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Abstract 

It is sometimes necessary to search for visual objects of potential interest that are 

underspecified (e.g., any illegal item in a suitcase). The search for such an object can be 

accomplished easily if it possesses a unique feature that makes it stand out from its 

surrounding. In this case, observers can simply search for the most salient item in the 

environment (singleton detection). Surprisingly, the neuro-cognitive processes involved 

in singleton detection are still poorly understood. The overarching aims of this thesis 

were to reveal neuro-cognitive processes involved in singleton detection using event-

related potentials (ERPs) and to address specific questions about the role of attention in 

singleton-detection tasks. Experiment 1 reexamined the claim that attentional processes 

associated with an ERP component called the N2pc are absent in singleton detection. 

The results revealed several ERP components, including the N2pc and a newly 

discovered component that tracked the time course of singleton detection (the singleton 

detection positivity; SDP). It was concluded that singleton detection involves some of the 

same attentional processes as those required for feature-based search. Experiment 2 

employed a go/no-go variant of the singleton-detection task to determine whether the 

attentional processes observed in singleton detection are triggered automatically, as 

some researchers believe. ERP indices of singleton detection (SDP) and attentional 

selection (N2pc) were markedly reduced or absent on no-go trials, demonstrating that 

rapid assessment of task relevancy can prevent salience-driven capture of attention in 

the singleton-detection task.  

Keywords:  attention; distraction; individual differences; N2pc; singleton detection; 

visual search 
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Chapter 1. General Introduction 

The number of objects in our visual environment often exceeds our capacity to 

fully process every item at once. To navigate in such a complex environment, the visual 

system has developed the ability to deal with sensory inputs in a strategic manner, so 

that objects of interest (those that are related to the task at hand) or of potential interest 

(those that are physically salient) may be prioritized for processing (Bisley & Goldberg, 

2010; Itti & Koch, 2000, 2001; Serences & Yantis, 2006; Wolfe, 1994). For over a 

century, scholars have used the term attention to refer to the various cognitive 

processes that enable the selection of these prioritized objects and the withdrawal from 

other, unattended objects in the visual field (e.g., James, 1890). And although attention 

is hypothesized to enable the conscious perception of, and interaction with, the external 

world, the precise mechanisms by which attention operates remain poorly understood.  

1.1. Visual Search 

Several paradigms have been introduced to study attentional processes in well-

controlled laboratory variants of real-world tasks. One such paradigm, called visual 

search, was developed to study how attention is guided across a visual scene as an 

observer attempts to find an object of interest (called the target). Visual search is 

conducted regularly, from rummaging for keys in a bag to looking for a friend in a crowd. 

But search is also involved in circumstances where errors may be costly; for example, 

when examining an x-ray image for presence of pathological abnormalities or monitoring 

for signs of drowning in a swimming pool. In all these cases, observers are presumed to 

direct their attention deliberately from one location to another in order to inspect each 

visual element closely. This type of serial search is juxtaposed with parallel search 

processes that are hypothesized to take place throughout the entire visual field  

(Treisman & Gelade, 1980) or at least the relevant region of the visual field (Theeuwes, 

2010). Parallel search occurs when the target is found effortlessly, as if the object “pops 

out” from the environment, such as locating a bolded word in a page of text.  

To help understand the differences between serial search and parallel search, 

vision scientists theorized that visual processing is broadly comprised of two sequential 

stages (Desimone & Duncan, 1995; Itti & Koch, 2000, 2001; Julesz, 1986; Neisser, 
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1967; Theeuwes, 2010; Treisman & Gelade, 1980; Wolfe, 1994). The first is an early, 

preattentive stage, during which the visual system encodes stimuli by their basic visual 

attributes (e.g., color, orientation, size; herein called features) in parallel and computes 

their salience. This phase is followed by an attentive stage, at which point the visual 

system integrates the various features into individual objects for detailed, perceptual 

analysis.  

From this perspective, serial search takes place when a target is insufficiently 

salient for the visual system to locate during the preattentive stage, and thus attention 

must be deployed serially to individual objects in the visual field until the target is found. 

The serial inspection of each object can be observed directly when participants are 

permitted to move their eyes during a difficult search task or inferred indirectly on the 

basis of reaction time (RT) data when eye movements are prevented (i.e., in the study of 

covert attention). In the latter covert-attention studies, participants are instructed to stare 

at a fixation stimulus and, without moving their eyes, to indicate whether a specific target 

item is present within each of several search displays that contain varying numbers of 

items. The time required to determine whether the target is present or absent is affected 

by several factors, including the similarity between the target and other, nontarget items 

as well as the number of items in the display (i.e., set size; e.g., Wolfe, 1994). When the 

target cannot be distinguished from nontargets on the basis of one or more simple 

features (e.g., when looking for a T among Ls, the features of which differ only in the 

spatial arrangement of lines), researchers have shown that participants are 

progressively slower to find the target as the set size increased (Bergen & Julesz, 1983; 

Egeth & Dagenbach, 1991; Kwak, Dagenbach, & Egeth, 1991). Consequently, a positive 

linear function relating RT to set size (herein called the search function) was used as an 

indicator of serial search.  

By comparison, parallel search occurs when the target can be singled out at the 

early, preattentive stage of visual processing (e.g., based on salience or relevance) so 

that attention is immediately drawn to the target location. Some researchers have gone 

further to argue that although the target may trigger a shift in attention, attention is not 

required to find the target because it is detected preattentively (e.g., Julesz, 1984; Julesz 

& Bergen, 1983; Treisman & Gelade, 1980). Studies of parallel search show that when 

participants searched for a unique item such as a red box among green boxes or a 

vertical line among horizontal lines, the time participants took to detect the target was 
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independent of set size (e.g., Wolfe, Friedman-Hill, Stewart, & O’Connell, 1992). The 

search function generated from parallel search is thus characterized by a flat slope.  

In addition to the positive and flat search functions hypothesized to reflect serial 

and parallel search processes, respectively, researchers have also reported a third 

pattern of results. In their experiment, Bravo and Nakayama (1992) instructed 

participants to search for the unique stimulus in an array of homogeneous nontargets 

(i.e., a singleton target). To discourage participants from searching for a specific feature, 

Bravo and Nakayama swapped the feature of the target and that of the nontargets 

randomly across trials. On any given trial, participants looked for an odd-colored 

diamond (red or green) with either the left or right vertex cut off situated among other 

similarly notched diamonds of the other color. Once the color singleton was located, 

participants indicated the side of the diamond that was missing. Instead of producing a 

flat search function as expected of parallel-search experiments, Bravo and Nakayama 

showed that participants were actually faster to respond to the target as set size 

increased; that is, the slope revealed by the search function was negative rather than 

positive or flat. By contrast, when the same task was performed with a fixed-feature 

target, the search function was flat.  

Based on this negative search slope, Bravo and Nakayama (1992) hypothesized 

that the search for a pop-out target can be guided by two different mechanisms: When 

the precise target feature on a given search display is unpredictable, attention is guided 

in a purely stimulus-driven manner based on local stimulus contrast (salience; i.e., 

bottom-up guidance), but when the target feature is fixed across trials, the feature can 

serve as an additional guiding mechanism (i.e., top-down guidance). According to this 

account, search is guided by the information that leads to the most efficient 

performance. When the target feature is underspecified, feature-based guidance would 

require the effortful serial allocation of attention to individual items, whereas saliency-

based guidance would enable fast discovery of the target based on the early preattentive 

stage of processing. When the target feature is known in advance, however, feature-

based guidance enables simultaneous inspection of all items for the target feature, so 

that the speed at which the target is found is unaffected by changes in set size. By 

comparison, saliency-based guidance in this case would presumably only reach a similar 

level of search efficiency after the set size becomes sufficiently large.  



4 

1.2. Modes of Visual Search 

The findings by Bravo and Nakayama (1992) suggest that there are at least two 

search strategies an observer may adopt, depending on the target’s degree of 

specificity. When the precise features that define the target are known, such as looking 

for a set of keys on a desk, search is performed by bearing a set of key-related features 

in mind and then comparing these features with those of the objects on the desk until a 

match is found (so-called feature search; Bacon & Egeth, 1994). When the features of 

the target are underspecified (e.g., searching x-ray images for any illegal item at a 

security checkpoint), however, the feature-based search strategy becomes ineffective. 

Instead, observers must search for anomalies by comparing each object in the visual 

environment with its surrounding until the relevant anomaly (target) is found. The 

difficulty of searching for a relevant anomaly is greatly reduced if it possesses a unique 

feature that causes it to stand out from its surrounding, in which case, observers can 

adopt a strategy to search for the most salient object in the visual environment (so-called 

singleton detection).  

1.2.1. Processes Involved in Feature Search 

Many contemporary theories of attention have largely focused on the role of 

features in the guidance of visual attention, and thus the processes involved in feature 

search mode have been well-documented. Feature search is theorized to begin with the 

formation of a target template, which refers to an internal representation of a set of 

relevant features that are updated and maintained in visual working memory (Bundesen, 

1990; Desimone & Duncan, 1995; Duncan & Humphreys, 1989). The storage of target 

templates in visual working memory as observers prepare for feature search is 

corroborated by evidence from monkey single-cell recording and human 

electrophysiology (Chelazzi, Duncan, Miller, & Desimone, 1998; Chelazzi, Miller, 

Duncan, & Desimone, 1993; Vogel & Machizawa, 2004; Vogel, McCollough, & 

Machizawa, 2005). These studies show that neural responses to task-relevant features 

are sustained throughout a brief waiting period (i.e., memory-retention interval) prior to 

the onset of a target display.  

After observers have established a target template, feature-based attentional 

mechanisms then highlight objects within the visual field that contain relevant features to 
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provide a map of likely target locations. Converging evidence from studies using 

recordings of single-cell activity, event-related potentials (ERPs), and event-related 

magnetic fields (ERFs) suggests that this process is accomplished by upweighting all 

relevant features (or feature dimensions; Schubö & Müller, 2009) in parallel across the 

visual field (Bichot & Schall, 1999; Bichot, Rossi, & Desimone, 2005; Eimer & Grubert, 

2014; Hopf, Boelmans, Schoenfeld, Luck, & Heinze, 2004; Kiss, Grubert, & Eimer, 2013; 

Motter, 1994). Taken together, it was found that neural activity simultaneously tracks the 

locations of objects possessing at least one task-relevant feature in the visual field and 

that greater activity is elicited by objects possessing multiple relevant features.   

This feature-upweighting process is followed by location-based attentional 

mechanisms that then allocate spatial attention to the location in the visual field given 

the highest relevancy weighting, a process that is often referred to as the covert 

deployment of attention (Cave, 1999; Treisman & Gelade, 1980; Treisman & Sato, 1990; 

Wolfe, 1994). Once spatial attention is allocated to the object with the highest relevancy 

weighting, several processes commence to improve the perceptual analysis at the 

attended location and reduce interference from objects at other locations. These 

processes include the binding of features at the attended location into a unitary, visual 

object (i.e., object individuation; Mazza & Caramazza, 2011; Treisman & Gelade, 1980); 

the suppressing of competing visual inputs from nearby objects to reduce ambiguity in 

neural encoding of the attended object (i.e., spatial filtering; Luck, Girelli, McDermott, & 

Ford, 1997; Luck & Hillyard, 1994b); the suppressing of other, highly salient objects in 

the visual field to prevent the misallocation of spatial attention (Gaspar & McDonald, 

2014; Hickey, Di Lollo, & McDonald, 2009); and the identifying of the attended object 

itself (Theeuwes, 2010; Treisman & Gelade, 1980; Wolfe, 1994).  

After the attended object is identified, top-down processes then evaluate whether 

that object is the target by comparing the attended object to the target template stored in 

working memory. If the attended object matches the template, search is terminated. But 

if the attended object turns out to not be the target, spatial attention is then redeployed to 

the location with the next highest relevancy weighting in the visual field. This process is 

repeated until the target is found or until all the locations deemed likely to contain the 

target have been searched (Wolfe, 1994; Woodman & Luck, 1999, 2003).  
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1.2.2. Processes Involved in Singleton Detection 

While much is known about the sequence of neuro-cognitive events involved in 

feature search, less is known about the processes involved in singleton detection. In the 

first place, pure singleton-detection tasks do not permit the storage of a target template 

because observers do not have sufficient knowledge of the target’s identity (due to the 

unpredictability of its features). Consequently, the feature-search operations that rely on 

the establishment of a target template cannot occur. Observers can, however, adopt a 

strategy to search for discontinuities in the visual field that may signal the presence of 

the target singleton.  

In the laboratory, efficient singleton detection has been studied by giving the 

target a unique feature that causes it to stand out from its surrounding. In doing so, 

observers can then detect singletons by searching for the most salient object in the 

visual field. If, however, the singleton possesses a prespecified feature, observers would 

have the option of adopting the feature search mode, the singleton detection mode, or 

some unknown combination of bottom-up and top-down guidance strategies. In fact, it 

has been shown that when both singleton detection and feature search modes are 

available to the observer, either search strategy can be adopted (Bacon & Egeth, 1994; 

Leber & Egeth, 2006). Therefore, to ensure that observers are in singleton detection 

mode, the feature of the target and its surrounding objects are typically swapped 

randomly on a trial-by-trial basis to discourage feature-based search.  

When feature-based search is discouraged by swapping the features of the 

target and its surrounding objects from trial to trial, it was found that target singletons 

can be detected effortlessly (e.g., Bravo & Nakayama, 1992). The efficiency with which 

observers can detect a singleton target is presumably due to a separate group of 

processes that guide detection in a saliency-based manner. It has been suggested that, 

similar to having a target template in feature search to map relevant locations in the 

environment, singleton detection relies on a saliency map that encodes objects in the 

visual field in terms of conspicuity, so that attention may be deployed to various locations 

in order of salience until the target is found (Itti & Koch, 2000, 2001; Theeuwes, 2010). 

By this view, singleton detection differs from feature search not in terms of how visual 

selection is ultimately achieved (i.e., by focusing attention at the location of the target) 
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but in terms of control-level processes that are used to guide that selection (i.e., 

relevancy map vs. saliency map).  

Role of Attention in Singleton Detection 

While it is clear that singleton detection and feature search rely on different 

control-level processes, it is less clear whether singleton detection relies on the same 

attentional-selection mechanisms as those involved in feature search. Some researchers 

argue that all detection processes are accomplished by preattentive mechanisms that 

identify the location with the greatest saliency activation (e.g., Julesz, 1984; Julesz & 

Bergen, 1983; Treisman, 1988; Treisman & Gelade, 1980). According to this view, 

information about the presence of a singleton is available to the observer immediately 

after the singleton is detected by the visual system, so that judgment of singleton 

presence can be made without any attentional processing. In other words, this view 

holds that feature search and singleton detection rely on entirely different search 

processes, not just at the level of search guidance, because attention is not required for 

detection.  

Consistent with this view, most studies using dual-task paradigms have found 

that singleton detection does not suffer from the requirement to perform another, more 

attentionally demanding task (Egeth, Leonard, & Palomares, 2008; Moher, Ashinoff, & 

Egeth, 2013; Luck & Ford, 1998; but see Joseph, Chun, & Nakayama, 1997). This lack 

of performance decrement was taken as evidence that singleton detection does not 

require attention, presumably because the shortage of attentional resources would have 

otherwise impaired detection performance. It should be noted, however, that these 

studies used singleton targets that possessed fixed features and so it is possible that the 

conclusion about preattentive detection of feature singletons may be limited to template-

guided search and not generalize to pure singleton detection in the absence of template 

guidance (i.e., in singleton detection mode).  

This unresolved issue demonstrates that the neuro-cognitive processes involved 

in singleton detection are still poorly understood. Although little research has been 

focused on the detection of a singleton, many studies have been done on the detection 

of visual and auditory anomalies (i.e., deviants) in a stream of sequentially presented 

stimuli. These studies have identified two important electrophysiological correlates 

involved in such deviancy detection called the mismatch negativity (MMN) and the 
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novelty P3 (to be further discussed in the following section). Understanding the 

processes reflected by these correlates may help to inform those involved in singleton 

detection, given that singleton detection can be viewed as simply the detection of a 

visual deviant in space rather than in time (for an illustration, see Figure 1.1).  

 
Figure 1.1 Examples of spatial and temporal deviants. The shaded region 

highlights the presence of a deviant at the third time point. (A) A 
spatial deviant can appear at any location and is always presented 
simultaneously with other nondeviants. (B) A temporal deviant is 
presented by itself and is always preceded by a series of 
nondeviants. Upper: a visual deviant that differs from preceding 
nondeviants in its orientation. Lower: an acoustic deviant that 
differs from preceding nondeviants in its pitch.   

1.3. Electrophysiology of Deviancy Detection and Selection 

Most of the aforementioned studies relied on analyses of manual responses to 

help inform the role of attention in visual search. Such overt performance measures 

reflect the summed output of multiple processing stages that may not always reveal 

information about the specific neuro-cognitive processes of interest. Consequently, 

noninvasive recordings of human electrophysiology became widely used to help 

complement the extant behavioral data in the study of attention processes and deviancy 

detection. Standard electroencephalographic (EEG) methods measure the summed 

spatial deviant (singleton) A

temporal deviant  B

“beep” “beep” “boop” “beep”

time 1 time 4

time 1 time 4
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extracellular activity associated with postsynaptic potentials within the dendrites of 

neighboring pyramidal neurons (Buzsáki, Anastassiou, & Koch, 2012). Changes in this 

activity associated with specific sensory, cognitive, or motor events can then be 

extracted using signal-averaging techniques. The resulting ERPs reflect voltage 

fluctuations associated with specific neuro-cognitive processes.  

Three advantages of the ERP method make it ideal to study the neuro-cognitive 

processes underlying the detection of deviant stimuli. First, ERPs enable researchers to 

investigate specific component processes that contribute to behavior and complex 

mental operations, such as “paying attention”. Second, ERPs can track the timing of 

these component processes with millisecond precision. Third, ERPs enable 

measurement of these component processes even under circumstances where no overt 

behavior is observed. Therefore, the ERP method can help researchers to determine the 

degree to which attention is involved in deviancy detection and to assess the 

automaticity of the component processes involved in detection. Three ERP components 

have thus far been associated with the detection and selection of deviant stimuli, 

namely, the mismatch negativity (MMN), the novelty P3, and the posterior-contralateral 

N2 (N2pc).   

1.3.1. Mismatch Negativity (MMN) 

The MMN is a negative ERP component typically elicited by sudden, infrequent 

changes (deviants) in the acoustic environment. In MMN studies using the so-called two-

stimulus oddball paradigm, the deviant stimulus (or oddball) is occasionally presented 

among a stream of frequently presented stimuli called standards (e.g., presenting a high-

pitched tone after presenting a series of identical, low-pitched tones). Because the 

deviant can be any stimulus that breaks from the regularity set by the standard, deviancy 

detection—like singleton detection—does not require knowledge of the deviant feature.  

