three proteins are soluble proteins, in the case of bacteria (Figure 1.2, Ia). 

In eukaryotes, ferredoxin reductase and cytochrome P450 are both membrane bound to 

the inner membrane of mitochondria, while the ferredoxin component is soluble in the 

mitochondrial matrix (Figure 1.2, Ib) (Hannemann et al., 2007). Plants and fungi have 

many microsomal cytochromes P450 (class II, see below), however, no mitochondrial 

P450 has been reported (Omura & Gotoh, 2017). 

Most of the bacterial cytochromes P450 use nicotinamide adenine dinucleotide 

(NADH) as a source of electrons. Ferredoxin reductase (FAD containing) and ferredoxin 

(2Fe-2S containing) transfer the electron to cytochrome P450 (Bernhardt, 2006; Poulos, 

2014). However, in a few bacterial species, ferredoxin contain other types of iron-sulfur 

clusters such as 3Fe-4S or 4Fe-4S (Duée et al., 1994; Mutter et al., 2019). Bacterial 

cytochromes P450 play important roles in catabolism of organic compounds used as 

carbon sources by these bacteria (Grogan et al., 1993; Katagiri et al., 1968), production 

of antifungal and antibiotic compounds (Beilen et al., 2005; Fjærvik & Zotchev, 2005), and 

metabolism of xenobiotics (Taylor et al., 1999). Cytochrome P450cam (CYP101A1), which 

was isolated from the soil bacterium Pseudomonas putida, is class I cytochrome P450. 

The flavoprotein – putidaredoxin reductase (FAD containing, PdR) and putidaredoxin 

(iron-sulfur cluster (2Fe-2S) containing, PdX) are involved in transferring two electrons 

one at a time to the cytochrome P450cam. Pseudomonas putida uses D-camphor as a 

carbon source. Cytochrome P450cam catalyzes the first step of D-camphor breakdown, 

producing 5-exo-hydroxycamphor. This process was demonstrated to be both regio- and 

stereoselective (Katagiri et al., 1968; Poulos, 2014). The structure of cytochrome P450cam 

was the first cytochrome P450 structure to be determined using X-ray crystallography. 
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Later, the structures of P450cam redox partner proteins, putidaredoxin (PdX) and 

putidaredoxin reductase (PdR) were also obtained (Haniu et al., 1982; Poulos et al., 1985; 

Sevrioukova et al., 2003, 2004). Other bacterial cytochromes P450 that belong to class I 

include: CYP105A1 (P450SU-I) from Streptomyces griseolus (which can hydroxylate 

Vitamin D3) (Sawada et al., 2004) and CYP107H (P450BioI) from Bacillus subtilis (involves 

in oxidation of a fatty acid during biotin synthesis) (Green et al., 2001). 

Mitochondrial cytochromes P450 play important roles in the biosynthesis of vitamin 

D and steroid hormones. The adrenal cytochromes P450 use iron-sulfur (2Fe-2S) 

containing ferredoxin and FAD-containing, NADPH-dependant ferredoxin reductase, 

referred as adrenodoxin (AdX) and adrenodoxin reductase (AdR) respectively, to transfer 

electrons from NADPH. Examples of class I enzymes include CYP11A1 (cytochrome 

P450SCC, which is involved in the biosynthesis of pregnenolone by side-chain cleavage of 

a cholesterol molecule), CYP11B1 (11-deoxycortisol oxidation to cortisol), CYP11B2 

(Corticosterone 18-hydroxylation), CYP24A1 (25-hydroxyvitamin D3 24-hydroxylation), 

CYP27A1 (Sterol 27-hydroxylation), and CYP27B1 (Vitamin D3 1-hydroxylation) 

(Bernhardt, 2006; Guengerich, 2015). 

Though bacterial and mitochondrial cytochromes P450 have similar protein 

components, there are considerable differences in these proteins. For example, 

CYP101A1 and CYP11A1 are not able to substitute their respective ferredoxin proteins in 

order to perform the catalysis (Schiffler & Bernhardt, 2003). 

Class II 

Class II cytochromes P450 are membrane bound proteins found in the 

endoplasmic reticulum (ER) of eukaryotes. The NADPH-dependent cytochrome P450 

reductase (CPR), which contains both FAD and FMN domains, transfers the electrons 

from NADPH to cytochrome P450 (Figure 1.2, II). Cytochrome P450 reductase (CPR) has 

an N-terminal FMN-containing domain similar to bacterial flavodoxin, and a C-terminal 

domain with FAD-containing ferredoxin NADP+ reductase and NADH-cytochrome b5 

reductase (Porter & Kasper, 1986). 

Class II cytochromes P450 are the most common ones in eukaryotes. In mammals, 

they are involved in a variety of catalytic reactions including oxidative metabolism of 

steroids (CYP1B1, CYP7A1, CYP39A1, CYP51A1), fatty acids (CYP2J2, CYP4A11, 
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CYP4B1), vitamins (CYP2R1, CYP26A1, CYP26B1), as well as exogenous compounds 

such as therapeutic drugs and environmental toxins (CYP1A1, CYP1A2, CYP2A6, 

CYP2B6, CYP2C8, CYP3A5, CYP3A7) (Guengerich, 2015). In plants, class II 

cytochromes P450 play role in secondary metabolism as well as synthesis of different 

compounds (phytoalexins) for their defence mechanism, fatty acids, pigments and 

hormones (Mizutani & Sato, 2011; Schuler, 2015). Fungal cytochromes P450 play role in 

synthesis of mycotoxin and detoxification of phytoalexins (Hannemann et al., 2007; 

Schuler & Werck-Reichhart, 2003). Cytochromes P450 in insect play important tasks from 

synthesis degradation of ecdysteroids (arthropod steroid hormones) (Kayser et al., 1997), 

pheromones (Ahmad et al., 1987) and juvenile hormones (Sutherland et al., 2000) to 

metabolism of foreign chemicals (Andersen et al., 1994; Stevens et al., 2000). 
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Figure 1.2  Schematic outline of different P450 systems. (Ia) Class I, bacterial 
system; (Ib) class I, mitochondrial system; (II) class II microsomal 
system; (III) class III, bacterial system (example P450cin, CYP176A1); 
(IV) class IV, bacterial thermophilic system; (V) class V, bacterial 
[Fdx]–[P450] fusion system; (VI) class VI, bacterial [Fldx]–[P450] 
fusion system; (VII) class VII, bacterial [PFOR]–[P450] fusion 
system; (VIII) class VIII, bacterial [CPR]–[P450] fusion system; (IX) 
class IX, soluble eukaryotic (P450nor); (X) independent eukaryotic 
system (example P450TxA). 

Abbreviated protein components contain following redox centers: Fdx (iron–sulfur-cluster); FdR, 
Ferredoxin reductase (FAD); CPR, cytochrome P450 reductase (FAD, FMN); Fldx, Flavodoxin 
(FMN); OFOR, 2-oxoacid:ferredoxin oxidoreductase; PFOR, phthalate-family oxygenase 
reductase. 
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Class III 

One example of the novel class III cytochrome P450 is CYP176A1 (P450cin), which 

was isolated in 2002 from Citrobacter braakii, a gram-negative bacterium. It resembles the 

class I bacterial cytochrome P450 system in terms of having three-components: a FAD-

containing ferredoxin/flavodoxin reductase which transfers the electrons from NAD(P)H to 

the second redox protein, and the protein then transfer the electrons to cytochrome P450. 

This second mediator protein is suggested to be a flavodoxin (flavin containing redoxin) 

referred as cindoxin (Figure 1.2, III) (Hawkes et al., 2002; Meharenna et al., 2004). While 

most other bacterial and mitochondrial cytochromes P450 in class I have iron-sulfur 

containing ferredoxin proteins, in this class the transfer involves only flavoproteins. In 

comparison to Class II cytochromes P450 (microsomal), where both FAD and FMN-

containing components are fused together, this novel cytochrome P450 uses two separate 

FAD-containing flavodoxin reductase and FMN-containing flavodoxin. Thus, cytochrome 

P450cin was the first example to use FMN-containing flavodoxin  (Meharenna et al., 2004). 

Cytochrome P450cin (CYP176A1) oxidizes cineol, a monoterpene which is used as carbon 

source by Citrobacter braakii (Hannemann et al., 2007). 

Class IV 

Members of class IV are cytochromes P450 from thermophilic organisms. CYP119 

was the first member of this class, isolated from acidothermophilic archaeon Sulfolobus 

acidocaldarius  (Rabe et al., 2008; Wright et al., 1996), shows stability at high temperature 

and pressure (TM = 91°C, up to 200 MPa) (Chang & Loew, 2000; Koo et al., 2000; McLean 

et al., 1998; Park et al., 2002). CYP119 has two potential redox partners: a ferredoxin and 

a non-NAD(P)H-dependent 2-oxoacid:ferredoxin oxidoreductase (OFOR). The systems 

from S. tokodaii and S. solfataricus have shown efficient redox chain (Figure 1.2, IV) 

(Fukuda et al., 2001; Nishida & Ortiz de Montellano, 2005; Puchkaev & Ortiz de 

Montellano, 2005). CYP119A1 (S. acidocaldarius), Cytochrome P450ST (CYP119A2, S. 

tokodaii) and CYP175A1 (Thermus thermophilus) are three examples of P450s in this 

class (Nishida & Ortiz de Montellano, 2005; Oku et al., 2004; Puchkaev & Ortiz de 

Montellano, 2005; Rabe et al., 2008; Yano et al., 2003). 

Class V 

The first example of a class V cytochrome P450 is CYP51 (MC-CYP51FX) from 

Methylococcus capsulatus. This cytochrome P450 is fused to an iron-sulfur (3Fe-4S) 
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containing ferredoxin, via an alanine rich linker at the C-terminus of the cytochrome P450, 

which makes it different from class I bacterial cytochromes P450. The electrons are 

transferred from NADPH dependent ferredoxin reductase (Figure 1.2, V). Using the redox 

partners, the cytochrome P450 (MCCYP51FX) catalyzes 14α-demethylation of sterols 

(Hannemann et al., 2007; Jackson et al., 2002). 

Class VI 

The class VI cytochrome P450 system comprises an NAD(P)H dependent FAD-

containing flavodoxin reductase and flavodoxin (FMN, Fldx) – P450 – fusion protein, which 

makes it different from other cytochrome P450 classes (Class III and Class V) (Figure 1.2, 

VI) (Seth-Smith et al., 2002). The example of class VI P450s is the cytochrome P450 from 

Rhodococcus rhodochrous strain 11Y (Xp1A), where the cytochrome P450 is fused with 

flavodoxin with its N-terminus. This cytochrome P450 could be responsible for the 

degradation of military grade explosive hexahydro-1,3,5-trinitro-1,3,5-triazole (RDX) 

(Hannemann et al., 2007; Rylott et al., 2006; Seth-Smith et al., 2002). 

Class VII 

In this class, also from bacteria, a cytochrome P450 is fused to a phthalate-family 

dioxygenase reductase domain (PFOR), which makes it a unique cytochrome P450 

system (Figure 1.2, VII). CYP116B2 (P450RhF) from Rhodococcus sp. strain NCIMB 9784 

is an example of class VII. The P450RhF reductase part shows three distinct functional 

parts: a NADH binding, a FMN-binding domain and a ferredoxin (2Fe-2S) domain. The C-

terminal reductase domain and N-terminal cytochrome P450 domain are separated by 16 

amino acids (Roberts et al., 2002). This NADH-utilizing system resembles the family of 

phthalate oxygenase reductase enzymes, where electrons are transferred from an 

electron donor via FMN and the iron-sulfur [2Fe-2S] reductase domain to cytochrome 

P450 domain. P450RhF is capable of utilizing both NADH as well as NADPH for electron 

source (Hannemann et al., 2007; Hunter et al., 2005; Roberts et al., 2002, 2003). 

Class VIII 

Class VIII cytochromes P450 are another example of catalytically self-sufficient 

monooxygenases. In a single polypeptide chain, the P450 domain is fused to a eukaryotic-

like diflavin reductase partner – cytochrome P450 reductase (CPR) (Figure 1.2, VIII). 

Example of this class is cytochrome P450BM3 (CYP102A1) from a soil bacterium Bacillus 
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megatarium, which catalyses the hydroxylation of fatty acids (Miura & Fulco, 1974; Narhi 

& Fulco, 1986). The N-terminus of the cytochrome P450 domain is fused via a short protein 

linker to its NADPH cytochrome P450 – reductase. The reductase domain contains 1 

equivalent of each FMN and FAD, which makes it resemble mammalian cytochromes 

P450 (Narhi & Fulco, 1987). Electrons are transferred one at a time from primary electron 

donor (NADPH) via FAD and FMN to cytochrome P450 (Narhi & Fulco, 1987; Ost et al., 

2003). 

Two other examples of class VIII cytochromes P450 are CYP102A2 and 

CYP102A3 from B. subtilis. CYP102A2 and CYP102A3 are also involved in the 

hydroxylation of unsaturated and branched fatty acids (Gustafsson et al., 2004). 

CYP505A1 (P450foxy) isolated from Fusarium oxysporum also resembles CYP102A1, 

and involves in hydroxylation of fatty acids (Hannemann et al., 2007; Nakayama et al., 

1996). 

Class IX 

This class of cytochrome P450 is a totally different case among heme-thiolate 

proteins. An example is nitric oxide reductase (P450nor, CYP55I which was isolated from 

a fungus Fusarium oxysporum (Kizawa et al., 1991). This cytochrome P450 catalyzes the 

unique reduction of nitric oxide (NO) using NADH only without using any other redox 

partner to produce nitrous oxide (N2O) and a water molecule from two molecules of nitric 

oxide (Figure 1.2, IX). Under low oxygen conditions, CYP55 plays an important role in 

denitrification (Daiber et al., 2005; Hannemann et al., 2007; Takaya et al., 1999).  

Class X 

Cytochromes P450 of Class X do not require separate redox partners or a primary 

source of electrons such as NAD(P)H. These cytochromes P450 accept acyl 

hydroperoxides as a substrate and use an independent intermolecular oxygen transfer 

system to oxidise the substrate. Allene oxide synthase (AOS, CYP74A), hydroperoxide 

lyase (HPL, CYP74B and CYP74C) and divinyl ether synthase (DES, CYP74D) from the 

CYP74 family are examples of plant-based cytochrome P450s present in membranes of 

chloroplasts (Figure 1.2, X) (Froehlich et al., 2001; Itoh & Howe, 2001; Shibata et al., 

1995). These cytochromes P450 are involved in the synthesis of oxylipins (oxygenated 

fatty acids) which are important in signalling pathways in plants (Froehlich et al., 2001). 
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Other examples of class X are prostacyclin synthase which catalyzes the synthesis of 

prostacyclin from isomerization of prostaglandin H2 (PGH2), and thromboxane synthase 

(TXAS, CYP5A1) which is involved in the synthesis of thromboxane A2 from prostaglandin 

H2 (Hannemann et al., 2007; Haurand & Ullrich, 1985; Hecker & Ullrich, 1989; Wu & Liou, 

2005). 

1.1.3. Type of reactions catalyzed by cytochromes P450 

Cytochromes P450 activate molecular oxygen, to incorporate one oxygen atom 

into an organic substrate and use the other oxygen atom for the production of a water 

molecule (Denisov et al., 2005). There are a variety of oxidation reactions catalysed by 

cytochromes P450 including hydroxylation of aliphatic carbon (C–H bond), epoxidation of 

alkenes (C=C bond), O-, and N-dealkylations, sulfoxidation and many others.  

Hydroxylation of aliphatic carbon (C–H bond) 

The most common reaction catalyzed by cytochromes P450 is the hydroxylation 

of hydrocarbons. During this reaction, a C–H bond in the substrate is broken, and an 

oxygen atom is inserted to produce an alcohol (C–O–H) (Scheme 1.1). The C–H bond 

dissociation energies of primary, secondary, tertiary, benzylic or allylic carbon are between 

88-105 kcal/mol (Blanksby & Ellison, 2003). Cleavage of these type of C–H bond and their 

oxidation reactions are catalyzed by P450s very effectively (Benveniste et al., 1982; Gelb 

et al., 1982; Groves et al., 1978; Maier et al., 2001). For regio- and stereoselectivity of 

oxidation reactions catalyzed by P450s, steric hinderance and orientation of the molecule 

in the substrate binding pocket of P450s above the heme moiety are important (Ortiz de 

Montellano, 2015). Examples of hydroxylation reactions are the oxidation of D-(+)-

camphor, limonene, linalool and myristic acid by CYP101A1, CYP345E, CYP111A1 and 

CYP102A1 respectively (Table 1.1). 
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Table 1.1  Hydroxylation of aliphatic carbon (C–H bond) 

Entry Reported reactions by P450s Reference 

1 

 

(Gelb et al., 1982; 
Prasad et al., 2011) 

2 

 

(Keeling et al., 2013) 

3 

 

(Agudo et al., 2015) 

4 

 

(Ullah et al., 1990) 

5 

 

(Narhi & Fulco, 1986) 

 

Alkene epoxidation 

The insertion of an oxygen atom into carbon-carbon π bond of an alkene by 

cytochrome P450 results in epoxide formation (Chiu et al., 2019; Gelb et al., 1982; 

Hagmann & Grisebach, 1984; Jin et al., 2003; Lin et al., 2014; Ruettinger & Fulco, 1981; 

Sauveplane et al., 2009). The alkene stereochemistry is retained due to concerted 

mechanism of oxygen insertion by P450s. For example, cis alkene gives cis-epoxide 

(Table 1.2). 
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Table 1.2  Epoxidation of carbon-carbon π bonds (C=C bond) 

Entry Reported reactions by P450s Reference 

1 Epoxidation of alkene 
 

 

(Sauveplane et al., 
2009) 

2 Epoxidation of alkene 
 

 

(Born et al., 2002) 

3 Epoxidation of alkene 
 

 

(Ilie et al., 2015) 

4 Epoxidation of arene and hydride (H-) shift 
 

 

(Meesters et al., 
2009) 

 

Arene epoxidation and hydride (H-) shift 

The epoxidation of p-cymene is catalysed by three different cytochromes P450 

(CYP1A2, 2A6 and 3A5), and the resulting intermediate undergoes a hydride shift (an 

intramolecular 1,2-hydride migration to restore the aromatic system) to yield thymol (Table 

1.2, entry 4) (Meesters et al., 2009). 

Dealkylation of heteroatoms 

Substrates that contain a heteroatom (N, O) attached to an alkyl group, have 

shown to undergo dealkylation upon oxidation by cytochrome P450. Such an oxidation 

reaction results in a dealkylated heteroatom-containing compound and an aldehyde 

(Table 1.3, entry 1 and 2) (Bell et al., 2008; Chowdhury et al., 2010; Meyer et al., 2014; 

Miwa et al., 1980; Nordblom et al., 1976; Smith & Mortimer, 1985). 
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Table 1.3  Demethylation and dehydrogenation reaction catalyzed by P450s 

Entry Reported reactions by P450s Reference 

1 O-dealkylation 
 

 

(Bell et al., 2008) 

2 N-dealkylation 
 

 

(Chowdhury et al., 
2010) 

3 Dehydrogenation 
 

 

(Guengerich & 
Kim, 1991) 

4 Dehydrogenation 
 

 

(Guan et al., 1998) 

5 Dehydrogenation/ dehydration 
 

 

(Whitehouse et al., 
2008) 

 

Dehydrogenation of saturated alkanes 

Cytochromes P450 are known for hydroxylation of alkanes. On the other hand, 

desaturation (dehydrogenation) reactions catalyzed by P450s are also reported (Di Nardo 

et al., 2007; Guengerich & Böcker, 1988; Ji et al., 2015). Ethyl carbamate is converted to 

vinyl carbamate by CYP2E1 (Guengerich & Kim, 1991). CYP2E1 and CYP4B1 catalyze 

the desaturation reaction of lauric acid, with the removal of hydrogen at the ω-1 position 

to produce a terminally unsaturated fatty acid (Table 1.3, entry 4) (Guan et al., 1998). The 
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possible dehydration of P450 catalyzed hydroxylated products has also been reported 

(Table 1.3, entry 5) (Whitehouse et al., 2008). 

Baeyer-Villiger oxidation 

The oxidation reaction of a ketone to an ester by inserting an oxygen atom into the 

carbon-carbon bond is referred as Bayer-Villiger oxidation. An example of a P450-

catalyzed Baeyer-Villiger oxidation is the conversion of castasterone to brassinolide in the 

plant Arabidopsis thaliana catalyzed by CYP85A2. In tomato, the same oxidation is 

catalyzed by CYP85A3 (Table 1.4). Brassinolide plays role in plant growth (Kim et al., 

2005; Nomura et al., 2005). 
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Table 1.4  Baeyer-Villiger oxidation, sulfoxidation and dehalogenation by 
P450s 

Entry Reported reactions by P450s Reference 

1 Baeyer-Villiger oxidation 

 

(Kim et al., 
2005; 
Nomura et 
al., 2005) 

2 Sulfoxidation 
 

 

(Wang et 
al., 2017) 

3 Dehalogenation 
 

 

(Castro et 
al., 1985) 

4 Dehalogenation 
 

 

(Li & 
Wackett, 
1993; 
Walsh et 
al., 2000) 

 

Sulfoxidation by P450s 

Oxidation of a sulfur atom in a sulfur containing compound can be catalyzed by 

P450 to produce a sulfoxide product. CYP102A1 catalyzes the enantioselective sulfur 

oxidation in 1-thiochroman-4-ones (Table 1.4, entry 2) (Wang et al., 2017; Watanabe et 

al., 1982, 1982). 

Dehalogenation 

The reductive dehalogenation of carbon tetrachloride to trichloromethane was 

shown to be catalyzed by CYP101A1 (P450cam) under anaerobic conditions. The enzyme 
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was also shown to convert hexachloroethane to tetrachloroethane by a two electron 

reduction under anaerobic conditions (Castro et al., 1985; Li & Wackett, 1993; Walsh et 

al., 2000). Dehalogenation of tetrachloroethene to trichloroacetaldehyde was shown to be 

catalyzed by CYP1A2 under aerobic conditions (Table 1.4) (Yanagita et al., 1997). 

1.1.4. Catalytic cycle of cytochromes P450 and role of redox partners 

All members of the P450 super-family that are monooxygenases operate by the 

same catalytic cycle, which involves the reduction of dioxygen (O2) and the insertion of 

one oxygen atom into substrate along with reduction of the other oxygen to water (Figure 

1.3). However, there are subtle differences in specificity with which these enzymes bind 

with their substrate(s) or redox partner, or in the efficiency with which they utilize 

atmospheric O2 and electrons, in order to complete the oxidation of substrate in the 

catalytic cycle (Ortiz de Montellano, 2015). CYP101A1 (P450cam), being the first P450 to 

be isolated and characterized structurally, has been studied intensively as a model of 

P450 catalysis (Poulos et al., 1982, 1985). Thus, the catalytic cycle of this enzyme is 

presented here. 

In the resting state of the enzyme, a water molecule occupies the active site as a 

sixth ligand on the axial position of the heme-iron (FeIII) opposite to the cysteine thiolate, 

making it hexacoordinated (Figure 1.3, 1). In this state, the FeIII is predominantly low spin. 

The binding of a substrate (D-camphor) displaces the axial water molecule from the active 

site and makes heme-iron (FeIII) pentacoordinated (Figure 1.3, 2). This displacement of 

water by D-camphor results in transition of the ferric iron (FeIII) from low spin (S = 1/2) to 

high spin (S = 5/2) (Primo et al., 1992; Sligar, 1976) and in a change in the redox potential 

of ferric iron from -303 mV to -173 mV. This enables putidaredoxin (PdX, redox potential 

-240 mV) to bind and transfer the first electron to P450cam to produce ferrous iron (FeII) 

(Figure 1.3, 3). Thus, one of two electrons from NADH is transferred to P450 via 

putidaredoxin reductase (FMN containing, PdR) and putidaredoxin (2Fe-2S containing, 

PdX), to P450cam (Figure 1.4) (Pochapsky & Pochapsky, 2019). 

The reduced heme-iron accepts and ligates to molecular oxygen (O2) to from a 

ferric superoxo species (4), which gives a ferric peroxo complex (5) upon transfer of a 

second electron from reduced PdX. A proton transfer to peroxo species (5) makes the 

hydroperoxo species, also known as Compound-0 (Cpd-0, Figure 1.3, 6). Asp251 and 
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Thr252 in P450cam play key roles in the efficient delivery of protons  to the distal oxygen of 

the peroxo (5) and hydroperoxo (6) complexes, through a water network (Schlichting et 

al., 2000; Vidakovic et al., 1998). Transfer of a second proton to the distal oxygen atom of 

Compound-0 (6), results in cleavage of O–O bond and departure of a water molecule, 

forming FeIV-oxo-porphyrin cation radical species known as Compound-I (Cpd-I, Figure 

1.3, 7) (Harris & Loew, 1998; Sligar, 2010). The cysteine-thiolate ligand of heme-iron plays 

an important role in cytochromes P450 during O–O cleavage to form compound-I (7) 

(Dawson et al., 1976; Murugan & Mazumdar, 2005; Sono et al., 1982). 

Compound-I either abstracts a hydrogen atom and forms a carbon radical (8) or 

else forms a sigma complex with substrate to give hydroxylated product. The hydrogen 

abstraction mechanism is referred as “oxygen-rebound”. The product is released and 

replaced by a water molecule giving FeIII-hexacoordinated species (Figure 1.3, 1) (Cook 

et al., 2016; Davydov et al., 2001; Rittle & Green, 2010). 
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Figure 1.3  Schematic representation of the catalytic cycle cytochrome P450. 
Species 1 – 9 are parts of the catalytic cycle. Substrate is 
represented here as RH, the bold horizontal lines on either side of 
Fe represent the porphyrin moiety and electrons (e-) are supplied 
from the redox partner PdX. Path “d” shows direct formation of 
high-valent compound I (Cpd-I) by oxidant such as m-CPBA. Path 
“a”, “b” and “c” show uncoupling reactions, wherein superoxide (a), 
hydrogen peroxide (b) or water are released and the substrate is not 
oxidized. 
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Figure 1.4  Electron transfer from NADH to P450cam via putidaredoxin reductase 
(PdR) and putidaredoxin (PdX); a class I cytochrome P450 system. 