The MMN is best seen by subtracting the ERPs elicited by the standards from 

ERPs elicited by the deviants. And depending on the complexity of the regularity that is 

violated, the MMN can be observed as early as 100-250 ms post deviant onset but can 

also be later for deviant stimuli that are difficult to detect (Näätänen & Alho, 1995) or 

break abstract rules (e.g., an ascending tone presented among a series of descending 

tones; Tervaniemi, Maury, & Näätänen, 1994; see also Paavilainen, Simola, Jaramillo, 
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Näätänen, & Winkler, 2001; Saarinen, Paavilainen, Schröger, Tervaniemi, & Näätänen, 

1992). Critically, contrary to what has been previously argued (Jääskeläinen et al., 2004; 

May et al., 1999), this latter finding indicates that the MMN does not merely index the 

release from sensory adaptation of neurons responding to the repeated, standard stimuli 

but a response triggered by the deviant stimuli (because standard stimuli that follow an 

abstract rule presumably do not stimulate the same population of neurons).  

Based on its frontal and temporal scalp distribution (Sams, Paavilainen, Alho, & 

Näätänen, 1985), the MMN is theorized to be a product of two functional sources: one in 

bilateral auditory cortices associated with deviancy detection by comparing the current 

sensory input with a memory trace of past sensory inputs (Giard, Perrin, Pernier, & 

Bouchet, 1990), and the other one in the prefrontal cortex associated with the 

deployment of attention to the deviant sound (Escera, Alho, Winkler, & Näätänen, 1998; 

Escera, Yago, Corral, Corbera, & Nuñez, 2003) or the amplification of deviancy-

detection sensitivity (Opitz, Rinne, Mecklinger, von Cramon, & Schröger, 2002). 

Interestingly, although deviancy detection seems to trigger a switch of attention to the 

deviant stimulus, the detection process itself appears to not require attention. In fact, the 

MMN can sometimes be observed during sleep (Sallinen, Kaartinen, & Lyytinen, 1994) 

and in comatose patients (Kane, Curry, Butler, & Cummins, 1993). This detection 

process can, however, be enhanced by attention: The MMN was found to be larger 

when participants attended to the stream of standard and deviant sounds than when 

they had to allocate their attention elsewhere, especially when the deviant stimulus is 

difficult to discriminate from the standard stimulus (Arnott & Alain, 2002; Müller, 

Achenbach, Oades, Bender, & Schall, 2002).  

Using visual variants of the two-stimulus oddball paradigm, a candidate for a 

similar deviancy-detection mechanism has also been identified in the latency range of 

the visual-evoked N2 over the posterior scalp, aptly named the visual MMN (Astikainen, 

Ruusuvirta, Wikgren, & Korhonen, 2004; Czigler, Balázs, & Pató, 2004). Evidence for 

the detection of temporal anomalies in both audition and vision thus suggests that there 

may be a detection process for spatial anomalies (e.g., visual singletons) that operates 

by similar mechanisms.  
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1.3.2. Novelty P3 

The novelty P3 is a positive-going ERP component over the central scalp that 

sometimes followed the MMN. As its name suggests, this component is elicited by 

completely novel stimuli (can be visual or acoustic; i.e., an irrelevant deviant with 

variable features that have not been experienced previously) presented within a stream 

of standard and deviant stimuli in the so-called three-stimulus oddball paradigm, where 

participants ignored the novel and standard stimuli and responded to the deviant stimuli 

(Courchesne, Hillyard, & Galambos, 1975; Courchesne, Kilman, Galambos, & Lincoln, 

1984). At its discovery, Courchesne et al. (1975) found that the novelty of a stimulus is 

crucially linked to the novelty P3 because the mechanism underlying this component 

appears to habituate as novelty wears off, so that presentation of a previously novel 

stimulus no longer evokes activity of the same magnitude (see also Friedman & 

Simpson, 1994; Knight, 1984).  

Later studies, however, suggest that novelty is sufficient—but not necessary—for 

eliciting the novelty P3. In one study, Cycowicz and Friedman (1998) made a distinction 

between familiar and unfamiliar deviants by categorizing novel sounds based on whether 

participants could identify the sound (i.e., familiarity). It was found that whereas 

presentation of familiar sounds that were previously novel showed a habituation 

response, presentation of unfamiliar sounds that were previously novel did not. In 

another study, Katayama and Polich (1998) found the novelty P3 using a non-novel 

deviant (nontarget) by having the target deviant closely resemble the standard and the 

nontarget highly deviate from both the target and the standard, suggesting that novelty is 

not required for eliciting the novelty P3 but the distinctiveness of the eliciting stimulus 

(i.e., salience; see also Comerchero & Polich, 1998, 1999). In light of these findings, 

many researchers have equated the novelty P3 with another component called the P3a 

(Simons, Graham, Miles, & Chen, 2001), resulting in the names of the two components 

being used interchangeably (Comerchero & Polich, 1998, 1999; Friedman, Cycowicz, & 

Gaeta, 2001; Katayama & Polich, 1998).  

Based on these aforementioned findings, the widely accepted view is that the 

novelty P3 does not reflect the processing of novel events per se, but a process involved 

in the involuntary shift of attention to a salient-but-irrelevant deviant following deviancy 

detection. This attention-switching hypothesis, however, is at odds with results from a 
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study by Woods, Knight, and Scabini (1993). In this study, participants listened to a 

stream of high-pitched tones in one ear for a longer-lasting, deviant tone (target) while 

ignoring a stream of low-pitched tones in the other ear. When unexpected novel stimuli 

were presented in either ear, it was found that novel stimuli presented in the attended 

stream resulted in a larger novelty P3 and a greater response delay than for novel 

stimuli presented in the unattended stream. It is argued that if the novelty P3 truly 

reflects attention-switching, then the novel stimuli in the unattended stream should have 

elicited the larger novelty P3.  

In light of this finding, the novelty P3 has also been associated with another ERP 

component called the no-go P3 (Goldstein, Spencer, & Donchin, 2002), which has been 

thought to reflect the inhibition of a target response (Bokura, Yamaguchi, & Kobayashi, 

2001; Bruins, Wijers, & van Staveran, 2001). This interpretation of the novelty P3 is 

consistent with findings from the three-stimulus oddball paradigm because both the 

novel and target stimuli are deviants, and in order to perform the task accurately, 

observers must be able to respond to target deviants while suppressing response to 

nontarget deviants following deviancy detection. This interpretation is also consistent 

with results from Woods et al. (1993) because attended novel stimuli presumably require 

greater response inhibition than unattended novel stimuli. This response-inhibition 

hypothesis, however, is challenged by the report of a novelty P3 in a passive, three-

stimulus oddball task wherein no response was needed (Jeon & Polich, 2001). While the 

precise functional significance of the novelty P3 is still unclear, extant data help to show 

that deviancy detection may additionally involve mechanisms that (a) encode salient 

stimuli, (b) are enhanced by the allocation of attention, and (c) are subject to some form 

of perceptual- or response-level inhibitory control.  

1.3.3. Posterior-Contralateral N2 (N2pc) 

 When observers are asked to identify a singleton target that appears in a multi-

item visual array, ERPs recorded over the occipital scalp tend to be more negative at 

electrodes positioned contralateral to the target than at electrodes positioned ipsilateral 

to the target. This lateralized negativity usually happens in the time range of the N2 

peak, and so it has been called the posterior-contralateral N2 (N2pc; for an illustration, 

see Figure 1.2). The N2pc can be observed in challenging search tasks wherein the 

target does not necessarily pop out from the rest of the array (e.g., Luck & Hillyard, 



13 

1990; Dowdall, Luczak, & Tata, 2012), but it is most often studied in tasks involving 

fixed-feature singleton targets that are easy to locate.  

  
Figure 1.2 Illustration of an idealized N2pc scalp distribution (top) and 

corresponding ERP recordings over electrode sites PO7 and PO8 
(bottom). The contralateral negativity (N2pc; shaded in blue) 
depicted over the scalp would result from an isolation method that 
removes the temporally overlapping positive voltage. The gray 
dashed lines represent the allocation of attention to the singleton 
(target). When the target is presented in the left visual field, the N2pc 
is elicited over the right posterior scalp (and vice versa).  

In one of the first studies to report on the N2pc, Luck and Hillyard (1994b) 

presented a singleton that varied in orientation, color, and size across displays that 

contained seven identical, blue vertical lines in a feature-search task (Figure 1.3). At the 

start of each experimental block, one of the singletons was designated as the target and 

the others were designated as nontargets. Participants were informed beforehand the 

identity of the target singleton (e.g., a small, horizontal, blue bar), so that they were to 

press a button to indicate target presence whenever the prespecified singleton was 
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presented and another button to indicate target absence whenever other singletons or 

no singletons were presented. Luck and Hillyard found that the target singleton always 

elicited the N2pc, regardless of its actual features. Moreover, they found that nontarget 

singletons that resembled the target singleton (so-called difficult nontarget) also elicited 

the N2pc (e.g., a small, blue, horizontal bar vs. a large, blue, horizontal bar), whereas 

easily discriminable nontarget singletons did not (so-called easy nontargets, presumably 

because they could be rejected preattentively; e.g., a large, green, vertical bar).  

 
Figure 1.3 The four types of singleton displays used in Luck and Hillyard’s 

(1994b) feature-search experiment. From left to right: When the 
singleton in the first display is designated as the target, the 
singleton in the second display would be the difficult nontarget and 
the ones in the third and fourth displays would be the easy 
nontargets. Singleton-absent displays (not shown) consist of eight 
small, vertical, blue bars. 

Luck and Hillyard (1994b) reasoned that the N2pc was not tied to response-level 

processing because both targets and difficult nontargets elicited the N2pc despite 

requiring different manual responses. The N2pc also could not be attributed to 

oculomotor activity because trials with eye movements were excluded from ERP 

analysis. Instead, since the scalp distribution of the N2pc was consistent with the 

contralateral organization of the geniculostriate visual pathway and with the location of 

the visual cortex, the N2pc is likely to reflect some visual activity triggered by the target 

singleton. This visual activity cannot be ascribed to be purely sensory, however, 

because the same singleton that elicited the N2pc failed to do so when it was designated 

as the easy nontarget. The failure of the easy nontarget to elicit the N2pc also suggests 

that this activity arises after the completion of preattentive processing, otherwise 

preattentive processing of the easy nontarget would also trigger the N2pc. Instead, these 

results indicate that the N2pc reflects some attentional process that occurs whenever an 

object requires close scrutiny. Specifically, Luck and Hillyard surmised that the N2pc 

reflects the suppression of nontarget features in the vicinity of the target (a process 

called spatial filtering) during the focusing of attention onto an object.  

++ + +
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To evaluate their spatial filtering hypothesis, Luck and Hillyard (1994b) designed 

a singleton-detection experiment that discourages filtering. In this experiment, the search 

display consisted of eight vertical or horizontal lines. On half the trials, the lines 

presented were either all vertical or all horizontal, and on the other half, one of the lines 

had the opposite orientation (i.e., an orientation singleton; Figure 2.1). Luck and Hillyard 

instructed participants to press a button depending on whether an orientation singleton 

was present. Critically, the four types of displays were randomly intermixed so that 

participants could not predict the orientation of the singleton. By this design, Luck and 

Hillyard reasoned that the implementation of a spatial-filtering mechanism in this task 

would be counterproductive because suppression of items in the search array would 

impede the process of comparing each item with its surrounding during singleton 

detection. Consistent with the spatial filtering hypothesis, there was no evidence of the 

N2pc nor of any visual processes beyond the basic sensory activity elicited by the 

search display. This null result further suggests that singleton detection does not involve 

the same selection processes as those found in feature search and that attention may 

not even be required for singleton detection.  

Following the discovery of the N2pc, the results of several studies buttressed 

Luck and Hillyard’s (1994a, 1994b) claim that the N2pc reflects some aspect of 

attentional selection. Four such lines of evidence are outlined here (for a comprehensive 

review, see Luck, 2012). First, the amplitude of the N2pc is enhanced when a greater 

degree of attentional focus is required (e.g., Luck et al., 1997). Second, the N2pc is 

known to track serial shifts of attention from one side of fixation to another when 

observers must closely inspect multiple singletons to find a specific target (e.g., 

Woodman & Luck, 1999, 2003). Third, consistent with the known effect of salience on 

search guidance (Itti & Koch, 2000, 2001), the N2pc appears earlier for more salient 

objects (e.g., Gaspar & McDonald, 2014; Luck et al., 2006). Fourth, consistent with the 

known effect of intertrial priming on search performance (Maljkovic & Nakayama, 1994), 

the N2pc occurs earlier when the target feature repeats than when they change across 

consecutive trials (e.g., Christie, Livingstone, & McDonald, 2015; Eimer, Kiss, & Cheung, 

2010). 

It should be noted, however, that all these N2pc findings likely reveal attentional 

processing either involved in discriminating a target feature following target detection (in 

a so-called compound-search task; Duncan, 1985) or involved feature-guided search. 
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When observers have to discriminate a target’s feature following target detection, it is 

unclear whether the N2pc is triggered by process(es) associated with feature detection 

or subsequent discrimination. Moreover, many of these studies used multiple-singleton 

displays, either to balance the sensory energy from the target or to isolate target and 

distractor processing, and such multiple-singleton displays encourage the adoption of 

feature search mode because singleton detection would presumably lead to accidental 

selection of the nontarget singleton on some trials. At the very least, given that (a) all 

these studies require feature discrimination and that (b) many of these studies permit 

both feature search and singleton detection, it cannot be determined conclusively 

whether the N2pc also occurs during singleton detection.  

On the Functional Significance of the N2pc 

Although researchers agree that N2pc broadly reflects some processes 

associated with the focusing of attention, they have since found results that are 

inconsistent with the spatial filtering hypothesis of the N2pc. For example, Eimer (1996) 

argued that the N2pc reflects target enhancement, not spatial filtering, by showing that 

an N2pc was found contralateral to the target even though there were no other objects in 

its vicinity (the only other object was in the opposite visual field; for a similar finding, see 

Wijers, Lange, Mulder, and Mulder, 1997). Moreover, using analogous singleton-

detection and feature-discrimination tasks in the color dimension, Mazza, Turatto, and 

Caramazza (2009a, 2009b) failed to replicate Luck and Hillyard’s (1994b) null result. In 

these follow-up studies, color singletons were found to elicit the N2pc even when 

participants should have been in singleton detection mode due to the unpredictable 

swapping of target and nontarget colors (as in Luck and Hillyard’s seminal experiment). 

In another study involving singleton detection, Schubö et al. (2004) found that whereas 

no N2pc was observed for displays containing 6 or fewer items, the N2pc was evident 

for set sizes ranging from 10 to 49. More recently, Tan and Wyble (2015) proposed an 

alternative hypothesis that the N2pc reflects the process of target localization prior to the 

deployment of attention. In their study, Tan and Wyble reported that when two targets 

were rapidly presented at the same location, only one N2pc was observed, but two 

N2pcs were observed when the two targets were presented in quick succession at 

different locations.  
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Despite the debate surrounding its functional significance, the N2pc remains as 

the gold-standard, electrophysiological marker of visual attention that has greatly 

contributed to the study of visual search, visual distraction, and attentional impairments. 

Still, unless the debate on the process that gives rise to the N2pc is resolved, theories 

on attention and nature of attentional impairments may be misinformed. For example, 

Luck and Gold (2008) argued that the attentional deficits exhibited by individuals with 

schizophrenia do not arise from an inability to filter out nontarget items because their 

N2pc is comparable to that of healthy individuals. By other accounts of the N2pc, 

however, one might argue instead that individuals with schizophrenia have no deficit in 

target-enhancement processes or target-localization processes.  

When taking into consideration all the aforementioned N2pc findings, it could be 

tentatively concluded that this ERP component reflects a feature-based, template-

matching process. In fact, the N2pc may be a visual-evoked equivalent of another ERP 

component found in the auditory modality called the processing negativity (Näätänen, 

1982), which is theorized to reflect a process of matching the attended sound with an 

actively maintained, internal representation of the target. This template-matching 

account of the N2pc is consistent with studies showing objects that partially match the 

target feature template also elicit the N2pc but at a reduced amplitude (Eimer & Grubert, 

2014; Kiss et al., 2013) and with the fact that the N2pc is only consistently observed in 

tasks that permit feature search or that require feature discrimination and not in pure 

singleton-detection tasks.  

More specifically, the N2pc may reflect the establishment of an object file during 

the template-matching process. According to Kahneman, Treisman, and Gibbs (1992), 

an object file is a short-term representation of an attended object that stores relevant 

information of that object. By this view, the template-matching process involves the 

creation of an object file, accessing of the object file, retrieval of information from the 

object file, and comparison of said information with that of the target template. This 

functional interpretation of the N2pc is in line with studies that show an increase in the 

N2pc amplitude with increase with number of enumerated objects (Ester, Drew, Klee, 

Vogel, & Awh, 2012; Mazza & Caramazza, 2011; Mazza, Pagano, & Caramazza, 2013; 

Pagano & Mazza, 2012), presumably because each enumerated object would require its 

own object file. The object-filing interpretation can also account for the absence of N2pc 

to the second of two same-location targets in Tan and Wyble’s (2015) study because 
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objects presented in temporal and spatial proximity are likely to be bound to the same 

object file (Downing & Treisman, 1997). 

Although numerous studies support the template-matching account of the N2pc, 

this account fails to explain reports of the N2pc in a few singleton-detection experiments 

(e.g., Mazza et al., 2009a, 2009b; Schubö et al., 2004) because searching for a 

singleton by way of template matching in a pure singleton-detection task is presumed to 

be counterproductive. The veracity of the singleton-detection N2pc remains equivocal, 

however, in light of the null N2pc result from Luck and Hillyard’s (1994b) singleton-

detection experiment. Considering the importance of Luck and Hillyard’s negative finding 

for the functional interpretation of the N2pc and for our understanding of the potential 

involvement of attention in singleton detection, it is surprising to find that few studies 

have attempted to verify this result using similar singleton-detection tasks. The study that 

most closely resembles Luck and Hillyard’s singleton-detection experiment thus far is the 

one conducted by Schubö et al. (2004). In this study, investigators used orientation 

singletons in a singleton-detection task that varied in set size. It was found that the N2pc 

was only observable when the set size reaches a sufficiently large number, so that the 

N2pc was only evident in set sizes ranging from 10 to 49 items and not in displays with 6 

or fewer items. Although Schubö et al. suggested that the absence of the N2pc in 

displays with few items was due to detection being less attentionally demanding at those 

set sizes, they did not make any conclusion regarding the functional significance of the 

N2pc. Nevertheless, the positive N2pc result in this study (especially for the 10-item 

display, which most closely resembles Luck and Hillyard’s singleton-detection display) 

failed to replicate the null result that has been central to Luck and Hillyard’s spatial 

filtering hypothesis.  

At first glance, the N2pc found by Schubö et al. (2004) should indicate that it 

does not reflect spatial filtering, but the different statistical and analytical decisions made 

between the two studies have led to difficulty in drawing a definite conclusion. In 

concluding that an N2pc was present in the 10-item display, Schubö et al. may have 

made a Type I error for two reasons. First, Schubö et al. did not correct for multiple 

comparisons when testing for presence of an N2pc across the four set sizes (the 

contralateral negativity observed in the 10-item display had p = .037, which does not 

survive a Bonferroni correction for four ANOVAs). Second, Schubö et al. used a later 

measurement window of 250-350 ms, instead of Luck and Hillyard’s (1994b) original 
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window of 200-275 ms, to quantify the N2pc but did not provide a clear justification for 

doing so. Alternatively, in concluding that an N2pc was absent in their singleton-

detection experiment, Luck and Hillyard may have made a Type II error. With a sample 

size of 12 participants in Luck and Hillyard’s singleton-detection experiment, the 

statistical power to detect a medium-sized effect (d = 0.50) was only 0.35. Moreover, 

these authors derived their 200-275-ms measurement window from search tasks in 

which the target feature is fixed across trials, but the processes involved in the detection 

of variable-feature targets may result in a later N2pc that is more in line with Schubö et 

al.’s measurement window. In fact, Eimer et al. (2010) have shown the N2pc to onset 50 

ms later in a variable-feature search task when compared with a fixed-feature search 

task of the same stimuli.  

1.4. Aims of this Thesis 

The present thesis has four aims. The first general aim is to elucidate some of 

the neuro-cognitive processes involved in singleton detection, since little is known about 

such processes (Proulx & Serences, 2006). The second aim is to provide a definitive 

answer to the longstanding question as to whether attention is involved in the detection 

of a singleton (specifically, when its defining feature is not known in advance; Chapter 

2). Because the N2pc would be measured in pursuit of this second aim, an important 

third aim is to reassess the functional significance of the N2pc itself. Finally, given the 

salience-driven nature of singleton detection, the fourth aim is to determine whether 

processes involved in singleton detection can be overridden by more goal-driven 

processes associated with task relevance (Chapter 3).  

Chapter 2 revisits Luck and Hillyard’s (1994b) question of whether the N2pc 

would be present in a singleton-detection task that prevents feature-guided search and 

discourages the hypothetical spatial-filtering process that was presumed to drive the 

N2pc. As it currently stands, the absent N2pc in Luck and Hillyard’s seminal singleton-

detection task would indicate that spatial attention is not involved in singleton detection, 

on the grounds that no ERP activity was observed aside from the visual-evoked 

potentials elicited by the search array. In Chapter 2, I reexamine Luck and Hillyard’s 

claim by replicating their singleton-detection task with five modifications to improve the 

statistical power. These modifications include (a) increasing the number of trials from 

800 to 1,400; (b) testing for the presence of an N2pc elicited by singletons in the lower 
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visual field, where the N2pc has been observed to be larger (Luck et al., 1997); (c) 

analyzing ERPs recorded from electrodes PO7 and PO8, where the N2pc is maximally 

distributed, instead of the average recordings from the four nearby electrodes (O1, O2, 

P7, and P8); (d) quantifying the N2pc in two additional ways to avoid any potential 

statistical bias; and (e) increasing the sample size from 12 to 26. If no N2pc is observed 

following these modifications, then the N2pc reflects, at least in part, the suppression of 

items near the target. Alternatively, if an N2pc is observed in this task, where filtering 

activity is presumed to be minimal, then the N2pc reflects some process associated with 

the attended target itself. In this chapter, I provide evidence that N2pc is, in fact, 

observable in a singleton-detection task that discourages spatial filtering, demonstrating 

that spatial attention is involved in the detection of singletons. Functional significance of 

the N2pc is then discussed in view of extant N2pc findings in other visual-search 

paradigms. Other findings are also discussed, including a newly discovered ERP 

component that tracks the time course of singleton detection called the singleton 

detection positivity (SDP). 

Chapter 3 introduces a go/no-go element to the singleton-detection task to 

investigate whether salient-but-irrelevant singletons automatically trigger the singleton-

detection processes observed in Chapter 2 (e.g., the N2pc and SDP) or whether such 

processes can be prevented by other, higher-level processes associated with the 

observer’s intentions. According to the salience-driven selection hypothesis (Theeuwes, 

1991a, 1992, 2004, 2010), (a) the most salient object invariably captures attention and 

(b) stimulus-driven selection processes must be completed before goal-driven processes 

can begin. By this account, salient-but-irrelevant singletons would always trigger 

singleton detection. However, other hypotheses have proposed that goal-driven 

processes can occur early to prevent salience-driven selection (e.g., Folk, Remington, & 

Johnston, 1992; Sawaki & Luck, 2010). The singleton-detection task is especially well-

suited to evaluate these competing claims for two reasons. First, the singleton is 

necessarily the most salient stimulus in the singleton-detection display. Second, 

selection processes elicited by the singleton are necessarily stimulus-driven in singleton-

detection mode. Chapter 3 details a singleton-detection experiment similar to that in 

Chapter 2, except that half of the displays contained yellow lines (instead of cyan) to 

indicate that responses should be withheld on that trial (i.e., no-go trials; color 

counterbalanced across participants). In particular, no-go trials were randomly 
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intermixed with the usual go trials to determine whether participants would terminate 

visual processing on no-go trials before or after attending to the salient singleton. 

Because go and no-go displays contained differently colored lines, go and no-go trials 

were differentiated based on the (global) color of lines throughout the display. I show in 

Chapter 3 that (a) singletons on no-go trials elicited a markedly reduced SDP and no 

N2pc and that (b) an ERP component associated with the goal-driven evaluation of 

stimulus relevance called the P2a emerged prior to the N2pc. These findings run counter 

to the twin assertions proposed by the salience-driven selection hypothesis and 

demonstrate that rapid, trial-by-trial assessment of task relevancy can precede and 

override salience-driven capture of attention. Additionally, I discuss the mechanism by 

which singleton detection is suppressed along with other findings.  
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Chapter 2. Experiment 1 

The study detailed in this chapter was reported in a recent publication: Tay, D., 

Harms, V., Hillyard, S. A., & McDonald, J. J. (2019). Electrophysiological correlates of 

visual singleton detection. Psychophysiology, 56(8), e13375.  

2.1. Introduction 

The primary goal of Experiment 1 was to determine whether a target singleton 

will elicit the N2pc in a singleton-detection task that prevents the use of a template-

matching strategy and discourages the filtering of nontarget items in the display. As 

illustrated in Figure 2.1, participants viewed search displays containing seven identical 

nontargets and a target singleton that was rotated 90 degrees (target-present trials) or 

eight identical nontargets (target-absent trials). The orientations of the target and 

nontarget were swapped randomly across trials so that observers would not know in 

advance whether they would be required to search for a horizontal target or a vertical 

target. As summarized by Luck (2012, p. 349), observers participating in this task would 

be encouraged “to adopt a singleton detection mode, in which they try to detect feature 

discontinuities rather than trying to identify specific target features” and that “no N2pc 

activity should be observed” because “filtering should be minimized.” Indeed, as noted in 

Section 1.3.3, Luck and Hillyard (1994b) reported a statistically nonsignificant N2pc and 

concluded that there is no N2pc activity when the task discourages filtering. Given the 

importance of this conclusion to our understanding of the N2pc and the role of attention 

in singleton detection mode, the present study sought to test the veracity of this null 

result.  

Five methodological changes were made to Luck and Hillyard’s (1994b) 

singleton-detection experiment to improve its statistical power. First, to increase the 

ERP’s signal-to-noise ratio, the experiment contained an additional 600 trials. Second, 

the effect size of the N2pc was increased by specifically looking at ERPs elicited by 

singletons in the lower visual field (because it has been shown that N2pc elicited by 

lower-field targets are larger than those elicited by upper-field targets; Luck et al., 1997). 

Third, this experiment further increased the effect size by measuring the N2pc from 

electrodes PO7 and PO8, where the N2pc is found to be maximal, instead of averaging 
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the ERPs recorded across the four nearby electrodes (O1, O2, P7, and P8). Fourth, in 

addition to using Luck and Hillyard’s (1994b) mean-amplitude measurement window 

(200-275 ms post stimulus onset), the analysis quantified the N2pc in two other ways: 

(a) as the mean amplitude in a 250-350-ms time window and (b) as the signed negative 

area in a 200-350-ms time window. The 250-350-ms measurement window was chosen 

with the knowledge that an N2pc can be delayed by 50 ms in variable-feature search 

(Eimer et al., 2010) and to match what was used by Schubö et al. (2004). The 200-350-

ms measurement window was selected to encompass both the early and late 

measurement windows and to avoid cherry-picking a biased result based on observed 

data (Luck, 2012). Lastly, the sample size was increased from 12 to 26, which was 

determined based on the prediction that the methodological modifications would result in 

an N2pc equivalent to, at least, a medium-sized effect (i.e., d ≥ 0.50, power ≥ .72). This 

statistical consideration was based on Luck’s (2012) revised hypothesis that “little to no 

N2pc activity should be observed” (p. 349) in this task. 

Because of the attempt to increase statistical power and the use of the multiple 

measurement windows, it was decided a priori to base all conclusions on the signed 

negative area measure obtained from ERPs elicited by lower-field targets using the wide 

measurement window (200-350 ms). Following this decision, the null hypothesis was 

that the signed negative area should be no greater than that expected by random noise 

alone (i.e., by chance). If the null hypothesis were true, it would be concluded that the 

N2pc reflects suppression of objects near the target and that reduction of filtering 

eliminated the N2pc in this task. The alternative hypothesis was that the signed negative 

area would be larger than that expected by random noise alone. This statistical 

hypothesis was premised on the conceptual hypothesis that the N2pc reflects processes 

associated with the attended target itself rather than the filtering of nearby objects. Apart 

from the N2pc analyses, additional analyses were performed to discover other, potential 

electrophysiological correlates of singleton detection (to be further discussed in the 

following section).  

2.2. Method 

The Research Ethics Board at Simon Fraser University (SFU) approved the 

research protocol. All experimental procedures were performed in accordance with 
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guidelines and regulations outlined by SFU and the Natural Sciences and Engineering 

Research Council of Canada (NSERC). 

2.2.1. Participants 

Thirty-one young adults without history of neurological disorders participated 

after giving informed consent. Individuals received course credit as part of a 

departmental research participation system for their participation. All subjects reported 

normal or corrected-to-normal visual acuity and were tested for normal color vision using 

Ishihara color plates prior to participation. Data from five participants were excluded from 

further analyses because more than 25% of trials were contaminated by ocular artifacts 

(rejection criterion set in advance). Of the remaining 26 participants (mean age: 21.6 

years), 15 were female and 25 were right-handed.  

2.2.2. Apparatus 

The experiment was conducted in a sound-attenuated and electrically shielded 

chamber dimly illuminated by DC-powered LED lighting. A height-adjustable LCD 

monitor running at 120 Hz presented visual stimuli. Participants sat in a chair and viewed 

the monitor at a distance of approximately 57 cm and made their responses using a 

gamepad. A Windows-based computer controlled stimulus presentation and registered 

participants’ button presses using Presentation (Neurobehavioral Systems, Inc., Albany, 

CA). A custom software (Acquire) recorded EEG from a second, Windows-based 

computer, which housed a 64-channel A-to-D board (PCI-6071e, National Instruments, 

Austin, TX) that connected to an EEG amplifier system with an input impedance of 1 GΩ 

(SA Instruments, San Diego, CA). The stimulus-control and EEG-acquisition computers 

were situated outside of the testing chamber. 

2.2.3. Stimuli and Procedure 

Each stimulus display consisted of a small, white fixation cross (0.3° × 0.3°; 0.3 

cd/m2) positioned at the middle of the display and eight cyan lines (0.3° × 1.0°; x = .20, y 

= .35, 17.5 cd/m2) that appeared within a 10.7° × 7.9° region around fixation (Figure 2.1). 

The coordinates of the lines were determined randomly, with the restrictions that all 

displays contain four lines on either side of fixation without crossing the horizontal or 
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vertical meridians and that no lines connect or overlap. Target-absent displays contained 

eight horizontal or eight vertical lines. Target-present displays were identical to target-

absent displays except one of the eight lines was replaced with a line of an orientation 

orthogonal to that of the surrounding lines. The four types of displays were randomly 

intermixed and presented with equal probability. Each display was presented for 750 ms, 

and the time between stimulus onset (stimulus onset asynchrony; SOA) varied randomly 

between 1,350 ms and 1,650 ms. Participants pressed either the left or right shoulder 

button on the gamepad with their index fingers to indicate whether the target orientation 

singleton was present or absent. The stimulus-response mapping was counterbalanced 

across participants. Participants maintained eye fixation on the fixation cross and 

learned the task by completing at least one block of trials as practice prior to the 

experiment. The entire experiment comprised of 35 blocks of 40 trials for a total of 1,400 

trials, with participant-controlled rest periods between blocks. 

 
Figure 2.1.  Example displays used in Luck and Hillyard’s (1994b) singleton-

detection experiment and in Experiment 1. 

2.2.4. Behavior 

Median RTs for target-absent and target-present trials were computed separately 

for each participant. The analysis excluded trials on which participants responded 

incorrectly, too quickly (RT < 100 ms), or too slowly (RT > 1,350 ms). The target-present 

trials were further subdivided into upper-field target and lower-field target trials. Finally, 

median RTs were derived for subsets of target-present trials based on whether the 

preceding trial contained a target with the same orientation (i.e., repeat-orientation trials) 

or opposite orientation (i.e., change-orientation trials) to determine whether the repeating 

of a target feature in this singleton-detection task facilitates search (i.e., priming of pop-

+ +

+ +

target absent (50%) 

target present (50%) 
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out; Maljkovic & Nakayama, 1994). Assessments of statistical significance were 

performed using paired-sample t tests with two tails.  

2.2.5. Electrophysiology 

Recording and Preprocessing 

EEG signals were recorded from 25 sintered Ag/AgCl electrodes positioned at 

standard 10-10 sites (FP1, FPz, FP2, F7, F3, Fz, F4, F8, T7, C3, Cz, C4, T8, P7, P3, Pz, 

P4, P8, PO7, POz, PO8, O1, Oz, O2, M1). During recording, all EEG signals were 

referenced to an electrode positioned on the right mastoid, and the ground electrode 

was positioned over the midline frontal scalp at site AFz. To track horizontal eye 

movements, an additional pair of electrodes placed 1 cm lateral to the external canthus 

of each eye recorded horizontal electrooculographic (HEOG) activity. Eye blinks were 

monitored using the FP1 electrode and all electrode impedances were kept below 15 kΩ. 

EEG and EOG signals were amplified with a gain of 20,000, filtered using a bandpass 

filter of 0.01-100 Hz (two-pole Butterworth), and digitized at 500 Hz. The EEG signals 

were stored on a computer for offline averaging. A semiautomated procedure was 

performed to remove epochs of EEG that were contaminated by horizontal eye 

movements, blinks, or amplifier blocking (for a detailed description, see Green, Conder, 

& McDonald, 2008). Artifact-free data were low-pass filtered (half-power cutoff) at 30 Hz 

to create averaged ERP waveforms. Each EEG channel was digitally rereferenced to the 

average of the left and right mastoid channels. The grand-averaged event-related HEOG 

deflection was kept below 2 μV.  

ERPs elicited by displays containing a target in the left or right visual field were 

combined in such a way as to produce waveforms recorded contralateral and ipsilateral 

to the target. To isolate the N2pc, ipsilateral ERPs were subtracted from corresponding 

contralateral ERPs to produce contralateral-ipsilateral difference waves. Some additional 

analyses were performed on present-absent difference waves, which were computed by 

subtracting the target-absent ERPs separately from ERPs elicited by targets in the left 

and right visual field. Negative voltages were plotted upward by convention. 
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N2pc Analysis 

All N2pc measurements were taken from contralateral-ipsilateral difference 

waves recorded from electrodes PO7 and PO8. All statistical tests were two-tailed, 

except for one-sample tests involving signed negative areas because all possible values 

were necessarily less than or equal to zero. To replicate and extend the measurement 

approaches taken by Luck and Hillyard (1994b) and Schubö et al. (2004), magnitude of 

the N2pc was quantified in three ways as noted in Section 2.1: as the mean amplitude 

within a 200-275-ms time window, as the mean amplitude within a 250-350-ms window, 

and as the signed negative area within a 200-350-ms window. One-sample t tests were 

conducted on ERPs elicited by all target-present trials to determine whether the mean 

amplitudes within the early and late measurement windows differed significantly from 0 

μV. Next, contralateral-ipsilateral difference waves elicited by upper- and lower-field 

targets were separately measured. A paired-sample t test was performed to confirm that 

the N2pc was larger for lower-field targets than for upper-field targets. A one-sample t 

test was also done to determine whether an N2pc was statistically present for lower-field 

targets. I did not test whether upper-field targets elicited a statistically significant N2pc 

because (a) there was likely insufficient power to detect the predictably small effect and 

(b) the result of such a test would not contribute to the goal of the present experiment.  

To verify the findings from the mean-amplitude tests, similar tests were 

conducted using the signed negative area measured within the wide measurement 

window (200-350 ms). Because measurements of signed negative area are biased to be 

nonzero even in the absence of a signal, conventional statistical approach of testing 

observed values against zero was replaced with a nonparametric, permutation approach 

that estimated the distribution of values generated by noise alone (Sawaki et al, 2012). 

This process was accomplished by first randomly designating the side (left, right) on 

which the target appeared in each target-present display to eliminate any lateralized 

ERP signal, so that the remaining lateralized ERP activity could be estimated as noise. 

Subsequently, the noise estimation produced for each participant was combined to 

construct a grand-averaged ERP. This process was repeated 500 times to yield 500 

different permuted, grand-averaged ERPs. The signed negative areas obtained from 

these ERPs were used to provide a distribution of values expected if the null hypothesis 

were true. In line with the traditional threshold for statistical significance, the observed 

grand-averaged N2pc was considered statistically present if the measured signed area 
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fell beyond the 95th percentile of the estimated noise distribution. The p value for this 

permutation test was calculated using the following equation (Phipson & Smyth, 2010; 

see also Gaspelin & Luck, 2018a):  

 

𝑝 =
1 + (𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑝𝑒𝑟𝑚𝑢𝑡𝑒𝑑	𝑣𝑎𝑙𝑢𝑒𝑠	 ≥ 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑	𝑎𝑟𝑒𝑎)

1 + 𝑡𝑜𝑡𝑎𝑙	𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑝𝑒𝑟𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑠
	 (1) 

 

Two more sets of analyses were conducted to further verify the N2pc, using 

paired-sample t tests. The first test examined whether repeat-orientation trials elicited an 

N2pc earlier than one from change-orientation trials. This prediction was based on 

behavioral (Maljkovic & Nakayama, 1994) as well as electrophysiological (Christie et al., 

2015; Eimer et al., 2010) evidence of intertrial facilitation from repeated targets. Onset 

latency of N2pc was quantified as the time point at which the N2pc first reaches 50% of 

its peak amplitude within the 200-350-ms measurement window, using the jackknife 

approach (Miller, Patterson, & Ulrich, 1998). The second set of analyses compared the 

amplitude and latency between N2pc waveforms elicited by fast- and slow-response 

trials, on the hypothesis that the N2pc would be larger or earlier for fast-response trials. 