 

Compound-I can be generated from the resting state of the enzyme (FeIII) using 

peroxide or peroxy acids such as m-chlorobenzoic acid (m-CPBA) (Figure 1.3, path ‘d’) 

(Egawa et al., 1994; Spolitak et al., 2006). It is compound-I (7) which is used to rationalize 

most of the reactions catalyzed by P450s (Sono et al., 1996). Compound-I is reported to 

show hydroxylation of alkanes and epoxidation of C=C bond in alkenes when m-CPBA is 

used to get Compound-I (Guengerich et al., 2016; Lonsdale et al., 2010; Rittle & Green, 

2010; Spolitak et al., 2006). However, compound-0, the iron (FeIII)-peroxo species (6) has 

also been reported to catalyze the epoxidation or oxidation reactions (Figure 1.5) (Jin et 

al., 2003; Kim et al., 2005). 
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Figure 1.5  The possible mechanism of epoxidation by Compound-0 (A) and 
Compound-I (B) of P450. 

 

Uncoupling reactions of P450s 

During catalytic cycle, once molecular oxygen (O2) is bound to heme-iron, 

dissociation can occur which will result in stopping of the catalytic cycle, thus, making the 

enzyme unsuccessful in catalyzing oxidation of the substrate. This is referred as 

“uncoupling”. Uncoupling can occur in three ways, (1) iron (FeIII)-superoxo species (4) can 

give superoxide radical (path a, one electron uncoupling), (2) iron (FeIII)- hydroperoxy 

compound-0 (6) gets protonated and hydrogen peroxide is released (path b, two electron-

uncoupling), and (3) compound-I can also give uncoupling of iron-oxo (Feiv =O, 7) upon 

double protonation and double reduction to give a water molecule (path c), taking the 

enzyme back to its resting state heme-FeIII (Figure 1.3). The coupling efficiency of a P450 

is important in determining the rate of catalysis of the enzyme (Altarsha et al., 2010; 

Davydov et al., 1999; Yoshioka et al., 2000). 
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Artificial shunting to generate Compound-I 

Compound-I (7) can be generated from the resting state heme-iron (FeIII)  by using 

peroxides or peroxy acids, such as m-chlorobenzoic acid (m-CPBA) (Prasad et al., 2011), 

iodosobenzene (Gelb, Heimbrook, et al., 1982), cumene hydroperoxide and p-

nitroperbenzoic acid (Nordblom et al., 1976) and others. (Figure 1.3, path ‘d’) (Egawa et 

al., 1994; Spolitak et al., 2006). In the usual catalytic cycle of P450, 2 electrons and 2 

protons are required to make compound-I (7) from resting state enzyme (FeIII). As peroxy 

acids or peroxides have two electrons and a proton on the dioxygen moiety, the enzyme 

heme-iron (FeIII) rearranges the proton from the proximal oxygen atom to the distal one to 

facilitate the hydrolytic cleavage of the O–O bond, creating compound-I (Figure 1.6) (Ortiz 

de Montellano, 2015). 

 

 

Figure 1.6  The possible mechanism of formation of Compound-0 (when R=H) 
and compound-1 by cleavage of O–O bond using peroxy acid or 
peroxide. 

 

1.1.5. Oxidation of (+)-D-camphor by cytochrome P450cam: regio- and 
stereoselectivity 

Cytochrome P450cam (CYP101A1) was isolated from a gram-negative soil 

bacterium Pseudomonas putida induced by D-camphor rich growth media (Hedegaard & 
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Gunsalus, 1965; Katagiri et al., 1968; Tyson et al., 1972). Cytochrome P450cam catalyzes 

the hydroxylation of camphor initiating the degradation cascade of the molecule, which is 

used as a carbon and energy source by P. putida (Katagiri et al., 1968). Since the first X-

ray crystallographic structure of P450 was solved by Poulos and coworkers, P450cam has 

been studied intensively as a model P450 to explore and understand the mechanism of 

catalysis by P450s (Poulos et al., 1982, 1985). Cytochrome P450-BM3 (CYP102A1) which 

resembles microsomal P450s, was the second P450 for which the X-ray crystallographic 

structure was obtained in 1993 (Ravichandran et al., 1993). Recently, 3D structures of 

camphor-bound and free cytochrome P450cam have also been resolved using NMR 

spectroscopy (Asciutto et al., 2011, 2012; Hiruma et al., 2013). 

Cytochrome P450cam structure 

The overall structural fold and topology is the same across all cytochromes P450, 

though there is less than 20% sequence identity among the genes of P450 superfamily 

(Hasemann et al., 1995). There are 12 helical segments, which are designated A–L and 

account for almost 40% of the sequence (414 amino acid residues in P450cam). The 

prosthetic heme is sandwiched between helix I on distal end and helix L on proximal side, 

and the heme-iron is bound to conserved cysteine residue (Cys357) on N-terminal end of 

helix L (Figure 1.7 and Figure 1.8). In other heme-containing proteins such as cytochrome 

c, hemoglobin, and myoglobin the sixth axial ligand to heme-iron is a conserved histidine 

on the C-terminal side of the proximal helix. (Poulos et al., 1985). 
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Figure 1.7  Structure of camphor-bound CYP101A1 (PDB entry 3L63, (Lee et al., 
2010)). Secondary structures are labeled as described by Pochapsky 
(Pochapsky & Pochapsky, 2019). Heme is shown as sticks (green) 
and substrate d-camphor in grey. (A) Top view (distal), (B) side view 
of P450cam. 
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Figure 1.8  Amino acid sequence of cytochrome P450cam with different helices 
(A – L) shown in different colors (Pochapsky et al., 2003). C357 
shown in blue at the N-terminus of Helix L. 

 

Cytochrome P450cam (CYP101A1) is 46.7 KDa protein, which catalyzes the 

oxidation of D-camphor regio- and stereoselectively to give 5-exo-hydroxycamphor and 5-

keto-camphor (in a 2nd round of oxidation), requires two additional proteins putidaredoxin 

(PdX) and putidaredoxin reductase (PdR) (Figure 1.4). P450cam is remarkable in using 

reducing equivalents from NADH with 99% coupling efficiency during catalytic cycle, and 

with a turnover rate > 2000 min-1 (Figure 1.3) (Pochapsky & Pochapsky, 2019). The 

cysteine residue (C357 in P450cam) serving as a thiolate ligand to heme-iron is conserved 

in all P450s with signature amino acid sequence FxxGx(H/R)xCxG (Figure 1.7 and Figure 

1.8) (Denisov et al., 2005; Raucy & Allen, 2001). The cysteine thiolate plays important role 
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in heterolytic O–O cleavage of the ferric (FeIII)-peroxide (Cpd-0, 6) to form iron-oxo 

species (Cpd-I, 7) during the catalytic cycle of P450, due to the electron-releasing nature 

of the thiolate ligand, it stabilizes the iron-oxo species (Cpd-I, 7) (Dawson et al., 1976; 

Murugan & Mazumdar, 2005; Ogliaro et al., 2002; Sono et al., 1982). Mutation of axial 

ligand cysteine to selenocysteine subtly modifies the structural and electronic properties 

of the enzyme resulting in decrease in the catalytic activity by 2 fold (Table 1.5, entry 7, 

C357U) (Aldag et al., 2009; Vandemeulebroucke et al., 2015). Mutating the cysteine 

residue results in low activity of P450cam (C357H) or completely inactive P450cam protein 

(C357M) (Table 1.5, entry 6) (Murugan & Mazumdar, 2005; Yoshioka et al., 2001). 

Another set of conserved amino acid residues common in P450s delivers protons 

for heterolytic cleavage of O–O bond during catalytic cycle. The distal oxygen in the 

peroxo-species (5) needs to be protonated in order to give the hydroperoxo species, 

compound-0 (6) and further to give compound-I (7, Figure 1.3). Asp251 and Thr252 deliver 

the protons during the catalytic cycle of P450cam through a network of water molecules 

held in place by H-bonding (Gerber & Sligar, 1992; Hishik et al., 2000; Nagano & Poulos, 

2005; Schlichting et al., 2000; Vidakovic et al., 1998; Wang et al., 2008). In Helix I of 

P450cam, the side chain OH of Thr252 makes a H-bond with the peptide oxygen of Gly248 

in the resting state. However, upon reduction and oxygen bonding to the heme-iron, 

Asp251 moves and the Thr252-G248 H-bond breaks, resulting in Thr252 positioning to 

donate an H-bond to the distal oxygen. This results in a widening of the kink in helix I, 

which enables two new water molecules to move in and interact with the distal oxygen to 

deliver the proton (Poulos, 2005). Mutations in Asp251 or Thr252 result in lower catalytic 

activity of P450cam (Table 1.5, entry 5) (Gerber & Sligar, 1992; Nagano & Poulos, 2005; 

Vidakovic et al., 1998; Wang et al., 2008). 
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Figure 1.9  H-bonding by D251 and T251 (in helix-I, backbone ribbon is shown in 
yellow color) through a water network and Heme–Fe–O2 complex in 
P450cam (proposed H-bonds are shown as yellow dotted lines). 
Camphor is shown in grey color, heme in green color and Y96 in 
cyan color (PDB 2A1M, (Nagano & Poulos, 2005)). 

 

There are two forms of P450cam: substrate-free (open) and substrate-bound 

(closed). The F-G loop acts as a gate for the camphor entry channel. Upon camphor 

binding to P450cam, large movement in helices F and G and in the F-G loop are observed, 

resulting in F-G loop sliding over helix I and closure of the substrate entry channel (Figure 

1.10) (Lee et al., 2010, 2011). Ser190 and Thr192 residues, which are present in the F-G 

loop, are suggested to recognize and direct the substrate (camphor) into the binding 

pocket (Table 1.5, entry 2) (Behera & Mazumdar, 2008). 

Stability of the heme prosthetic group is key in P450 catalytic activity. Mutation of 

Thr101, which lies in B’–C loop and makes H-bonding contact to the propionate group of 

the heme, results in destabilization of heme (Table 1.5, entry 1) (Manna & Mazumdar, 

2006). 
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Figure 1.10  Superimposed structures of the open (PDB entry 3L62 cyan color) 
and the closed (PDB entry 3L63, yellow color) forms of P450cam, 
camphor in color red (Lee et al., 2010). 

 

Putidaredoxin (PdX), which is a 2Fe-2S containing protein, binds to the proximal 

end of P450cam and induces changes in B’, C, F and G helices. PdX plays a role as an 

effector for turnover by P450cam, by shuttling the two electrons required for P450cam activity. 

While the first reduction of FeIII –S to FeII –S can be achieved by a suitable reductant, the 

second reduction requires presence of an effector (PdX) to form a PdX-P450-(O2 –FeIII –

S) complex (4) and to give peroxo species (5). In the absence of PdX-P450 complex, 

uncoupling can occur giving superoxide (O2
-.) and FeIII –S (path a, Figure 1.3) (Glascock 

et al., 2005; Lipscomb et al., 1976; Pochapsky et al., 2003). PdX binds to P450cam making 

the interactions between PdX–Asp38 and P450cam –Arg112, and PdX–Trp106 to Arg109 

and Asn116 of P450cam. This PdX binding results in movement (2-3 Å) in helix C towards 

PdX, coupled with movements of helices F and G (Tripathi et al., 2013). Mutating Arg112 

(R112C/K/M/Y) results in decrease in catalytic activity or completely diminished activity  of 

P450cam (Table 1.5, entry 2) (Koga et al., 1993; Unno et al., 1996). 
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Table 1.5  Amino acid residues and their effect on P450cam catalytic activity 

# Residue / Mutants Impact on structure or activity References 

1 T101V 
 
(T101 OH H-bonds with the 
propionate chain of heme) 

Decreased stability of the tertiary 
structure of the heme cavity in the 
substrate-bound mutant P450cam 

(Manna & Mazumdar, 2006) 

2 R112C/ K/ M/ Y 
 
(R109 and R112 are involved 
in the PdX binding site) 

R112 interacts with PdX and is involved 
in electron transfer. Mutation resulted in 
decreased activity. 

(Koga et al., 1993; Unno et 
al., 1996) 

3 S190D 
T192E 
 
(S190 and T192 are located 
in the F/G loop) 

T192E at F/G loop directs the substrate 
access channel of the enzyme. Though 
it is away from the active site, camphor 
is recognized at the surface and directed 
to active site. 

(Behera & Mazumdar, 2008) 

4 G248E/ D 
 
(G248 residue is close to 5-
methyl group of heme)  

Both show lower catalytic activity than 
WT. 
Only G248E shows partial covalent 
binding to heme in the presence of 
camphor. G248E – mutant protein 
digestions gave 5-hydroxyheme. 

(Limburg et al., 2005) 

5 D251N 
T252A/ I 
 
(D251, T252, K178 and 
R186 anchor a network of 
water molecules that helps to 
deliver protons for O-O 
cleavage in the catalytic 
cycle) 

D251N showed lower activity than wild 
type by 2 orders. 
T252I gave active site enlarged oxygen 
binding pocket – with no Hydrophilic 
OH-Thr252 resulting in decrease in 
catalytic activity than WT. 

(Gerber & Sligar, 1992; 
Hishik et al., 2000; Kim et al., 
2008; Nagano & Poulos, 
2005; Vidakovic et al., 1998; 
Wang et al., 2015; Wang et 
al., 2008) 

6 C357H/ M 
 
(axial ligand of heme-Fe, 
Thiolate ligand play key role 
in formation of compound I 
from compound 0) 

C357M – Change of redox potential of 
heme Fe from -173mV to +260mV. 
Inactive P450 protein and no 
spectroscopic signature of substrate 
binding or formation of reduced carbon 
monoxide complex were found. 

(Murugan & Mazumdar, 
2005; Yoshioka et al., 2001) 

7 C357U Catalytic activity decreases by 2 fold. (Aldag et al., 2009) 

8 L358P  
 
(next to C357 thiolate ligand) 

Mimics PdX-bound P450cam.  
L358P mutant promotes the electron-
release effect of the axial C357 thiolate 
ligand.  

(Karunakaran et al., 2011; 
Nagano et al., 2004; Tosha 
et al., 2004; Yoshioka et al., 
2000) 

9 L358A/ P 
K178G 
L358A-K178G 
L358A-K178G-D182N 

All mutants lost activity, and they 
showed no change from low spin to high 
spin upon substrate binding.  
P450 locked in low spin – no electron 
transfer to the triple mutant. 

(Batabyal et al., 2013) 
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(+)-D-Camphor oxidation by cytochrome P450cam 

Regio- and stereoselective oxidation of (+)-D-camphor (10) is catalyzed by 

cytochrome P450cam. This hydroxylation is the first step towards degradation of camphor 

which is used as carbon and energy source by P. putida (Katagiri et al., 1968). The product 

of a single hydroxylation, 5-exo-hydroxycamphor (11), can be further oxidized by P450cam 

to give 5-ketocamphor (12, Figure 1.11). 

 

 

Figure 1.11  Oxidation of camphor by P450cam: formation of 5-exo-
hydroxycamphor (11) and 5-ketocamphor (12). 

 

The amino acid residues in the binding pocket of P450cam play key roles in 

substrate orientation to give stereo- and regioselectivity. Tyrosine-96 (Y96), which lies on 

the C-terminus of helix B’, is a major contributor towards regioselective oxidation of 

camphor. Tyr96 makes an H-bond with the carbonyl group of camphor (Figure 1.12) 

(Atkins & Sligar, 1988). Other hydrophobic residues in the binding pocket of P450cam 

include F87 (B-B’ loop), L244, V247 and G248 (helix I), V295 (K-K’ loop), and V396 (after 

helix L, in the C-terminus of P450cam). These residues show weak hydrophobic interactions 

with camphor (Figure 1.13) (Bell et al., 2003). 
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Figure 1.12  The hydrogen bonding between camphor (grey in color) and 
Tyrosine-96 (Y96, shown in green color) present in Helix B’ 
(proposed H-bonds are shown as yellow dotted lines). (PDB 3L63, 
(Lee et al., 2010)). 
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Figure 1.13  Amino acid residues around camphor in the binding pocket of 
P450cam. Y96 makes an H-bond with the carbonyl group of camphor 
(PDB 3L63, visualized using Molecular Operating Environment-
MOE). Residues shown in purple are polar while residues in green 
are nonpolar. Residues and ligand atoms with light blue clouds are 
exposed to the solvent environment. 

 

1.1.6. Engineered P450cam and range of substrates 

Xenobiotic metabolizing hepatic P450s usually accept a vast range of substrates 

but are difficult to express in a recombinant host because of their membrane anchor. On 

the other hand, bacterial P450s usually have a narrow range of substrates and are easy 

to express in a recombinant host. Therefore, altering the topology of the active sites of 

bacterial P450s by mutation, such that they accept non-native substrates, is an obvious 

target for P450 engineering (Fasan, 2012; Wong et al., 1997). Due to early availability of 

structural information of P450cam (CYP101A1) and P450-BM3 (CYP102A1), and their high 

solubilities and expression in recombinant hosts, these bacterial P450s are most 

commonly studied for this purpose (Bernhardt, 2006). Rational designing (site-directed 

mutagenesis) and directed evolution (selection of desired mutants from a library of 
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randomly mutated genes), have both been used to create or select variants with modified 

properties (Chowdhury & Maranas, 2020; Fasan, 2012; French et al., 2002; Jones et al., 

2000; Wackett, 1998). 

P450cam mutations and substrate selectivity 

Cytochrome P450cam catalyzes the oxidation of its native substrate (+)-D-camphor 

regio- and stereoselectively at the 5-exo position to give 5-exo-hydroxycamphor (11, 

Figure 1.11) (Gelb, Heimbrook, et al., 1982; Li et al., 1995). P450cam has been engineered 

to accept a broad range of non-native substrates such as terpenes, alkanes, styrene and 

aromatic compounds (summarized in Table 1.6, Table 1.7 and Table 1.8). Amino acid 

residues which were suggested to be important residues in P450cam from early crystal 

structures have been mutated to study their role in P450cam catalysis (summarized in Table 

1.5). 

Depending upon the position of amino acid residues in the binding pocket of 

P450cam, Sligar and coworkers have divided them into three tiers. Residues in Tier 1 

(Thr101, Leu244, Gly248, Val295, and Asp297) are located just above the heme. Tier 2 

residues (Phe87, Tyr96, Val247, Ile395, and Val396) make a ring above tier 1, while Tier 

3 residues (Met184 and Thr185) cover the top of the active site (Figure 1.14) (Bell et al., 

2003; Loida & Sligar, 1993). Mutations of residues in the binding pocket have enabled the 

study of their effects on substrate selectivity and/ or P450cam activity (Table 1.6, Table 1.7, 

and Table 1.8). 

Tyrosine-96 of P450cam, whose phenolic OH makes a H-bond to camphor and 

directs oxidation towards position-5 of camphor, is one of the most common residues 

mutated in order to accommodate different substrates. New substrates include alkanes, 

terpenes or aromatic compounds. Other residues located in the binding pocket of P450cam 

are also targeted to change substrate selectivity and/ or P450cam activity (Figure 1.14). 

Tyrosine-96 is replaced by a non-H bonding residue (G, A, V, L, or F) to catalyze p-

hydroxylation of diphenylmethane, 1,1-diphenylethylene, of styrene to styrene oxide, as 

well as naphthalene, pyrene and benzocycloarene oxidation (Table 1.6) (Bell et al., 1997; 

England et al., 1998; Mayhew et al., 2002; Nickerson et al., 1997). 
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Figure 1.14  “Side-on" view of the cytochrome P450cam active site. Residues in 
Tier 1, shown in yellow, are positioned near the heme (T101, L244, 
G248, V295, and D297). Tier 2, shaded light gray, form the upper 
region of the binding pocket (F87, Y96, V247,I395, and V396), and 
Tier 3, shown in green, form the top region of the binding pocket 
(M184, and T185) (Bell et al., 2003; Loida & Sligar, 1993). Camphor is 
shown in light blue and heme is shown in green. (PDB 3L63). 

 

Oxidation reactions of benzylic carbons and of polycyclic aromatic compounds 

have been reported using P450cam mutants (Table 1.6) (Eichler et al., 2016; Harford-Cross 

et al., 2000; Loida & Sligar, 1993; Sibbesen et al., 1998). Oxidation of other substrates 

which have been reported to be catalyzed by P450cam mutants include monoterpenes (α-

pinene and limonene) (Bell et al., 2003; Bell et al., 2001), sesquiterpene (Valencene) 

(Sowden et al., 2005) and alkanes (propane, and butane) (Bell et al., 2003) (Table 1.7). 

Aromatic oxidation of polychlorinated benzene to give respective chlorinated phenol, and 

reductive dehalogenation of pentachloroethane have also been reported to be optimized 

using P450cam mutants (Table 1.8) (Jones et al., 2000; Manchester & Ornstein, 1995). 
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Table 1.6  Selected P450cam mutants with modified aromatic compounds as 
substrates 

# Mutants Substrates and reactions References 

1 T101M 
T101I 
T185V 
T185L 
T185F 
V247A 
V247M 
V295I 
T101M/T185F/V247M 

Ethyl benzene oxidation to 1-
phenylethanol (benzylic 
oxidation) 

(Loida & Sligar, 1993) 

2 Y96G 
Y96A 
Y96V 
Y96L 
Y96F 

Para-hydroxylation of 
diphenylmethane and 1,1-
diphenylethylene.  
Benzylcyclohexane to 
diastereoselective 4-trans-
bezylcyclohexanol. 

(Bell et al., 1997) 

3 Y96A 
Y96F 

Styrene oxidation to styrene 
oxide 

(Nickerson et al., 1997) 

4 Y96G 
Y96A 
Y96V 
Y96F 

Naphthalene and Pyrene 
oxidation 

(England et al., 1998) 

5 T185F 
T185L 

Oxidation of alkylbenzenes 
(benzylic oxidation) 

(Sibbesen et al., 1998) 

6 Y96A 
Y96F 
F87A/Y96F 
F87L/Y96F 

Polycyclic aromatic oxidation  (Harford-Cross et al., 
2000) 

7 Y96F Benzocycloarene oxidation (Mayhew et al., 2002) 

8 Y96F 
M184V/T185F 
L244F/V247L 
L244D/V247L 

Ethyl benzene oxidation to 1-
phenylethanol (benzylic 
oxidation) 

(Eichler et al., 2016) 
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Table 1.7  Selected P450cam mutants with modified alkanes and terpenes as 
substrates 

# Mutants Substrates and reactions References 

1 T185F Norcamphor oxidation (Paulsen et al., 1993) 

2 Y96F/V247L 
Y96A/V247A 

3-methylpentane and hexane 
oxidation 

(Stevenson et al., 1998) 

3 Y96F 
F87W/Y96F 
Y96F/V247L 
F87W/Y96F/V247L 

Terpene oxidation ((+)-α-
pinene, and (S)-limonene) 

(Bell et al., 2001) 

4 F87W 
Y96W 
T185F 
L244A 

2-ethylhexanol oxidation to 2-
ethylhexanoic acid  

(French et al., 2001, 
2002) 

5 Y96F 
F87W/Y96F 
Y96F/V247L 
F87W/Y96F/V247L 
F87W/Y96F/T101L 
Y96F/T101L/V247L 
F87W/Y96F/T101L/V247L 
F87W/Y96F/T101M/V247L 
F87W/Y96F/V247L/V295I 
F87W/Y96F/V247L/V396L 
F87W/Y96F/T101L/V247L/D297M 
F87W/Y96F/T101L/L244M/V247L 

Butane and propane oxidation 
to 2-butanol and 2-propanol  
 
(increasing hydrophobicity) 

(Bell et al., 2003) 

6 Y96F 
F87A/Y96F 
F87L/Y96F 
Y96F/V247L 
F87W/Y96F/V247L 
F87W/Y96F/L244A/V247L 
F87W/Y96F/L244A 
Y96F/L244A/V247L 

(+)-α-pinene oxidation (Bell et al., 2003) 

7 T252A Olefin epoxidation (Jin et al., 2003) 

8 F87A/Y96F 
F87L/Y96F 
F87A/Y96F/V247L 
F87A/Y96F/L244A 
F87V/Y96F/L244A 
F87A/Y96F/L244A/V247L 

Sesquiterpene ((+)-Valencene) 
oxidation 

(Sowden et al., 2005) 

9 Y96A 
F87A/Y96F 
V247A 
Y96F/V247A 

Protected cyclohexanol and 
protected 2-cychexenol – 
oxidation to 4-trans-
hydroxylation (less active 
V247A mutant) 

(Bell et al., 2014) 
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Table 1.8  Selected P450cam mutants with modified chlorinated compounds as 
substrates 

# Mutants Substrates and reactions References 

1 F87W Pentachloroethane (reductive 
dehalogenation faster than WT) 

(Manchester & 
Ornstein, 1995) 

2 Y96F 
F87W/Y96F 
F87W/Y96F/F98W 
F87W/Y96F/V247L 

Hydroxylation of polychlorinated 
benzene to give polychlorinated 
phenol 

(Jones et al., 2000) 

 

1.1.7. Method of enzyme mutations – Random or Targeted Approach 

To mutate a desired enzyme, the DNA sequence of that gene needs to be altered. 

The common approaches to produce DNA mutations are site-directed mutagenesis and 

random mutagenesis. 

Site-directed mutagenesis 

Site-directed mutagenesis, also called “rational mutagenesis” is commonly used 

to introduce mutations at definite sites of a particular DNA fragment. This is done via the 

polymerase chain reaction (PCR), followed by digestion of parent DNA template by 

restriction enzymes and transformation of mutated gene into expression host cells (Ahmad 

et al., 2018; Arkin, 2001; Ling & Robinson, 1997). Site-directed mutagenesis can be single 

site-directed mutagenesis or multiple site-directed mutagenesis depending upon the 

number of mutational sites (Liang et al., 2012). 