The fast- and slow-response trials were computed based on the median RTs of 

individual participants (i.e., a median split; see McDonald, Green, Jannati, & Di Lollo, 

2013). Signed negative area within the 200-350-ms window was used to compare 

differences in N2pc magnitude and 50% peak amplitude latency was used to assess the 

timing of N2pc elicited between the fast- and slow-response trials. To establish whether 

an N2pc is reliably elicited during singleton detection, the split-half reliability of the N2pc 

signed area measure was estimated by sorting alternating target-present trials into two 

different averaging bins, constructing contralateral-ipsilateral difference waves for the 

two halves of trials for each participant, measuring the signed negative area in the 200-

350-ms window for each half, and computing the Spearman-Brown coefficient between 

N2pc areas measured from the split halves.  

Additional Analyses 

Beyond the N2pc analyses, additional analyses aimed to explore other 

processes involved in singleton detection, focusing on a lateralized negativity in the time 
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range of the N1 peak (the so-called N1pc) and an occipital positivity in the time range of 

the P3b. The N1pc, like the N2pc, is a negativity over the posterior contralateral scalp 

but in the time range of the N1. The N1pc has been attributed to the reflexive orienting of 

attention to unilateral stimuli (Wascher & Beste, 2010a, 2010b), as well as the stimulus-

driven selection of stimuli during the initial sweep of visual processing (Verleger, vel 

Grajewska, & Jaśkowski, 2012). The N1pc was quantified as the mean amplitude within 

a 150-200-ms time window, selected based on the conventional time range of the N1. To 

evaluate whether the N1pc was associated with singleton detection, presence of an 

N1pc was verified in target-present trials using a one-sample t test. A subsequent 

paired-sample t test was performed to compare magnitude of N1pc between upper-field 

and lower-field targets. Furthermore, one-sample t tests were conducted to investigate 

whether an N1pc was present for repeat- and change-orientation trials as well as fast- 

and slow-response trials. Additional paired-sample t tests were done to see whether 

N1pc would be larger on repeat-orientation and fast-response trials.  

The P3b-like occipital positivity has been previously reported in other studies 

(Luck & Hillyard, 1990, 1994a; Schubö et al., 2004), and it has been shown to be larger 

on target-present trials than on target-absent trials. Even though previous studies have 

equated this positivity to the P3b, and thus measured the positivity in the time range of 

P3b (350-550 ms), pilot data suggest that this positivity is a separate component that 

occurs earlier and distributes bilaterally over the occipital scalp (instead of over the 

midline parietal scalp). To characterize this occipital positivity—herein called the 

singleton detection positivity (SDP)—its timing was measured and subsequently used to 

determine its appropriate mean-amplitude measurement window.  

All SDP measurements were taken from the present-absent difference waves to 

isolate activity specifically linked to processes associated with the singleton target and to 

minimize overlap from components like the P3b. Using the jackknife approach, onset 

latency of the SDP was estimated as the first time point at which SDP reaches 25% of its 

peak amplitude within a 200-400-ms window. A difference in onset latencies between 

the ipsilaterally and the contralaterally recorded SDP (presumably driven by the 

overlapping N2pc) was assessed with a paired-sample t test. Moreover, the measured 

SDP latency was compared with the jackknifed, 25% peak latency of N2pc, using a 

paired-sample t test. The appropriate mean-amplitude measurement window for the 

SDP was selected by performing one-sample t tests of mean amplitudes measured at 
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consecutive 50-ms time windows, separately at ipsilateral and contralateral electrodes 

(PO7/8), starting just before the measured onset latency (e.g., the first 50-ms window 

will be 201-250 ms if measured SDP latency falls within that interval). Following the 

determination of SDP’s mean-amplitude measurement window, the split-half reliability for 

both the ipsilateral and contralateral SDP was computed. As an added confirmatory 

measure for presence of the N2pc, N1pc, and SDP, 95% confidence intervals (CIs) were 

computed for contralateral-ipsilateral difference waves elicited by all targets, upper-field 

targets, and lower-field targets, as well as for ipsilaterally and contralaterally recorded 

present-absent difference waves.  

A final set of exploratory analyses sought to discover whether select ERP 

measures of interest linearly correlate with magnitude of N2pc or with RT. 

Intercomponent correlations were computed using Pearson correlation coefficients, 

between the signed negative area of N2pc (measured in the 200-350-ms window) and 

each of the following ERP measures: mean amplitude of P1 (75-125 ms, averaged 

across electrodes PO7/8), mean amplitude of N1 (150-200 ms, averaged across 

electrodes PO7/8), mean amplitude of N1pc (150-200 ms), and mean amplitude of 

ipsilaterally recorded SDP (to avoid issue of N2pc-SDP overlap over the contralateral 

scalp). Pearson correlation coefficients were also computed between RT and each of the 

following ERP measures: area of N2pc (as previously measured), onset latency of N2pc 

(at 25% peak), mean amplitude of SDP (as previously defined), and onset latency of 

SDP (at 25% peak). Tests for intercomponent correlations and RT correlations were 

conducted separately across all participants, with each test having a significance 

threshold at .0125 after correcting for multiple comparisons (per-test α = .05/4).  

Topographical Mapping 

Topographical voltage maps of ERPs were constructed by spherical spline 

interpolation (Perrin, Pernier, Bertrand, & Echallier, 1989). Contralateral-ipsilateral 

difference maps were produced by first subtracting the ipsilateral topography from the 

contralateral topography at corresponding electrode locations, then projecting this 

difference topography over both sides of the head using the conventional approach (e.g., 

Green et al., 2008). ERPs elicited by target-present displays were mapped by collapsing 

over left and right targets and left and right electrodes such that electrodes on the left 

and right sides were ipsilateral and contralateral to the target, respectively. ERPs elicited 
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by target-absent displays were mapped using the original electrode montage with left 

and right electrodes positioned on the left and right sides of the head, respectively.  

2.3. Results 

2.3.1.  Behavior 

There was no RT difference between target-present and target-absent trials (536 

ms vs. 531 ms, respectively), t(25) = 0.98, p = .335, or between upper-field targets and 

lower-field targets (534 ms vs. 538 ms, respectively), t(25) = 1.38, p = .180. Participants 

were faster to respond on repeat-orientation than on change-orientation trials (550 ms 

vs. 569 ms, respectively), t(23) = 6.78, p < .001, indicating the occurrence of priming of 

pop-out (Maljkovic & Nakayama, 1994).  

2.3.2. Electrophysiology 

Figure 2.2 shows the ERPs elicited by the target singleton on target-present 

trials. The N2pc was statistically absent when measured using Luck and Hillyard’s 

(1994b) early measurement window (-0.18 μV), t(25) = 1.39, p = .180, but present when 

measured using Schubö et al.’s (2004) late measurement window (-0.49 μV), t(25) = 

2.95, p = .007, d = 0.58, replicating the findings of the respective studies. Additionally, 

the signed negative area measured using the wide measurement window yielded a 

statistically significant result (-54.9 μV*ms), p = .002, confirming Schubö et al.’s positive 

finding (Figure 2.3A). The residual HEOG deflection in the grand-averaged HEOG 

waveform was smaller than the N2pc and began approximately 282 ms post stimulus 

onset, indicating that the observed N2pc was not saccade-induced activity (Figure 2.2B). 

The preceding N1pc (-0.16 μV) was marginally significant, t(25) = 2.03, p = .053, d = 

0.40. 
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Figure 2.2. Grand-averaged ERPs recorded over the lateral occipital scalp 

(electrodes PO7, PO8). (A) Waveforms recorded contralateral and 
ipsilateral to target singletons in all target-present displays. Shaded 
regions depict the time windows used to measure the N2pc mean 
amplitude (200-275 ms, 250-350 ms). (B) Contralateral-ipsilateral 
difference wave corresponding to the waveforms in (A). Blue vertical 
bars correspond to the 95% CIs at each time point. The residual 
HEOG deflection is plotted alongside the difference wave to contrast 
its latency and magnitude with that of the N2pc. (C) Violin plots 
showing the median, quartiles, and individual-participant data points 
of N2pc measured in the three measurement windows. 

 
Figure 2.3. Results of permutation tests of the signed negative areas within the 

time interval of the N2pc (200-350 ms). Vertical bars indicate the 
distributions of signed negative areas of the scrambled grand 
averages (i.e., noise distributions). Shaded regions indicate the 
signed negative areas above the 95th percentile from the noise 
distributions, and vertical dashed lines indicate the measured 
signed negative areas from the original, unscrambled data sets. (A) 
Test result for all target-present trials. (B) Test result for lower-field 
target trials. 

Figure 2.4 shows the ERPs separately elicited by upper-field and lower-field 

target singletons. As expected, the N2pc was larger for lower-field targets than for 
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upper-field targets. This difference was found in the early measurement window (upper: 

0.16 μV, lower: -0.48 μV), t(25) = 3.33, p = .003, d = 0.82, in the late measurement 

window (upper: -0.07 μV, lower: -0.89 μV), t(25) = 4.77, p < .001, d = 0.88, and in the 

wide measurement window (upper: -43.5 μV*ms, lower: -135.1 μV*ms), t(25) = 4.76, p < 

.001, d = 1.01. The difference in magnitude of N2pc was not driven by difference in 

saccadic activity because mean amplitude of residual HEOG activity measured in a 350-

400 window did not vary between upper-field and lower-field targets (-0.44 μV vs. -0.45 

μV, respectively), t(25) = 0.06, p = .955. For lower-field target displays, an N2pc was 

observed in the early measurement window, t(25) = 2.51, p = .019, d = 0.50, in the late 

measurement window, t(25) = 4.15, p < .001, d = 0.81, and in the wide measurement 

window (-116.7 μV*ms), p = .002, demonstrating unequivocally the presence of a sizable 

N2pc. Moreover, split-half analysis of N2pc from all target-present trials revealed that the 

N2pc in the present experiment had a high split-half reliability (.96). Topographical 

mapping of the contralateral-ipsilateral difference wave confirmed that the lateralized 

negativity was largest at PO7/8 (Figure 2.5), consistent with previous reports of N2pc 

scalp distribution (Luck, 2012). The N1pc, like the N2pc, was larger for lower-field 

targets than for upper-field targets (-0.37 μV vs. 0.06 μV, respectively), t(25) = 2.90, p = 

.008, d = 0.79, and was also statistically present for lower-field targets, t = 2.74, p = .011, 

d = 0.54.  
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Figure 2.4. Grand-averaged ERPs elicited by upp-field and lower-field targets, 

recorded over the lateral occipital scalp (electrodes PO7, PO8). (A) 
Waveforms recorded contralateral and ipsilateral to the target. (B) 
Contralateral-ipsilateral difference waves corresponding to the ERP 
waveforms in (A), with vertical bars corresponding to the 95% CIs. 
The corresponding residual HEOG deflection is plotted alongside 
the difference waves to cotrast its latency and magnitude with that 
of the N2pc. (C) Violin plots showing the median, quartiles, and 
individual-participant data points of N2pc measured in the three 
measurement windows. 
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Figure 2.5. Topographical maps of the contralateral-ipsilateral difference wave 

for lower-field targets. Progression of lateralized activity is shown 
over the span of 150-350 ms. 

Figure 2.6 shows the contralateral-ipsilateral difference waves elicited by repeat-

orientation and change-orientation trials as well as fast-response and slow-response 

trials. Consistent with the RT effect, the N2pc was marginally earlier for repeat-

orientation than for change-orientation trials (256 ms vs. 276 ms, respectively), t(25) = 

2.00, p = .056, d = 0.44. By contrast, no difference in N2pc area was found (repeat-

orientation: -95.0 μV*ms, change-orientation: -82.2 μV*ms), t(25) = 0.85, p = .402. These 

results suggest that priming of pop-out facilitated singleton detection in the present 

experiment. Similarly, RT-based median-split analysis comparing fast- and slow-

response trials revealed that fast-response trials had an earlier (253 ms vs. 271 ms, 

respectively), t(25) = 2.08, p = .048, d = 0.39, but not a larger (-98.0 μV*ms vs. -70.1 

μV*ms, respectively), t(25) = 1.49, p = .150, N2pc, suggesting that an earlier N2pc 

facilitated singleton detection in the present experiment. An N1pc was evident on both 

repeat- and change-orientation trials, ts(25) ≥ 2.60, ps = ≤ .016, ds ≥ 0.50, but no 

difference in amplitude was found between the two trial types (-0.52 μV vs. -0.52 μV, 

respectively), t(25) = 0.03, p = .973. An N1pc was also present on fast-response trials (-

0.37 μV), t(25) = 2.64, p = .014, d = 0.56, but not on slow-response trials (-0.06 μV), 

t(25) = 0.62, p = .539. 
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Figure 2.6. Contralateral-ipsilateral difference waves for select subsets of trials. 

(A) Difference waves for repeat-orientation and change-orientation 
trials. (B) Difference waves elicited by targets on fast-response and 
slow-response trials. 

Figure 2.7 shows ERPs elicited by target-present and target-absent displays, as 

well as the difference in activity elicited between the two display types over the occipital 

scalp. As expected, a P3b was maximally observed over the midline parietal scalp for 

both target-present and target-absent trials. The P3b appeared larger on target-absent 

trials than on target-present trials at midline frontal, central, and parietal sites, but a 

greater positivity was observed over the lateral occipital scalp on target-present trials 

than on target-absent trials. This difference is herein referred to as the SDP to 

differentiate it from other components of the P3 family (including the P3b) and isolated 

by subtracting target-absent ERPs from target-present ERPs (i.e., present-absent 

difference wave).  
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Figure 2.7. Isolation of target-singleton processing. (A) Grand-averaged ERPs 

elicited by target-present and target-absent displays, recorded over 
the midline frontal, central, and parietal scalp (electrodes Fz, Cz, Pz), 
well as the lateral occipital scalp (averaged across electrodes PO7 
and PO8). Shaded region denotes the time range and scalp location 
of maximal P3b activity. (B) Upper: present-absent difference waves 
recorded over the contralateral and ipsilateral occipital scalp 
(electrodes PO7, PO8). Shaded region denotes the time range of 
maximal SDP activity. Lower: same as the waveforms above but 
separately plotted to show the corresponding 95% CIs of 
contralateral and ipsilateral SDP (purple and red vertical bars, 
respectively). (C) Left: topographical maps of the P3b elicited by 
target-present and target-absent displays. Right: topographical map 
of the present-absent difference waves. 

The bilaterally symmetrical SDP was found to have onsets of 219 ms and 218 ms 

over the contralateral and ipsilateral scalp, respectively. The SDP latencies over the two 

hemispheres did not differ, t(25) = 0.14, p = .891. In comparison with onset latency of the 

N2pc (252 ms), onset latencies of SDP over the contralateral, t(25) = 2.28, p = .031, d = 

0.78, and ipsilateral scalp, t(25) = 3.27, p = .003, d = 0.89, were found to be statistically 

earlier. Consistent with this finding, 95% CIs around the grand-averaged difference 
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waves became fully positive at 212 ms and 206 ms over the contralateral and ipsilateral 

scalp, respectively (Figure 2.7B), whereas those of the N2pc only became fully negative 

at 262 ms (Figure 2.2B). Furthermore, the CIs showed that both the contralateral (212-

464 ms) and ipsilateral (206-458 ms) SDP lasted longer than the N2pc (262-322 ms). 

Mean amplitudes of SDP were statistically different from 0 μV in all 50-ms measurement 

windows (201-250 ms, 251-300 ms, 301-350 ms, 351-400 ms) over the contralateral 

scalp, ts(25) ≥ 4.05, ps < .001, ds ≥ 0.79, and over the ipsilateral scalp, ts(25) ≥ 4.82, ps 

< .001, ds ≥ 0.95. Split-half reliability of SDP (measured as the mean amplitude over the 

200-400 interval) was .92 over both the contralateral and ipsilateral scalp.  

As shown in Figure 2.8, magnitude of N2pc correlated positively with magnitudes 

of the N1, r(25) = .66, p < .001, and the N1pc, r(25) = .58, p = .002, as well as marginally 

with the ipsilateral SDP, r(25) = .47, p = .015 (the polarities of the signed areas were 

ignored so that a positive correlation would indicate that, as one component increased in 

magnitude, so did the other one). These relationships were further visualized in Figure 

2.9 by sorting participants into two groups based on the magnitude of their N2pc. 

Participants with N2pc larger than the median N2pc magnitude were sorted to the large-

N2pc group and those with N2pc smaller than the median N2pc magnitude were sorted 

to the small-N2pc group. ERPs elicited by the two groups were plotted along with the 

corresponding contralateral-ipsilateral difference waves and present-absent difference 

waves to help visualize the N2pc-N1 relationship, the N2pc-N1pc relationship, and the 

N2pc-SDP relationship, respectively. Magnitude of the P1 did not correlate with that of 

the N2pc, r(25) = .05, p = .797. RTs were found to correlate with onset latency of the 

SDP, r(25) = .55, p = .004, but not with SDP magnitude, N2pc magnitude, or N2pc onset 

latency, rs(25) ≤ 0.12, ps ≥ .564.  
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Figure 2.8. Relationships between magnitudes of the N2pc and the P1, N1, 

N1pc, and SDP. (A) Scatter plot of N2pc area and P1 mean 
amplitude. (B) Scatter plot of N2pc area and N1 mean amplitude. (C) 
Scatter plot of N2pc area and N1pc mean amplitude. (D) Scatter plot 
of N2pc area and SDP mean amplitude. 
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Figure 2.9. ERP visualizations of the intercomponent relationships. (A) ERPs 

elicited by target-present displays, recorded over the contralateral 
and ipsilateral scalp (PO7, PO8), separately for the large- and small-
N2pc group (N = 13 per group). (B) Contralateral-ipsilateral 
difference waves corresponding to the ERPs in (A). (C) Present-
absent difference waves plotted separately for the large- and small-
N2pc group. 