Random mutagenesis 

Random mutagenesis of a gene can be achieved by three methods: (1) Multi-

template PCR (Kalle et al., 2014), (2) error-prone PCR (McCullum et al., 2010), and (3) 

Sequence Saturated Mutagenesis (SeSaM) (Ruff et al., 2014; Wong et al., 2004, 2005). 

Random mutagenesis produces a large number of mutations in a gene, thereby creating 

a library. This library of mutant genes can be amplified using PCR, and mutant genes are 

transformed into expression host. To achieve the directed evolution, which mimics the 

natural evolution, the library of mutant genes (or expressed proteins) is screened for 

desired function or activity (Behrendorff et al., 2015; Packer & Liu, 2015). 
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Sequence Saturated Mutagenesis (SeSaM) is a method of random mutagenesis 

comprised of four steps. (1) Random insertion of a phosphorothioate nucleotide into the 

targeted gene using PCR followed by cleavage of the phosphorothioate bond, which 

create a pool of DNA fragments with random lengths. (2) Using terminal deoxynucleotidyl 

transferase (TdT), DNA fragments are elongated with universal bases at the 3’-OH termini 

of the fragments. (3) Modified DNA fragments from step (2) are elongated using PCR to 

their full-length gene. (4) Universal bases (added in step 2) are replaced by standard 

nucleotides followed by PCR to amplify and create a library of randomly generated DNA 

fragments that is ready to clone into an expression vector (Wong et al., 2004, 2005). 

We used P450cam mutants generated by SeSaM by a former PhD student, Brinda 

Prasad, and wild-type P450cam to study the dehalogenations of chlorinated persistent 

organic pollutant ‘endosulfan’ (Prasad, 2013). I also used site-directed mutagenesis to 

introduce mutations found in SeSaM generated mutants into a wild-type version of 

P450cam with a purification tag. 

1.2. Endosulfan: a polychlorinated persistent organic 
pollutant 

Many organic chlorinated compounds were introduced as insecticides in the 

1950s, and these include bicyclic compounds such as endosulfan (ES, 13), heptachlor, 

lindane, chlordane, aldrin, dieldrin and methoxychlor (Figure 1.15). Endosulfan, a 

hexachlorinated compound, was developed and introduced by Farbwerke Hoecbst AG in 

1954 under the trademark THIODAN ® (Maier-Bode, 1968). 
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Figure 1.15  Endosulfan and other selected chlorinated compounds . 

 

1.2.1. Endosulfan and its use  

Endosulfan (ES) exists as two diastereomers:  α-endosulfan and β-endosulfan 

(Figure 1.16) (Schmidt et al., 1997, 2001). Technical grade ES is a mixture of these two 

isomers, ranging from 2:1 to 7:3 ( : ). Endosulfan is effective against a broad range of 

insects and mites. Therefore, it had been used widely on a variety of crops, including 

cotton, cereals, potatoes, spinach, cauliflower, coffee, tea, apple, pear, raspberry and 

strawberry (Campbell et al., 1991; Grout & Richards, 1992; Hough-Goldstein & Keil, 1991; 

Weiss et al., 1991). The United States of America, Mexico, China, India, Brazil, and 

Australia were among the major users of ES from the 1950s until 2011. 
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 Figure 1.16  Structures of the endosulfan (ES) diastereoisomers, known as 

 − endosulfan and  − endosulfan. 

 

1.2.2. Endosulfan toxicity 

Endosulfan is accumulating in marine environments and is toxic to fish, algae and 

other marine life (Teklu et al., 2016; Wessel et al., 2007; Zhou et al., 2016). ES shows 

human neurotoxicity (Enhui et al., 2016) and affects estrogen and androgen receptors in 

females (Scippo et al., 2004; Vijayan et al., 2007), as well as delays male reproductive 

development (Saiyed et al., 2003). Adverse effects related to ES and its metabolites in 

human fetuses and newborn babies have been reported (Cappiello et al., 2014; Cerrillo et 

al., 2005). Human death due to acute toxicity after deliberate ingestion of ES has also 

been reported (Blanco-Coronado et al., 2008; Dawson et al., 2010). ES is effective against 

a wide range of insects, but due to this lack of specificity, it is also harmful to beneficial 

insects such as honey bees (Stanley et al., 2015). 

1.2.3. Endosulfan: a persistent organic pollutant (POP)  

Endosulfan has a long half-life in soil (α-ES 35 – 37 days and β-ES 104 – 265 

days) and is, therefore, persistent in the environment (Jimenez-Torres et al., 2016). ES 

has been accumulating in the food chain and has been persistent in the environment (Kelly 

et al., 2007; Kelly & Gobas, 2003; Muir et al., 2003) due to its hydrophobicity (log Kowα 4.74 

and log Kowβ 4.78) (Shen et al., 2005; Shen & Wania, 2005). Also, through passive 

transport in the atmosphere ES has been found in remote regions, as far south as 

Antarctica and as far north as the Arctic ocean (Kelly et al., 2007; Kelly & Gobas, 2003; 

Luek et al., 2017; Muir et al., 2003; Pozo et al., 2004, 2006; Weber et al., 2006). Therefore, 

ES is classified as a ‘Persistent Organic Pollutant (POP) according to the Stockholm 

Convention (http://chm.pops.int/). In 2011, 80 countries including most European 

http://chm.pops.int/
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countries, Australia and Brazil, agreed to ban ES usage (COP5 - Geneva, 3 May 2011 - 

United Nations Targets Widely-Used Pesticide Endosulfan for Phase Out, n.d.; Hogue, 

2011; Stockholm Convention, 2011). In the US, ES usage was phased out completely in 

2016 (Endosulfan Phase-out | Pesticides | US EPA, 2010). In Canada, ES sale was 

banned by the end of 2015 and its usage was by the end of 2016 (Health Canada, 2011). 

1.2.4. Degradation of endosulfan in nature and known metabolites 

Because endosulfan is persistent in the environment, its degradation pathways in 

nature have been studied. ES has a reactive sulfite ester moiety that can be oxidized to 

sulfate (Figure 1.17). Hydrolysis of ES sulfate in alkaline conditions (for example seawater) 

results in ES diol (14) formation (Kullman & Matsumura, 1996). In soil and aquatic 

environments, ES sulfate and ES diol are two major metabolites found along with ES 

(Harman-Fetcho et al., 2005; Lehotay et al., 1998; WAN et al., 2006) (Figure 1.17). Other 

metabolites formed by biodegradation of ES are: ES lactone (15), ES ether (16), ES 

hydroxyether (hemiacetal, 17), ES monoaldehyde (18) and dialdehyde (19), among others 

(Figure 1.17) (Hussain, Arshad, Saleem, & Khalid, 2007; Hussain, Arshad, Saleem, & 

Zahir, 2007; Kataoka et al., 2010, 2011; Kwon et al., 2002; Sutherland et al., 2000; 

Sutherland, Horne, Harcourt, et al., 2002; Sutherland, Horne, Russell, et al., 2002; 

Sutherland, Weir, et al., 2002; Walse et al., 2003). 
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Figure 1.17  Known endosulfan metabolites found in the environment. (Note that 
they all have the hexachloronorbornene moiety intact). 

 

However, known endosulfan biodegradation only targets the oxidation and/or 

elimination from the non-chlorinated part of the molecule, such that all known ES 

metabolites still have six chlorine atoms attached to the bicyclic core (Figure 1.17). These 

chlorinated metabolites are hydrophobic and can accumulate in the environment, like 
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endosulfan does. Therefore, dechlorination of endosulfan and/or its metabolites is highly 

desirable, but still not known in natural biodegradation systems. 

In previous work done in our group, a library of P450cam mutants by Sequence 

Saturation Mutagenesis (SeSaM)  was generated by a former PhD student Brinda Prasad 

(Kammoonah et al., 2018). The library was placed in an expression host and selected on 

minimal media containing technical endosulfan as a sole carbon source. Seven mutants 

of P450cam were selected. These P450cam mutants can convert ES (13) and ES diol (14), 

into dechlorinated products (substituted o-quinones and/ or catechols). Due to difficulty in 

isolating/detecting these product(s), we coupled them in the assay to 4-aminoantipyrine 

(4-AAP, 26), to give a highly colored polar adduct. 4-AAP is known to produce a colored 

product when it couples with quinones (Lülsdorf et al., 2015; Vojinović et al., 2004). WT 

P450cam and mutants were used to study the dehalogenations of chlorinated endosulfan 

diol (14). 

1.3. β-Phellandrene: a monoterpene 

1.3.1. Terpenes and type of terpenes 

Terpenes are the most chemically and structurally diverse family of natural 

products with more than 80,000 members. Terpenes, along with their oxidation products 

such as epoxides, alcohols, aldehydes and ketones, constitute one of the largest class of 

organic compounds found in all biological kingdoms, mainly in plants (Christianson, 2017; 

Dickschat, 2019). Terpenes play many roles in plant defence (Baldwin et al., 2006; Neilson 

et al., 2013; Phillips & Croteau, 1999), insect chemical communication (Bentz et al., 2015; 

Keeling, 2016; Schmidt, 1999) and, due to their distinct odor profiles, are useful in the 

flavouring and perfume industries (Berger, 2007). 

Terpenes have the general formula (C5H8)n and are biosynthesized from isoprene 

units in the form of isopentenyl pyrophosphate (IPP) and dimethylallyl pyrophosphates 

(DMAPs) (Figure 1.18). Coupling of these isoprene unites in ‘head-to-head’ and head-to-

tail’ fashion followed by a series of carbonium ion rearrangement produces structurally 

diverse and a wide variety of acyclic and cyclic terpenes (Dickschat, 2015; Koskinen, 

2012; Sowden et al., 2005). 
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Figure 1.18  Building blocks of terpenes: isoprene, isopentenyl and dimethylallyl 
pyrophosphate. 

 

Monoterpenes (C10) are formed by combination of two isoprene units (n = 2). 

Examples of monoterpenes are α-pinene, β-pinene (21), camphor (10), α-phellandrene, 

β-phellandrene (22), myrcene, menthol, terpinen-4-ol and others. Monoterpenes are more 

volatile than sesquiterpenes (C15) which are formed from tree isoprene units (n = 3). 

Combination of four isoprene units produces diterpenes. Sesterterpenes (C25), 

triterpenes (C30) and tetraterpenes (C40) are formed from five, six and eight isoprene 

units, respectively (Figure 1.19). Larger terpenoids are precursor for hormones and other 

biologically important compounds (Davis & Croteau, 2000; Koskinen, 2012). 
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Figure 1.19  Examples of terpenes: (A) monoterpenes, (B) other terpenes: 
sesquiterpene, diterpene, sesterterpene, triterpene and 
tetraterpenes. 
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1.3.2. β-Phellandrene and trees under attack by bark beetles 

Monoterpenes constitute a major class of organic compounds derived from plants, 

and they are found in all parts, such as flowers, fruits, roots and leaves of many plant 

species. These terpenes are abundantly present in many essential oils and oleoresins 

(Phillips & Croteau, 1999). Oleoresin is comprised variety of terpenoid compounds 

mobilized to wounded site of a tree. Although monoterpenes are biosynthesized from the 

same building blocks by different monoterpene synthases, their structures and functions 

vary based on their organism’s function and environmental needs (Davis & Croteau, 2000; 

Dickschat, 2011; Keeling & Bohlmann, 2006; Lafever & Croteau, 1993). Their most 

important role is associated with plant defense mechanisms, manifested as chemical 

signaling in plant-plant or plant-insect interactions (Allmann & Baldwin, 2010; Baldwin et 

al., 2006; Keeling & Bohlmann, 2006). 

β-Phellandrene (Figure 1.20, 22a and 22b) is a monoterpene abundantly present 

in water-fennel oil and Canada balsam oil (Berry et al., 1937; Macbeth et al., 1938). 

However, its concentration varies in oleoresins of different species of pine trees and plant 

essential oils (Council of Europe, 2008; Knudsen et al., 2006). 

β-Phellandrene concentration released by lodgepole pine (Pinus contorta) and 

whitebark pine (P. albicaulis) trees, is found to increase many fold (2.9 fold in lodgepole 

pine, 3.7 fold in whitebark pine) when trees are under attack by mountain pine beetle 

(MPB, Dendroctonus ponderosae) (Bentz et al., 2015). Mountain pine beetle is native to 

the western U.S.A and Canada and attacks a variety of pine trees including lodgepole 

pine, whitebark pine, western white pine, and others. Since 1990s, it has destroyed 50% 

of commercial lodgepole pine trees in British Columbia (14 million ha between mid 1990s 

to 2008). (Meddens et al., 2012; Parks Canada Agency, 2017; Safranyik et al., 2010). On 

the other hand, pine engravers (Ips pini and Ips latidens) are attracted towards (-)-β-

phellandrene, which acts as a kairomone (a chemical substance released by a member 

of one species, that serve as a chemical signal to another member of different species) 

(Bentz et al., 2015; Miller et al., 1991; Miller & Borden, 1990a, 1990b; Miller & Borden, 

2000). 
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Figure 1.20  β-phellandrene enantiomers, and other monoterpenes. 

 

1.3.3. Oxidized monoterpenes 

Plants use oxidized monoterpenes to repel, inhibit or reduce the success of 

invading herbivores and pathogens (Allmann & Baldwin, 2010; Baldwin et al., 2006; 

Keeling & Bohlmann, 2006). Herbivorous insects such as pine bark beetles use terpenoids 

produced by pine trees to choose the host and identify the weakened trees. To overcome 

the pine tree defensive mechanism, these predators can detoxify some terpenoids or use 

these metabolized terpenoids as pheromones to attract mates or signal others for a mass 

attack on pine trees. Cytochromes P450 are involved in detoxification or pheromone 

synthesis from monoterpenes (Aw et al., 2010; Byers, 1983; Chiu, Keeling, & Bohlmann, 

2019; Macías-Sámano et al., 1998; Sandstrom et al., 2006; Seybold et al., 1995). 

Examples of oxidized monoterpenes which are important for pine bark beetles or 

pine engraver for their chemical signaling during pine tree attack, include ipsenol, 

ipsdienol, verbenol and verbenone. Oxidized non-terpene compounds, such as frontalin 

and exo-brevicomin, also play a role in attack staging as aggregation signals  in 

Dendroctonus sp. (Table 1.9) (Barkawi et al., 2003; Keeling, 2016; Progar et al., 2014; 

Song et al., 2014). Ipsenol and ipsdienol are oxidized products of myrcene produced by 

Ips sp. (catalyzed by P450s) (Sandstrom et al., 2008). Ipsenol is a pheromone component 
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in Ips, and ipsdienol is a pheromone component in Ips and Dendroctonus, both signals to 

aggregate with other members of their species to overcome tree defenses with high 

numbers of attacking insects (Table 1.9). Cis-verbenol (an attractant pheromone in Ips), 

trans-verbenol (produced by Dendroctonus sp.), and verbenone (an anti-aggregation 

pheromone, and kairomone in different species), are oxidized products of α-pinene 

produced by mountain pine beetle (CYP6DE1) (Chiu, Keeling, & Bohlmann, 2019). 

 

Table 1.9  Examples of oxidized monoterpenes and non-terpene compounds, 
and their significance 

Entry  Monoterpenes Role  Reference 

1 

    

Aggregation pheromones 
released by male 
members of Ips sp. (Pine 
engraver, Ips pini) 

(Byers, 1982; D. Miller 
et al., 1991; Sandstrom 
et al., 2008; Seybold et 
al., 1995) 

2 

 

Aggregation pheromone 
in bark beetles 
(Dentroctonus sp.) 

(Byers, 1983; Chiu, 
Keeling, & Bohlmann, 
2019; Pitman et al., 
1968) 

3 

 

Attractant pheromone 
component in Ips sp.  

(Renwick et al., 1976; 
Wood et al., 1967) 

4 

 

Released by different 
species. 
Anti-aggregation signals 
with frontalin in bark 
beetles 

(Bedard et al., 1980; 
Byers & Wood, 1980; 
Lindren & Miller, 2002) 

 

 



49 

 

Figure 1.21  Examples of monoterpenes used in flavors, fragrances or 
medicines. 

 

We have synthesized β-phellandrene (22) to study oxidation of β-phellandrene 

catalyzed by wild-type and mutant P450cam to find new oxidized product(s). 

1.4. Objectives of my thesis  

My thesis revolves around two objectives: (1) the biodegradation and 

dehalogenations of the chlorinated compound endosulfan (13), and (2) efficient synthesis 

of β-phellandrene and its oxidation, catalyzed by cytochrome P450cam wild-type and 

mutants. 

In my first objective, the commonly found major metabolite of endosulfan, 

endosulfan diol (14) was used. The selected P450cam mutants can convert ES (13) and ES 

diol (14), into dechlorinated products (substituted o-quinones and/ or catechols). Due to 

difficulty in isolating/detecting these product(s), quinones/ catechol metabolites in the 

assay were coupled to 4-aminoantipyrine (4-AAP, 26), to give a highly colored polar 
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adduct. 4-AAP is known to produce a colored product when it couples with quinones 

(Lülsdorf et al., 2015; Vojinović et al., 2004). Kinetic studies with this coupled assay 

showed that the mutants, which had originally been selected on endosulfan (13), were 

significantly more effective at dechlorinating this and related compounds, such as the diol 

(14), than the wild-type. Based on these studies, we propose a mechanism by which the 

six chlorine atoms could be lost, after oxidation of the double bond. 

In my second objective, racemic β-phellandrene was synthesized in three steps, 

starting with β-pinene. Using racemic mixture of β-phellandrene its oxidation, catalyzed by 

wild-type or ES7 P450cam, was studied using an in vitro assay. 

1.5. Thesis layout 

This thesis is divided into five chapters. In this first chapter cytochromes P450, 

their catalysis and structures, endosulfan and β-phellandrene are introduced, and my 

objectives are described. In the second chapter, material and methods used in both 

projects, degradation of endosulfan and oxidation of β-phellandrene catalyzed by P450cam 

mutants are described. The third chapter contains the results and discussion of the 

endosulfan degradation project. The fourth chapter contains the results and discussion of 

the β-phellandrene synthesis and oxidation by P450s. The fifth chapter describes 

conclusions from this work and suggestions for future experiments that should be done to 

further identify and characterize the oxidized product of β-phellandrene catalyzed by 

P450s. 
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Chapter 2. Materials and methods 

Chemicals were of analytical grade and purchased from Sigma-Aldrich Canada 

(Oakville, Ontario). m-chloroperbenzoic acid (m-CPBA), endosulfan (a 2:1 mixture of  

and  isomers commonly used in the field) and 1,4,5,6,7,7-hexachloro-5-norbornene-2,3-

dicarboxylic anhydride (chlorendic anhydride), 4-aminoantipyrine (4-AAP), (-)-β-pinene, 

aluminum chloride (AlCl3), methyltriphenylphosphonium bromide Sodium 

bis(trimethylsilyl)amide and Peroxidase from Horseradish (Type VI, HRP) were purchased 

from Sigma-Aldrich (Oakville, ON, Canada). m-CPBA was purified by reported methods 

(Armarego, 2003). Solvent evaporations were done on a Buchi Rotavapor (R-200), 

connected to a liquid nitrogen trap and a laboratory vacuum (Piab® LVH40VK) system. 

Centrifugations were carried out with a Beckmann Avanti J-26 XPI centrifuge 

(Mississauga, ON, Canada), equipped with JLA 8.1000 and JA 25.50 rotors. NMR spectra 

were obtained using Bruker AVANCE II 400 MHz and/or 600 MHz instruments. Chloride 

ion release was measured using an Orion TM Chloride Electrode (9417BN) by Thermo 

Scientific (Ottawa, ON, Canada). Gas Chromatography-mass spectrometry (GC-MS) was 

performed on a Varian Saturn CP3800 GC, fitted with a 30 m SPB5 column (0.2 μm film 

thickness, 0.25mm internal diameter, Supelco, USA) and interfaced with a Saturn 2000 

ion trap mass spectrometer.  The GC oven was programmed as follows; 50 oC for 30 s; 7 

oC/min to 150 oC, held for 1 min; then 15 oC/min to 250 oC, held 8 min. The ion trap mass 

detector was used in electron impact (EI, 70 eV) mode and full scanned over range m/z 

50-550. Liquid chromatography-mass spectrum (LC-MS) was performed on an Agilent 

6210 TOF LC-MS with a Halo ® C18 column (2.7 m, 2.1 x 30 mm, Advance Material 

Technologies, USA). Gradient was used: solvent A (10 % ACN, 5 mM NH4OAc), and 

solvent B (90 % ACN, 5 mM NH4OAc) on a gradient of 0 % → 100 % solvent B over 5 min 

(flow rate of 0.6 mL/min). Acidified silica (silica Gel 60, 23-400 mesh) was prepared by 

adding into H3PO4 (1 ml per 100g of Silica) solution in methanol followed by decanting 

methanol and evaporation residual methanol using Rotavapor inside a fume hood. 

Site-directed mutagenesis of WT P450cam was performed using the QuickChange 

Lightening site-directed mutagenesis kit (Agilent, Santa Clara, California, US). Primers for 

mutations were obtained from Integrated DNA Technologies, Inc. (Coralville Iowa, US) 

and sequencing was done by Eurofins Genomics (Louisville, KY, US). 
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Docking simulations were preformed using Molecular Operating Environment 

(MOE 2019.01, Chemical Computing Group, Montreal, QC Canada) and images were 

prepared using PyMOL (The PyMOL Molecular Graphic System, Version 2.0 Schrodinger, 

LLC.). 

2.1. Endosulfan diol biodegradation 

2.1.1. Synthesis of substrates and standards 

Preparation of endosulfan lactone (ES lactone, 15) 

 

1,4,5,6,7,7-hexachloro-5-norbornene-2,3-dicarboxylic anhydride (chlorendic 

anhydride, 95 mg, 0.25 mmol) was dissolved in 2 mL of THF (anhydrous), and the solution 

was added slowly into a suspension of NaBH4 (20 mg, 0.5 mmol) in 1 mL of THF 

(anhydrous) at 4 oC and stirred for 20 minutes. Stirring was continued at room temperature 

for 15 hours. The reaction was quenched with 2 mL HCl (2 M). The product was salted 

out of the reaction mixture with NaCl (3 g). The organic product was extracted with ethyl 

ether (5 × 10 mL), and the extract was dried over Na2SO4. Solvent was evaporated and 

crude product was purified on a column of acidified silica, using solvent gradients (ethyl 

acetate 0 – 100 % with chloroform). The white solid endosulfan lactone 15 was obtained 

in 90 % yield (81 mg). 1H NMR (CDCl3, 400 MHz) δ 3.77 (d, J = 9.2 Hz, 1H), 3.85 (td, J = 

8.9 Hz, 3.2 Hz, 1H), 4.24 (dd, J = 10.9 Hz, 3.2 Hz, 1H), 4.44 (dd, J = 11.0 Hz, 8.7 Hz, 1H). 

13C NMR (CDCl3, 100 MHz) δ 48.24, 52.0, 65.51, 79.77, 80.53, 103.71, 130.36, 132.24, 

169.64. GC-MS (EI) m/z calculated for C9H4Cl6O2 [M+1]: 356.8.; found: 356.7. 
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Synthesis of endosulfan diol (ES diol, 14) 

 

A solution of endosulfan lactone 15 (81 mg) in 2 mL of THF (anhydrous) was added 

slowly into a suspension of LiAlH4 (20 mg, 0.5 mmol) in 1 mL of THF (anhydrous) at 4 oC 

and stirred. After 30 minutes, the temperature was increased, and stirring was continued 

at 40 oC for 6 hours. The reaction was quenched with ice (3 g) and acidified with 1 mL HCl 

(2 M). The crude organic product was salted out with NaCl (3 g). The organic product was 

extracted with ethyl ether (5 × 10 ml), and the extract was dried with Na2SO4. The solvent 

was evaporated, and crude product was purified on a column of silica gel, using solvent 

gradients (ethyl acetate 0 – 100 % with chloroform). White solid endosulfan diol 14, (45 

mg, 0.125 mmol, yield 50%), MP 205-207 oC, IR spectrum, 3233 cm-1 (broad, OH stretch), 

1H NMR (CDCl3, 400 MHz) δ 3.03 (broad, s, 2H), 3.29 (m, 2H), 3.71 (m, 2H), 4.05 (d, J = 

11.6 Hz, 2H). 13C NMR (CD3OD, 100 MHz) δ 51.45, 57.76, 80.59, 102.67, 130.70. GC-

MS (EI) m/z calculated for C9H8Cl6O2 [M-17]: 342.9.; found: 342.9. 

Synthesis of 13C labeled ES diol 

 

Hexachlorocyclopentadiene (17 mg, 62 µmol) and maleic acid (2,3 – 13C) (5 mg, 

42 µmol were added to a glass ampoule. The solvent free reaction mixture in the sealed 

glass ampoule was heated at 120 oC for 40 hours. During heating the reaction, the reaction 

ampoule was contained in a secondary vented glass container for safety. On cooling the 

reaction mixture to room temperature, the crude product was recrystallized using hot water 

(~ 75 oC) to give a white solid 13C–chlorendic acid (10 mg, 25 µmol, yield 60%). 1H NMR 

(CDCl3, 400 MHz) δ 4.07 (s, 2H). 13C NMR (CDCl3, 100 MHz) δ 54.52 (13C labeled). 
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To synthesize 13C–chlorendic acid anhydride, 13C–chlorendic acid (10 mg, 25 

µmol) CDCl3 (1 ml) and acetyl chloride (150 µl, 2 mmol) were added in flame dried – 

reaction vial attached to water condenser. The reaction mixture was refluxed at 65 – 70 

oC for 2 hours. Crude 13C–chlorendic acid anhydride was obtained along with acetic acid 

and acetic anhydride by-products. 1H NMR (CDCl3, 400 MHz) δ 4.17 (s, 2H). 13C NMR 

(CDCl3, 100 MHz) δ 53.36 (13C labeled). Crude 13C–chlorendic acid anhydride was used 

further for 13C-ES diol synthesis without further purification. 