2.4. Discussion 

When the N2pc was first discovered by Luck and Hillyard (1994b), they surmised 

that it reflects a spatial-filtering mechanism that suppresses irrelevant items near the 

attended object. This hypothesis was supported by the absence of an N2pc in a 

singleton-detection task where filtering would presumably interfere with search. A 

subsequent study by Schubö et al. (2004), however, failed to replicate Luck and 

Hillyard’s null result in a similar singleton-detection task. Although the functional 

significance of the N2pc was not addressed by Schubö et al., their finding nevertheless 

contradicts the spatial filtering hypothesis. A resolution to this inconsistency would 

enable a better understanding of the neuro-cognitive process(es) giving rise to the N2pc, 
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the role of attention in singleton detection, and the nature of attention deficits indicated 

by an altered N2pc. 

The present experiment aimed to resolve the debate surrounding the functional 

significance of the N2pc by replicating Luck and Hillyard’s (1994b) singleton-detection 

task with modifications to improve statistical power. If N2pc reflects a spatial-filtering 

process, then an N2pc should be absent in singleton-detection tasks that discourage 

feature-based search strategies such as spatial filtering and target template matching. A 

positive finding, however, would cast doubt on the spatial filtering hypothesis. Contrary 

to the spatial filtering hypothesis, the present results showed that the N2pc was 

observable even when filtering was discouraged. Consistent with previous findings on 

the N2pc, the presently observed N2pc was maximal at electrodes PO7/8 (Luck, 2012), 

larger for lower-field targets (Luck et al., 1997), earlier on repeat-orientation trials 

(Christie et al., 2015; Eimer et al., 2010), and earlier on fast-response trials (McDonald 

et al., 2013). Critically, the earlier N2pc on fast-response trials runs counter to Luck and 

Hillyard’s prediction: If N2pc reflects filtering, the N2pc should be larger on slow-

response trials and smaller on fast-response trials in a task where suppression 

presumably interferes with search.  

Luck and Hillyard (1994b) interpreted their null result as evidence for the spatial 

filtering hypothesis (see also Luck, 2012). By the same rationale, it would appear that 

the present N2pc results disconfirm the spatial filtering hypothesis. Certainly, the spatial 

filtering hypothesis could be revised to permit some filtering to occur during singleton 

detection in order to explain the smaller singleton-detection N2pc, despite the presumed 

performance impairment that would result from filtering. Even with this revised filtering 

hypothesis, it is unclear why filtering would occur later in singleton-detection tasks than 

in feature-search tasks or why earlier filtering activity is associated with faster singleton 

detection. As a result, greater modification would be required to account for this new set 

of data, yet it has been cautioned that continued attempts to revise the filtering 

hypothesis to explain new data would “run the risk of making the filtering hypothesis 

unfalsifiable” (Luck, 2012, p. 354). Therefore, at present, there seems to be no reason to 

abandon the rationale of Luck and Hillyard’s original singleton-detection experiment for 

this post-hoc assertion.  
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If the N2pc does not arise from the filtering of (unattended) nontarget items in the 

vicinity of the target, what might it reflect? The N2pc is unlikely to reflect a template-

matching process (Section 1.3.3) because such a feature-based search strategy would 

interfere with singleton detection. Here I surmise that the N2pc reflects some 

process(es) associated with the selection of the attended object itself, which may include 

some or all of the following processes: (a) the localization of to-be-attended objects prior 

to the deployment of attention (Tan & Wyble, 2015), (b) the spatially selective processing 

of task-relevant features following the deployment of attention (Eimer, 1996), (c) and the 

binding of features to a location in space (object individuation; Mazza & Caramazza, 

2011).   

The present findings also shed light on the neuro-cognitive processes involved in 

the different search modes. Whereas Luck and Hillyard’s (1994b) findings on the N2pc 

would suggest that feature-search tasks (where an N2pc was observed) and singleton-

detection tasks (where an N2pc was ostensibly absent) involve different processes of 

visual selection, the current results suggest that the same selection processes are 

implemented in feature search and singleton detection and that differences between the 

two search modes likely stem from processes at the control level rather than at the 

implementation level. The N2pc finding also suggests that attention is involved in 

singleton detection. At present, it is unclear whether attention is required for detection to 

take place or whether detection occurs preattentively but then reflexively initiates 

attentional selection of the singleton so that the item is consciously perceived and 

remembered.  

It should be noted that N2pc waveforms observed in other feature-search 

experiments were earlier and larger than the N2pc elicited in the present singleton-

detection task, but there are many possible reasons for this difference (hence the 

inclusion of a feature-search condition would not be informative in the present 

experiment). One reason is that having an attentional set for a specific feature, 

combined with a history of selecting the same feature across all trials, would greatly 

enhance the perceived salience of a fixed-orientation target compared to that of variable-

orientation target. This explanation is consistent with known effects of salience on N2pc 

magnitude and latency (e.g., see figure 5 of Gaspar & McDonald, 2014). Another reason 

is that the N2pc may be comprised of two subcomponents: an early portion that 

enhances all task-relevant features in in the visual field, and a later portion that binds the 
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target features to a location in space (Eimer & Grubert, 2014; Kiss, Grubert, & Eimer, 

2013). And since the present task discourages the adoption of an attentional set for a 

specific feature, the early portion of the N2pc would not be elicited, resulting in a smaller 

and later N2pc.  

An unexpected finding in the present experiment is that, although the N2pc was 

unambiguously observed in the singleton-detection task, there was considerable 

variability in N2pc magnitude across individual participants; roughly a quarter of 

participants showed no N2pc (see Figures 2.2C, 2.4C). The underlying cause for this 

variability is unclear. Past research has shown that magnitude of N2pc increases as the 

number of to-be-enumerated objects increased in a display, until about three to four 

objects (Ester et al., 2012), which coincides with previous estimates of one’s short-term, 

visual working memory capacity (vWMC; Luck & Vogel, 1997; Sperling, 1960). Thus, it is 

possible that the observed variability in N2pc magnitude is in part contributed by 

individual differences in vWMC. This possibility is addressed in Experiment 2 (Chapter 3) 

of this thesis.  

The present exploratory analyses revealed three key findings. First, the N1pc, 

which has been hypothesized to reflect stimulus-driven attention (Wascher & Beste, 

2010a, 2010b), is observable in the singleton-detection task, especially for lower-field 

targets and on fast-response trials (Figures 2.4B, 2.5B). Second, the SDP was observed 

with maxima over both the contralateral and ipsilateral occipital scalp. This positivity was 

isolated by subtracting ERPs elicited on target-absent trials from ERPs elicited on target-

present trials. The subtraction revealed that the SDP, compared to the P3b, was more 

posteriorly and bilaterally distributed, had an earlier peak, and was shorter in duration. 

The absence of visual-evoked potentials, particularly the P1, in the present-absent 

difference wave suggests that processes underlying the SDP do not reflect mere 

sensory activity from the extrastriate visual cortex. Furthermore, because the SDP 

begins 33-34 ms prior to the deployment of attention (as indexed by the N2pc) and 

earlier among individuals with shorter RTs, the SDP likely reflects a multi-stage process 

that begins with the preattentive detection of a singleton by the visual system. And as 

the accrual of evidence for the presence of a singleton reaches a critical threshold, 

attention is then deployed (as indexed by the N2pc) to the target singleton, enabling 

conscious processing and identification of the singleton. Third, magnitude of the N2pc 
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linearly correlated with that of the N1, N1pc, and SDP, so that individuals were more 

likely to have a large N2pc if at least one of these earlier components was large.  
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Chapter 3. Experiment 2 

3.1. Introduction 

In addition to having implications for our interpretation of the N2pc component, 

the results of Experiment 1 (Chapter 2) shed light on the neuro-cognitive processes 

involved in singleton detection and demonstrate that detection of a salient visual 

singleton with unpredictable features involves the same attentional-selection process as 

those involved in feature search (as indexed by the N2pc). In this chapter, I consider the 

automaticity of singleton detection, with a focus on the attentional-selection process 

reflected by the N2pc.  

Prior research has highlighted three properties that differentiate automatic and 

controlled processes (e.g., Hasher & Zacks, 1979; Logan, 1978; Regan, 1981; Shiffrin & 

Schneider, 1977). These properties are (a) the degree to which a process is sensitive to 

concurrent informational load, (b) the degree to which a process is influenced by an 

observer’s intentions (e.g., goals, strategies, expectations, etc.), and (c) whether a 

process requires, or at least benefits from, attention. By these criteria, a cognitive 

operation is considered to be automatic if it is unhindered by perceptual or cognitive 

load, outside of the observer’s voluntary control, and occurs independently of the 

observer’s attention. A cognitive operation was considered to be strongly automatic if it 

satisfied all three criteria, and it was considered to be at most partially or occasionally 

automatic if at least one of the criteria was sometimes violated or if the focusing of 

attention improved said process (Kahneman & Chajczyk, 1983; Yantis & Jonides, 1990).  

Research on automaticity evolved beyond determining whether a given cognitive 

process is strongly automatic after it was learned that attention influences performance 

in the majority of perceptual and cognitive tasks. The involuntary reading of words, for 

example, was once thought to be strongly automatic (e.g., Stroop, 1935), but Kahneman 

and Chajcyzk (1983) showed that the degree to which involuntary reading interferes with 

the task at hand was modulated by attention. Similarly, location cueing studies revealed 

that detection of salient visual targets can be facilitated by precueing the target’s location 

so that an observer can orient attention to that location in advance (e.g., Posner, 1980). 

Consequently, researchers began to ask whether the cognitive operation under 

investigation engages attention automatically. By this perspective, a cognitive operation 
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is considered to be more or less automatic depending on the degree to which said 

operation engages an observer’s attention against their will, so that fully automatic 

processes always engage attention irrespective of the task at hand.  

Along these lines, researchers have debated the extent to which salient visual 

stimuli (e.g., singletons, abrupt visual onsets) capture attention automatically. Figure 3.1 

positions several emerging perspectives on an “automaticity continuum” that ranges 

from fully controlled (left end) to fully automatic (right end). As illustrated in the figure, the 

salience-driven selection hypothesis proposes that attention capture by salient stimuli is 

highly automatic (Theeuwes, 1991a, 1992, 2004, 2010). This theoretical perspective is 

broadly comprised of two related tenets. First, the most salient stimulus within the 

monitored region of the visual field (the so-called attentional window) invariably captures 

attention. Second, stimulus-driven selection processes must be completed before goal-

driven processes can begin. By this view, salient stimuli automatically capture attention 

unless they fall outside of an observer’s attentional window (because salience is not 

computed outside of this window). Accordingly, an observer can prevent salience-driven 

distraction only by restricting the size of their attentional window in advance so that a 

salient distractor appears outside of the window (Belopolsky & Theeuwes, 2010; 

Belopolsky, Zwaan, & Theeuwes, 2007).  

 
Figure 3.1 Visualization of the various hypotheses on the automaticity of 

attention capture along a continuum from attention being fully 
controlled (left) to fully automatic (right). 

Other theoretical perspectives allow for considerably more top-down control of 

selection (e.g., Folk et al., 1992; Sawaki & Luck, 2010). Such control is hypothesized to 

prevent distraction by salient-but-irrelevant visual stimuli and to keep observers’ 
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attention engaged on stimuli that are relevant to the task at hand. According to these 

latter perspectives, salience-driven capture is a process that occurs in much more 

limited circumstances, such as when an observer adopts a strategy to search for 

differences in local features rather than for a specific feature (i.e., in singleton detection 

mode). In feature search mode, by contrast, salience-driven distraction might be 

prevented primarily by up-weighting relevant features or down-weighting irrelevant 

features.  

Figure 3.1 highlights two perspectives that are toward the “fully controlled” end of 

the automaticity continuum. According to the contingent capture hypothesis, salience-

driven distraction is prevented by selectively up-weighting the features that are relevant 

to the task at hand (Folk et al., 1992). By this view, salient-but-irrelevant stimuli capture 

attention only when they possess an up-weighted feature (i.e., when one of the features 

of the distractor happens to also be a feature of the target). According to the signal 

suppression hypothesis, salience-driven distraction is prevented by selectively down-

weighting salient-but-irrelevant features (Sawaki and Luck, 2010). This down-weighting 

process is thought to be accomplished by the suppression of objects with a salient, 

predictable feature (Gaspelin & Luck, 2018b).  

Electrophysiological support for these controlled-attention perspectives has come 

from several different feature-search paradigms. First, when searching for a singleton 

defined by one specific feature, displays containing other singletons (that is, defined by 

other features) fail to elicit the N2pc (Luck & Hillyard, 1994b; see also Schubö & Müller, 

2009). Second, in a modified cueing task developed to assess contingent capture, 

distractor singletons in the cue display elicit an N2pc only if they are defined by the same 

feature as the target (e.g., Eimer & Kiss, 2008). Third, in the additional singleton 

paradigm, a salient distractor that appears in the same search display as a fixed-feature 

target fails to elicit an N2pc and often elicits an ERP component associated with 

suppression called the distractor positivity (PD; Hickey, Di Lollo, & McDonald, 2009; e.g., 

Gaspar, Christie, Prime, Jolicœur, & McDonald, 2016; Gaspar & McDonald, 2014; 

Gaspelin & Luck, 2018a; Jannati, Gaspar, & McDonald, 2013). Based on these 

converging lines of evidence, it is reasonable to conclude that singletons do not capture 

attention automatically in feature search mode. Less is known about whether capture by 

singletons can be prevented when participants adopt a singleton-detection strategy, but 

it has been proposed that observers will attend to any singleton regardless of its 
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relevance in singleton detection mode (Bacon & Egeth, 1994). Some ERP evidence 

obtained from the additional singleton paradigm suggests that this might be the case 

(Hickey, McDonald, & Theeuwes, 2006; but see McDonald et al., 2013). 

In Experiment 2 of this thesis, a go/no-go element was incorporated into a pure 

singleton-detection task. This go/no-go singleton-detection task was developed to 

determine whether the detection (and selection) of a singleton could be prevented. In 

this task, participants were instructed to detect the presence of an orientation singleton 

when all items in the display were cyan (go trials) and to withhold responses when all 

items were yellow (no-go trials; note: the go and no-go colors were counterbalanced 

across participants; Figure 3.2B). The go and no-go displays were randomly intermixed 

across trials so that the participants would have to react to the display color on a trial-by-

trial basis. Similar to Experiment 1, vertical and horizontal line stimuli were used create 

singleton-absent and singleton-present displays for both go and no-go trials. Singleton-

absent displays consisted of all vertical or all horizontal lines. Singleton-present displays 

consisted of a vertical line situated among horizontal lines or a horizontal line situated 

among vertical lines so that participants could not detect the presence of a singleton 

based on a particular line orientation. The number of items in each display was changed 

from 8 (in Experiment 1) to 16 to increase salience of the singletons on both go and no-

go trials and thus improve, if possible, the efficiency of saliency-based selection 

mechanisms.  

The theoretical perspectives outlined in Figure 3.1 would lead to different 

predictions about the sequence of neuro-cognitive processes that would take place on 

go and no-go trials. Because there was no requirement to bring attention into a narrowly 

focused state at the start of each trial, it could be assumed that the attentional window 

would remain wide throughout each trial of the experiment. Thus, according to the 

salience-driven selection perspective, the singleton should capture attention at the 

outset of each trial, thereby giving rise to an N2pc on both go and no-go trials. 

Furthermore, because this perspective asserts that spatial attention is required to make 

any decision about visual input (Theeuwes, 2010), the color of the display would be 

identified only after attention is deployed to the singleton’s location. By this account, 

observers would be able to implement top-down control to withhold responses on no-go 

trials, but only after the singleton captured attention. In contrast, from the two controlled-

attention perspectives, one could envisage observers adopting a strategy to process the 
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global display color first and to orient attention to the singleton only when necessary (on 

go trials). In this case, the singleton would be predicted to elicit the N2pc only on go 

trials. One might also predict the singleton to elicit a PD on no-go trials, because, 

according to the signal-suppression account, salient stimuli generate attend-to-me 

signals that must be suppressed to prevent capture.  

In addition to isolating lateralized ERP waveforms to look for the N2pc and the 

PD, I planned to compare directly the ERPs elicited on go and no-go trials to (a) estimate 

the earliest time at which go and no-go colors had been differentiated and (b) ensure 

that the go/no-go manipulation was successful. This examination focused on the anterior 

P2 (P2a) and the no-go P3. The P2a is an enhanced positivity found over the prefrontal 

scalp approximately 180-300 ms post stimulus onset and is typically elicited by task-

relevant stimuli, especially when observers must evaluate whether a stimulus is relevant 

to the task at hand (Potts, 2004; Potts, Liotti, Tucker, & Posner, 1996). The onset latency 

of the P2a therefore provides an upper-bound estimate for the earliest goal-driven 

activity, and this estimate would then enable me to evaluate the assertion by the 

salience-driven selection hypothesis that goal-driven processes cannot occur prior to 

completion of the stimulus-driven selection process. This assessment was done by 

comparing the onset latencies of the P2a and the N2pc elicited by target singletons. If 

goal-driven processes occur only after attentional selection, then there should be no P2a 

before the onset of the N2pc. Conversely, if goal-driven processes can precede 

salience-driven selection, then the P2a should have an earlier onset than that of the 

N2pc.  

The no-go P3 is an enhanced positivity found over the frontocentral scalp 

approximately 200-500 ms post stimulus onset (Eimer, 1993; Kok, 1986; Roberts, Rau, 

Lutzenberger, & Birbaumer, 1994; Schröger, 1993; Simson, Vaughan, & Ritter, 1977), 

and it is thought to originate from the anterior cingulate cortex (Fallgatter, Bartsch, & 

Herrmann, 2002). As the name suggests, this positivity is elicited by no-go trials in a 

wide variety of go/no-go tasks, and it is thought to reflect the competition between a go 

and a no-go decision (Donkers & van Boxtel, 2004; Smith, Smith, Provost, & Heathcote, 

2010) or the inhibition of a go response (Bokura et al., 2001; Bruin et al., 2001). 

Therefore, the presence of this component in the current experiment would help to 

confirm that participants performed the go/no-go task as intended.  
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Another objective of the present experiment was to follow up on three specific 

findings from Chapter 2. The first finding was that of the SDP component, which was 

hypothesized to reflect processes associated with the detection of a singleton. In 

Experiment 2, I asked whether the singleton-detection processes reflected by the SDP 

are exclusively stimulus-driven or whether they can be modulated by task relevance. If 

singleton detection is automatic, then target and distractor singletons should elicit 

comparable SDP waveforms. Alternatively, if singleton detection can be modulated by 

relevance, then distractor singletons should elicit a reduced SDP or no SDP at all.  

The second finding was the marked variability in N2pc magnitude across 

individuals. As illustrated in Figure 2.4, roughly one quarter of the participants showed 

little to no N2pc. The third finding was that this variability in N2pc magnitude was also 

observed to correlate with the magnitudes of the earlier-onsetting N1, N1pc, and SDP. 