LiAlH4 (775 mg, 20 mmol) was added to reaction vial having crude 13C–chlorendic 

acid anhydride in CDCl3 under N2 gas atmosphere and stirring was continued overnight at 

room temperature. To quench the reaction, Fieser’s workup (Fieser and Fieser’s Reagents 

for Organic Synthesis, Volume 1 | Wiley, n.d.) was used. In summary, diethyl ether (20 ml) 

was added to dilute the reaction mixture, followed by H2O (770 µl). The mixture was stirred 

on ice for 5 minutes. NaOH (15% solution, 770 µl) was added followed by H2O (2.31 ml) 

and stirring was continued for 15 minutes at room temperature. Solid Na2SO4 was added 

to dry the mixture and the organic solution was filtered. Organic solvent was evaporated 

to give 13C–ES diol (3 mg, 8 µmol). 1H NMR (CDCl3, 400 MHz) 3.29 (m, 2H), 3.71-3.77 

(m, 2H), 4.05 (dd, 2H). 13C NMR (CD3OD, 100 MHz) δ 51.61 (13C labeled). 

Synthesis of 5,6-dimethoxy-2-benzofuran-1(3H)-one (23) 

 

Paraformaldehyde (5 g) was added into aqueous hydrogen chloride (37%, 100 ml) 

and additional hydrogen chloride gas was bubbled through the solution while stirring at 

room temperature. After 1 hour of stirring, to this solution was added 3,4-dimethoxy 

benzoic acid (0.6 g), and the reaction mixture was refluxed for 6 hours. Hydrogen chloride 

gas was continuously bubbled during this time. Then, reaction mixture was cooled and 

stirred at room temperature for 3 days. Organic product was extracted with ethyl acetate 

(3 × 100 ml). The organic phase was neutralized with NaOH (0.1M, 3 × 20 ml) and the 

extract was dried with Na2SO4. The solvent was evaporated, and crude product was 

purified on a column of silica gel, using solvent gradients (ethyl acetate 0 – 100 % with 
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chloroform). Solid 5,6-dimethoxy-2-benzofuran-1(3H)-one (23) was obtained (138 mg). 1H 

NMR (CDCl3, 400 MHz) δ 3.96 (s, 3H), 4.00 (s, 3H), 5.25 (s, 2H), 6.93 (s, 1H), 7.33 (s, 

1H). 13C NMR (100 MHz, CDCl3) δ 56.23, 56.38, 69.15, 103.53, 106.01, 117.52, 141.10, 

150.40, 154.86, 171.39. 

Synthesis of 5,6-dihydroxy-2-benzofuran-1(3H)-one (24) 

 

To solution of 5,6-dimethoxy-2-benzofuran-1(3H)-one (23) (96 mg) in dry CH2Cl2 

(2 mL), BBr3 solution (1 M in CH2Cl2, 1.3 ml) was added dropwise under N2 atmosphere 

at –78 C. After 5 minutes, the temperature was increased slowly, and stirring was 

continued at room temperature for 7 hours. Then, reaction mixture was cooled again to -

78 oC and quenched with CH3OH (25 mL). Once the mixture had warmed to room 

temperature, water (10 mL) was added, the organic product was extracted with ethyl 

acetate (3 × 30 mL), and the extract was dried with Na2SO4. The solvent was evaporated 

to obtain 5,6-dihydroxy-2-benzofuran-1(3H)-one 24 (78 mg, yield 98 %). 1H (400 MHz, 

DMSO-d6) δ 5.17 (s, 2H), 6.93 (s, 1H), 7.07 (s, 1H), 9.68 (s, 1H), 10.21 (s, 1H). 13C NMR 

(100 MHz, DMSO-d6) δ 69.34, 108.66, 109.92, 115.87, 140.81, 147.17, 152.80, 171.33. 

Preparation of the 4-aminoantipyrine (4-AAP) adduct of compound (25) 

 

5,6-Dihydroxy-2-benzofuran-1(3H)-one (24) with varying concentrations of (10 μM 

to 300 μM) was added to potassium phosphate buffer (50 mM phosphate, 200 mM KCl, 

pH 7.4, 1 mL) with horseradish peroxidase (HRP, 1 unit/ml), H2O2 (30 % solution, 0.4 μl 

per ml) and 4-aminoantipyrine (4-AAP 26, 2 mM). The reaction mixtures were monitored 

by UV-Visible spectroscopy and absorbance at 506 nm was recorded. To choose optimum 

wavelength of coupled product, catechol and phenol were used and coupled with 4-AAP 

(26) under same conditions in control experiments. Later, for steady-state kinetic assay of 
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ES diol (14) and other substrates, the assay was calibrated using 5,6-dihydroxy-2-

benzofuran-1(3H)-one – 4-AAP adduct (25) at known concentrations, ranging (10 μM to 

300 μM). Sample of coupled product (25) was analyzed by LC-MS. 

2.1.2. Molecular biology methods 

Transformation of P450cam mutants into an E. coli strain that co-expresses 
putidaredoxin (PdX) and putidaredoxin reductase (PdR) 

To ensure that the P450 has co-expressed redox partners, the plasmids 

(pALXtreme-1a) of P450cam  mutants (ES1 – ES7) previously selected on endosulfan 

(Kammoonah et al., 2018) and WT P450cam (in pET-22b(+)) were transformed into a strain 

of E. Coli BL21(DE3) which contained a previously constructed bicistronic recombinant 

expression vector (pET-30 Xa/LIC) of putidaredoxin reductase (PdR, CamA) and 

putidaredoxin (PdX, CamB) using heat shock method (Kammoonah et al., 2018).  To 

isolate the plasmid for this transformation, cultures of each P450cam ES mutant in E. coli 

(BL21(DE3)) were grown individually in Luria Bertani (LB) media (5 mL) containing 

kanamycin (50 mg/L), and the plasmid was isolated using a Qiagen (QIAprep® Spin 

miniprep) kit following the instructions. Final DNA solutions were in water (dd). 

For transformation, E. coli (BL21(DE3)) competent cells (100 L) with PdX and 

PdR were mixed with 10 L of P450cam mutant or WT P450cam plasmid (1 ng/L). The 

sample was incubated on ice (4 C) for 45 minutes. Then the sample was heat-shocked 

using a water bath set at 42 C for 30 seconds. Next, the sample was placed on ice for 2 

minutes. SOC medium (1 mL) was added to the tube and the sample was incubated at 37 

C, 250 rpm for 3 hours. Aliquots with different volumes, ranging from 100 L to 200 L, 

were plated on LB agar plates containing 50 mg/L of kanamycin and incubated overnight 

at 37 C. Individual colonies were picked, grown in 2 mL LB medium (with kanamycin 50 

mg/L), and stored as glycerol stocks. 

Expression of P450cam mutants and WT in E. coli with PdR and PdX and 
production of lysates 

Each E. coli BL21(DE3) strain containing the WT or the mutated cytochrome 

P450cam plasmid, putidaredoxin (PdX) and putidaredoxin reductase (PdR) was grown in 

Luria Bertani (LB) medium (50 mL) with kanamycin 50 mg/L, overnight at 37 °C, 250 rpm. 
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The overnight grown culture was inoculated into fresh LB media (1 L, kanamycin 50 mg/L) 

and incubated at 37 °C, 250 rpm until an optical density (OD at 600 nm) of ~0.8–0.9 was 

reached. Cells were harvested by centrifugation at 6000 rpm (4355 × g) at 4 C for 30 

minutes. Collected cell pellets were resuspended in fresh LB medium (1 L, kanamycin 50 

mg/L) and incubated for 30 minutes at 37 C (250 rpm). IPTG (1 mM) and trace additives 

(FeCl2 (0.1 μM), 5-aminolevulinic acid (1 mM), Vitamin B1 (10 μM), Na2S.9H2O (0.1 µM) 

and Riboflavin (1 µM)) were added. Incubation was continued for 4–5 hours at 27 °C, with 

shaking at 250 rpm. After induction was complete, the cells were harvested at 7000 rpm 

(8983 × g) for 30 minutes and stored in a minimum amount of lysis buffer (20 mM 

phosphate buffer, pH 7.4 with 100 mM KCl) overnight. Stored cell pellets were 

resuspended in lysis buffer (50 mL), and disodium EDTA (0.1 mM) was added. The 

suspension was stirred for 15 min at 4 °C and the pH was adjusted to 7.4 using 0.1 M 

KOH. Protease inhibitor cocktail: Phenylmethylsulfonyl fluoride (PMSF, 100 μL of 40 

mg/mL in EtOH), 100 μL of a mixture of 1 mg of 4-(2-aminoethyl) benzenesulfonyl fluoride 

hydrochloride (AEBSF), 0.2 mg leupeptin, 0.2 mg aprotinin, and 100 mg lysozyme were 

added and stirring continued at 4 °C for 40 min. Sonication was carried out in a Branson 

Ultrasonic sonicator at 50% duty cycle for 10 min. MgSO4 (10 mM) was added, and the 

pH was readjusted to 7.4 using 0.1 M KOH. RNase (100 μL of 10 mg/mL solution) and 

DNase (100 μL of 1 mg/mL solution) were added, and the cell suspension was stirred for 

at 4 °C for 30 min, followed by sonication for 5 min. The lysate was homogenized with a 

Potter-Elvehjem tissue homogenizer, and then centrifuged at 7000 rpm (8983 × g), 4 °C, 

for 30 min. The crude protein in the supernatant was then analyzed for total protein and 

P450 concentration before using in steady-state kinetic assays. 

Site-directed mutations of WT P450cam for His6 – tagged P450cam mutant 
protein expression 

Neither the WT nor the mutants we used in the previous section had a cleavable 

purification tag. Therefore, to facilitate expression and purification of the P450 mutants, 

we performed site-directed mutagenesis on the WT P450cam plasmid (pET-30 Xa/LIC), 

using ‘QuickChange Lightening Multi Site-directed mutagenesis Kit (Agilent)’ according to 

instructions. In summary, ds DNA WT P450cam plasmid template (isolated using Qiagen’s 

QIAprep® Spin miniprep) was used. Using ‘QuickChange Lightening Multi Site-directed 

mutagenesis Kit’ components: 10 × QuickChange lightening multi reaction buffer (2.5 µL), 

Quick Solution (0.6 µL), ds DNA WT P450cam (100 ng), mutagenic primers (100 ng each 
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primer, see primers list Appendix A1), dNTP mix (1 µL), QuickChange Lightening Multi 

enzyme blend (1 µL) and dd H2O (to make total 25 µL). The PCR program was: 1 cycle of 

denaturation at 95 °C for 3 min, followed by 30 cycles of 95 °C (1.5 min), 55 °C (1 min) 

and 65 °C (12 min). Final extension was at 65 °C for 5 min. The resulting amplified product 

was treated with Dpn I restriction enzyme to digest the parent DNA strand (37 °C for 5 

min). 

Dpn I treated DNA (1.5 µL) was transformed into XL 10-Gold ultracompetent cells 

(pre-chilled, 45 µL) on ice (30 min) followed by heat-pulse at 42 °C (40 seconds). After 

incubating on ice (2 min), 0.5 mL of NYZ+ broth added and incubated at 37 °C (1 hour).  

This culture (50 µL) was plated on LB – agar plates (kanamycin 30 mg/L) and incubated 

overnight at 37 °C. A single colony was transferred to SOC media (kanamycin 30 mg/L) 

and incubated at 37 °C and 200 rpm overnight. The overnight grown culture was used to 

isolate DNA using Qiagen (QIAprep® Spin miniprep) kit following the instructions. DNA 

was sequenced (Eurofins Genomics, Louisville, KY) to verify the mutations (see Appendix 

A14 to Appendix A20). The isolated plasmid was then transferred to E. coli BL21(DE3) 

competent cells (Novagen, EMD Millipore Sigma, Etobicoke, Ontario, Canada) using heat-

shock method as described earlier. 

WT P450cam and P450cam mutants (His6 tagged) protein expression and 
purification 

Each E. coli BL21(DE3) strain containing the mutated cytochrome WT P450cam 

plasmid, and P450cam mutant (ES2, ES5, ES6 and ES7) were expressed as described. 

Induced cultures were harvested, and cells were lysed as described above. The crude 

lysate was dialyzed against phosphate buffer (50 mM phosphate buffer, pH 7.4 with 200 

mM KCl) overnight using 3.5 KDa (MWCO) dialysis tubing (cat # D304, Biodesign Dialysis 

tubing ®, NY). Dialysate was purified using Nickel affinity column (Ni+2) loaded with His-

Bind resin® (Novagen) and eluted with increasing Imidazole concentrations (3 – 25 mM) 

in phosphate buffer (50 mM phosphate buffer, pH 7.4 with 200 mM KCl). Fractions with 

P450cam (analyzed by UV-Vis and SDS Page) were pooled and dialyzed against 

phosphate buffer (4 L, 20 mM Tris buffer, pH 7.4 with 50 mM KCl and 1 mM CaCl2) to 

remove imidazole before His6 tag cleavage. His-tag was cleaved using Factor Xa enzyme 

(Novagen) by adding 10 µL of a 150 units/mL of enzyme per 2 mg of purified protein and 

incubating at room temperature for 36 – 48 hours. Factor Xa enzyme was removed by 

Xarrest TM Agarose (Novagen) and His6 tag fragment was removed by Nickel affinity 
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column (Ni+2) loaded with His-Bind resin®. Purified P450cam protein was analyzed by SDS 

Page (see Appendix A4) and UV-Visible spectroscopy (see below) before kinetic studies. 

2.1.3. Assays and spectroscopy of P450 enzymes 

Analysis of protein samples for P450 concentration 

Concentration of P450 in each crude lysate of P450cam mutants and WT P450cam 

was measured by UV analysis (at 280 nm total protein, 418 nm for mutants P450cam and 

WT P450cam) as described previously (Kammoonah et al., 2018). The affinity tag purified 

and Factor Xa cleaved P450 mutants and WT were also analyzed by CO difference 

spectroscopy. The UV (400-500nm) spectra of oxidized P450cam mutants and WT P450cam 

were recorded in phosphate buffer (50 mM phosphate buffer, pH 7.4 with 200 mM KCl). 

CO gas was bubbled for 2 minutes (1 bubble per second) followed by addition of sodium 

dithionite (Na2S2O4, few grains) to reduce the P450 heme iron. UV spectra were recorded 

again (400-500 nm) to see the Fe-CO peak at 450 nm (see Appendix A5). 

Steady-state kinetic assays for endosulfan diol (ES diol 14) with the crude 
lysates of P450cam mutant(s) using 4-aminoantipyrine (4-AAP) coupled 
assay with horseradish peroxidase (HRP) and H2O2 

Steady-state kinetic assays were performed in 1 mL potassium phosphate buffer 

(50 mM phosphate, 200 mM KCl, pH 7.4) with varying concentrations of endosulfan diol 

(50 μM to 500 μM), 5 μM of crude protein P450cam mutant, NADH (800 μM), horseradish 

peroxidase (HRP, 1 unit/ml), H2O2 (30 % solution, 0.4 μl per ml) and 4-aminoantipyrine (4-

AAP 26, 2 mM). The reaction mixtures were monitored by UV-Visible spectroscopy for 3 

and/or 20 minutes at 506 nm. Three controls were run: 1) in the absence of the substrate, 

2) without HRP, or 3) without P450cam. The kinetic assay was performed by first adding 

the phosphate buffer, 4-AAP, H2O2, NADH, HRP and P450cam mutant protein, then adding 

the substrate (α-ES/ ES diol) and recording the absorbance at 506 nm. The assay was 

calibrated using 5,6-dihydroxy-2-benzofuran-1(3H)-one – 4-AAP adduct 25 at known 

concentrations, ranging from 10 μM to 300 μM, prepared under the same conditions as 

the enzymatic assay. 

To obtain initial rates, the amount of product was divided by 15 s, the time it took 

to insert the cuvette in the holder and start the monitoring of the reaction. The reason for 

doing this was that there was a rapid burst of activity, followed by a flattened progress 
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curve (e.g. see Figure 3.2). In many cases, by the time absorbance at 506 nm was 

detected, the progress curve was already flattening. Thus, the kinetic data presented here 

correspond to a 15 s endpoint and not the true initial rate. 

For assays with purified P450cam mutants (K314E, ES6 and ES7) and WT P450cam 

(1 µM of the purified enzyme, and redox partners PdX and PdR 3 µM) were used. 

Otherwise, the assay was the same as for the crude lysates. 

Using m-CPBA as a shunting agent, assay was repeated with purified ES7 P450cam 

without using redox partners (PdX and PdR). ES7 mutant (1 µM of the purified enzyme), 

m-CPBA (1 mM) and ES diol (5 μM to 100 μM) were used. Otherwise, the assay was the 

same as the crude lysate. 

Titration of endosulfan diol (ES diol, 14) and (+)-camphor (10) with the 
purified P450cam mutant(s) and dissociation constant (Kd) 

Purified P450cam mutant proteins (3 µM) were prepared in phosphate buffer (50 

mM phosphate buffer, pH 7.4 with 200 mM KCl). ES diol 14 (2.5 µM – 250 µM) and (+)-

camphor (1 µM – 50 µM) were added in aliquots using a Hamilton syringe, and UV-Visible 

spectra were recoded (350-500 nm, see Figure 3.5). 

The total change in absorbance (ΔA) at 417 nm (substrate free) and 390 nm (with 

substrate) was plotted the concentration of substrate added, and this was used to 

calculate dissociation constant (Kd) using a single site binding model in GraphPad Prism® 

(GraphPad Software Inc. CA). 

ΔA = (Δ A390) + (Δ A417) 

Chloride release from endosulfan diol with a NADH regeneration system 
and chloride release detection by chloride electrode 

The assay was performed in 5 mL potassium phosphate buffer (100 mM 

phosphate, pH 7.4) with endosulfan diol 14 (300 μM or 500 μM), purified WT-P450cam or 

ES7 mutant (1 µM), purified redox partners PdX (5 µM), and PdR (1 µM), NADH (500 μM), 

and alcohol dehydrogenase (350 units).  

Chloride (Cl-) ion concentrations were measured using a chloride ion selective 

electrode (chloride ISE) before and after adding ES diol 14. Samples (1 ml) were taken 
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before and after adding ES diol, and 4-AAP coupled assay with HRP and H2O2 were 

performed as described above. To measure interference with chloride readings, control 

experiments were performed using known sodium chloride solution and addition of 1) 

NADH, or 2) NAD+ (see Appendix A7). 

Chloride release from endosulfan diol with m-CPBA as a shunt and 
chloride release detection by a chloride selective electrode 

The assay was performed in 5 mL potassium phosphate buffer (100 mM 

phosphate, pH 7.4) with ES diol 14 (300 μM or 500 μM), purified WT-P450cam or ES7 

mutant (5 µM), m-CPBA (1 mM). Chloride (Cl-) ion concentrations were measured using 

a chloride ion selective electrode (chloride ISE) before and after adding ES diol 14. 

Samples (1 ml) were taken before and after adding ES diol 14, and 4-AAP coupled assay 

with HRP and H2O2 were performed as described above. To measure interference with 

chloride reading control experiments were performed using known sodium chloride 

solution and addition of 1) m-CPBA, and 2) chlorobenzoic acid (see Appendix A9). 

At the end of the assay, the organic products were extracted with ethyl acetate (3 

× 100 ml) and dried with Na2SO4. The solvent was evaporated, and crude extract was 

analyzed by 1H NMR and LC-MS. 

Extraction and identification of products; assays with 13C labeled substrate 
(13C-ES diol) 

The assay was performed in 4 mL potassium phosphate buffer (100 mM 

phosphate, pH 7.4) with 13C-ES diol (300 μM), purified ES7 mutant (5 µM), m-CPBA (1 

mM). Chloride (Cl-) ion concentrations were measured using a chloride ion selective 

electrode (chloride ISE) before and after adding 13C-ES diol 14. Samples (0.5 ml) were 

taken before and after adding 13C-ES diol, and 4-AAP coupled assay with HRP and H2O2 

were performed as described above. A control experiment with non-labelled ES diol was 

also performed under same conditions.  

At the end of the assay, the organic products were extracted with ethyl acetate (3 

× 100 ml) and dried with Na2SO4. The solvent was evaporated, and crude extract was 

analyzed by 13C NMR. 
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2.1.4. In silico docking studies 

Docking simulations were performed using Molecular Operating Environment 

(MOE, Chemical Computing Group, Montreal, QC Canada). The amino acids and 3D 

structure information of P450cam (CYP101A1) were obtained from Protein Data Bank. 

P450cam with PDB code 2L8M (Reduced and CO-bond in the presence of camphor) was 

used for docking studies (Asciutto et al., 2011). The protein PDB file was imported to MOE, 

and residue was mutated to generate the P450cam mutants (ES1-ES7, IND1, and K314E). 

For WT and mutants P450cam protein preparation for docking, protocol was followed as 

described by Kammoonah et al. (Kammoonah et al., 2018). In summary, camphor and 

carbon monoxide molecules are removed from the PDB structure. Each residue of the 

protein was protonated at pH 7.4, temperature 298 K, and 0.25 M salts, and the charges 

were assigned according to default settings using the “Compute | Protonate 3D” algorithm 

(Labute, 2009) followed by energy minimization of the structure using the “Amber10:EHT” 

forcefield. Prior to docking, potential docking sites were identified on the protein by 

applying the “site finder” algorithm (Volkamer et al., 2010) to the selected atoms of the 

P450 polypeptide and the heme group. The algorithm returns binding sites on the protein, 

ranked according to size. For these simulations, the highest-ranked site (Site 1) was 

selected by selection of placeholders known as “dummies” in the program. Ligands 

(shown in Figure 2.1) were constructed in MOE using “builder” and a database of ligands 

was generated as an “.mdb” file. 
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Figure 2.1  List of endosulfan and metabolites used as ligands for in silico 
docking studies. 

 

Ligands were docked using all atoms of the polypeptide and the heme prosthetic 

group as the “receptor”. Triangle matcher was the algorithm used for placement of the 

ligands in the selected site. Ligands poses were scored by London dG, and refined for an 

induced fit. Final scoring of poses utilized the GBVI/WSA dG (Generalized Born Volume 

Integral/ Weighted surface area) algorithm (Corbeil et al., 2012; Labute, 2008; 

Wojciechowski & Lesyng, 2004); a maximum of 30 poses were retained. The distribution 

of poses was estimated based on each structure’s confirmational energy. Conformational 

energy (Econf) was obtained from the database with the docking results and was in 

kcal/mol. Distance between heme-iron to C1, C2 (C=C bond), C3 and C4 (Figure 2.2) of 

each ligand was recorded to take the average. The pose with minimum distance between 

heme-iron to C1 and C2 is selected to compare it with the kinetic data obtained above. 
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Figure 2.2  Carbon number assigned to endosulfan ligands used to calculate 
the distance to the heme-iron in MOE docking studies. 

 

2.2. β-phellandrene oxidation 

2.2.1. Synthesis of racemic β-phellandrene (22) 

Synthesis of (+)-nopinone (27) from (-)-β-pinene (21) 

 

(-)-β-Pinene 21 (1.02 g, 7.54 mmol) was added to a solvent mixture of water (15 

ml), CCl4 (10 ml) and MeCN (10 ml). NaIO4 (6.7 g, 31.3mmol) and RuCl3.nH2O (catalyst, 

51 mg) were added into reaction mixture. The reaction mixture was stirred for 2 hours at 

room temperature. After 2 hours of stirring, 20 ml of water was added, and the organic 

product was extracted using dichloromethane (3 × 100 ml). The organic layer was filtered 

through celite and charcoal mixture and was dried over Na2SO4. The organic solvent was 

removed by distillation at 40-50 °C, giving an oily crude product as the residue. The crude 

product was purified using column chromatography (EtOAc: Hexanes 1:9), giving (+)-

nopinone 27 (0.86 g, 6.20 mmol, 84%). [α]D20 +27.43 (c = 1.29 in CHCl3). 1H NMR (CDCl3, 

400 MHz) δ 0.87 (s, 3H), 1.35 (s, 3H), 1.60 (d, J = 10.1 Hz, 1H), 1.90 – 2.01 (m, 1H), 2.07 

(dddd, J = 13.3 Hz, 11.1 Hz, 3.9 Hz, 2.1 Hz, 1H), 2.21 – 2.30 (m, 1H), 2.36 (ddd, J = 19.1 

Hz, 9.1 Hz, 2.1 Hz, 1H), 2.48 – 2.67 (m, 3H). 13C NMR (CDCl3, 100 MHz) δ 21.42, 22.13, 

25.28, 25.91, 32.80, 40.42, 41.21, 58.00, 214.96. NMR spectra were consistent with the 

reported (Kawashima et al., 2014). 
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Synthesis of racemic cryptone (28) from (+)-nopinone (27) 

 

(+)-nopinone (27) (2.6 g, 19.5 mmol) was added in CH2Cl2 (75 ml) and stirred on 

ice. Powdered AlCl3 (3.9 g, 29 mmol) was added into the reaction flask and the mixture 

was stirred for 90 minutes on ice (4 oC) under N2. The reaction mixture was poured on ice 

(20 g), and 2M HCl was added to dissolve AlCl3. The organic product was extracted with 

CH2Cl2 (3 × 100 ml). The organic layer was dried over MgSO4, and solvent was removed 

at 4 oC on ice under vacuum (using a rotary evaporator). Crude product was purified, and 

isomers were separated using silica column. Elution with hexanes/ ethyl acetate 9:1) gave 

racemic (±)-cryptone 28 as a light brown oily product (2.1 g,15.1 mmol, 77%). [α]D20 -2.26 

(c = 0.15 in CHCl3). 1H NMR (CDCl3, 400 MHz) δ 0.98 (d, J = 5.9 Hz, 3H), 1.00 (d, J = 5.9 

Hz, 3H), 1.74 – 1.90 (m, 2H), 2.03 (dtd, J = 13.7 Hz, 4.6 Hz, 1.6 Hz, 1H), 2.28 – 2.42 (m, 

2H), 2.54 (dtd, J = 16.7, 4.3, 1.0 Hz, 1H), 6.04 (ddd, J = 10.3 Hz, 2.7 Hz, 1.0 Hz, 1H), 6.92 

(ddd, J = 10.3 Hz, 2.4 Hz, 1.6 Hz, 1H). 13C NMR (CDCl3, 100 MHz) δ 19.48, 19.64, 25.27, 

31.52, 37.42, 42.53, 129.70, 154.32, 200.11. NMR spectra were consistent with the 

reported (Mori, 2006). 