Here, I investigate whether N2pc variability is associated with individual differences in 

vWMC. Numerous studies have shown higher vWMC is associated with larger PD 

(Feldmann-Wüstefeld & Vogel, 2019; Gaspar et al., 2016) and contralateral delay activity 

(CDA) observed in memory-retention intervals (Vogel & Machizawa, 2004). In fact, there 

is also evidence to suspect a relationship between vWMC and N2pc because higher 

subitizing capacity is associated with larger N2pc (Ester et al., 2012), and this capacity 

has been shown to correlate positively with vWMC (Piazza, Fumarola, Chinello, & 

Melcher, 2011). Therefore, in light of the findings from Experiment 1 and past studies, I 

sought to (a) compute correlations between vWMC and magnitudes of ERPs associated 

with singleton detection, selection, and suppression (SDP, N2pc, and distractor-elicited 

PD, respectively) and (b) intercomponent correlations.  

3.2. Method 

The Research Ethics Board at SFU approved the research protocol. All 

experimental procedures were performed in accordance with guidelines and regulations 

outlined by SFU and NSERC. 

3.2.1. Participants 

Twenty-four young adults without history of neurological disorders participated 

after giving informed consent. For their participation, individuals received either $20 or 



51 

course credit as part of a departmental research participation system. All subjects 

reported normal or corrected-to-normal visual acuity and were tested for normal color 

vision using Ishihara color plates prior to participation. Data from two participants were 

excluded from further analyses because more than 25% of trials were contaminated by 

ocular artifacts (rejection criterion set in advance). Of the remaining 22 participants 

(mean age: 22.0 years), 12 were female and 20 were right-handed.  

3.2.2. Apparatus 

The apparatus was identical to that in Chapter 2.  

3.2.3. Stimuli and Procedure 

Change-Detection Task 

Participants first completed a change-detection task that assessed their vWMC 

(Figure 3.2). All stimuli and procedure for this task were identical to those used by 

Gaspar et al. (2016). Briefly, participants viewed a sequence of displays on each trial, 

starting with a memory display lasting 150 ms. In the memory display, colored squares 

of varying set sizes (two, four, six, eight) appeared in one of 36 possible locations (nine 

in each quadrant), the coordinates of which formed a regular grid. This display was 

followed by a 900-ms retention interval, during which only a fixation cross was presented 

at the center of the display. Following this interval, a test display presented a colored 

square at one of the locations previously occupied in the memory display. Participants 

pressed a button to indicate whether the square occupying that location changed in color 

across the two displays. Each participant completed a total of 120 trials.  

Go/No-Go Singleton-Detection Task 

Following the change-detection task, participants took part in the go/no-go 

singleton-detection task. The stimuli and procedure in this task were identical to the 

singleton-detection task in Chapter 2 except as follows. To increase the salience of the 

orientation singleton, the number of lines contained in each stimulus display was 

increased from 8 to 16. All lines appeared within a 11.1° × 8.3° region around fixation. 

Half the displays contained cyan lines and the other half contained yellow lines (x = .37, 

y = .57, 28.0 cd/m2). The color of the lines indicated whether a given trial was go or no-
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go. The go trials contained cyan lines for half the participants and yellow lines for the 

other half. On go trials, participants pressed either the left or right shoulder buttons on a 

gamepad using their index fingers, depending on the presence of an orientation 

singleton. The stimulus-response mapping was counterbalanced across participants. On 

no-go trials, participants simply waited for the trial to end without providing a response. 

Go and no-go trials were randomly intermixed within each block of trials so that 

participants could not predict whether singleton detection was required on any given 

trial. Each participant completed 40 blocks of 40 trials, yielding a total of 1,600 trials.  

 
Figure 3.2. Example stimulus displays used in the change-detection task (A) 

and in the go/no-go singleton-detection task (B). 
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3.2.4. Behavior 

Change-Detection Task 

Individual participant’s vWMC was estimated using the following equation 

(Cowan, 2001; see also Pashler, 1988b):  

𝐾 = 𝑆(𝐻 − 𝐹), (2) 

where K is the vWMC, S is the set size, H is the hit rate, and F is the false-alarm rate. 

This equation yielded four K values for each individual, corresponding to each of the four 

set sizes presented in the change-detection task. These values were then averaged to 

produce a mean K value to represent each participant’s vWMC. 

Go/No-Go Singleton-Detection Task 

The behavioral analysis performed on go trials was identical to that in Chapter 2 

except as follows. Correlation between RT and K was assessed, separately for target-

present and target-absent trials. Priming of pop-out was not assessed here because 

there were insufficient repeat- and change-orientation trials to yield meaningful results.  

3.2.5. Electrophysiology 

Recording and Preprocessing 

The method of EEG recording and preprocessing was identical to that in Chapter 

2. 

ERP Analyses 

The method of ERP analysis was identical to that in Chapter 2 except as follows.  

N2pc and SDP 

The magnitude of the N2pc was strictly quantified as the mean amplitude within a 

50-ms window (275-325 ms post stimulus) elicited by lower-field singletons. This 

analytical decision was made on the grounds that (a) pilot studies from the laboratory 

suggest that the addition of a go/no-go element to the task delays N2pc onset latency 

and (b) that mean-amplitude measures are less susceptible to noise fluctuations in the 

waveform compared to signed-area measures (because the calculation of means 
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averages out positive and negative noise fluctuations, whereas signed-area measures 

do not). Having an increased signal-to-noise ratio, and therefore an increased effect size 

and statistical power, would provide more accurate assessments later on, especially in 

testing of a linear relationship between magnitude of N2pc and vWMC (K). One-sample t 

tests against 0 μV was conducted to assess the presence of an N2pc, separately for go 

and no-go trials containing a singleton in the lower visual field, where N2pc waveforms 

are known to be larger (Luck et al., 1997). Magnitude of the N2pc was then compared 

between go and no-go trials using a paired-sample t test.  

Magnitude of the SDP was strictly quantified as the mean amplitude over the 

ipsilateral scalp (to avoid overlap with the N2pc over the contralateral scalp) in a 200-

400-ms window (as established in Chapter 2). Presence of the SDP was tested using 

one-sample t tests against 0 μV, separately for go and no-go trials. Difference in 

magnitude of the SDP on go and no-go trials was then assessed using a paired-sample t 

test. Onset latencies of the SDP and N2pc were quantified as the time at which each 

component reached 25% of its peak amplitude, using a standard jackknife approach 

(Miller et al., 1998). Differences in the onset latencies of each component across go and 

no-go trials were assessed using a paired-sample t test.  

PD 

The magnitude of the PD was quantified as the signed positive area elicited by 

upper-field singletons 200-500 ms post stimulus onset. Measurement was based on 

upper-field stimuli because such stimuli are known to elicit larger PD components (Hickey 

et al., 2009) and smaller N2pc components (Luck et al., 1997) that might otherwise 

obscure PD measurement. The signed-area approach was used instead of a mean-

amplitude approach because the timing of the PD is quite variable and thus is unknown a 

priori (Sawaki et al., 2012). Because signed-area measures are necessarily biased by 

noise, the presence of the PD was assessed using the nonparametric approach 

described in Chapter 2, separately for go and no-go trials containing a singleton in the 

upper visual field. A paired-sample t test was then conducted to compare the magnitude 

of the PD elicited by singletons in the upper visual field between go and no-go trials. To 

verify that the PD was indeed larger for upper-field stimuli in the present experiment, a 

difference in PD magnitude elicited by upper- and lower-field singletons on no-go trials 

was assessed using a paired-sample t test. The same test was not performed for upper- 
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and lower-field singletons on go trials because even if such a visual-field effect were 

present on go trials, it would remain unclear whether this difference is contributed by a 

larger upper-field PD or simply due to a larger overlapping, lower-field N2pc (as was 

observed in Experiment 1 and by Luck et al., 1997).  

Other ERP Components 

Additional analyses were performed on the N1, N1pc, P2a, and no-go P3. 

Threshold of statistical significance for all assessments involving multiple comparisons 

was adjusted based on the number of comparisons using Bonferroni correction (per-test 

a = .05/number of comparisons). 

As in Chapter 2, magnitude of the N1 was quantified as the mean amplitude 

within a 150-200-ms window, averaged across electrodes PO7 and PO8. N1 magnitude 

was measured separately for singleton-present go trials, singleton-absent go trials, 

singleton-present no-go trials, and singleton-absent no-go trials. These N1 magnitudes 

were assessed using a repeated-measures ANOVA with a factor of trial type (go vs. no-

go) and a second factor of singleton presence (present vs. absent) to determine whether 

the N1 is associated with the processing of global display color or detection of a 

singleton.  

It is possible that the target and distractor singletons would elicit the N1pc prior to 

or in absence of the N2pc, which would still indicate that some early form of stimulus-

driven attention has occurred. Therefore, one-sample t tests against 0 μV were 

conducted to assess the presence of an N1pc (mean amplitude within a 150-200-ms 

interval, as previously defined in Chapter 2), separately for go and no-go trials containing 

a singleton in the lower visual field, where N1pc was previously confirmed to be larger 

(see Figure 2.4B). 

To isolate the P2a and no-go P3, ERPs elicited by no-go trials were subtracted 

from those elicited by go trials to produce the go-no-go difference waves, so that the P2a 

would appear as a positive deflection and the no-go P3 would appear as a negative 

deflection. The P2a was isolated to establish an upper-bound estimate of the earliest 

goal-driven activity, which enables me to evaluate the assertion by the salience-driven 

selection hypothesis that goal-driven processes cannot occur prior to the completion of 

the stimulus-driven selection process. This evaluation was done by comparing the onset 
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latency between the P2a and the N2pc elicited on go trials. In particular, because task-

relevance cannot influence selection according to the salience-driven selection 

hypothesis, the N2pc elicited on go trials is also stimulus-driven and can thus be used as 

a lower-bound estimate for the completion of the stimulus-driven selection process. 

Presence of the P2a was first confirmed by comparing the mean amplitude within the 

180-230-ms at electrode FPz against 0 μV using a one-sample t test. Onset latency of 

the P2a was measured as the time point at which P2a first reaches 25% of its peak 

amplitude, using the jackknife approach. This latency was then compared with that of the 

N2pc using a paired-sample t test. The no-go P3 was isolated to provide added 

confirmation that participants were performing the go/no-go task as intended. Magnitude 

of the no-go P3 was quantified as the mean amplitude measured at electrode Cz within 

a 250-350-ms window. Presence of the no-go P3 was also assessed using a one-

sample t test against 0 μV.  

Correlational Analyses 

A linear relationship between magnitude of the N2pc and magnitudes of the 

target-elicited N1 and SDP were assessed by computing Pearson correlation 

coefficients, as in Chapter 2. The magnitudes of these components were quantified in 

the manner as previously described. A relationship between magnitudes of the N2pc and 

N1pc was not assessed because no N1pc was observed in the present experiment. A 

post-hoc correlational analysis was done to assess the linear relationship between the 

PD elicited on go and no-go trials, after it was determined that a go-trial PD (i.e., a target-

elicited PD) was present. A positive linear correlation would be consistent with the claim 

that these components reflect a common suppression mechanism (Sawaki et al., 2012).  

Pearson correlation coefficients were computed to assess linear relationships 

between K and the magnitudes of several ERP components. Computations were done in 

four sets of tests that focused on (a) singleton processing on go trials (as measured by 

magnitudes of N1, SDP, and lower-field N2pc), (b) singleton processing on no-go trials 

(as measured by magnitudes of the same three ERP components), (c) processing 

associated with go/no-go discrimination (as measured by magnitudes of the P2a and no-

go P3), and (d) singleton suppression on go and no-go trials (as measured by 

magnitudes of the upper-field target- and distractor-elicited PD, respectively).  
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Topographical Mapping 

The method of topographical mapping is identical to that in Chapter 2. 

3.3. Results 

3.3.1. Behavior 

Change-Detection Task 

The average vWMC estimate was 2.72, with scores ranging from 1.43 to 3.77. 

These values were consistent with previous estimates of vWMC (Luck & Vogel, 1997; 

Sperling, 1960).  

Go/No-Go Singleton-Detection Task 

There was no RT difference between target-present (610 ms) and target-absent 

(611 ms) trials, t(21) = 0.35, p = .734, or between upper-field targets (608 ms) and lower-

field targets (611 ms), t(21) = 0.84, p = .412. Neither RT on target-present or target-

absent trials correlated with K, rs(21) ³ -.125, ps ³ .579.  

3.3.2. Electrophysiology 

N2pc and SDP 

Presence of the N2pc was assessed in the contralateral-ipsilateral difference 

waves elicited by lower-field singletons on go and no-go trials to determine whether the 

singletons captured attention reflexively, as predicted by the salience-driven selection 

hypothesis. As illustrated by Figure 3.3, the N2pc was present on go trials (-1.11 μV), 

t(21) = 4.83, p < .001, d = 1.06, but not on no-go trials (-0.20 μV), t(21) = 1.22, p = .237. 

Moreover, the difference in N2pc magnitudes across go and no-go trials was significant, 

t(21) = 4.16, p < .001, d = 0.90. In line with this finding, 95% CIs around the grand-

averaged difference waves elicited by all singletons on go trials became fully negative at 

270 ms until 318 ms whereas those of no-go trials never became fully negative. These 

results indicate that whereas singletons were attended on go trials, singletons on no-go 

trials did not capture attention, disconfirming the salience-driven selection hypothesis.  
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Figure 3.3. Grand-averaged singleton-present ERPs recorded over the lateral 

occipital scalp (electrodes PO7, PO8). (A) Left: waveforms recorded 
contralateral and ipsilateral to singletons on all singleton-present go 
trials. Right: waveforms recorded contralateral and ipsilateral to 
singletons on all singleton-present no-go trials. (B) Contralateral-
ipsilateral difference waves corresponding to the waveforms in (A). 
Vertical bars correspond to the 95% CIs at each time point.  

Next, to evaluate whether the singleton-detection processes reflected by the SDP 

are strongly stimulus-driven or governed by task relevance, the SDP was measured from 

the present-absent difference waves, separately for go trials and no-go trials (Figure 

3.4B). The SDP was present on go trials (2.25 μV), t(21) = 9.93, p < .001, d = 2.18, and 

on no-go trials (0.44 μV), t(21) = 2.61, p = .016, d = 0.49, but was markedly reduced on 

no-go trials, t(21) = 7.97, p < .001, d = 1.94. The dramatic reduction of SDP on no-go 

trials indicates that the process underlying the SDP is largely driven by stimulus 

relevance rather than stimulus salience. Presence of the SDP was corroborated by the 

95% CIs, which became fully positive at 206 ms on go trials and at 230 ms on no-go 

trials. As was found in Experiment 1 (Chapter 2), the SDP preceded the N2pc (236 ms 

vs. 262 ms, respectively), t(21) = 2.47, p = .022, d = 0.54. 
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Figure 3.4 Comparison of grand-averaged singleton-present and singleton-

absent ERPs. (A) Waveforms of singleton-present (ipsilateral PO7/8) 
and singleton-absent trials (combined PO7/8). (B) Present-absent 
difference waves recorded over the ipsilateral scalp constructed by 
subtracting the singleton-absent ERPs from the corresponding 
singleton-present ERPs in (A). Vertical bars correspond to the 95% 
CIs at each time point. 

PD 

Presence of the PD was assessed in the contralateral-ipsilateral difference waves 

elicited by upper-field singletons to determine whether selective processing of the 

singleton was actively terminated (on go trials; see Sawaki et al., 2012) or prevented by 

suppression (on no-go trials; as predicted by the signal suppression hypothesis). Figure 

3.5A shows the results of the permutation tests performed to assess presence of the PD, 

separately for go and no-go trials. A contralateral positivity was elicited by singletons on 

both go and no-go trials, ps = .002 (Figure 3.5B, see also Figure 3.2B), and the 

positivities were statistically indistinguishable between the two trial types (211.1 μV*ms 

vs. 218.7 μV*ms, respectively; Figure 3.5C), t(21) = 0.25, p = .802. These observations 

suggest that singletons on go trials also elicited a PD. A target-elicited PD has been 

previously proposed to reflect a suppression mechanism that terminates the allocation of 

attention after attentional processing is complete (Sawaki et al., 2012). The PD was 

verified to be marginally larger for upper-field than for lower-field singletons on no-go 
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trials (Figure 3.5D; 218.7 μV*ms vs. 141.9 μV*ms, respectively), t(21) = 1.96, p = .063, d 

= 0.49.  

 
Figure 3.5. Visualization of suppression activity. (A) Results of permutation 

tests of the signed positive areas within the time interval of the PD 
(200-500 ms). Red (go trials) and orange (no-go trials) vertical bars 
indicate the distribution of signed positive areas of the scrambled 
grand averages (i.e., noise distributions). Shaded region indicates 
the signed positive areas above the 95th percentile from the noise 
distributions, and vertical dashed lines indicate the measured 
signed positive areas from the original, unscrambled data sets. (B) 
Contralateral-ipsilateral difference waves elicited by upper-field 
singletons on go and no-go trials, recorded over the lateral occipital 
scalp (electrodes PO7, PO8). (C) Topographical maps corresponding 
to the waveforms plotted in (B). (D) Contralateral-ipsilateral 
difference waves elicited by no-go displays containing a singleton in 
the upper and lower visual field, recorded over the lateral occipital 
scalp (electrodes PO7, PO8).  

Other ERP Components 

N1 

A two-way, repeated-measures ANOVA was conducted to assess whether the 

N1 is associated with the processing of global color (i.e., trial type; go vs. no-go) or 

detection of a singleton (i.e., singleton presence; present vs. absent) by measuring the 

mean amplitude within a 150-200-ms window of the averaged ERP waveform recorded 

from PO7 and PO8. This test revealed a main effect of trial type (go: -3.02 μV; no-go: -
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2.29 μV), F(1, 21) = 15.53, p < .001, hp
2 = .43, but no main effect of singleton presence 

(present: -2.66 μV; absent: -2.64 μV), F(1, 21) = 0.11, p = .744. There was also no 

interaction between trial type and singleton presence, F(1, 21) = 1.26, p = 0.275. Based 

on these results, it could be tentatively concluded that early visual processing reflected 

by the N1 indexes global color processing and that this global processing is enhanced 

for task-relevant features. However, the difference in mean N1 amplitudes might have 

been caused by an earlier termination of N1 due to the subsequent positive-going 

waveform.  

N1pc 

It is possible that despite the absence of an N2pc, the singletons nevertheless 

elicited the N1pc, which might suggest that some form of early stimulus-driven shifts of 

attention have nevertheless occurred. To determine the presence of the N1pc, 

contralateral-ipsilateral difference waves elicited by lower-field singletons on go and no-

go trials were assessed. The N1pc was statistically absent for both go trials (-0.13 μV), 

t(21) = 1.05, p = .307, and no-go trials (-0.26 μV), t(21) = 1.55, p = .136 (Figure 3.2B). 

These results suggest that processes associated with go/no-go evaluation prevented the 

singletons from triggering early shifts of stimulus-driven attention.  

P2a and no-go P3 

The assertion by the salience-driven selection that processes informed by top-

down knowledge cannot commence until after the completion of bottom-up selection was 

assessed in the go-no-go difference wave. The assessment was done by using the P2a 

in the present experiment as the upper-bound estimate for the earliest goal-driven 

activity and the target-elicited N2pc as the lower-bound estimate for the latest stimulus-

driven selection activity. The P2a was confirmed to be statistically present (4.12 μV), 

t(21) = 12.09, p < .001, d = 3.09, over the midline frontal scalp (Figure 3.6). A paired-

sample t test revealed that the onset latency of the P2a was significantly shorter than 

that of the N2pc (159 ms vs. 262 ms, respectively), t(21) = 8.34, p < .001, d = 2.63, 

demonstrating that processes driven by relevance can, in fact, take place prior to 

salience-driven selection processes. And as expected, the no-go P3 was observed on 

no-go trials (-2.16 μV), t(21) = 3.70, p = .001, d = 1.04, indicating that participants 

inhibited their responses on no-go trials (see, e.g., Bokura et al., 2001).  
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Figure 3.6. Visualization of P2a and no-go P3 activity. (A) Grand-averaged, go-

no-go difference waves recorded over the midline frontal and central 
scalp (FPz and Cz, repsectively) isolated by subtracting ERPs 
elicited by no-go trials from those elicited by go trials. Vertical bars 
correspond to the 95% CIs at each time point. (B) Topographical 
maps corresponding to the waveforms plotted in (A). 

Correlations 

Linear relationships between N2pc magnitude and magnitudes of the target-

elicited N1 and SDP (on go trials) were assessed to determine whether the same 

relationships observed in Chapter 2 would be observed in the present experiment. 

Interestingly, the N1 magnitude did not predict N2pc magnitude in this experiment, r(21) 

= -.13, p = .579. However, SDP magnitude was found to predict N2pc magnitude once 

more, r(21) = .53, p = .012 (polarities of the components were ignored, so a positive 

correlation indicates that N2pc magnitude increased along with increases in SDP 

magnitude). These results further suggest that the N1 was associated with global color 

processing, rather than singleton processing, in the current task, and that the SDP was 

associated with the detection of the singleton itself. In addition to these planned 

analyses, a post-hoc analysis was performed to determine whether the predicted PD on 

no-go trials correlated to the somewhat unexpected contralateral positivity observed on 

go trials. A significant correlation was found, r(21) = 0.64, p = .001, suggesting that the 
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positivity on go trials was a target-elicited PD that likely reflected active termination of 

attentional processing (see Sawaki et al., 2012).  

Linear relationships between each ERP component and the vWM capacity 

estimate (K) were then assessed to determine which component processes predict 

individual differences in vWMC. The first set of tests focused on go trials. As shown in 

Figure 3.7, K correlated positively with SDP amplitude, r(21) = .67, p < .001 and N2pc 

amplitude, r(21) = .51, p = .016, (the polarities of the amplitude measures were ignored 

so that a positive correlation would indicate that, as one component increased in 

magnitude, so did K). By contrast, there was no correlation between K and magnitude of 

N1 elicited by target singletons, r(21) = .07, p = .768.  

The second set of tests focused on no-go trials. These tests revealed that there 

was no correlation between K and amplitudes of the N1, SDP, or N2pc, rs(21) ³ -.03, ps 

³ .878 (note that the N2pc was found to be absent on no-go trials, so amplitude of the 

N2pc here simply reflected the mean amplitude obtained in the prespecified N2pc 

measurement interval). Together, the results of these first two sets of tests suggest that 

high- and low-capacity individuals were equally adept at preventing singleton detection 

on no-go trials, but low-capacity individuals showed diminished singleton-detection 

activity on go trials in comparison with high-capacity individuals.  

The third set of tests focused on ERPs associated with go/no-go processing. The 

results showed that K did not correlate with P2a amplitude or no-go P3 amplitude, rs(21) 

£ .17, ps ³ .450. These results suggest that there was no difference in ability to 

distinguish a go from a no-go display nor ability to adhere to the task instruction between 

high- and low-capacity individuals.  

The final set of tests focused on ERPs associated with suppression on go and 

no-go trials. The results showed that K correlated positively with magnitude of the target-

elicited PD on go trials, r(21) = .55, p = .008, and marginally so with magnitude of the 

distractor-elicited PD on no-go trials, r(21) = .42, p = .052. Following this finding, an 

additional Pearson correlation coefficient was computed between K and magnitude of 

the PD combined across go and no-go trials in an attempt to improve the signal-to-noise 

ratio. This test revealed a positive correlation (Figure 3.7C), r(21) = .52, p = .012. 

Results of this final set of tests is largely consistent with previous findings that PD 
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magnitude predicts vWMC (Feldmann-Wüstefeld & Vogel, 2019; Gaspar et al., 2016). To 

help visualize the relationships in Figure 3.7, participants were sorted into two groups 

based on their K. Participants with a K larger than the median K were sorted to the high-

K group and those with K smaller than the median K were sorted into the low-K group 

(see Figure 3.8).  

 
Figure 3.7 Scatter plots showing relationships between estimated visual 

working memory capacity (K) and magnitudes of the N2pc elicited 
by lower-field singletons on go trials (A), SDP elicited by all go-trial 
singletons (B), and PD elicited by all upper-field singletons (C).  
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Figure 3.8 ERP visualizations of relationships between visual working memory 

capacity (K) and waveforms recorded over the lateral occipital scalp 
(PO7, PO8) illustrated in Figure 3.7. (A) Contralateral-ipsilateral 
difference waves elicited by lower-field singletons on go trials, 
separately for high- and low-K group (N = 11 per group). (B) Present-
absent difference waves elicited by all singletons on go trials, 
separately for the high- and low-K group. (C) Contralateral-ipsilateral 
difference waves elicited by upper-field singletons combined across 
both go and no-go trials, separately for the high- and low-K group.  

3.4. Discussion 

Prior ERP studies of feature search mode have revealed that salience-driven 

attention capture can be prevented, but little was known about the automaticity of 

attention capture in singleton-detection tasks (i.e., when the target is underspecified). A 

novel go/no-go design was developed here to test predictions that could be made from 

different theoretical perspectives that differ in the (a) presumed automaticity of capture 

and in the (b) presumed means by which capture is prevented. Towards the more 

automatic end of the automaticity continuum (Figure 3.1), the salience-driven selection 

hypothesis proposes that observers invariably attend to visually salient objects because 
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stimulus-driven selection processes must be completed before processes informed by 

top-down knowledge can begin (e.g., to recover from capture; Theeuwes, 1991a, 1992, 

2004, 2010). By this view, capture can be prevented only by restricting the size of the 

attentional window before search begins so that the salient object falls outside of the 

window (Belopolsky & Theeuwes, 2010; Belopolsky et al., 2007). Towards the other end 

of the continuum, top-down perspectives like the contingent capture hypothesis and the 

signal suppression hypothesis maintain that observers can ignore distractors by 

selectively up-weighting task-relevant features or down-weighting irrelevant features 

(Folk et al., 1994; Sawaki & Luck, 2010). To evaluate these theoretical perspectives, the 

present experiment focused on two ERP components as markers of attentional selection 

and suppression called the N2pc and the PD, respectively. If salient-but-irrelevant 

singletons invariably capture attention, then these singletons should elicit the N2pc on 

no-go trials. Alternatively, if top-down processes can occur early to prevent salience-

driven capture, then the singletons should not elicit the N2pc on no-go trials (and may 

even elicit the PD if suppressed).  

The present study revealed four important findings regarding the automaticity of 

salience-driven selection. First, singletons did not elicit the N2pc (nor the N1pc) on no-go 

trials. This finding suggests that observers did not spatially select (i.e., attend to) 

singletons on no-go trials, contrary to the first tenet of the salience-driven selection 

hypothesis that salient stimuli within the attentional window invariably capture attention. 

At the outset, it was assumed that the attentional window would remain wide enough to 

process all the items in the search array throughout the experiment because no item 

individuation was required to determine the color of the display. Although several recent 

findings are in line with this assumption (for discussion, see Chapter 4, Section 4.2), it 

could be questioned whether attention was narrowly focused at fixation at the start of 

each trial to determine the color of an individual item nearby. The absence of capture on 

no-go trials could then be ascribed to a restriction of the attentional window that 

precluded salience computations for the distant singleton. By this account, observers 

would also not be able to engage in parallel search for the singleton on go trials and thus 

would have to shift attention serially from item to item until the target was found 

(Belopolsky & Theeuwes, 2010). I tested this serial-search explanation more directly in a 

follow-up experiment (Supplementary Experiment 1; Appendix) that was similar to 

Experiment 2 but randomly varied the display set size (8 or 16 items) with equal 
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probability. If a serial-search strategy was used, RTs would be longer for 16-item 

displays than for 8-item displays (that is, a positive search slope would be found; e.g., 

Treisman & Gelade, 1980). Contrary to this prediction, RTs were numerically shorter for 

the larger set size but were statistically indistinguishable between the 8- and 16-item 

displays (643 ms vs. 636 ms, respectively), t(11) = 1.26, p = .234. The absence of a 

positive search function indicates that observers did not restrict the size of their 

attentional window and engage in a serial search, thereby buttressing the conclusion 

that the most salient item in the attentional window does not capture attention 

automatically.  

Second, salient-but-irrelevant singletons appeared to elicit a PD on no-go trials. 

The presence of a PD indicates that observers managed to ignore the irrelevant 

singletons by actively suppressing them. This finding is broadly consistent with 

hypotheses toward the controlled end of the automaticity continuum and is specifically 

consistent with the signal-suppression hypothesis, which supposes that capture is 

always prevented by suppressing visual processing at the distractor location. However, 

this singleton-detection PD is at odds with the notion that selection is entirely salience-

driven in singleton detection mode (e.g., Bacon & Egeth, 1994). Interestingly, a PD was 

also elicited by singletons on go trials. Such a target-elicited PD is consistent the 

proposal that attentional processes are actively terminated following completion of 

perception (Sawaki et al., 2012).  

Third, a P2a emerged over the anterior scalp before the onset of the N2pc. This 

temporal sequence, together with the presumed functional significance of each ERP 

component, indicates that observers processed the relevancy of the displays before 

singleton selection took place. Importantly, this finding disconfirms the second tenet of 

the salience-driven selection hypothesis, namely that top-down control is possible only 

after salience-driven selection has occurred. This result is corroborated by the 

attenuated SDP and N1 on no-go trials, further suggesting that top-down processes can 

modulate early stages of visual-information processing to rapidly terminate search 

following evaluation of stimulus relevance.  

Fourth, despite the high salience of the singleton, the go-trial N2pc appeared 

relatively late in this study. A comparison of N2pc latencies across Experiments 1 and 2 

is not possible due to the different set sizes and colors, and so another follow-up 
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experiment (Supplementary Experiment 2; Appendix) was conducted to assess the N2pc 

latency. The same 16-item all-cyan and all-yellow displays were used, except 

participants were instructed to indicate the presence or absence of the singleton on all 

trials, regardless of item color (here termed the all-go condition; see Figure 3.9). 

Critically, N2pc onset latency (time at which the N2pc reached 25% of its peak 

amplitude) was delayed by 97-ms on the go trials of Experiment 2, relative to the all-go 

trials of the follow-up experiment (165 ms vs. 262 ms). This difference was found to be 

statistically significant t(42) = 2.04, p = .048, d = 0.61, using standard jackknife 

procedures (Miller et al., 1998). This delay indicates that, in the go/no-go task, observers 

first evaluated the global color of the display and then deployed attention to the singleton 

on go trials and that this evaluation took roughly 100 ms on average. Moreover, the 

delay is inconsistent with the salience-driven selection hypothesis, which supposes that 

relevance-driven processes cannot precede or modulate salience-driven selection within 

the attentional window. 

 
Figure 3.9 Comparison of grand-averaged contralateral-ipsilateral waveforms 

elicited by a target singleton between the present study (Experiment 
2) and a follow-up experiment (Supplementary Experiment 2). 

In addition to addressing questions relating to the automaticity of salience-driven 

selection, intercomponent analyses revealed that N2pc magnitude was positively 

correlated with SDP magnitude but not with N1 magnitude. Because the SDP has an 

earlier onset than the N2pc, it is tentatively concluded that the SDP is associated with 

the detection of the singleton itself, so that greater detection activity, especially early on, 

helps to facilitate subsequent orienting of attention to location of the singleton. Given that 

N1 magnitude positively correlated with N2pc magnitude in Experiment 1 but not in 

Experiment 2, it is concluded that the N1 is associated with analysis of features 

immediately relevant to the task at hand (here, discriminating between go and no-go 

display colors) and not with singleton detection per se. This interpretation is in line with 
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previous findings indicating that the N1 indexes a visual discrimination process within the 

attended region (Vogel & Luck, 2000). 

Analysis of individual differences revealed that neural activity associated with 

singleton detection (SDP) and selection (N2pc) on go trials predicts vWMC. The 

relationship between measured N2pc amplitude and vWMC might explain, at least in 

part, the variance in N2pc magnitude seen across individuals in Chapter 2. This 

relationship is not always observable, however. For example, there was no such 

relationship in Gaspar et al.’s (2016) feature-search task. One possibility is that a 

relationship between N2pc and vWMC emerges only when the target-selection process 

requires more control and cannot be automated like it can in a search for a fixed-feature 

singleton that appears on every trial. The relationships of SDP and N2pc with vWMC 

might also suggest that low-capacity individuals have difficulty initiating singleton 

detection when search is not required on every trial or when switching from an initial 

global-color processing phase to a subsequent singleton-detection phase. This difficulty 

is not driven by one’s ability to distinguish a go trial from a no-go trial because neural 

activity associated with go/no-go evaluation (P2a) and subsequent no-go inhibition (P3) 

did not predict vWMC. Despite this difficulty, there was no predictable RT difference 

between high- and low-capacity individuals. The lack of a behavioral difference may be 

explained by the simplicity of singleton detection or the presence of a compensatory 

mechanism among low-capacity individuals. Interestingly, whereas there was a 

difference in ability to initiate search on go trials between high- and low-capacity 

individuals, there was no difference in their ability to terminate search on no-go trials (as 

evidenced by the lack of relationship between vWMC and magnitude measured in the 

time interval of SDP and N2pc on no-go trials).  
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Chapter 4. General Discussion and Conclusions 

The search for a visual object is often performed by holding a set of target 

features in mind and comparing objects in the visual field to this feature template until a 

match is found (a process called feature search). Sometimes, however, people must 

search for objects without foreknowledge of their features, rendering the feature-based 

search strategy impossible or at least ineffective. It has been found that the search for 

an object with underspecified features can be accomplished easily when it possesses at 

least one unique feature that makes it stand out from its surrounding, in which case, 

observers can search for a discontinuity in the visual field or otherwise let the most 

salient item in the visual field capture their attention (a process called singleton 

detection). While much is known about how feature search is accomplished, less is 

known about the processes involved in singleton detection. The present thesis 

investigated the role of attention in singleton detection, the automaticity of singleton 

detection, and the electrophysiological underpinnings of singleton detection.  

4.1. Role of Attention in Singleton Detection 

Over the past four decades, researchers have advanced numerous theories 

about the role of attention in visual perception (for a review, see Carrasco, 2011). 

Despite general agreement that attentional processes enable the conscious perception 

of specific objects in the visual environment, the role of attention in singleton detection 

has remained poorly understood. According to the feature integration theory (Treisman & 

Gelade, 1980), the presence of a specified feature can be detected preattentively by 

polling relevant feature maps directly without the involvement of attention to bind these 

features into an object. However, by this account, observers would have to 

simultaneously poll all potentially relevant feature maps to detect a singleton with 

underspecified features, rendering such a feature-based search strategy inefficient (but 

see Treisman, 1988). In such instances, observers might instead adopt a strategy to 

detect a discontinuity in the visual field (Bravo & Nakayama, 1992; Julesz, 1984; Julesz 

& Bergen, 1983; Pashler, 1988). According to Julesz and Bergen (1983), for example, 

conspicuous differences in local features can be detected rapidly without the 

involvement of attention; that is, singleton detection can be accomplished preattentively. 

But according to other theories, attention is required even for the simplest decisions 
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about visual input, such as whether the visual field contains a singleton (e.g., Theeuwes, 

2010). 

Using a singleton-detection task, Luck and Hillyard (1994) provided 

electrophysiological evidence for the view that singleton detection can be accomplished 

without involvement of spatial attention. In this study, observers searched for an 

orientation singleton (target) in displays containing eight vertical or horizontal lines. To 

discourage feature search and promote singleton detection, Luck and Hillyard swapped 

the orientation of the target with its surrounding nontargets, so that half the target-

present trials showed a vertical line situated among seven horizontal lines and the other 

half showed a horizontal line situated among seven vertical lines. Luck and Hillyard 

reported that the singleton does not elicit the N2pc, nor any other notable 

electrophysiological activity associated with attention, under such conditions. This finding 

is consistent with the behavioral results from Bravo and Nakayama’s (1992) singleton-

detection task, whereby increases in set size has no effect on speed of detection (i.e., a 

flat search function; on the grounds that the involvement of capacity-limited attentive 

processes would yield a positive search function). However, a more recent study by 

Schubö et al. (2004) suggested that singletons might elicit the N2pc after all, at least in 

singleton-detection displays with more than six items.  

By improving the statistical power of Luck and Hillyard’s (1994b) singleton-

detection task in Chapter 2, I showed that the singleton in a pure singleton-detection 

task does, in fact, elicit the N2pc. While the presence of N2pc in this experiment cannot 

demonstrate that attention is necessary for singleton detection, it does show that 

singleton detection involves attentional selection under normal circumstances (i.e., in the 

absence of a dual-task requirement or masking to prevent superfluous visual 

processes). The present results are consistent with proposals that attention must be 

deployed to the location of the singleton to detect its presence (e.g., Joseph et al., 1997; 

Theeuwes, 2010), but it is also possible that singleton detection precedes the selection 

process driving the N2pc and that selection of the singleton object is required not for 

detection but for subsequent stages of processing associated with object perception and 

storing or updating target information in visual working memory.  
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4.2. Automaticity of Singleton Detection 

The results of Experiment 2 (Chapter 3) have important implications for the 

debate surrounding the automaticity of attention capture by salient-but-irrelevant 

singletons. According to the salience-driven selection hypothesis (Theeuwes, 1991a, 

1992, 2010), the initial shift of focal attention invariably goes to the most salient singleton 

within the attentional window (Tenet 1). After that stimulus is attended, the visual system 

is able to evaluate whether it is relevant to the task at hand. In other words, this 

hypothesis proposes that goal-driven processes cannot begin until after purely bottom-

up selection processes are completed (Tenet 2). Four key findings from Chapter 3 would 

seem to argue against the core tenets of the salience-driven selection hypothesis. The 

first two findings were that the orientation singleton—which was the most salient 

stimulus in the display—did not elicit the N2pc and instead elicited the PD on no-go trials. 