Cryptone isomer 29 (0.26g, 1.9 mmol, 10%): 1H NMR (CDCl3, 400 MHz) δ 1.06 (d, 

J = 6.9 Hz, 6H), 2.33 (hept, J = 7.2 Hz, 6.7 Hz, 1H), 2.39 – 2.46 (m, 2H), 2.49 (dd, J = 7.3 

Hz, 5.3 Hz, 2H), 2.87 (dd, J = 3.7 Hz, 1.7 Hz, 2H), 5.47 (td, J = 3.7 Hz, 1.2 Hz, 1H). 13C 

NMR (CDCl3, 100 MHz) δ 21.13, 26.34, 34.74, 38.88, 39.64, 115.45, 144.61, 211.46. 

The reaction of the ring opening of nopinone (27) to give cryptone (28) and the 

ketone (29), was monitored by taking 0.5 ml of reaction sample at different time intervals 

and analyzed by GC after mini work-up as above. 
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Synthesis of β-phellandrene (22) from cryptone (28) 

 

Sodium bis(trimethylsilyl)amide (NaHMDS, 4.5 g, 24.6 mmol) was added slowly 

into a flask containing methyl triphenylphosphoium bromide (Ph3PCH3Br, 8.8 g, 24.6 

mmol) under N2. The reaction mixture was stirred for 6 hours on ice, followed by dropwise 

addition of (±)-cryptone (2.6 g, 19.4 mmol) under N2. Stirring was continued overnight at 

room temperature. After 18 hours of stirring, the reaction was quenched using a mixture 

of water and pentane (1:1, 100 ml). The organic product was extracted with pentane (3 × 

100 ml). The organic layer was dried over Na2SO4, and organic solvent was evaporated 

at 4 oC on ice in a rotary evaporator. The crude product was purified using column 

chromatography (100% pentane) to give scalemic β-phellandrene (1.8 g, 13.6 mmol, 

70%). [α]D20 -1.33 (c = 1.0 in CHCl3). 1H NMR (CDCl3, 400 MHz) δ 0.92 (d, J = 6.8 Hz, 

3H), 0.94 (d, J = 6.8 Hz, 3H), 1.42 (tdd, J = 12.7 Hz, 10.0 Hz, 3.9 Hz, 1H), 1.66 (dq, J = 

13.6 Hz, 6.8 Hz, 1H), 1.76 – 1.82 (m, 1H), 2.05 – 2.12 (m, 1H), 2.26 – 2.36 (m, 1H), 2.47 

(dt, J = 14.8 Hz, 4.3 Hz, 1H), 4.76 (s, 1H), 4.78 (s, 1H), 5.78 (d, J = 10.0 Hz, 1H), 6.17 

(dd, J = 10.0 Hz, 2.6 Hz, 1H). 13C NMR (CDCl3, 100 MHz) δ 19.50, 19.70, 25.72, 30.19, 

31.92, 42.07, 109.91, 129.49, 134.24, 143.74. NMR spectra were consistent with the 

reported ones (Bergstrom et al., 2006). 

2.2.2. Enzymatic Assays 

WT P450cam and ES7 mutant (His6 tagged) protein expression and 
purification 

Each E. coli BL21(DE3) strain containing WT P450cam plasmid and ES7 P450cam 

mutant, were expressed as described. Induced cultures were harvested, and cells were 

lysed as described above. The crude lysate was dialyzed against phosphate buffer (50 

mM phosphate buffer, pH 7.4 with 200 mM KCl) overnight using 3.5 KDa (MWCO) dialysis 

tubing (cat #D304, Biodesign Dialysis tubing ®, NY). Dialysate was purified using Nickel 

affinity column (Ni+2) loaded with His-Bind resin® (Novagen) and eluted with increasing 

Imidazole concentrations (3 – 25 mM) in phosphate buffer (50 mM phosphate buffer, pH 
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7.4 with 200 mM KCl). Fractions with P450cam (analyzed by UV-Vis and SDS Page) were 

pooled and dialyzed against phosphate buffer (4 L, 20 mM Tris buffer, pH 7.4 with 50 mM 

KCl and 1 mM CaCl2) to remove imidazole before His6 tag cleavage. His-tag was cleaved 

using Factor Xa enzyme (Novagen) by adding 10 µL of enzyme per 2 mg of protein and 

incubating at room temperature for 36 – 48 hours. Factor Xa enzyme was removed by 

Xarrest TM Agarose (Novagen) and His6 tag fragment was removed by Nickel affinity 

column (Ni+2) loaded with His-Bind resin®. Purified P450cam protein was analyzed by SDS 

Page (see Appendix A4) and UV-Visible spectroscopy (see below) before kinetic studies. 

Titration of β-phellandrene with the purified WT P450cam or ES7 mutant, and 
dissociation constant (Kd) 

Purified WT P450cam and ES7 proteins (1.5 µM) were prepared in phosphate buffer 

(50 mM phosphate buffer, pH 7.4 with 200 mM KCl). β-phellandrene (1 µM – 37 µM) was 

added in aliquots using a Hamilton syringe, and UV-Visible spectra were recoded (350-

500 nm, see Figure 4.2). 

The total change in absorbance (ΔA) at 417 nm (substrate free) and 390 nm (with 

substrate) was plotted against the concentration of substrate added, and this was used to 

calculate the dissociation constant (Kd) using a single-site binding model in GraphPad 

Prism® (GraphPad Software Inc. CA). 

ΔA = (Δ A390) + (Δ A417) 

In-vitro assays of β-phellandrene oxidation using WT or ES7 P450cam with 
m-CPBA as a shunt  

In vitro enzymatic assays were performed in 1 mL potassium phosphate buffer (50 

mM phosphate, 100 mM KCl, pH 7.4) that contained P450cam or ES7 (5 μM), m-CPBA (1 

mM), and substrate β-phellandrene (1 mM) in three replicates. Three control experiments 

were run: (1) No substrate (P450cam and m-CPBA), (2) No enzyme (m-CPBA with 

substrate), (3) camphor as substrate (positive control, with enzyme and m-CPBA). The 

reaction mixtures were incubated for 20 minutes at room temperature (~22 oC) and 

extracted with chloroform (10 μM indanone as internal standard) (2 × 500 μl). The organic 

extracts were dried over Na2SO4 and analyzed by GC-MS. 
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2.2.3. In silico docking studies 

For WT P450cam and ES7 mutant, in silico docking was done using protocol 

described above (section 2.1.4) using β-phellandrene as ligand. Ligands (β-phellandrene, 

(-)-22a and (+)-22b) were constructed in MOE using “builder”, as described above. 

 

 

Figure 2.3  Enantiomers of β-phellandrene used as ligands in MOE docking 
studies. 

 

Distance between heme-iron to C4, C5 and C6 (Figure 2.4) of each ligand was 

recorded. The poses with minimum distance between heme-iron to C4, C5 and C6 are 

selected to find potential regioselectivity by P450cam for β-phellandrene oxidation. 

 

 

Figure 2.4  Carbon number assigned to ligands (β-phellandrene) used to 
calculate the distance to the heme-iron in MOE docking studies. 
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Chapter 3. Endosulfan diol degradation by P450cam 

mutants 

3.1. Results 

3.1.1. Mutants obtained 

The mutants obtained by sequence saturation mutagenesis (SeSaM) are listed in 

Table 3.1. In this ES-selected set of mutants, two mutations occurred twice: K314E and 

D297N. Furthermore, residue A296 was found to have mutated twice, but to different 

residues: A296V (in ES2) and A296P (in ES5). The selected variants had more than one 

mutation, except ES5 and ES6 (G120S). Interestingly, mutation of K314 was also noticed 

in the set of mutants selected on 3-chloroindole we labelled IND (Kammoonah et al., 

2018), and residue V247 was mutated to F in two cases (ES7 and IND1). 

 

Table 3.1  Mutations of P450cam discovered previously by selection of a SeSaM 
library on minimal media containing endosulfan (13) and m-CPBA 

Mutant name Mutations 

ES1 T56A/N116H/D297N 

ES2 F292S/A296V/K314E/P321T 

ES3 Q108R/R290Q/I318N 

ES4 S221R/I281N 

ES5 A296P 

ES6 G120S 

ES7 V247F/D297N/K314E 

 

3.1.2. Coupled assay optimization 

The selected P450cam mutants can convert ES (13) and ES diol (14), into 

dechlorinated products (substituted o-quinones and/ or catechols). These metabolites 

were coupled with 4-AAP to give highly colored adduct (Figure 3.1). The dye 4-AAP is 

known to produce a colored product when it couples with quinones (Lülsdorf et al., 2015; 

Vojinović et al., 2004). 

 



70 

 

Figure 3.1  Degradation of ES diol (14) by P450cam mutants and detection of the 
metabolites in a coupled assay with 4-aminoantipyrine (4-AAP, 26), a 
system used to detect quinones. 

 

The steady state kinetic assay was optimized with crude ES7 lysate, to obtain the 

conditions described in the methods. -ES (13) and ES diol (14) were compared at two 

concentrations, 100 M and 200 M and in both cases ES diol was the substrate that gave 

more product with absorbance at 506 nm (Figure 3.2, A and B).  To ensure that the product 

at 506 nm was not due to random activity, three controls were run alongside a dose 

response with ES diol (14) and ES7 (Figure 3.2, D): 1) omitting the substrate but keeping 

the oxidative enzymes P450 and HRP, 2) omitting the P450 but using 500 M of ES diol 

(14) and HRP and 3) omitting the HRP but using P450 and 500 M of ES diol (14). This 

assay reveals an important result: the formation of the colored 4-AAP adduct requires 

active P450 and the ES diol (14) substrate, but it does not require HRP. When this 4-AAP 

assay is used in phenol analysis (Lülsdorf et al., 2015; Wong et al., 2005; Zeng et al., 

2015), HRP is added to cause in situ formation of ortho or para quinones which then react 

with the 4-AAP (26) to give the adduct (Figure 3.1 and Figure 3.2). The observation that 

colored product formed in the absence of HRP (Figure 3.2, D) suggests that the action of 
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the P450 gives rise to a quinone. We will return to this point later. We decided to keep 

HRP in the assay mixture to ensure that the quinone formed by action of the P450 on ES 

diol is not reduced by other reagents in the mixture such as the NADH. 

As seen in Figure 3.2 C and D, the rate of formation of the colored product 

depended on the substrate concentration. 

 

 

Figure 3.2  ES7 and ES diol (14) assay optimization (A) net absorbance at 506 
nm using α-ES (13) and ES diol (14) during 5 days assay, (B) net 

absorbance at 506 nm using α-ES (13) and ES diol (14) after 5 days 

assay, (C) total absorbance at different concentrations of ES diol 
(14) using ES7 in the coupled assay, (D) total absorbance with ES7 
and using different concentrations of ES diol (14). 

 

3.1.3. Initial screen with crude lysates 

The steady state kinetic assays were performed using crude lysate of WT-P450cam 

and mutants (ES1-ES7 and IND1), with ES diol (14) as a substrate. The metabolites were 

coupled with 4-AAP in-situ (as described above) and monitored at 506 nm (Table 3.2, 

Figure 3.3). The IND1 mutant, selected previously for dechlorination of 3-chloroindole from 
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the SeSaM library, was also included in this study for comparison with ES mutants, 

because it had the highest 3-chloroindole dechlorination activity (Kammoonah et al., 

2018). The rate of 4-AAP adduct formation was highest for the mutant ES2 in terms of 

turnover number (kcat) and catalytic efficiency (kcat/KM) followed by ES7. ES6, with a single 

mutation, was the least active of the ES mutants. WT-P450cam was significantly less active 

than the mutants (Table 3.2 and Figure 3.3). Interestingly, IND1 was among the more 

active mutants (Table 3.2), even though it had not arisen by selection on ES (13). All these 

mutants followed sigmoidal kinetics, which required the use of an allosteric model (as 

opposed to the classic Michaelis Menten model) for analysis (Figure 3.3). 

 

Table 3.2  Kinetic data of ES diol (14) with WT-P450cam and mutants (using 
crude lysate) 

Mutants 
kcat   
(µM/s.µM P450) 

KM 
(µM) 

kcat/KM  
(1/s.µM) 

WT a ~ 0.8 ± 0.0 1024.6 0.8 ± 0.0     ×10-3 

IND1 b 4.4 ± 0.5 363.3 12.0 ± 1.5   ×10-3 

ES1 3.8 ± 1.1 393.2 9.6 ± 2.8     ×10-3 

ES2 6.2 ± 2.3 372.8 16.6 ± 6.1   ×10-3 

ES3 3.2 ± 0.2 443.8 7.2 ± 0.4     ×10-3 

ES4 3.0 ± 0.6 318.6 9.3 ± 1.8     ×10-3 

ES5 3.9 ± 1.1 371.3 10.4 ± 2.9   ×10-3 

ES6 2.7 ± 0.5 387.8 7.0 ± 1.3     ×10-3 

ES7 4.3 ± 1.2 332.3 12.8 ± 3.7   ×10-3 
a WT data from Lineweaver-Burk equation 
b IND1- E156G/V247F/V253G/F256S 
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Figure 3.3  Allosteric sigmoidal kinetics of ES diol (14) with WT-P450cam and 
mutants (using crude lysate). 
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Mutants ES2 and ES7 were selected for further studies because of their 

comparatively high activity; mutants ES5 and ES6 were also chosen because of their 

single mutation. These P450s were prepared by site-directed mutagenesis from the wild-

type construct with a cleavable His6-tag for easy purification. 

3.1.4. His6-tagged P450s: stability and kinetics 

ES6 and ES7 were successfully cloned, expressed, purified, and the His6-tag was 

removed successfully from the P450 using Factor Xa. However, mutant ES2 which was 

the most active one (Table 3.2), did not express well, and what little could be isolated from 

cultures could not be purified without loss of the heme. Mutant ES5, which also had a 

mutation of A296 (like ES2) expressed well, but cleavage of the His6-tag by Factor Xa 

enzyme resulted in secondary cleavage and undesired fragments (see Appendix A6), as 

well as heme loss. Thus, mutants ES2 and ES5 could not be produced by this method. 

Due to the instability of mutant ES2, two variants of ES2 were generated: 

F292S/A296V and K314E. For these, F292S/A296V again did not express and lost the 

heme, whereas K314E did express (see below). Thus, we conclude that mutation of A296 

is detrimental to the stability of P450cam. 

Comparing mutations in ES2 and ES7, both share the K314E mutation. In order to 

study the effect of this single mutation, a variant with the K314E mutation was generated 

(see above). Expression and purification of this variant were successful. 

Steady state kinetic assays were performed using purified WT-P450cam  and 

mutants ES6, ES7 and K314E, with ES diol (14) as a substrate. Inceased cataclytic activity 

(turnover number as well as catalytic efficiency) was noticed in the purified ES6 and ES7 

mutants compared to the crude lysates used previously (Table 3.2 and Table 3.3). The 

catalytic activity of ES7 was highest, followed by ES6 and K314E, and all these variants 

were significantly more active than the WT-P450cam (Table 3.3). 

 



75 

Table 3.3  Kinetic data of ES diol (14) with purified WT-P450cam and mutants 

Mutant Mutations 
kcat  
(µM/s.µM P450) 

KM  
(µM) 

kcat/KM  
(1/s.µM) 

WT a  ~ 0.15 ± 0.04 385 0.4 ± 0.1     ×10-3 

ES2 F292S/A296V/K314E/P321T n.d   n.d  n.d 

ES5 A296P n.d  n.d  n.d 

K314E K314E 3.8 ± 0.3 370 10.1 ± 0.7   ×10-3 

ES6 G120S 5.7 ± 0.3  368 15.5 ± 0.9   ×10-3 

ES7 V247F/D297N/K314E 12.6 ± 4.7 394 31.9 ± 12.0 ×10-3 

ES7 b V247F/D297N/K314E 1.7 ± 0.2 28 ± 9 60.7 ± 0.7   ×10-3 

F292S/296V F292S/ A296V n.d n.d n.d 
a WT data from Lineweaver-Burk equation. 
b ES7 mutant – using m-CPBA as a shunt. 
n.d = Not determined because the mutant enzyme was unstable and could not be purified. 

3.1.5. Steady-state kinetic assay using redox partners vs. using only 
m-CPBA (shunt) 

Using ES7, one of the most active P450cam mutants, with redox partners (PdX, and 

PdR) and NADH as electron source, allosteric sigmoidal kinetics were observed in ES diol 

(14) degradation studies. In contrast, mutant ES7 showed Michaelis-Menten kinetics when 

m-CPBA was used as a shunt in ES diol degradation (Figure 3.4). Overall, the kcat with m-

CPBA was lower (1.7 ± 0.2 µM/s.µM P450) than with the redox partners (12.6 ± 4.7 

µM/s.µM P450), but the KM with m-CPBA was also lower than with the redox partners 

(Table 3.3). 

 

Figure 3.4  Steady state kinetic assays of ES7 using ES diol (14). (A) using 
redox partners (PdX and PdR) and NADH, and (B) using m-CPBA as 
a shunt. 
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3.1.6. Ligand binding and dissociation constant (Kd) using selected 
purified mutants and WT-P450cam   

Dissociation constants (Kd) were measured using the change in spin shift of the 

P450, often seen upon substrate binding. WT-P450cam shows a characteristic peak (λmax 

418 nm – low spin Fe-III) without camphor (10, natural substrate) and on addition of 

camphor this peak is blue shifted (λmax 392 nm – high spin Fe-III) due to the change in spin 

state of iron (Fe) in the heme molecule (Figure 3.5). On titrating mutants and WT-P450cam 

with ES diol (14), the spin change of Fe in heme was observed (Figure 3.5). This change 

in spin state as the substrate is titrated into the enzyme is used to calculate Kd values for 

ES diol (Table 3.4). Using camphor as substrate, Kd for WT-P450cam was found 1.7 ± 0.04 

µM (1.6 ± 0.3 µM by (Atkins & Sligar, 1988)). K314E mutant binds camphor more strongly 

than WT with Kd value 1.0 ± 0.04 µM. However, ES6 and ES7 showed higher Kd values 

for both camphor and ES diol than WT-P450cam (Table 3.4). Similar patterns of Kd values 

with respect to WT-P450cam and mutants were observed using ES diol (14) as substrate 

(Table 3.4). However, overall Kd values of ES diol are higher than those for camphor. 

Table 3.4  Dissociation constant measured using Camphor (10) and ES diol 
(14) with purified WT P450cam and mutants 

Mutants Mutations (d)-Camphor (10) Kd (µM) ES diol (14) Kd (µM) 

WT  - 1.7 ± 0.04 41.6 ± 5.5 

K314E K314E 1.0 ± 0.04 31.3 ± 3.7 

ES6 G120S 2.4 ± 0.05 108.9 ± 27.4 

ES7 V247F/D297N/K314E 10.4 ± 0.43 143.2 ± 17.4 
a Values are the mean  Standard deviation (S.D.) of 3 replicates. 
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Figure 3.5  Titrations of wild-type (WT) P450cam (top) and mutant ES7 (bottom) 
with camphor (10) (left set of graphs) or ES diol (14) (right set of 
graphs). The spectra (top set of graphs for each enzyme) show the 
blue shift in the Soret band as substrate is titrated into the enzyme 
preparation. The isotherms (lower set of graphs for each enzyme) 
depict the change in the Soret band (the increase in absorption at 
the blue-shifted wavelength relative to the decrease in absorption of 
the original Soret band). 
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3.1.7. Chloride release with purified WT-P450cam and ES7 mutants 

Using the ES7 mutant, chloride ions released were detected instantly on adding 

ES diol (14) (300 and 500 µM) to the reaction mixture. However, NADH was found to 

enhance chloride electrode readings, giving overestimates, whereas NAD+ was found to 

suppress chloride readings, giving slight underestimates (see Appendix A7). Alcohol 

dehydrogenase was used to regenerate NADH in situ, to maintain a constant level of 

NADH, but a slower rate of NADH production by alcohol dehydrogenase (1 nmol/minute) 

than NADH being used by ES7-P450cam mutant resulted in lower chloride ion readings 

than expected (see Appendix A8). For this reason, chloride release experiments were 

repeated without the redox partner system or NADH, by using only the purified P450 

enzyme and m-CPBA as a shunt. Overall, chloride release was detected with the ES7 

mutant, while with WT-P450cam (ES diol 500 µM) chloride ion release was not detected 

(Figure 3.6). Colorimetric analysis of product formation from chloride release assays 

revealed that, on average, 5.2 ± 0.7 and 5.7 ± 0.2 chloride ions were released per colored 

product formed by the ES7 mutant using non-labeled ES diol (14) and 13C-ES diol 

respectively (Table 3.5). 

 

 

Figure 3.6  Chloride release using ES diol (14) and m-CPBA, with WT-P450cam 
(ES diol 14, 300 µM), ES7 (13C-ES diol 14, 300 µM), ES7 (ES diol 14, 
300 µM) and No P450cam control. 
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Table 3.5  Ratio of chloride released to quinone (4-AAP coupled) formed in 
assay with m-CPBA as shunt 

Conditions 
Chloride [Cl-] ions 
detected (µM) a 

4-AAP coupled-product 
(µM) a 

Ratio  
(Cl- per 4-AAP) a 

ES7-P450cam, ES diol (14), 
and m-CPBA 

196 ± 32 38 ± 5 5.2 ± 0.7 

ES7-P450cam, 13C-ES diol, 
and m-CPBA 

188 ± 8 35 ± 6 5.7 ± 0.2 

WT-P450cam, ES diol (14), 
and m-CPBA 

53 ± 20 23 ± 6  2.3 ± 0.6 

ES diol (14) and 
m-CPBA only (control) 

12 ± 3 0 0 

a Values are the mean  Standard deviation (S.D.) of 3 replicates. 

3.1.8. Isolation of products using purified WT-P450cam and ES7 mutant 

Products extracted from chloride release assay (using NADH system) were 

analyzed by LC-MS. Mono- and dihydroxy benzene derived metabolites were detected 

(Table 3.6). Major metabolites which are detected are dihydroxy phthalide (24) which 

matches with the synthetic standard sample, and 3,4-bis(hydroxymethyl) phenol (33) 

(Table 3.6). The product 4,5-bis(hydroxymethyl)benzene-1,2-diol (32) was also detected, 

but in lesser quantity than 33. 

Products from the set of 4-AAP coupled assays performed with crude lysate were 

also analyzed using LC-MS. The material detected from the assays matches with the 

standard product (25) (Appendix A10). 
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Table 3.6  Metabolites detected from ES7 using ES diol (14) 

Substrate/ 
metabolites  

Exact 
mass 

  
Expected 
mass 

ES7- No 
substrate 

ES7- ES 
diol (14) 
(500 µM) 

ES7- ES 
diol (14) 
(300 µM) 

 
C9H8Cl6O2 (14) 

355.831  
(Molar 
Mass 
=360.8) 

m/z 
377.896 
(M+NH4)+ 

N.D 
377.896 
(M+NH4)+ 

377.896 
(M+NH4)+ 

Abundance  N.D 8580 1043 

 
C8H6O4 (24) 

166.027 
m/z 

167.045 
(M+H)+ 

N.D 
149.023 
(M+H-
H2O)+ 

149.023 
(M+H-
H2O)+ 

Abundance  N.D 3275 530 

 
C8H6O3 (30) 

150.032 

m/z  N.D N.D N.D 

Abundance  N.D N.D N.D 

  
C8H6O2 (31) 

134.037 

m/z  N.D N.D N.D 

Abundance  N.D N.D N.D 

  
C8H10O4 (32) 

170.058 

m/z  N.D 
188.101 
(M+NH4)+ 

N.D 

Abundance  N.D 165 N.D 

  
C8H10O3 (33) 

154.063 

m/z  N.D 
155.069 
(M+H)+ 

177.061 
(M+Na)+ 

Abundance  N.D 1265 6330 

 
C8H10O2 (34) 

138.068 

m/z  N.D 
139.074 
(M+H)+ 

N.D 

Abundance  N.D 192 N.D 

N.D = Not detected 

3.1.9. Results from product isolation and 13C NMR study 

Products extracted from the chloride release assay of 13C-ES diol, with ES7 and 

m-CPBA as shunt, were analyzed by 13C NMR. A new 13C-NMR peak was observed at 

109.99 ppm in the isolate from 13C-ES diol assay. In the control experiment using non-

labelled ES diol (14) this peak was not observed (Figure 3.7 and see Appendix A11). 
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Figure 3.7  13C NMR spectra. Blue: spectrum of dihydroxy phthalide (5,6-
dihydroxy-2-benzofuran-1(3H)-one, 24). Comparison of extracts from 
assays with 13C-ES diol (green) and ES diol (14) (brown) with ES7 
(using m-CPBA). 

 

3.1.10. In-silico docking studies 

To gain insight into how endosulfan and its analogues fit into active sites of the 

selected mutants and WT-P450cam, in silico docking calculations were performed. The 

average distances of heme-Fe to C1, C2, C3 and C4 are summarized in Figure 3.9. It was 

noticed that these chlorinated substrates are positioned in the active sites in such a way 

that either the C1 and C2 are closer to heme-Fe or C3 and C4 (example of ES diol (14) in 

Figure 3.8). Thus, the average distances of these carbons to heme-Fe, is not significantly 

different to each other (mutants vs WT-P450cam, Figure 3.9). However, the poses of ES 

diol (14) in mutants and WT-P450cam are selected based on with shortest distance 

between heme-Fe to C1 (D1) and C2 (D2) and minimum difference between Fe-C1 and 

Fe-C2 distances (minimum difference D1-D2) (Figure 3.10). 
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Figure 3.8  Schematic representation of orientation of ES diol (14) found in in 
silico docking studies using MOE. (A) C1 and C2 are closer to heme-
Fe, (B) C3 and C4 are closer to heme-Fe (The heme-Fe is 
represented as “-Fe-”). 
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Figure 3.9  Average distances of C1, C2, C3 and C4 from heme-Fe in WT-
P450cam, K314E, ES1-7 and IND1 mutants. (A) α-ES (13A), (B) β-ES 

(13B), (C) ES diol (14), (D) ES lactone (15A), (E) ES lactone (15B), (F) 
ES ether (16), (G) ES sulfate (20), and (H) carbon numbers assigned 
to endosulfan bicyclic core for the purpose of this discussion. 
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Figure 3.10  Selected poses of ES diol (14) positioned above the heme in the 
active sites of WT-P450cam and mutants (selected based on Equation 
3.1). 

 

To understand the epoxidation of ES substrates catalyzed by P450s, the distance 

is represented by a “x” value calculated from the selected pose. The “x” value is calculated 

using average distance between Fe-C1/C2 (the minimum distance, D1 and D2), the 

difference between Fe-C1 (D1) and Fe-C2 (D2) distances (Equation 3.1). 
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x = (Average of D1 and D2) × (Difference between D1 and D2) Equation 3.1 

 

The calculated “x”-value from ES diol (14) selected poses, was compared with the 

kinetic data obtained in in vitro assays using crude lysate of WT-P450cam and mutants. 

WT-P450cam shows higher “x”-value which has lower catalytic activity than ES2 and other 

mutants (Figure 3.11). 

The best poses were also selected for other substrates and “x”-values were 

calculated to compare WT-P450cam and mutants. WT-P450cam has higher “x”-value for α-

ES (13A) and ES diol (14) compared to the selected P450cam mutants (ES1 – ES7). This 

relates to the selection of mutants capable of degradation of ES (13) during the screening 

of the randomly generated SeSaM mutant library (Figure 3.12). 
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Figure 3.11  Comparison of the calculated “x”-value with kinetic data of WT-
P450cam and mutants (crude lysate). (A) kcat vs. “x”-value, (B) KM vs. 
“x”-value, (C) kcat/KM vs. “x”-value. 
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Figure 3.12  Different substrates and calculated “x”-values from the selected 
poses in WT-P450cam and mutants in MOE docking (see Figure 2.1 
for list of substrates). 
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ES1 mutant and ES diol (14) 

ES1 mutant (T56A/N116H/D297N) was more active than WT-P450cam, however, it 

was less active than ES2 and ES7 mutants in degradation of ES diol (Table 3.2). T56A 

and N116H, which are located on the loop between helices A and B, and helix C 

respectively, are not present in the active site directly. However, D297N mutation, which 

is located on the loop between helices K and K’ near the active site of P450, makes a 

network of H-bonding to the hydroxyl of ES diol (14) and propionate chain of heme (Figure 

3.13, Appendix A12). 

 



89 

 

Figure 3.13  The in silico molecular docking results of ES1 (T56A/N116H/D297N) 
and ES diol (14). (A) P450 is shown in cyan color, heme in yellow 
color, mutations are shown in green colored spheres, and ES diol in 
pink color. (B) Orientation of ES diol (14) in active site (proposed H-
bonds are shown as yellow dotted lines). 
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ES2 mutant and ES diol (14) 

Steady-state kinetic results showed that ES2 (F292S/A296V/K314E/P321T) was 

the most active mutant with highest rate (kcat) of degradation of ES diol (14) among the 

mutants (Table 3.2). F292S and A296V mutations are located directly at the active site 

close to heme in C-terminus of helix K and on the loop between helices K – K’, 

respectively. In contrast, the K314E and P321T mutations are present away from active 

site, on the loop between helices K and K’, and N-terminus of helix K’, respectively. Thr101 

makes a H-bond to the hydroxyl of ES diol (14) bound in the active site of P450 (Figure 

3.14, Appendix A12). However, the Asp297 residue does not make any H-bond directly to 

the propionate chain of heme as noticed in other mutants and WT, thus, affecting the 

stability of the heme in P450 (Figure 3.14). This decrease in stability of the heme was 

noticed when ES2 and F292S/A296V mutants were cloned with a His6-tag and lost heme 

during purification (as described above), indicating that the F292S/A296V mutations 

possibly affect the H-bonding network of Asp297. The F292S mutation resulted in a 

change from a hydrophobic residue (Phe) to a polar neutral residue (Ser), which can play 

an additional role in altering the H-bonding network in the overall protein structure. Also, 

the K314E mutation resulted in a negatively charged residue (Glu) from positively charged 

residue (Lys). Based on the increased activity towards ES diol (14) by a single K314E 

mutant, it is reasonable to propose that the residue plays a role in increasing in catalytic 

activity of ES2 towards ES diol, relative to the wild-type (WT). 
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Figure 3.14  The in silico molecular docking results of ES2 
(F292S/A296V/K314E/P321T) and ES diol (14). (A) P450 is shown in 
cyan color, heme in yellow color, mutations are shown in red 
colored spheres, and ES diol in pink color. (B) Orientation of ES diol 
(14) in active site (proposed H-bonds are shown as yellow dotted 
lines). 
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ES3 mutant and ES diol (14) 

The ES3 (Q108R/R290Q/I318N) mutant was less active than the ES2 mutant 

towards degradation of ES diol (14) (Table 3.2). The Q108R mutation which is located in 

helix C at the proximal end of heme, is close to Arg109 and Arg112 residues, both of which 

play a role in PdX binding and electron transfer (Koga et al., 1993). The R290Q and I318N 

mutations are located on helix K and on the loop between helices K and K’, respectively. 

ES diol (14) bound in the active site is stabilized through a network of H-bonding with the 

Asp297 and Arg299 residues (Figure 3.15, Appendix A12). 
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Figure 3.15  The in silico molecular docking results of ES3 (Q108R/R290Q/I318N) 
and ES diol (14). (A) P450 is shown in cyan color, heme in yellow 
color, mutations are shown in blue colored spheres, and ES diol in 
pink color. (B) Orientation of ES diol (14) in active site (proposed H-
bonds are shown as yellow dotted lines). 
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ES4 mutant and ES diol (14) 

The ES4 (S221R/I281N) mutant showed a lower catalytic activity than the ES2 

mutant towards degradation of ES diol (14) (Table 3.2). The two mutations S221I and 

I281N, are both away from active site and are present in helix H and helix K, respectively. 

ES diol (14) bound in the active site is stabilized by hydrophobic interactions with 

surrounding residues in the active site, without making any H-bond contacts (Figure 3.16, 

Appendix A12). Serine, a polar residue, is replaced by the non-polar residue isoleucine, 

which may have effects on helices F and G. These helices play a role in guiding substrate 

entrance to the active site. In contrast, the other mutation resulted in a replacement of a 

non-polar Ile to a polar residue Asn in helix K. However, the possible effect of I281N 

mutation, which is on proximal end of P450cam close to helix I, may have effects on helix I. 

Helix I has conserved cysteine (Cys357) on N-terminus, bound to heme-Fe. 
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Figure 3.16  The in silico molecular docking results of ES4 (S221R/I281N) and ES 
diol (14). (A) P450 is shown in cyan color, heme in yellow color, 
mutations are shown in yellow colored spheres, and ES diol in pink 
color. (B) Orientation of ES diol (14) in active site (proposed H-bonds 
are shown as yellow dotted lines). 
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ES5 mutant and ES diol (14) 

The ES5 (A296P) has single mutation which is located directly in the active site, at 

the loop between helices K and K’. The A296P mutation is also close to the loop (I395 and 

V396), which is present at the top of the active site along with F-G loop, may have effects 

on substrate entry. Like in the ES4 mutant, ES diol (14) bound in active site of ES5 is 

stabilized by hydrophobic interactions with surrounding residues in the active site, without 

making any H-bond (Figure 3.17, Appendix A12). Ala296 residue was also found mutated 

in ES2 mutant but into valine (Table 3.1). ES5 was found to be active more than WT-

P450cam towards ES diol (14) degradation even though it only has a single mutation (Table 

3.2). 
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Figure 3.17  The in silico molecular docking results of ES5 (A296P) and ES diol 
(14). (A) P450 is shown in cyan color, heme in yellow color, mutation 
is shown in magenta colored spheres, and ES diol in pink color. (B) 
Orientation of ES diol (14) in active site (proposed H-bonds are 
shown as yellow dotted lines). 
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ES6 mutant and ES diol (14) 

The ES6 (G120S) is another selected mutant with a single mutation, which showed 

significant activity towards ES diol (14) degradation. The G120S mutation is present at the 

C-terminus of helix C, on the proximal end of P450cam, where a neutral residue (Gly) has 

been replaced with a polar residue (Ser). Like in ES2, Thr101 makes a H-bond to the 

hydroxyl of ES diol (14) bound in active site of ES6 (Figure 3.18, Appendix A12). 
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Figure 3.18  The in silico molecular docking results of ES6 (G120S) and ES diol 
(14). (A) P450 is shown in cyan color, heme in yellow color, mutation 
is shown in magenta colored spheres, and ES diol in pink color. (B) 
Orientation of ES diol (14) in active site (proposed H-bonds are 
shown as yellow dotted lines). 
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ES7 mutant and ES diol (14) 

The ES7 (V247F/D297N/K314E) mutant has three mutated residues, and the 

mutations D297N and K314E mutations were also found in the other two mutants ES1 

and ES2, respectively. V247F and D297N are located in the active site close to the heme, 

in helix I and in the loop between helices K and K’, respectively. K314E is located away 

from active site in the loop between helices K and K’. Residues Thr101 and Asn297 could 

play a key role in orientation of ES diol (14) bound in the active site through a network of 

H-bonding (Figure 3.19, Appendix A13). ES7 was most active mutant after ES2 towards 

ES diol (14) degradation (Table 3.2 and Table 3.3) and, unlike ES2, it was stable during 

purification as the his6 tagged form. The mutation V247F, which also occurred in IND1 

(see below), which was also more active than WT, shows possible interactions of phenyl 

ring with C1 C2 pi bond of ES diol (14). Thus, V247F may play a key role in the orientation 

of the substrate ES diol (14) in the active site. Therefore, it is reasonable to conclude that 

the mutation V247F contributed to the improvement in activity towards ES diol (14) in this 

case. 
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Figure 3.19  The in silico molecular docking results of ES7 (V247F/D297N/K314E) 
and ES diol (14). (A) P450 is shown in cyan color, heme in yellow 
color, mutations are shown in white colored spheres, and ES diol in 
pink color. (B) Orientation of ES diol (14) in active site (proposed H-
bonds are shown as yellow dotted lines). 
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IND1 mutant and ES diol (14) 

The IND1 (E156G/V247F/V253G/F256S) mutant, which was selected on 3-

chloroindole from the SeSaM library previously (Kammoonah et al., 2018), was also found 

to be active toward biodegradation of ES diol (14) (Table 3.2). Residue 156 (mutated 

E156G) is located at the N-terminus of helix E, away from the active site, whereas other 

three mutations are present on helix I within the active site. Mutation V247F, which is also 

found in the ES7 variant, indicates that this mutated residue may play important role in the 

improvement of activity towards degradation of ES diol (14). However, the orientation of 

residue 247F in IND1 is different than in ES7. This different orientation of phenyl ring of 

residue 247F in IND1 and ES7, indicates that the orientation of the phenyl ring also plays 

a role in improvement in activity towards degradation of ES diol (14) in both mutants. In 

this model of IND1 with ES diol (14) bound, residues Thr101 and Asp297 play a key role 

in the orientation of the substrate bound in the active site through a network of H-bonding 

interactions (Figure 3.20, Appendix A13). 
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Figure 3.20  The in silico molecular docking results of IND1 
(E156G/V247F/V253G/F256S) and ES diol (14). (A) P450 is shown in 
cyan color, heme in yellow color, mutations are shown in wheat 
colored spheres, and ES diol in pink color. (B) Orientation of ES diol 
(14) in active site (proposed H-bonds are shown as yellow dotted 
lines). 
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K314E mutant and ES diol (14) 

The mutation K314E was found in two most active mutants (ES2 and ES7), and 

the single mutant K314E was found to be more active towards ES diol degradation than 

WT-P450cam (Table 3.3). Even though K314E is located away from the active site in the 

loop between helices K and K’, the model of variant K314E with ES diol (14) bound in the 

active site, shows that the substrate is stabilized though a network of H-bonding 

interactions between Asp297 and Arg299 residues (Figure 3.21, Appendix A13). 
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Figure 3.21  The in silico molecular docking results of K314E and ES diol (14). 
(A) P450 is shown in cyan color, heme in yellow color, mutation is 
shown in light blue colored spheres, and ES diol in pink color. (B) 
Orientation of ES diol (14) in active site (proposed H-bonds are 
shown as yellow dotted lines). 
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WT-P450cam and ES diol (14) 

WT-P450cam showed very low activity towards ES diol (14) degradation compared 

to the mutants (Table 3.2 and Table 3.3). Most of the poses in the docking simulation 

studies show ES diol (14) was not positioned very well for epoxidation, with its C=C bond 

above the heme, compared to the active P450cam mutants (Figure 3.22). ES diol (14) 

bound in the active site of WT is stabilized by hydrophobic interactions with surrounding 

residues in the active site without making H-bonding contacts. The key difference between 

WT and mutants is in the orientation of ES diol (14) within the active site. In the WT, both 

hydroxyl groups of ES diol (14) are oriented towards the distal end of the protein (towards 

the loop between helices F and G Figure 3.22, Appendix A13). This positions the double 

bond between C1 and C2 of the substrate too far away from the heme-Fe to be effectively 

epoxidized (see proposed mechanism below section 3.2.1). As can be seen in Figure 3.11, 

a high “x” score, which is reflective of a large distance between C1, C2 and the heme-Fe, 

correlates with lower activity as reflected in kcat. 
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Figure 3.22  The in silico molecular docking results of WT-P450cam and ES diol 
(14). (A) P450 is shown in cyan color, heme is in yellow color, and 
ES diol in pink color. (B) Orientation of ES diol (14) in active site 
(proposed H-bonds are shown as yellow dotted lines). 
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3.2. Discussion 

3.2.1. Proposed mechanism of dehalogenation 

Previously reported dehalogenation studies of chlorinated organic compounds by 

WT-P450cam were limited to small organochloride compounds including halomethanes, tri, 

tetra, penta, and hexa-chloroethane, tetrachloroethene, and dichloropropane. These 

studies were done under low oxygen conditions resulting in reductive dehalogenation of 

those substrates (Lefever & Wackett, 1994; Li & Wackett, 1993; Logan et al., 1993; 

Wackett, 1995; Wackett et al., 1994). In this study, dehalogenation of endosulfan diol was 

investigated using P450cam mutants, under oxidizing conditions. We detected aromatic 

products 24, 32, 33 and 34. We demonstrated that they come from ES diol (14) and that 

their formation is coupled with the loss of ~ 6 Cl- ions on average. Based on these 

observations, we propose a mechanism for the dehalogenation of endosulfan diol by these 

mutants (Figure 3.23). 

 

 

Figure 3.23  Proposed mechanism of degradation of ES diol (14) by P450cam 
mutants, such as ES7. The proposed route accounts for the loss of 6 
Cl- ions from the ES diol core structure and of the bridge as CO2. 
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The proposed mechanism of dehalogenation is initiated by oxidation of the 

sterically hindered and electron poor double bond of ES diol (14) by the active P450cam 

mutants. This oxidative dehalogenation of ES diol was observed under two conditions: 1) 

using the redox partners of P450cam PdR and PdX and the natural electron donor NADH 

and O2 from the air, or 2) using an artificial shunting agent, m-CPBA, with the P450cam 

mutants. Both of these conditions are oxidizing, whereas previously observed 

dehalogenation of polychlorinated ethane congeners by P450cam was proposed to involve 

two-electron reduction of the substrate under low oxygen conditions (Li & Wackett, 1993). 

Oxidation of the double bond of ES diol (14) initiates a dehalogenation cascade 

comprised of multiple chloride elimination steps, which results in the formation of a 

quinone product (35) (Figure 3.23). Consistent with formation of an ortho-quinone we 

observed a colored product in the 4-AAP coupled assay in the absence of HRP (Figure 

3.2, D). However, HRP was added to convert any phenolic metabolites back to quinones, 

in order to quantify them together in the 4-AAP coupled assay. Phenolic products 32, 33 

and 34 form by reduction of the very reactive ortho-quinone with NADH, which is present 

in excess in the reaction mixture. Interestingly, in a preliminary study, in which we 

transformed ES7 into P. putida (ATCC17453) and incubated that with ES (13), o-

phthaldialdehyde was isolated from the culture mixture after a few days of incubation 

(Prasad, 2013). Formation of lactone (24) involves reduction of ortho-quinone (35), 

preceded (at the ES diol level) or followed by oxidation of one CH2OH groups to the 

carboxylate level and spontaneous lactonization. 

Consistent with dehalogenation, the release of chloride ions was detected and 

quantified using a chloride ion electrode, and we have found close to 6 chloride ions 

released per quinone product formed, as would be expected for the proposed mechanism 

(Figure 3.6). This is a new biodegradation of the ES, in which the chlorine atoms attached 

to the bicyclic core of the compounds are removed. Previously reported biodegradation of 

endosulfan by fungal strains (Phanerochaete chrysosporiu, (Kullman & Matsumura, 

1996), Aspergillus terreus and Cladosporium oxysporum (Mukherjee & Mittal, 2005), 

Mortierella sp. (Kataoka et al., 2010), Chaetosartorya stromatoides and Aspergillus 

terricola (Hussain, Arshad, Saleem, & Zahir, 2007)) or bacterial strains (Pseudomonas 

spinosa, Pseudomonas aeruginosa, and Burkholderia cepacian, (Hussain, Arshad, 

Saleem, & Khalid, 2007), Mycobacterium sp. (Sutherland, Horne, Harcourt, et al., 2002), 
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Pandoraea sp. (Siddique et al., 2003), Klebsiella pneumoniae  (Kwon et al., 2002)) etc. 

resulted in chlorinated endosulfan metabolites such as ES diol (Figure 1.17). 

3.2.2. Effects of mutation in ES variants of P450cam 

In our study wild type P450cam did not show significant dehalogenation activity, 

whereas the mutants previously selected on minimal media with endosulfan and m-CPBA 

(Kammoonah et al., 2018) were significantly more active in dechlorination of ES  diol than 

the wild-type. Camphor, the natural substrate of cytochrome P450cam, is oxidized regio- 

and stereoselectively to 5-exohydroxycamphor (Prasad et al., 2011). Endosulfan and 

related compounds are larger than camphor, though their bicyclic core resembles it. In 

order to accommodate substrates with different size and/or shape than camphor, several 

amino acid residues in the catalytic site of P450cam have been mutated rationally (Figure 

1.14). Tyr96 hydrogen bonds with the carbonyl group of camphor, and Phe87 makes 

hydrophobic interactions with camphor. Both residues play a key role in regioselective and 

stereoselective oxidation of camphor at the 5-position (Bell et al., 2003). Therefore, Tyr96 

and Phe87 are the most commonly mutated amino acid residues in P450cam mutants 

(Table 1.6, Table 1.7 and Table 1.8). For example, the following alterations of P450cam 

substrate selectivity have been reported: naphthalene oxidation by Y96G/A/V/F mutants 

(England et al., 1998) and polycyclic aromatic oxidation by F87L/A-Y96F mutants 

(Harford-Cross et al., 2000), epoxidation of styrene to styrene oxide by Y96A and Y96F 

mutants (9 fold and 25 fold higher than WT P450cam respectively) (Nickerson et al., 1997), 

benzocycloarene oxidation by Y96F mutant (Mayhew et al., 2002), 2-ethylhexanol to 2-

ethylhexanoic acid (F87W, Y96W, T185F, and L244A mutants) (French et al., 2001, 

2002), hydroxylation of polychlorinated benzene to give polychlorinated phenol (F87W-

Y96F-F98W and F87W-Y96F-V247L mutants)  (Jones et al., 2000). Only the F87W mutant 

of P450cam was found active towards reductive dehalogenation of pentachloroethane 

(Manchester & Ornstein, 1995). 

Leu244, Val247 and Val295, which make hydrophobic contacts with camphor 

bound in the active site (Poulos et al., 1985), have also been mutated to study the 

oxidation of different hydrophobic substrates (Table 1.6, Table 1.7 and Table 1.8). In our 

case, Val247 and Asp297, which were mutated in ES7 (V247F/D297N/K314E), are the 

only residues in the mutants we isolated from our random mutagenesis and selection that 

were previously altered rationally in P450cam mutants  (Table 1.6, Table 1.7 and Table 1.8). 
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Val247 was previously mutated along with Phe87, Tyr96 and other amino acids to study 

terpene  oxidation (V247L) (Bell et al., 2003; Bell et al., 2001; Sowden et al., 2005), 

propane and butane oxidation (V247L) (Bell et al., 2003), hexane oxidation (V247A/L) 

(Stevenson et al., 1998), and benzylic oxidation of ethyl benzene (V247L/M/A) (Eichler et 

al., 2016; Loida & Sligar, 1993). However, residue Asp297 was mutated previously only 

to study propane and butane oxidation (D297M) (Bell et al., 2003) (Table 1.6, Table 1.7 

and Table 1.8). The other residues we found in our set of mutants (T56, Q108, N116, 

G120, S221, I281, R290, F292, A296, K314, I318 and P321) have never been reported to 

have been altered. 

Certain residues in P450cam which play key roles in catalytic activity and stability of 

P450cam are summarized in Table 1.5. Any mutation in these residues has resulted in 

either a decrease or complete loss of catalytic activity of P450cam. For example, Cys357, 

which is the axial ligand of heme-Fe, is crucial for the P450cam catalytic cycle. C357H/M 

mutation resulted in complete loss of P450cam activity (Murugan & Mazumdar, 2005; 

Yoshioka et al., 2001). Even mutation of Leu358, which is next to Cys357, has a 

detrimental effect on the thiolate axial ligand to Fe from the side chain of Cys357, which 

resulted in loss of P450cam catalytic activity (Batabyal et al., 2013; Karunakaran et al., 

2011; Tosha et al., 2004; Yoshioka et al., 2000). Residues Asp251 and Thr252, along with 

Lys178 and Arg186, which are involved in a network of H-bonding, play a crucial role in 

proton delivery to the distal oxygen of the peroxo (5) and hydroperoxo (6) complexes 

during the catalytic cycle (Figure 1.3). They deliver protons through a water network 

(Schlichting et al., 2000; Vidakovic et al., 1998), ensuring that Compound 0 (Figure 1.3, 

6) is protonated distally to eliminate water, resulting in the FeIV-oxo-porphyrin cation 

radical species known as Compound-I (Cpd-I, Figure 1.3, 7) (Gerber & Sligar, 1992; Hishik 

et al., 2000; Kim et al., 2008; Nagano & Poulos, 2005; Vidakovic et al., 1998; Wang et al., 

2015). In our selected mutants, these residues which are important for proton delivery or 

electron transfer during catalytic cycle of P450, were found not to be mutated. 

Residue Thr101 makes a H-bond with the propionate chain of heme and is 

important for heme retention in the enzyme (Manna & Mazumdar, 2006). However, certain 

residues which are neither present directly in the active site of P450cam nor play role in 

P450cam structure stability, can play a role in substrate availability or selection. For 

example, Ser190, which is present on the surface of the enzyme in the loop between 

helices F and G, can recognize and direct camphor towards the binding site (Behera & 
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Mazumdar, 2008). While the rational mutation studies, summarized in Tables Table 1.5, 

Table 1.6 and Table 1.7, address important residues in P450cam, we have noticed that 

some of the mutations we observed (G120S, K314E) are not directly present in the 

substrate binding site, and their effect in improving endosulfan (13) biodegradation is 

somewhat unexpected (Figure 3.24). 

 

 

Figure 3.24  Superimposed structures of WT-P450cam and mutants (ES diol is not 
shown). P450 is shown in light blue color, heme in yellow color, and 
mutated residues are identified with the residue number. Residues 
are colored: ES1 in green, ES2 in blue, ES3 in magenta, ES4 in 
yellow, ES5 in orange, ES6 in wheat, ES7 in purple blue, IND1 in light 
green, K314E in pink and WT in red. 

 

Putidaredoxin (PdX) binds to the proximal end of P450cam, and Arg112 along with 

Arg109 are important residues for electron transfer from PdX to P450cam (Koga et al., 

1993). Apart from shuttling electrons from putidaredoxin reductase to P450cam, PdX also 
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plays an effector role during catalysis of P450cam (Batabyal et al., 2016; Lipscomb et al., 

1976; Tosha et al., 2003; Tripathi et al., 2013; Tyson et al., 1972). Upon substrate binding 

to the active site of P450cam, the first electron transfer to high-spin (HS) heme-FeIII 

(substrate bound, 2) yielding heme-FeII (substrate bound, 3), can be achieved using a 

suitable reductant (Figure 1.3). However, P450cam requires PdX specifically for the second 

electron transfer, needed to make ferric peroxo complex (5) from ferric superoxo species 

(4) (Figure 1.3) (Lipscomb et al., 1976; Pochapsky et al., 2001). The binding of PdX to 

P450cam, induces displacement in helix C, which is then transmitted to helix B′ and other 

helices (B, E, F, G, and I) on the distal end of the P450cam (Myers et al., 2013; Pochapsky 

et al., 2003; Pochapsky & Pochapsky, 2019; Tripathi et al., 2013). Displacements in 

helices F and G, are the main features of the open (substrate free)/ close (substrate 

bound) transition (Figure 1.10), while helix B’ is present near the active site of P450cam 

(Lee et al., 2010). Different spectroscopic data show that PdX favors the open-

conformation of P450cam (or shifts the closed state to the open state) (Hiruma et al., 2013; 

Pochapsky et al., 2003; Tripathi et al., 2013; Unno et al., 1997). It is suggested that the 

reduced PdX transfers the electrons to a substrate-bound closed conformation of P450cam 

giving ferric-hydroperoxo complex (6, Figure 1.3) bound to oxidized PdX. The oxidized 

PdX is supposed to convert this into the open-conformation (Myers et al., 2013; Ortiz de 

Montellano, 2015). In our selected P450cam mutants, some of the mutations are located in 

these helices which have shown some displacement upon PdX binding in these and other 

studies. For example, Q108R (ES3), N116H (ES1), and G120S (ES6) mutations are 

located in helix C directly at the binding site of PdX (Figure 3.24). These mutations may 

play a similar effector role to some extent as PdX or enhance it in the presence of PdX. 