Such findings indicate that the stimulus was suppressed proactively to prevent salience-

driven distraction. The third finding was that top-down processes reflected by the P2a 

began prior to the onset of the N2pc, showing that processes informed by top-down 

knowledge can, in fact, take place prior to bottom-up selection processes. The fourth 

finding was that the N2pc was delayed on go trials compared to the N2pc elicited in an 

all-go condition (Supplementary Experiment 2; Appendix), indicating that observers can 

postpone salience-driven selection to process other relevant aspects of the display. 

Together, these findings demonstrate that early top-down processes can delay salience-

driven processes or override them entirely to prevent capture by salient singletons.  

In light of this conclusion, one may ask how observers managed to prevent 

capture by singletons on no-go trials of Experiment 2. One possibility that stems from 

proponents of the salience-driven selection hypothesis is that observers adopted a 

strategy to restrict their attentional focus around the fixation cross in order to carefully 

inspect the color of a nearby item. This explanation is consistent with the results of prior 

distractor-interference studies that manipulated the size of the attentional focus (the so-

called attentional window) prior to the appearance of the search display (Belopolsky & 

Theeuwes, 2010; Belopolsky et al., 2007). For example, using a go/no-go paradigm, 

Belopolsky and Theeuwes (2010) reported that a salient distractor did not interfere with 

search for a less-salient target when observers had to identify a letter presented at 

fixation before commencing (or aborting) search. According to these investigators, 
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reducing the size of the attentional window helps observers to ignore salient stimuli 

because salience computation takes place only within the attentional window and thus 

salience of singletons outside of the window is essentially unknown. By this account, 

observers would have started each trial of Experiment 2 with a narrow attentional 

window and would then have to engage in a serial search for the singleton on go trials 

(because the salience of the singleton would not have been computed).  

There are three considerations that argue against this serial-search explanation. 

First, there was no incentive for participants to restrict the size of their attentional window 

because every item in the display was the same color (i.e., there was no need to 

individuate any particular item). Second, prior N2pc studies have demonstrated that item 

individuation does not occur when the task does not require it. For example, when 

observers view displays containing one, two, or three red color singletons (targets), the 

N2pc grows in amplitude with each increase in the number of targets when the task is to 

enumerate the targets but not when the task is to detect the presence of at least one 

target item (Mazza & Caramazza, 2011). The amplitude growth indicates that observers 

individuated each target in the enumeration task, and the lack of amplitude growth in the 

detection task indicates that red items were treated as a whole rather than as separate 

objects. Third, based on the observed timing and amplitude of the N2pc, one can 

conclude that attention was oriented rapidly, and likely directly, to the singleton once the 

trial was determined to be a go trial. A serial search for the singleton would lead to a 

smaller, more sustained contralateral negativity or no N2pc at all (Figure 12.5; Luck, 

2012, p. 339; Dowdall et al., 2012; see also Christie et al., 2015) 

In addition to these considerations, the results of Supplementary Experiment 1 

(Appendix) help to disconfirm the serial-search explanation (Section 3.4). This 

experiment presented displays identical to those used in Experiment 2 except that half 

the displays contained 8 items instead of 16. The rationale was that if observers adopted 

a serial-search strategy by narrowing their attentional window prior to their search, then 

they should be faster at finding the singleton on go trials in 8-item displays than in 16-

item displays (resulting in a positive search function; see, e.g., Treisman & Gelade, 

1980). Critically, participants were no faster at detecting a singleton among 8 items than 

among 16 items (in fact, numerically, RTs were shorter for 16-item displays than for 8-

item displays; 636 ms vs. 643 ms, respectively). Given that search remained efficient on 
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go trials, there is simply no evidence that attention was narrowly focused at the outset of 

each trial.  

With the attentional window presumably remaining wide throughout Experiment 

2, another possibility is that observers suppressed the salient-but-irrelevant singleton 

prior to the deployment of attention (as proposed by the signal suppression hypothesis; 

Sawaki & Luck, 2010). Such suppression was predicted to give rise to a singleton-

elicited PD on no-go trials. In line with this prediction, the results showed that the 

singleton elicited a PD on no-go trials, with no earlier N2pc preceding the PD. This pattern 

of results is important for at least four reasons. First, it shows that observers can exhibit 

genuine top-down control over salience-driven capture not only by restricting the spatial 

focus of attention so that the salience of the singleton is unknown (Belopolsky & 

Theeuwes, 2010; Belopolsky et al., 2007), but also by deciding to process a global 

feature of the display that does not require object individuation. Second, it shows that 

salience-driven capture can be prevented not only in feature-search tasks that may 

inadvertently lower the salience of the singleton (as has been claimed by Wang and 

Theeuwes, 2020) but also in tasks that involve singleton detection. Third, it shows that 

suppression can prevent capture proactively, not just reactively to recover from capture 

once it occurs (Theeuwes, 2010). Fourth, it confirms that capture can be prevented by 

suppressing salient-but-irrelevant items, not just by upweighting target features.   

4.3. Electrophysiological Underpinnings of Singleton 
Detection 

Noninvasive recordings of brain potentials have enabled researchers to study 

covert attentional processes even in the absence of an overt behavioral response. For 

over two decades, researchers have tracked the deployment of visual attention using the 

N2pc component to inform theories of visual attention. This ERP component is found 

when observers search for a singleton based on a defining feature (i.e., in feature search 

mode), but a debate remains as to whether an N2pc can be elicited when search cannot 

be guided by a specific feature but only by a target’s uniqueness (i.e., in singleton 

detection mode). Luck and Hillyard (1994b) proposed that the N2pc is associated with 

the resolution of neural ambiguity by way of a spatial-filtering process that attenuates 

neural responses to irrelevant (and presumably unattended) items in the vicinity of the 

attended object (see also Luck et al., 1997). By this proposal, it was predicted that the 
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N2pc should be absent when observers search for an oddball (i.e., singleton) rather than 

a specific feature, on the grounds that filtering would presumably interfere with the 

process of comparing the singleton with its surrounding items during singleton detection 

(Luck, 2012; Luck & Hillyard, 1994b). Consistent with this prediction, Luck and Hillyard 

failed to find an N2pc when the orientation of a target singleton and nontargets were 

swapped randomly across trials to discourage search for an item with a specific 

orientation. No other ERP component was associated with singleton detection in that 

seminal experiment. By contrast, the present thesis experiments show that singleton 

detection is associated with ERP components including the N1pc, the N2pc, the SDP, 

and the PD. Furthermore, my results show how these electrophysiological processes 

vary predictably across healthy young adults. In the following sections, I discuss each of 

the electrophysiological correlates of singleton detection.  

4.3.1. The N1pc 

The N1pc is a lateralized negativity observed in the time range of the N1. 

Because of its distribution over the posterior scalp, the N1pc has been hypothesized to 

reflect some form of early visual processing, including the reflexive orienting of attention 

to unilateral stimuli (Wascher & Beste, 2010a, 2010b) and the stimulus-driven selection 

of a salient stimulus during the initial sweep of visual processing (Verleger et al., 2012). 

Across the two thesis experiments, it was found that the N1pc is sometimes associated 

with singleton detection: Results of Chapter 2 showed that the N1pc was present on 

fast-response trials but absent on slow-response trials, indicating that the N1pc 

facilitates singleton detection. This conclusion is consistent with the finding that a large 

N1pc predicts a large N2pc across individuals. This facilitatory process, however, is 

unaffected by the priming of pop-out across consecutive trials because there was no 

difference in the timing or magnitude of N1pc between repeat- and change-orientation 

trials. This finding thus suggests that priming of pop-out influences visual processing at a 

later stage (starting in the time range of the N2pc, as seen in Experiment 1). 

Interestingly, the go/no-go singleton-detection task in Chapter 3 failed to elicit an N1pc 

despite the increased singleton salience, indicating that the N1pc is a stimulus-driven 

process that can be inhibited in favor of the ongoing task at hand (i.e., global processing 

of display color in Experiment 2).     
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4.3.2. The N2pc 

As previously mentioned, the N2pc has been largely hypothesized to reflect a 

spatial-filtering process that suppresses the flow of visual information arising from items 

in the vicinity of the attended object, and the absent N2pc in Luck and Hillyard’s (1994b) 

singleton-detection task is one of the main reasons the N2pc has been assumed to 

reflect this filtering process. The results of my thesis experiments (Experiments 1, 2, and 

Supplementary Experiment 2) disconfirm this view by showing the presence of a sizable 

N2pc in similar singleton-detection tasks that presumably minimizes spatial filtering. 

Results of Experiment 1 (Chapter 2) show that this singleton-detection-mode N2pc 

resembles the N2pc found in other studies: namely, it is maximal at electrodes PO7/8 

(Luck, 2012), larger for lower-field targets (Luck et al., 1997), earlier on repeat-

orientation trials (Christie et al., 2015; Eimer et al., 2010), and earlier on fast-response 

trials (McDonald et al., 2013). Following Luck and Hillyard’s (1994b) rationale for their 

seminal singleton-detection study, it is proposed that the N2pc does not therefore reflect 

a spatial-filtering process that suppresses information from unattended items but instead 

reflects a selection process that acts on the attended item (or group of items) itself. This 

selection process may be associated with (a) the localization of to-be-attended objects 

prior to the deployment of attention (Tan & Wyble, 2015), (b) the enhancement of task-

relevant features following the deployment of attention (Eimer, 1996), or (c) object 

individuation (Mazza & Caramazza, 2011). Because the N2pc occurs in both feature 

search and singleton detection, it can be concluded that the component is not 

associated with a template-matching process (as previously proposed in Section 1.3.3).  

As seen in the thesis experiments, the N2pc elicited by singletons in the present 

singleton-detection paradigm is later and smaller than that typically elicited by singletons 

in feature-search paradigms. Specifically, the N2pc in the present study appears 

approximately 250 ms after the onset of the search array and is smaller than -1 μV. By 

contrast, the N2pc elicited by target singletons in Luck and Hillyard’s (1994b, Experiment 

1) feature-search task appeared 50 ms earlier and was at least twice the magnitude. 

One possibility for this disparity is that feature-search paradigms enable an attentional 

set for a specific feature, and when combined with a history of selecting the same 

feature across every trial, may boost the neural sensitivity to the target and thus 

enhancing its perceived salience. Consistent with this explanation, the N2pc elicited by 
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salient targets appear earlier and larger than the N2pc elicited by less-salient targets 

(e.g., see figure 5 of Gaspar & McDonald, 2014).  

Another possibility is that the N2pc typically observed in feature-search tasks 

reflects two underlying mechanisms, one being a nonspatial feature-selection 

mechanism that enhances all task-relevant features in the visual field, and another being 

a subsequent object-individuation mechanism, whereby features at a location are 

integrated in such a way as to enable the perception of these separate features as one 

unitary object in space. This two-stage process was evidenced by results showing that 

nontarget objects possessing only one of two task-relevant features elicited an N2pc 

simultaneous to that elicited by the target, but the nontarget-elicited N2pc was smaller 

than that elicited by the target (Eimer & Grubert, 2014; Kiss, Grubert, & Eimer, 2013; see 

also Bichot et al., 2005; Hopf et al., 2004). This finding suggests that the task-relevant 

feature of the nontarget triggered the nonspatial feature-selection mechanism but, 

because the nontarget did not possess both task-relevant features, was insufficient to 

trigger the subsequent object-individuation mechanism. Therefore, since the singleton-

detection task in Chapter 2 discourages the search for a particular feature, the early, 

feature-selection portion of the N2pc would not be elicited, resulting in the appearance of 

a smaller and later N2pc. And although the singleton-detection task in Experiment 2 

(Chapter 3) permitted an attentional set for a specific color, the target singleton still 

elicited a smaller and later N2pc because the color of the surrounding nontargets would 

also trigger the feature-selection mechanism, so that the activity observed as the N2pc 

would only reflect the object-individuation mechanism triggered by the target. This two-

stage selection mechanism is consistent with various theories of visual search (Cave, 

1999; Treisman & Gelade, 1980; Treisman & Sato, 1990; Wolfe, 1994), whereby feature-

based attention first provides a map of probable target locations that then guides spatial 

attention to those locations for detailed perceptual analysis.  

4.3.3. The SDP 

The SDP, which was discovered in Experiment 1, is a sustained positivity that 

starts approximately 200 ms over the bilateral posterior scalp following the presentation 

of a target singleton and roughly 30 ms prior to the N2pc. The SDP is isolated by 

subtracting ERPs elicited by singleton-absent trials from those of singleton-present trials 

(i.e., the present-absent difference wave). The magnitude of the SDP was found to be 
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positively correlated with N2pc magnitude across individuals within each experiment. 

And in Experiment 1, an earlier-onsetting SDP was associated with faster manual 

responses. Interestingly, the go/no-go singleton-detection task in Chapter 3 revealed 

that the process underlying the SDP can be greatly attenuated when the global color of 

the display indicates that detection is not required (i.e., on no-go trials). Taken together, I 

propose that the SDP reflects the detection of a singleton, or perhaps any salient 

individuated stimulus, and that such processes can be terminated when item 

individuation is unnecessary or suppressed.  

Surprisingly, the attenuated SDP evident on no-go trials did not vary as a 

function of vWMC, suggesting that low-capacity individuals were no more likely to 

inadvertently detect the singleton on no-go trials than high-capacity individuals. Upon 

initial consideration, this finding appears to run counter to those showing that high-

capacity individuals tend to have better inhibitory control. For example, Gaspar et al. 

(2016) found that low-capacity individuals have greater difficulty suppressing salient-but-

irrelevant singletons compared to high-capacity individuals (as revealed by a positive 

correlation between memory capacity and magnitude of PD). However, the two findings 

are not at odds if one assumes that low-capacity individuals have a specific inhibitory-

control deficit that takes place during object individuation, that the deficits are revealed in 

tasks that require more control (that more control is required to ignore one of two 

singletons in the same display), or that no inhibition was required to terminate singleton 

detection after the initial global-color processing stage revealed search was 

unnecessary. 

Although low-capacity individuals did not appear to have an inhibitory control 

deficit on no-go trials in Experiment 2, they did appear to differ from their high-capacity 

counterparts on go trials. Specifically, on go trials, both the SDP and the N2pc were 

smaller for low-capacity individuals than for high-capacity individuals. This difference 

may indicate that low-capacity individuals have difficulty initiating singleton detection 

when search is not required on every trial or when switching from an initial global-color 

processing phase to a subsequent singleton-detection phase. Regardless, it is clear that 

this difference was not due to a reduced ability to distinguish a go trial from a no-go trial 

among low-capacity individuals because amplitudes of the P2a and no-go P3 were 

found to not correlate with vWMC.  
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4.3.4. The PD 

The PD is a positivity elicited by a visually suppressed item over the contralateral 

occipital scalp. At its discovery, the PD was thought to reflect the active suppression of 

an irrelevant item in the visual field (Hickey et al., 2009). More recently, this suppression 

mechanism was also observed for attended objects, and it was hypothesized that a 

common suppression mechanism was involved in both preventing and terminating the 

allocation of attention (Sawaki et al., 2012). Experiment 2 (Chapter 3) provided evidence 

for both a target-elicited PD (on go trials) and a distractor-elicited PD (on no-go trials). 

And although no statistical test was performed in Experiment 1 (Chapter 2) for a target-

elicited PD, a PD-like positivity could also be seen in Figure 2.4B (for upper-field targets). 

The present study provided further evidence that the target- and distractor-elicited PD 

share a common suppression mechanism by positively correlating magnitudes of the two 

components across individuals. Importantly, whereas previous evidence for the PD had 

been found exclusively in feature-search studies, the present study provided the first 

evidence for suppression in singleton detection. Similar to the PD found in previous 

feature-search studies, this singleton-detection PD was marginally larger for upper-field 

singletons on no-go trials (Hickey et al., 2009) and larger among individuals with high 

vWMC (Gaspar et al., 2016). The singleton-detection PD therefore contradicts the notion 

that selection is entirely salience-driven in singleton detection mode.  
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Appendix 

Supplementary Experiment 1 

Method 

Participants 

Participant recruitment and screening procedures were identical to those in 

Experiment 2 (Chapter 3). Data from 12 (9 females; all right-handed; mean age: 21.6 

years) of 14 participants were used in the final analysis. Data from the remaining two 

participants were discarded due to excessive ocular artifacts.  

Apparatus, Stimuli, and Procedure 

Apparatus, stimuli, and procedure used were identical to those of the go/no-go 

singleton-detection task in Experiment 2 (Chapter 3) except (a) half the stimulus arrays 

contained 8 lines instead of 16 and (b) the entire experiment comprised of 18 blocks of 

40 trials for a total of 720 trials.  

Behavior 

Analysis of median RTs was similar to those in Experiment 2 (Chapter 3), but 

with set size as an additional factor. A difference in speed of target-present responses 

between 8- and 16-item displays was assessed using a two-tailed, paired-sample t test.  

Electrophysiology 

No EEG signals were recorded, but vertical and horizontal EOG activity were 

recorded to detect ocular artifacts (eye movements and blinks). Vertical eye movements 

and eye blinks were tracked using a pair of electrodes placed above and below the left 

eye. EOG recording methods were identical to those in Experiment 2 (Chapter 3).  

Result 

Responses to targets on 8-item displays were no faster than to targets on 16-

item displays (643 ms vs. 636 ms, respectively), t(11) = 1.26, p = .234. 
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Supplementary Experiment 2 

Method   

Participants 

Participant recruitment and screening procedures were identical to those in 

Experiment 2 (Chapter 3). Data from 22 (13 females; 19 right-handed; mean age: 19 

years) of 24 participants were used in the final analysis. Data from the remaining two 

participants were discarded due to excessive ocular artifacts.  

Apparatus, Stimuli, and Procedure 

Apparatus, stimuli, and procedure used were identical to those of the go/no-go 

singleton-detection task in Experiment 2 (Chapter 3) except (a) all participants 

responded to both cyan and yellow stimulus displays (i.e., all-go condition) and (b) the 

entire experiment comprised of 20 blocks of 40 trials for a total of 800 trials.  

Electrophysiology 

The recording and preprocessing of electrophysiological signals were identical to 

those in Experiment 2 (Chapter 3). Onset latency of the N2pc was measured as the first 

time point at which the N2pc reached 25% of its peak amplitude within a 150-ms window 

150 ms after target onset, using the standard jackknife approach (Miller et al., 1998). A 

difference in onset latency between N2pc elicited in this experiment and in Experiment 2 

(Chapter 3) was assessed using a two-tailed, two-sample t test.  

Result 

Onset latency of the N2pc in this experiment was shorter than that of the N2pc in 

Experiment 2 (Chapter 3; 165 ms vs. 262, respectively), t(42) = 2.04, p = .048, d = 0.61.  