Mutation S221R in helix H, can induce displacement in the F/G helices to affect the 

dynamics between the open and closed conformations of P450cam. 

As PdX favors the open conformation of P450cam, camphor is being used in large 

excess to saturate the P450cam for the catalytic activity (Glascock et al., 2005). However, 

in our studies of ES diol (14) degradation using P450cam mutants with PdX and PdR to 

source the electron from NADH, we observed allosteric sigmoidal kinetics (Figure 3.3). 

This sigmoidal kinetics indicates that due to the higher dissociation constant (Kd) of ES 

diol (14) compared to camphor (Table 3.4), we need higher concentration of ES diol (14) 

to fully saturate the P450s in the closed conformation to notice the catalytic activity using 

PdX and PdR. In the presence redox partners (PdX and PdR), one may observe sigmoidal 
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kinetics because there is a rate-limiting step between substrate binding and the formation 

of Cpd I (Figure 1.3, 7) which probably requires a closed conformation of P450s. Cpd I is 

needed to epoxidize that electron-poor double bond of ES diol (14), as we have proposed 

(Figure 3.23). On the other hand, using m-CPBA as shunt, it allows the enzyme to access 

Cpd I directly (Figure 1.3). Thus, using m-CPBA as a shunt with ES7, we observed 

Michaelis-Menten kinetics using lower concentrations of ES diol (14) (Figure 3.4). 

3.3. Conclusion 

We have succeeded in the biodegradation of polychlorinated persistent-organic-

pollutant endosulfan (13) and its most common metabolite endosulfan diol (14), using 

selected P450cam mutants (ES1-ES7, IND1, K314E). We also have proposed a 

mechanism of dehalogenation where six HCl molecules are released per molecule of ES 

diol, which were confirmed by using an ion selective chloride electrode. Further, non-

chlorinated metabolites of ES diol were detected by LC-MS and 13C-labelled product was 

detected by NMR. These results are consistent with the proposed mechanism of 

dehalogenation. The metabolites were coupled with 4-aminoantipyrine (4-AAP) to give the 

colored product which was detected by UV to quantify and measure the rate of 

degradation, and to compare the activity of the selected P450cam mutants. WT-P450cam 

showed very little activity (kcat = 0.8 µM/s.µM P450) compared to the mutants. Among the 

mutants, ES2 (F292S/A296V/K314E/P321T) and ES7 (V247F/D297N/K314E) were the 

most active mutants with high turnover number (kcat = 6.2 ± 2.3 µM/s.µM P450, and 4.3 ± 

1.2 µM/s.µM P450, respectively), and high catalytic efficiency (kcat/KM = 16.6 ± 6.1 ×10-3 

1/s.µM, and 12.8 ± 3.7 ×10-3 1/s.µM, respectively). However, ES2 is unstable when cloned 

with a His6-tag for purification. Catalytic activity of ES7 (kcat = 12.6 ± 4.7 µM/s.µM P450) 

was increased when purified proteins were used. ES5 (A296P) and ES6 (G120S), each 

with a single mutation, were also found to be more active than WT-P450cam, but less active 

than ES7 and ES2. The steady-state kinetic data suggest that the multiple substitutions 

may play a role in improving P450cam activity. However, some mutations which may not 

be present directly at the active site of P450 but at a position important for overall protein 

dynamics, may contribute to change the substate selectivity and the activity. 

In molecular docking studies, the orientation of the ES diol in selected poses also 

support the proposed mechanism of dehalogenation, which is initiated with the oxidation 

of the C=C bond on the bulky chlorinated endosulfan diol molecule. 
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P450cam variants that are efficient in the degradation and dehalogenation of 

endosulfan and ES diol could be used in the dehalogenation of other organochlorine 

substrates such as dechlorane plus and heptachlor which have similar polychlorinated 

moiety. 
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Chapter 4. Oxidation of β-phellandrene by WT-
P450cam and ES7 mutant 

4.1. Results 

4.1.1. Synthesis of β-phellandrene 

Synthesis of β-phellandrene (22) commenced with a commercially available 

monoterpene, (-)-β-pinene (21, Scheme 4.1). 

 

 

Scheme 4.1  Synthesis of β-phellandrene from β-pinene. 

 

Oxidation of β-pinene to synthesize (+)-nopinone (27) 

Oxidation of (-)-β-pinene (21) to (+)-nopinone (27) using KMnO4 as oxidizing agent 

under different conditions resulted in up to 46% yield of (+)-Nopinone (27) in 24 hours of 

reaction (Table 4.1). However, using a catalytic amount of RuCl3 with NaIO4 (Kawashima 

et al., 2014) has not only increased the yield significantly, but also requires less time to 

complete the reaction (2 hours, 84% yield) (Table 4.1, entry 4). 
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Table 4.1  Synthesis of (+)-Nopinone (27) using different oxidizing 
agents/conditions 

Entry Oxidizing agent Solvent mixture Reaction time at RT Yield 

1 KMnO4, alumina * CH2Cl2, t-BuOH 24 hours  39% 

2 KMnO4, acidic alumina * CH2Cl2, t-BuOH 24 hours 46% 

3 NaIO4, KMnO4 (cat) * H2O, t-BuOH 24 hours 30% 

4 NaIO4, RuCl3.nH2O (cat) CH3CN, H2O, CCl4 2 hours 84% 
* See reaction procedure in Appendix B. 

Ring opening of (+)-nopinone using AlCl3 to give (±)-cryptone (28) 

Ring opening of (+)-nopinone (27) using AlCl3 according to previous known method 

(Mori, 2006) yielded (±)-Cryptone (28)  (77% yield) , along with the β,γ-unsaturated ketone 

(29, 10% isolated yield). The β, γ-unsaturated ketone isomer (29) was separated, using 

silica gel column chromatography. Ketone 29 is the synthetic precursor of β-terpinene, 

another important monoterpene. The racemization of cryptone and the formation of by-

product ketone 29 is a consequence of the formation of a carbocation during the ring 

opening of (+)-nopinone to cryptone catalyzed by the Lewis acid (AlCl3) (Figure 4.1). The 

cryptone isomer (29) was observed during the ring opening reaction along with cryptone 

(28) over the time (Table 4.2). 

 

  

Figure 4.1  Ring opening of (+)-nopinone (27) to cryptone (28) catalyzed by 
Lewis acid (AlCl3). 
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Table 4.2  Ring opening of nopinone (27) and product ratio over time 

# Reaction Time Ratio (%) 
(+)-nopinone (27) (±)-cryptone (28) Cryptone isomer (29) 

1 5 minutes 97 2 1 
2 30 minutes 81 16 3 
3 1 hour 65 32 3 
4 2 hours 13 77 10 
5 3 hours 2 92 6 

 

Wittig reaction of (±)-cryptone (28) to give (±)-β-phellandrene (22) 

Wittig reaction of (±)-cryptone (28) with methyl triphenylphosphonium bromide 

gave (±)-β-phellandrene (22, 70% yield), according to the literature (Bergstrom et al., 

2006). Optical rotation of the final product shows that it is racemic (±)-β-phellandrene (see 

section 2.1.1). Our scheme of (±)-β-phellandrene synthesis starting with (-)-β-pinene in 3 

steps is the most efficient synthesis (46 % yield in 3 steps). Racemic β-phellandrene was 

used further for enzymatic assays. 

4.1.2. Enzymatic assays 

Ligand binding and dissociation constant (Kd) using purified WT-P450cam 
and the ES7 mutant 

The dissociation constant (Kd) of (±) β-phellandrene was measured using the 

change in the spin state equilibrium of the P450 heme, often seen upon substrate binding, 

as mentioned in section 3.1.6. In the absence of natural substrate camphor (10), WT-

P450cam shows a characteristic peak (λmax 418 nm – low spin Fe-III), which is blue shifted 

(λmax 392 nm – high spin Fe-III) upon addition of camphor due to the change in the spin 

state of iron (Fe) in the heme molecule. On titrating the ES7 mutant and WT-P450cam with 

β-phellandrene (22), the spin change of Fe in heme was observed (Figure 4.2). 
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Figure 4.2  Titrations of wild-type (WT) (left set of graphs) P450cam and mutant 
ES7 (right set of graphs) with β-phellandrene (22). The spectra (top 
set of graphs for each enzyme) show the blue shift in the Soret band 
as substrate is titrated into the enzyme preparation. The isotherms 
(lower set of graphs for each enzyme) depict the change in the Soret 
band (the increase in absorption at the blue-shifted wavelength 
relative to the decrease in absorption of the original Soret band). 

 

The change in spin state as the substrate is titrated into the enzyme is used to 

calculate Kd values for β-phellandrene (22) (Table 4.3), which were: 1.9 ± 0.38 µM and 2.0 

± 0.04 µM for WT and ES7 mutant respectively, which is very close to the Kd of camphor-

WT P450cam (Table 4.3). 
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Table 4.3  Dissociation constant measured using β-phellandrene (22) with 
purified WT P450cam and ES7 mutant 

P450cam Mutations (d)-Camphor (10) Kd (µM) * β-phellandrene (22) Kd (µM) 

WT  - 1.7 ± 0.04 1.9 ± 0.38  

ES7 V247F/D297N/K314E 10.4 ± 0.43 2.0 ± 0.34 
* Values are calculated above in section 3.1.6. 

 

In-vitro assay of β-phellandrene oxidation using WT P450cam with m-CPBA 
as a shunt 

To determine whether β-phellandrene (22) is a potential substrate for P450cam and 

to find possible oxidation product(s), experiments were performed using purified WT-

P450cam and m-CPBA (as shunt) in an in vitro assay. Organic extracts from these in vitro 

assays were analyzed using GC-MS. 

When experiments were performed in vitro using WT-P450cam, m-CPBA (shunt) 

and β-phellandrene (substrate), a new peak (retention time 9.3 minutes in GC) with mass 

152 m/z (M+) was exclusively detected in the extracts from the treatments after 20 minutes 

of incubation at room temperature. This peak was absent in the controls: (1) no P450cam, 

and (2) no substrate (β-phellandrene). Absence of this peak (152 m/z) in the control 

without WT-P450cam indicates that a new product must have resulted from oxidation of β-

phellandrene catalyzed by WT-P450cam. The new peak’s mass spectrum, which shows an 

increase of the mass by 16 units (M+ 152 m/z) from that of β-phellandrene (M+ 136 m/z), 

also supports the new product as resulting from oxidation of β-phellandrene (Figure 4.3). 

The peak area of the 152 m/z peak (9.3 minutes), along with that of other peaks 

which are noticeably different or representing oxidized product (with 16 mass units 

increase), in treatments vs. controls are summarized in Figure 4.4. These peaks with 

retention time of 10.5 min, 10.6 min, 10.8 min and 11.0 min, which may represent the 

epoxidized products of β-phellandrene, were also present in the control – no P450cam, 

indicating the epoxidized products by m-CPBA oxidation of β-phellandrene (22) (Figure 

4.3 and Figure 4.4). There are four possible diastereomers resulting from epoxidation of 

racemic β-phellandrene (22) which has two C=C bonds (Figure 4.3). The epoxidized 

products, resulting from reaction of β-phellandrene with m-CPBA, are distinct from the 

potential hydroxylation product at 9.3 min (see mass spectra in Appendix B1). 
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Figure 4.3  GC-MS analysis of extracts from the in-vitro assay using WT-
P450cam, m-CPBA and β-phellandrene. (A) Gas chromatograms: 
Control – no P450cam using m-CPBA and β-phellandrene only, 
control – no substrate using WT-P450cam and m-CPBA only, and 
treatment experiments using WT-P450cam, m-CPBA and β-
phellandrene. Peaks belonging to epoxidiezed products with 
retention times 10.5, 10.5, 10.8  and 11.0 min are represented by a 
‘star’. (B) Mass spectrum of the new peak at 9.3 minutes from 
treatment-A using WT-P450cam. 
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Figure 4.4  Area of the peaks at different retention time from in-vitro assay of β-
phellandrene oxidation using WT-P450cam and m-CPBA. 

Note: The peak at 10.8 minutes from GC-MS, is omitted in this graph due to large peak area 
count 

 

In-vitro assay of β-phellandrene oxidation using ES7 P450cam mutant with 
m-CPBA as a shunt 

In vitro assays of β-phellandrene (22) oxidation were repeated using ES7 P450cam 

and m-CPBA (shunt). Organic extracts from these experiments were analyzed using GC-

MS. The peak (152 m/z) with retention time 9.30 minutes was also detected in treatments 

using ES7 P450cam mutant and m-CPBA (shunt), similar to that of WT-P450cam 

experiments. While the peak was not detected in the controls: no substrate (β-

phellandrene 22), and no P450cam (Figure 4.5 and Figure 4.6). Epoxidized products were 

also noticed in these experiments (Figure 4.5 and Appendix B2). 
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Figure 4.5  GC-MS analysis of extracts from the in-vitro assay using ES7-
P450cam, m-CPBA and β-phellandrene. (A) Gas chromatograms: 
Control – no P450cam using m-CPBA and β-phellandrene only, 
control – no substrate using ES7-P450cam and m-CPBA only, and 
treatment experiments using ES7-P450cam, m-CPBA and β-
phellandrene. Peaks belonging to epoxidized products with 
retention time 10.5, 10.5, 10.8  and 11.0 min are represented by a 
‘star’. (B) Mass spectrum of new peak at 9.3 minutes from treatment-
A using ES7-P450cam. 
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Figure 4.6  Area of the peaks at different retention time from in-vitro assay of β-
phellandrene oxidation using ES7-P450cam and m-CPBA. 

Note: The peak at 10.8 minutes from GC-MS, is omitted in this graph due to large peak area 
count. 

 

In order to compare the catalytic activity of ES7 and WT-P450cam towards oxidation 

of β-phellandrene (22), peak areas of the peak (retention time 9.3 minutes) were 

calculated. The ES7 mutant has shown catalytic activity towards β-phellandrene (22) 

oxidation at similar rate to WT-P450cam (Figure 4.7). 
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Figure 4.7  Comparing the catalytic activity: peak areas of the peak (152 m/z, 
with retention time at 9.3 minutes) from the in-vitro assay of β-
phellandrene oxidation using WT-P450cam and ES7 mutants. 

 

Fragmentation pattern in mass spectrum and expected oxidation products 
of β-phellandrene 

P450s are known to insert oxygen into C=C or C–H bonds resulting in epoxidation 

or hydroxylation, respectively. Oxidation of β-phellandrene catalyzed by P450cam may 

result in epoxidized or hydroxylated products (Figure 4.8). Using m-CPBA as a shunt in 

these experiments of β-phellandrene (22) oxidation, the new product (152 m/z, at 9.3 

minutes) is most likely hydroxylated, as epoxidized products (36 and 37) will also be 

present in control (No P450cam) experiments (Figure 4.3 and Figure 4.5). To predict the 

possible hydroxylated product of β-phellandrene (22), the fragmentation pattern in mass 

the spectrum is a useful tool. 
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Figure 4.8  Possible oxidized products of β-phellandrene catalyzed by P450cam. 

 

The mass spectrum of β-phellandrene (22) shows the fragmentation peaks 136, 

121, 93 m/z, which represent M+ (C10H16 +●), M+
 -15 (C9H13

+), M+
 - 43 (C7H9

+), respectively. 

The base peak 93 m/z which results from fragmentation of the isopropyl group is more 

common due to the stability of the resulting fragments (Figure 4.9). 
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Figure 4.9  Analysis of mass spectrum of β-phellandrene (22): (A) mass 
spectrum (electron impact (EI) ionization), (B) possible 
fragmentations of β-phellandrene (22) from EI. 

 

The mass spectrum of the new peak (retention time 9.3 minutes) from the in vitro 

assay of β-phellandrene oxidation by WT-P450cam and ES7, shows a base peak 109 m/z. 

Upon comparing the base peak of 109 m/z to the base peak (93 m/z) of β-phellandrene 
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mass spectra, the additional 16 amu mass of the fragment (109 m/z) supports the idea of 

oxidation of the ring (C7H9O+ from 38, 39 or 40) and not of the isopropyl chain (Figure 

4.10). The expected oxidized products of β-phellandrene, 41 and 42, will have same base 

peak ion (93 m/z) as β-phellandrene upon loss of the hydroxylated isopropyl group. In the 

new product, the m/z 93 ion is much less prominent that m/z 109, so it is unlikely that the 

product has structures 41 or 42. In contrast, structures 38, 39 and 40 should all have a 

prominent m/z 109 fragment ion (Figure 4.11, Figure 4.12 and Figure 4.13). 

 

 

Figure 4.10  Mass spectrum of the peak (retention time 9.3 minutes) of oxidized 
β-phellandrene product and fragmented ion peaks. 
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Figure 4.11  Expected fragmentation of β-phellandrene oxidized product 38 in 
mass spectrum (EI). 
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Figure 4.12  Expected fragmentation of β-phellandrene oxidized product 39 in 
mass spectrum (EI). 
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Figure 4.13  Expected fragmentation of β-phellandrene oxidized product 40 in 
mass spectrum (EI). 

 

Ion peaks found in mass spectrum which are 152, 137, 134, 119, 109, and 91 m/z, 

represent C10H16O (M+), C9H13O+ (M+
 - 15), C9H14

+ (M+
 - 18), C9H11

+ (M+
 - 33), C7H9O+ (M+ 

- 43), and C7H7
+ (M+ - 51), respectively. Base peak 109 m/z resulted from fragmentation 

of iso-propyl group resulting in a carbocation at allylic position. These ions indicate the 

presence of an oxidized product 38, 39 or 40 (Figure 4.10), which has resulted from 

hydroxylation at a secondary or tertiary carbon of β-phellandrene, catalyzed by P450cam. 

4.1.3. In-silico docking studies using MOE 

To find the potential regioselectivity of hydroxylation of β-phellandrene catalyzed 

by WT-P450cam and ES7 mutants, in silico docking simulations were performed using both 

enantiomers of β-phellandrene ((-)-R-22a and (+)-S-22b). The in vitro assays using WT-

P450cam and ES7 mutants, show a new hydroxylated product of β-phellandrene, when 

using m-CPBA as shunt. Therefore, the carbon atoms of β-phellandrene which are 

potential sites for hydroxylation, are considered here only (C4, C5, and C6, Figure 2.4). 

The distances of heme-Fe to C4, C5 and C6 were measured. The shortest distance 
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between heme-Fe to C4, C5 or C6, was found to be between heme-Fe to C4, when β-

phellandrene ((-)-22a and (+)-22b) was docked in both ES7 and WT-P450cam (Appendix 

B3 and Appendix B4). The poses of β-phellandrene ((-)-22a and (+)-22b) docked in the 

ES7 mutant and WT-P450cam are selected, based on the shortest distance between heme-

Fe to either C4, C5 or C6 (Figure 4.14). 

 

 

Figure 4.14  Selected poses of (-)-R-β-phellandrene (22a, left side, shown in 
magenta) and (+)-S-β-phellandrene (22b, right side, shown in 
orange) positioned above the heme (shown in yellow color) in the 
active sites of the ES7 mutant and WT-P450cam. 

 

Comparing the distances from heme-Fe to carbon atoms (C4, C5 and C6) in β-

phellandrene, C4 was found to be closer than C5 and C6. However, in the case of WT-

P450cam, the distances from heme-Fe to C4 and C5 (4.60 Å and 5.91 Å, respectively) in (-
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)-R-22 enantiomer are shorter then C4 and C5 (5.44 Å and 6.89 Å, respectively) in (+)-S-

22 enantiomer. In contrast, in the ES7 mutant, distances from heme-Fe to C4 and C5 

(4.36 Å and 5.81 Å, respectively) in (-)-R-22 enantiomer are the same (4.68 Å and 5.80 Å, 

respectively) in the (+)-S-22 enantiomer (Figure 4.15). This shows WT-P450cam may have 

some preference to (-)-R-22 enantiomer over (+)-S-22 enantiomer for hydroxylation and, 

more importantly, that C4 would be the position of hydroxylation. This idea is more 

favoured, as C4 is allylic (which makes it easier than C5 to hydroxylate) and much less 

hindered than C6. 

 

 

Figure 4.15  In-silico docking studies, (A) carbon numbers assigned to β-
phellandrene (22), and (B) minimum distances of C4, C5 and C6 from 
heme-Fe in WT-P450cam (left), and in the ES7 mutant (right) in 
selected poses. 
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In β-phellandrene, C4 and C5 are prochiral carbons which will result in new chiral 

centres upon hydroxylation catalyzed by P450cam (Figure 4.16). P450cam may oxidize either 

of the prochiral carbon to give a new chiral center with stereoselectivity. Comparing both 

enantiomers of β-phellandrene (22a, 22b) docked in the ES7 mutant, HR of C4 from both 

enantiomers β-phellandrene ((-)-R-22a and (+)-S-22b), has the same orientation above 

the heme-Fe. This supports the stereoselective hydroxylation of both enantiomers of β-

phellandrene (22) giving R-hydroxylated products (on C4) (Figure 4.17). Thus, ES7 may 

give a mixture of diastereomers of the hydroxylated product from the racemic mixture of 

β-phellandrene (22) if the stereoselective hydroxylation of both enantiomers is at the same 

rate by ES7. 

 

 

Figure 4.16  Enantiomers of β-phellandrene (22) with prochiral CH2 groups 
shown. 

 

In WT-P450cam, comparing both enantiomers of β-phellandrene (22a, 22b) docked 

in that enzyme, HS of C4 from (-)-R-β-phellandrene (22a) is oriented above the heme-Fe, 

while HR of C4 from (+)-S-β-phellandrene (22b) is oriented above the heme-Fe (Figure 

4.18). Thus, WT may give the S-hydroxylated (on C4) product from (-)-R- β-phellandrene 

(22a) and R-hydroxylated (on C4) product from (+)-S-β-phellandrene (22b). Thus, the 

hydroxylated products of racemic β-phellandrene (22) are expected to be enantiomeric 

mixtures of the trans p-mentha-1(7),5-dien-2-ol if both enantiomers of β-phellandrene (22) 

are oxidized by WT-P450cam at the same rate and with the same stereoselectivity as shown 

in the docking studies. 
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Figure 4.17  The in silico molecular docking results of ES7 (V247F/D297N/K314E) 
and superimposed poses of (-)-R-β-phellandrene (22a, shown in 
green) and (+)-S-β-phellandrene (22b, shown in orange): (A) P450 is 
shown in cyan, heme in yellow, mutations are shown in white 
colored spheres, (B) Orientation of (-)-R-β-phellandrene (22a, shown 
in green, HR on prochiral C4 indicated by (*)) and (+)-S-β-
phellandrene (22b, shown in orange, HR on prochiral C4 indicated by 
(**)) in the active site. 
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Figure 4.18  The in silico molecular docking results of WT-P450cam and 
superimposed poses of (-)-R-β-phellandrene (22a, shown in green) 
and (+)-S-β-phellandrene (22b, shown in orange): (A) P450 is shown 
in cyan, heme in yellow, (B) Orientation of (-)-R-β-phellandrene (22a, 
shown in green, HR on prochiral C4 indicated by (*)) and (+)-S-β-
phellandrene (22b, shown in orange, HR on prochiral C4 indicated by 
(**)) in the active-site (residues shown in white sticks were found to 
be mutated in ES7 mutant). 
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4.2. Discussion  

4.2.1. Short synthesis racemic β-phellandrene 

Racemic β-phellandrene (22) was synthesized in 3 steps with 46 % overall yield 

starting with β-pinene (21). The intermediate compounds, (+)-nopinone (27) and (±)-

cryptone (28, and the isomer 29) have their own significance and importance. (+)-

Nopinone (27), which is synthesized by oxidation of β-pinene (21), is an important 

compound used to synthesize other organic compounds and to generate chiral ligand 

PINDY, MINDY etc. of metal catalysts (Chang et al., 2006; Hida et al., 2009; Krzemiński 

& Wojtczak, 2005; Malkov et al., 2003; Sauer et al., 2009). Synthesis of (+)-nopinone (27) 

using oxidation of (-)-β-pinene (21) has been reported using ozonolysis (Hall, 1963; J. L. 

Zhang et al., 2013), KMnO4 (Sauer et al., 2009; Szuppa et al., 2010), NaIO4 (Kawashima 

et al., 2014) or OsO4 (Coxon et al., 1968) as oxidizing agents. Using NaIO4 as oxidizing 

agent has improved yield of nopinone synthesis with short reaction time compared to using 

KMnO4 as oxidizing agent. 

(±)-Cryptone (28) is also an important α,β-unsaturated ketone, which has been 

used to synthesize other organic compounds. Examples of such compounds are xenitorins 

(B and C), nootkatone, eudesmane, katsumadain C, torreyol, cedrelanol, labiatin A and 

australin A, and others (Chen et al., 2010; Chen & Baran, 2009b; Clark et al., 2011; Daub 

et al., 2017; Queiroga et al., 1996; P. Zhang et al., 2012). Enantioselective synthesis of (-

)-cryptone and (+)-cryptone is challenging. Synthesis of racemic cryptone (28) via Birch-

reduction of p-isopropylphenol was first reported in 1955 (Soffer & Jevnik, 1955a) (Table 

4.4). 
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Table 4.4  Syntheses of cryptone (28) reported previously 

Starting material Conditions / reaction type Enantioselectivity 
(yield)  

Reference 

p-isopropylphenol Birch-reduction None  
(34% in 4 steps) 

(Soffer & Jevnik, 
1955b) 

4-isopropyl-
cyclohexanone  

a) LDA, TMSCl,  
b) Pd(OAc)2, benzoquinone,  

None  
(92% in 2 steps) 

(Findley et al., 2008) 

Methyl vinyl ketone, 
and 3-Methylbutanal 

Stork’s enamine None  
(54% in 3 steps) 

(Mori, 2006) 

(S)-Perillyl alcohol  (Multiple steps) ee 91.5–93% 
(28% in 6 steps) 

(Mori, 2006) 

(+)-Nopinone  (Multiple steps) ee 86 % 
(42% in 5 steps) 

(Kato et al., 1992) 

Methyl vinyl ketone, 
and 3-Methylbutanal  

Robinson annulation 
(pyrrolidine chiral base 
catalyst) 

ee 89%  
(63% in 3 steps) 

(Chen & Baran, 
2009a) 

 

Synthesis of β-phellandrene (22) from 1-p-menthene or limonene, both of which 

yielded mixtures of α-phellandrene and β-phellandrene (22) along with other 

monoterpenes without any selectivity, has also been reported (Buinova et al., 1982; 

Valterová et al., 1992). However, Wittig reaction of racemic cryptone (28) with methyl 

triphenylphosphonium bromide to synthesize racemic β-phellandrene (22), which had 

been reported previously (Bergström et al., 2006; Kang et al., 2013), is used here (70 % 

yield). 

4.2.2. Oxidation of β-phellandrene (22) by WT-P450cam and ES7 mutant 
using m-CPBA as a shunt 

β-Phellandrene has same binding affinity to ES7 (V247F/D297N/K314E) and WT-

P450cam (Kd 2.0 ± 0.34 µM and 1.9 ± 0.34 µM, respectively), whereas the natural substrate 

of WT-P450cam, (d)-camphor (10) has dissociation constant (Kd) 1.7 ± 0.34 µM and 10.4 ± 

0.43 µM for WT-P450cam and ES7, respectively. Oxidation of β-phellandrene (22) 

catalyzed by WT-P450cam and ES7 using in vitro assays with m-CPBA as shunt, was 

observed. The oxidized product is proposed to be hydroxylated β-phellandrene. WT-

P450cam, which regio- and stereoselectively oxidizes its natural substrate D-camphor to 5-

exo-hydroxycamphor, has been reported to catalyze hydroxylation and epoxidation of 

monoterpenes (Table 4.5). Limonene, which has structure resembling to β-phellandrene 

structure, upon oxidation catalyzed by P450cam, results in hydroxylation at allylic carbon to 
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give trans-carveol and trans-isopiperitenol, and an epoxide (Table 4.5, entry 1). Bicyclic 

hydrophobic monoterpene, α-pinene is oxidized to myrtenol and cis-verbenol, verbenone 

(oxidation at allylic carbon) along with epoxide (Table 4.5, entry 2), catalyzed by P450cam. 

Using different mutants of P450cam, improvement in regioselectivity as well as catalytic 

activity towards α-pinene oxidation was also reported (Bell et al., 2003; Bell et al., 2001). 

Importance of verbenone and cis-verbenol in chemical signaling in bark beetles, has been 

discussed above (section 1.3.3). 

Oxidation 1,8-cineol was also reported to give mixture of 5-endo-hydroxylated and 

5-exo-hydroxylated products at sterically hindered secondary carbons regioselectively, 

catalyzed by WT-P450cam. Upon a second round of oxidation, it gave a mixture of (1S)-5-

ketocineol (major) and (1R)-5-ketocineol (minor) (Stok et al., 2016). Examples of oxidation 

of these monoterpenes catalyzed by WT-P450cam show that P450cam can catalyze 

hydroxylation as well as epoxidation of monoterpenes, which we have also observed in 

oxidation of β-phellandrene catalyzed by WT-P450cam and ES7 mutant. 
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Table 4.5  Example of monoterpene oxidation catalyzed by WT-P450cam 

Entry  Substrate Oxidized products References 

1 

 

 

(Bell et al., 2001) 

2 

 

 

(Bell et al., 2003; S. 
G. Bell et al., 2001) 

3 

 

 

(Stok et al., 2016) 
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The role and importance of different residues in WT-P450cam has been discussed 

above (section 3.2.2). Docking simulations show that both enantiomers of β-phellandrene 

(22) can fit in the active site of both the WT-P450cam and the ES7 mutant. The hydrophobic 

residues around the active site of P450cam stabilize both enantiomers without a major 

discrimination between the enantiomers of β-phellandrene (22) (Figure 4.14). However, 

residue Val247 which is located in helix I and is mutated (V247F) in ES7, may play a role 

in stereoselective hydroxylation of β-phellandrene (22) by having a bulky aromatic ring (in 

ES7) compared to the smaller alkyl group (in WT). This was supported when both 

enantiomers of β-phellandrene ((-)-R-22a, and (+)-S-22b) were docked and HR from 

prochiral carbon C4 in both enantiomers, have the same orientation above heme-Fe 

(Figure 4.17). In WT-P450cam, HR from prochiral carbon (C4) in both enantiomers have 

opposite orientations above heme-Fe when both enantiomers of β-phellandrene ((-)-R-

22a, and (+)-S-22b) were docked in WT-P450cam (Figure 4.18).  WT-P450cam shows regio- 

and stereoselectivity towards oxidation of (+)-D-camphor, its natural substrate. The 

enantiomer (-)-L-camphor which binds to WT-P450cam with slightly loose then (+)-D-

camphor (Kd 2.6 ± 0.3 and 1.6 ± 0.3 μM at 277 K, respectively, (Kadkhodayan et al., 1995)) 

has more flexible orientation in the active site of P450cam (Das et al., 2000; Schlichting et 

al., 1997). However, both enantiomers of camphor give 5-exo-hydroxycamphor upon 

oxidation by WT-P450cam (Kadkhodayan et al., 1995). Oxidation of terpenes shown in 

Table 4.5, show WT-P450cam is also stereoselective towards limonene and α-pinene 

oxidation (Bell et al., 2003; Bell et al., 2001). In the oxidation of 1,8-cineol, WT-P450cam 

shows regioselectivity as well as some stereoselectivity giving 5-exo-hydroxycineol 

(minor) and 5-endo-hydroxycineol (major) (Table 4.5, entry 3) (Stok et al., 2016). 

4.3. Conclusion  

In conclusion, we have synthesized racemic β-phellandrene (22) in three steps (44 

% overall yield) starting with (-)-β-pinene (21), a commercially available monoterpene. The 

intermediate compounds, (+)-nopinone (27) and (±)-cryptone (28) which were 

synthesized, have their own importance in synthesis of many organic compounds and in 

commercial use. Oxidation of (-)-β-pinene (21) to (+)-nopinone (27) was optimized and 

ring opening of (+)-nopinone (27) to give (±)-cryptone (28) using Lewis acid (AlCl3), was 

achieved. Thus, the synthetic route of β-phellandrene (22) is very useful, not only to get 

β-phellandrene (22), but also to obtain (+)-nopinone (27) and (±)-cryptone (28). 
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The racemic β-phellandrene (22) was tested and found to be a potential substrate 

for the mutant we named ES7 (V247F/D297N/K314E) and WT-P450cam. Using the racemic 

mixture of β-phellandrene (22) in the in vitro assays with WT-P450cam and ES7 mutant, 

and m-CPBA as shunt, a new oxidized product (M+ 152 m/z) of β-phellandrene (22, M+ 

136 m/z) was identified in GC-MS, which was absent in control experiments. This oxidized 

product is proposed to be hydroxylated product of β-phellandrene (22), catalyzed by both 

WT-P450cam and ES7 mutant with the same rate of oxidation. 

Molecular docking studies show that a prochiral carbon C4 (an allylic and 

secondary carbon) of both enantiomers of β-phellandrene (22) is closer to heme-Fe than 

C5 (prochiral carbon) and C6 (an allylic and tertiary carbon), in WT-P450cam as well as in 

ES7 mutant. In WT-P450cam, these distances between heme-Fe to C4 of (-)-R-β-

phellandrene (22a) and (+)-S-β-phellandrene (22b) are 4.60 Å and 5.44 Å, respectively. 

Whereas in ES7, the distances between heme-Fe to C4 prochiral carbon of (-)-R-β-

phellandrene (22a) and (+)-S-β-phellandrene (22b) are 4.36 Å and 4.68 Å, respectively. 

This indicates that WT-may have preference for one of the enantiomers of β-phellandrene 

(22) over the other to a small extent, while ES7 may have the same preference for both 

enantiomers of β-phellandrene (22). 
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Chapter 5. Future work 

5.1. Endosulfan and related substrates 

In this work, we have used ES1-ES7 mutants which were selected against 

endosulfan (mixture of α-ES 13A and β-ES 13B) to study the biodegradation and 

dehalogenation of endosulfan (ES). However, most of the work was done in this study 

using ES diol (14) which is a major metabolite of ES (13) and is commonly found in nature. 

We have confirmed the dehalogenation of ES diol by monitoring and quantifying the 

chloride releases using chloride ion selective electrode, and using 13C-labelled ES diol, 

which also supports the proposed mechanism of degradation of ES diol. We have 

compared the mutants to find out the most active one towards ES diol dehalogenation. 

We also have compared the mutants to accept the ES diol (14) using in-silico docking 

studies, as well as compared the mutants which can accommodate other chlorinated 

metabolites of ES. However, in future, we can use these chlorinated metabolites (ES 

lactone (15), ES ether (16), ES sulfate (20) and others) by ES mutants using in vitro and 

in vivo assays, to compare the dehalogenation of these chlorinated metabolites of 

endosulfan catalyzed by ES mutants. 

X-ray crystallography or NMR techniques have been in use to determine the 3D 

structure of P450cam (WT and mutants) with different substrates. Similarly, such 

techniques can be used to determine the P450cam structure when ES diol (14) is bound to 

the active site of the most active mutant P450cam (ES7). The mutants P450cam appear to 

partition between oxidizing the electron poor C=C bond (mostly) and oxidizing one of the 

two CH2OH groups to give lactone. Such a structure of mutant P450cam with ES diol (14) 

would be helpful to understand how the substrate is positioned in the active site and it 

would be a starting point for additional docking studies to understand why the enzyme 

oxidizes the electron poor double bond over the more easily oxidized CH2OH group. 

The sigmoidal kinetics arises because of a change in the way redoxin interacts 

with P450. In future, titrating the enzyme with PdX, and keeping P450cam and PdR 

concentration constant will be helpful to find the concentration of PdX at the level 

saturating the enzyme wherein the kinetics stop being sigmoidal and resemble the m-

CPBA kinetics. This will be helpful in future also to find the required number of copies of 
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redox partners (PdX and PdR) with ES7 mutant P450cam when it would be transformed 

into a suitable bacterium, to biodegrade these chlorinated compounds. 

This set of mutants (ES1-ES7) that were selected on endosulfan (13), are 

potentially  useful to study the biodegradation of other polychlorinated organic pollutants 

which were used either as pesticide/ insecticides such as heptachlor (43, (Reed & 

Koshlukova, 2014)), chlordane (44, (Blaylock, 2005; Koshlukova & Reed, 2014)), aldrin 

(45, (Honeycutt & Shirley, 2014)), or a chlorinated flame retardant dechlorane plus (46, 

(Sverko et al., 2011)). All these compounds have similar chlorinated norbornane ring 

system (Figure 5.1). 

 

 

Figure 5.1  Endosulfan (ES, 13) and other related polychlorinated organic 
compounds. 

 

5.2. Oxidation of β-phellandrene by P450cam 

Synthesis of racemic β-phellandrene (22) was achieved in 3 steps starting from β-

pinene (21). Using in vitro assays with WT-P450cam and ES7 mutant, a new oxidized 

product of β-phellandrene (22) was found, which was oxidized by P450cam. The oxidized 

product is proposed to be hydroxylated product (38, 39 or 40) of β-phellandrene (22), and 

hydroxylation has occurred on one of the carbons in the ring of β-phellandrene (22) (Figure 
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4.8). However, to characterize the oxidized product and identify the structure, reactions 

need to be done at large scale (50 or 100 ml) to isolate the oxidized product and 

characterize it by 1H NMR and 13C NMR. This will also help us further to find if WT-P450cam 

and ES7 have any stereoselectivity in oxidizing β-phellandrene (22). 

Further, the set of ES mutants, which show different activity towards ES diol (14) 

biodegradation, will also be used to oxidize β-phellandrene (22) and to find if these 

P450cam mutants have different activity or regio- and stereoselectivity towards β-

phellandrene (22) oxidation. 

In future, these oxidized products of β-phellandrene (22), will be used to find if 

these compounds show any effect as attractant or repellent of pine bark beetles or pine 

engravers, which are major pest of pine trees in North America. Having standards of 

oxidized β-phellandrene products should facilitate our understanding of β-phellandrene as 

a stress signal in many plants and how the oxidized products might contribute to this 

signalling process. 
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Appendix A. Chapter 3 supplementary information 

 

Appendix A1. Mutations and primers designed 

Mutant Mutations Primer sequence (5′ to 3′) forward primers only 

ES2 F292S/A296V GGAACTACTCCGGCGCTCCTCGCTGGTTGTCGATGGCCGCATCCTC
ACC 

K314E/ 
P321T 

GGCGTGCAACTGAAGGAAGGTGACCAGATCCTGCTAACGCAGATGC
TGTCTGGCC 

ES5 A296P CCGGCGCTTCTCGCTGGTTCCCGATGGCCGCATCCTCACC 

ES6 G120S GGCCAACCAAGTGGTTAGCATGCCGGTGGTGGATAAGCTGG 

ES7 V247F GGATGTGTGGCCTGTTACTGTTCGGCGGCCTGGATACGGTGG 

D297N  CCGGCGCTTCTCGCTGGTTGCCAATGGCCGCATCCTCACCTCCG 

K314E CGAGTTTCATGGCGTGCAACTGAAGGAAGGTGACCAGATCCTGCTAC
CGC 

K314E K314E CGAGTTTCATGGCGTGCAACTGAAGGAAGGTGACCAGATCCTGCTAC
CGC 

F292S/ 
A296V 

F292S/A296V GGAACTACTCCGGCGCTCCTCGCTGGTTGTCGATGGCCGCATCCTC
ACC 

 

Appendix A2. Allosteric sigmoidal kinetics of ES diol (14) with different P450cam 
mutants (crude lysate) and kcat and KM data analysis 

Mutant 
Name  Vmax (µM/s) h 

K'  
(K prime) 

KM  
(µM) 

Kd  
(µM) 

kcat 
(µM/s/µM P450) 

WT * 2.87   1024.6 4645 0.8 ± 0.0 

IND1 10.50  ± 1.27 4.518 3.69E+11 363.3 ~ 3.308e+017 4.4 ± 0.5 

ES1 18.51 ± 5.34 6.191 1.16E+16 393.2 657.3 ± 198.9 3.8 ± 1.1 

ES2 25.61 ± 9.35 3.103 9.54E+7 372.8 705.8 ± 337.5 6.2 ± 2.3 

ES3 14.95 ± 0.93 3.214 3.22E+08 443.8 601.5 ± 220.6 3.2 ± 0.2 

ES4 12.01 ± 2.28 5.299 1.84E+13 318.6 414.9 ± 110.1 3.0 ± 0.6 

ES5 20.25 ± 5.68 7.106 1.82E+18 371.3 675.9 ± 227.9 3.9 ± 1.1 

ES6 10.56 ± 1.95 2.845 2.32E+7 387.8 537.8 ± 163.5 2.7 ± 0.5 

ES7 15.30 ± 4.47 5.925 8.71E+14 332.3 554.1 ± 116.0 4.3 ± 1.2 
* WT data from Lineweaver-Burk equation 
Note: Equation used by GraphPad Prism® for Allosteric sigmoidal kinetics (Y=Vmax*X^h/(K' + X^h)), K' is related to KM 
and h is the Hill slope. When h = 1, this equation is identical to the standard Michaelis-Menten equation. 
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Appendix A3. Allosteric sigmoidal kinetics of ES diol (14) with purified WT P450cam 
and mutants 

Mutant Name  Vmax (µM/s) h K' (K prime) KM (µM) kcat (µM/s/µM P450) 

WTa 0.15 ± 0.04 - - 385 0.15 ± 0.04  

ES2 n.d n.d n.d n.d n.d 

ES5 n.d n.d n.d n.d n.d 

K314E 3.8 ± 0.3 4.8 8.59 E+33 370 3.8 ± 0.3 

ES6 5.7 ± 0.3 7.4 8.89 E+18 368 5.7 ± 0.3 

ES7 12.6 ± 4.7 4.0 3.75 E+10 394 12.6 ± 4.7 
a WT data from Lineweaver-Burk equation  n.d = Not determined  

 

 

 

Appendix A4. SDS page of purified mutant and WT P450cam, before and after 
Factor Xa (protease) cleavage (time in hours). 
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Appendix A5. Fe-CO spectra of WT P450cam and mutants. 
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Appendix A6. SDS page of ES5 P450cam before and after Factor Xa (protease) 
cleavage. 
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Appendix A7. Effects of NADH (A) and NAD+ (B) on Chloride ions reading by ion 
selective electrode. 
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Appendix A8. Chloride release in in vitro assay of ES diol (14) using NADH 
regeneration by alcohol dehydrogenase, (A) WT-P450cam (ES diol (14) 
500 µM), (B) ES7 (ES diol (14) 300 µM). 
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Appendix A9. Effects of m-CPBA (A) and chlorobenzoic acid (B) on Chloride ions 
reading by ion selective electrode. 
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Appendix A10. LC-MS analysis of crude extract of 4-AAP coupled assay (A) and 
standard 4-AAP coupled product 25 (B), (M+1 350.1, m/z 350 peak is 
extracted from the chromatogram). 
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Appendix A11. 13C NMR spectra of metabolites extracts from 13C-ES diol (A and B) 
and ES diol (C) with ES7 (using m-CPBA). 
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Appendix A12. Map of protein-ligand interactions of the binding pocket residues 
in contact with of ES diol (14) in ES1, ES2, ES3, ES4, ES5, and ES6 
P450cam mutants. Residues shown in purple are polar while residues 
in green are nonpolar. Residues and ligand atoms with light blue 
clouds are exposed to the solvent environment. 



194 

 

Appendix A13. Map of protein-ligand interactions of the binding pocket residues 
in contact with of ES diol (14) in ES7, IND1, K314E, and WT-P450cam. 
Residues in purple are polar while residues in green  are nonpolar. 
Residues and ligand atoms with light blue clouds are exposed to the 
solvent environment. 
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Appendix A14. DNA sequence analysis: A) WT-P450cam DNA (CamC from P. putida), B) sequence of WT-P450cam – His6 with 
T7 forward primer, and C) sequence of WT-P450cam – His6 with T7 reverse primer. 
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Appendix A15. DNA sequence analysis: A) WT-P450cam DNA (CamC from P. putida), B) sequence of ES2 – His6 with T7 
forward primer, and C) sequence of ES2 – His6 with T7 reverse primer. 
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Appendix A16. DNA sequence analysis: A) WT-P450cam DNA (CamC from P. putida), B) sequence of ES5 – His6 with T7 
forward primer, and C) sequence of ES5 – His6 with T7 reverse primer. 
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Appendix A17. DNA sequence analysis: A) WT-P450cam DNA (CamC from P. putida), B) sequence of ES6 – His6 with T7 
forward primer, and C) sequence of ES6 – His6 with T7 reverse primer. 
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Appendix A18. DNA sequence analysis: A) WT-P450cam DNA (CamC from P. putida), B) sequence of ES7 – His6 with T7 
forward primer, and C) sequence of ES7 – His6 with T7 reverse primer. 



200 

 

Appendix A19. DNA sequence analysis: A) WT-P450cam DNA (CamC from P. putida), B) sequence of K314E – His6 with T7 
forward primer, and C) sequence of K314E – His6 with T7 reverse primer. 
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Appendix A20. DNA sequence analysis: A) WT-P450cam DNA (CamC from P. putida), B) sequence of F292S/A296V – His6 with 
T7 forward primer, and C) sequence of F292S/A296V – His6 with T7 reverse primer. 
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Appendix A21. NMR spectra of compounds synthesized in chapter 3. 
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Appendix B. Chapter 4 supplementary information 

Oxidation of β-pinene to nopinone using KMnO4   

In general, oxidizing agent is added to a solution of β-pinene 21 (5.8 mmol) in 

mixture (100 ml) of CH2Cl2 and t-BuOH (9:1) or H2O and t-BuOH (9:1). The mixture was 

stirred for 24 hours at room temperature. After 24 hours of stirring, 100 ml of water was 

added, and the mixture was filtered. The organic product was extracted using 

dichloromethane (3 × 100 ml) and the organic layers was dried over Na2SO4. The organic 

solvent was removed by distillation at 25 °C, giving an oily crude product as the residue. 

The crude product was purified using column chromatography (EtOAc: Hexanes 1:9), 

giving (+)-nopinone 27. 

In Table 4.1, for entry 1: KMnO4 (4.4 g, 28 mmol) and alumina (17.6 g), entry 2: 

KMnO4 (4.4 g, 28 mmol) and acidic alumina (17.6 g), and entry 3: NaIO4 (5.1 g, 24 mmol) 

and KMnO4 (0.2 g, 1.2 mmol) were used for oxidation of β-pinene 21. 

 



208 

 

 

Appendix B1. Mass spectra of epoxidized products with peaks retentions time: A) 
10.5 min, B) 10.6 min, C) 10.8 min and D) 11.0 min from in-vitro assay 
of β-phellandrene oxidation using WT-P450cam and m-CPBA. 
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Appendix B2. Mass spectra of epoxidized products with peaks retentions time: A) 
10.5 min, B) 10.6 min, C) 10.8 min and D) 11.0 min from in-vitro assay 
of β-phellandrene oxidation using ES7-P450cam and m-CPBA. 
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Appendix B3. Distance between heme-Fe to carbon atoms (C4, C5 and C6) from in 
silico docking of WT-P450cam and β-phellandrene (22) 

 

Distance (Å) between heme-Fe to  
(-)-R-22a  

Distance (Å) between heme-Fe to 
(+)-S-22b 

Pose # C4 C5 C6 Pose # C4 C5 C6 

1 8.26 7.67 6.72 18 7.87 6.80 7.15 

2 7.49 7.84 8.28 19 8.58 7.05 6.72 

3 6.25 6.44 7.82 20 5.44 6.89 7.64 

4 8.43 7.25 5.98 21 8.45 6.93 6.79 

5 8.45 8.00 6.92 22 8.66 7.16 6.54 

6 9.31 7.92 7.61 23 6.65 7.78 7.61 

7 8.95 8.07 8.10 24 9.58 8.66 7.18 

8 4.99 6.42 7.42 25 8.62 7.31 7.88 

9 8.42 8.08 7.25 26 8.74 8.64 7.57 

10 9.34 7.91 7.57 27 8.84 7.65 6.34 

11 8.06 6.78 6.40 28 9.29 7.83 7.07 

12 8.93 7.57 7.92 29 8.81 8.42 7.35 

13 8.79 7.39 7.79     

14 8.48 7.24 6.13     

15 8.26 7.19 6.03     

16 4.60 5.91 7.07     

17 8.75 7.71 6.27     

Ave. 7.99 7.38 7.13 Ave. 8.29 7.59 7.15 

S.D. 1.40 0.65 0.76 S.D. 1.16 0.68 0.48 

Min 4.60 5.91 5.98 Min 5.44 6.80 6.34 

Max 9.34 8.08 8.28 Max 9.58 8.66 7.88 

 

https://simple.wikipedia.org/wiki/%C3%85
https://simple.wikipedia.org/wiki/%C3%85
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Appendix B4. Distance between heme-Fe to carbon atoms (C4, C5 and C6) from in 
silico docking of  ES7 mutant P450cam and β-phellandrene (22) 

 

Distance (Å) between heme-Fe to  
(-)-R-22a    

Distance (Å) between heme-Fe to 
(+)-S-22b 

Pose # C4 C5 C6 Pose # C4 C5 C6 

1 7.63 6.3 5.78 11 8.43 7.21 5.92 

2 8.07 6.57 6.57 12 6.70 7.21 7.73 

3 5.21 6.19 7.52 13 5.64 6.22 7.61 

4 4.77 6.21 7.19 14 4.68 5.80 6.87 

5 8.71 7.65 6.58 15 7.77 6.48 6.23 

6 4.91 6.28 7.39 16 8.20 6.73 6.17 

7 7.52 6.4 5.43 17 5.50 6.32 7.08 

8 5.87 7.02 7.02 18 5.11 5.71 6.56 

9 4.36 5.81 6.08     

10 7.35 6.01 4.92     

Ave. 6.44 6.44 6.45 Ave. 6.50 6.46 6.77 

S.D. 1.58 0.53 0.88 S.D. 1.48 0.57 0.67 

Min 4.36 5.81 4.92 Min 4.68 5.71 5.92 

Max 8.71 7.65 7.52 Max 8.43 7.21 7.73 

 

 

https://simple.wikipedia.org/wiki/%C3%85
https://simple.wikipedia.org/wiki/%C3%85
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Appendix B5. Map of protein-ligand interactions of the binding pocket residues in 
contact with of (-)-R-β-phellandrene (22a, top) and (+)-S-β-
phellandrene (22b, bottom) in ES7. Residues in purple are polar 
while residues in green are nonpolar, residues and ligand atoms 
with light blue clouds are exposed to the solvent environment. 
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Appendix B6. Map of protein-ligand interactions of the binding pocket residues in 
contact with of (-)-R-β-phellandrene (22a, top) and (+)-S-β-
phellandrene (22b, bottom) in WT-P450cam. Residues in purple are 
polar while residues in green are nonpolar, residues and ligand 
atoms with light blue clouds are exposed to the solvent 
environment. 
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Appendix B7. NMR spectra of compounds synthesized in chapter 4. 


