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Despite the ubiquity of delusional information processing in psychopathology and everyday life, formal charac-
terizations of such inferences are lacking. In this article, we propose a generative framework that entails a com-
putational mechanismwhich, when implemented in a virtual agent and given new information, generates belief
updates (i.e., inferences about the hidden causes of the information) that resemble those seen in individuals with
delusions.We introduce a particular form of Dirichlet processmixturemodelwith a sampling-based Bayesian in-
ference algorithm. This procedure, depending on the setting of a single parameter, preferentially generates highly
precise (i.e. over-fitting) explanations, which are compartmentalized and thus can co-exist despite being incon-
sistent with each other. Especially in ambiguous situations, this can provide the seed for delusional ideation. Fur-
ther, we show by simulation how the excessive generation of such over-precise explanations leads to new
information being integrated in a way that does not lead to a revision of established beliefs. In all configurations,
whether delusional or not, the inference generated by our algorithm corresponds to Bayesian inference. Further-
more, the algorithm is fully compatible with hierarchical predictive coding. By virtue of these properties, the pro-
posed model provides a basis for the empirical study and a step toward the characterization of the aberrant
inferential processes underlying delusions.
© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Delusions are implausible beliefs which are held with absolute con-
viction and cannot be changed by countervailing evidence (Jaspers,
1913; American Psychiatric Association, 2013). They are among the
core symptoms of psychosis and a majority of individuals with schizo-
phrenia experience delusional beliefs during the course of their illness
(Harrow et al., 1995).

Despite the importance of delusions in psychiatric nosology and
their debilitating effect on patients, their underlyingmental and biolog-
ical mechanisms are still poorly understood. In particular, a generative
computational framework for the study of delusions is still lacking.
Such a framework, situated in the context of Computational Psychiatry
(Montague et al., 2012; Stephan and Mathys, 2014; Wang and Krystal,
2014; Mathys, 2016; Adams et al., 2016; Huys et al., 2016), would
allow for the systematic testing of mechanistic hypotheses regarding
regarding the emergence and maintenance of delusions. This frame-
work should be computational in the sense that it conceptualizes delu-
sions in terms of formal mathematical computations imputed to the
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mind. Beyond that, it should be generative in the sense that it allows
for building models of minds which can be configured so that they
generate delusional beliefs (where both belief and delusional are well-
defined mathematically while also reflecting the clinical usage of these
terms).

In this article we make an initial suggestion for such a genera-
tive computational framework. We introduce a model that com-
bines three strands of thinking about mind-building and delusion
formation. This model is based on Dirichlet process mixture models
of concept learning (Tenenbaum and Griffiths, 2001), hierarchical
predictive coding (Rao and Ballard, 1999; Friston, 2005a; Sterzer
et al., 2018), and the use and abuse of auxiliary hypotheses in hy-
pothesis testing and Bayesian inference (Duhem, 1906; Quine,
1951; Strevens, 2001; Jaynes, 2003; Gershman, 2019). Based on
our suggested model, we simulate agents who update their beliefs
in response to new information. We show that by manipulating the
single decisive parameter of our model, we can generate belief pat-
terns which can be characterized on a spectrum from delusional to
appropriate, given the agent's input. We interpret the agent's be-
haviour in terms of previous conceptualizations of delusions, and
we point out possible empirical ways to quantify our model's
delusion-generating parameter in experimentally or naturally ob-
served behaviour.
er the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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2. Theory

2.1. Delusions as a consequence of aberrant inference

Our approach builds on the three conceptual foundationsmentioned
above. Turning first to hierarchical predictive coding, the idea that infer-
entialmechanisms support the formation andmaintenance of delusions
has led to an influential characterization in terms of deviations from
Bayesian inference (Hemsley and Garety, 1986; Coltheart et al., 2010).
Similarly, biases of probabilistic reasoning have been invoked to under-
stand the process of delusion formation, such as limited data-gathering
(“jumping to conclusions”, see Speechley et al., 2010; Dudley et al.,
2016) or a bias against disconfirmatory evidence (Woodward et al.,
2006). Furthermore, a failure to think of alternative accounts of the de-
lusion (a lack of belief flexibility) was found to be related to how
strongly a delusion was held (“delusional conviction”; e.g., Freeman
et al., 2004; Garety et al., 2005), and a number of recent reviews have
underlined the importance of cognitive biases and delusional ideation
(McLean et al., 2017; Broyd et al., 2017; Bronstein et al., 2019).

Predictive coding (PC) is a general account of brain function (Rao
and Ballard, 1999; Friston, 2005b) which assumes that the brain infers
the causes of its sensations using a hierarchical model of its environ-
ment. Applied to psychosis, the account emphasizes the balance be-
tween top-down predictions and bottom-up prediction error (PE)
signals (Fletcher and Frith, 2009; Corlett et al., 2010, 2016; Sterzer
et al., 2018). In this framework, prior beliefs are encoded in predictions
about sensory inputs. Discrepancies between these predictions and the
actual sensory stimulation lead to changes in beliefs whose magnitude
depends on the precision of thepredictions. Delusion formation then re-
flects a compensatory response to imbalances of the hierarchical infer-
ence scheme (Adams et al., 2013; Corlett et al., 2016; Fletcher and
Frith, 2009). Specifically, delusions might result from the attempts to
explain highly precise low-level PEs. The resulting explanations are ep-
istemically inappropriate beliefs at higher levels in the processing hier-
archy (Adams et al., 2013; Schmack et al., 2013).
2.2. Central and auxiliary hypotheses

A second foundation for our approach is the notion of
“explaining-away”. This phenomenon occurs in Bayesian belief net-
works and denotes the case, when, given two potential causes for
an effect, the presence of one cause makes another less likely.

In Bayesian terms, the maintenance of delusions (and beliefs in gen-
eral) is usually attributed to strong prior beliefs. However, inductive in-
ferences critically depend on the beliefs about the structural
dependencies between the relevant variables. For example, what one
person takes to be evidence for a hypothesis, another person interprets
as contradictory evidence. This can happen without contradicting the
rules of logic because the direction of belief updating depends on
other beliefs (Jern et al., 2014). A ubiquitous example of this phenome-
non is the “explaining-away” of evidence. This describes the case in
common-effect networks in which the presence of one cause in a com-
mon effect network makes another less likely. This implies that the in-
terpretation of an observation depends on the ability of the observer
to generate additional assumptions, called auxiliary hypotheses, which
can “explain away” the evidence or even turn it into its contrary.

The idea goes back to Duhem's (1906) and Quine's (1951) insight
that evidence from an experiment cannot refute a single scientific hy-
pothesis, but only a conjunction of hypotheses (cf. Strevens, 2001;
Jaynes, 2003). Gershman (2019) presented an analysis showing that
in a Bayesian model, hypotheses with weaker prior probability can act
as a “protective belt” and, in the face of dis-confirmatory evidence,
take the blame instead of a central hypothesis (i.e., one with a stronger
prior). This represents an effective strategy of belief preservation that
depends on the creation of auxiliary hypotheses.
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While these demonstrations of the explaining-away effect assume
the existence of auxiliary hypotheses as given, the framework we intro-
duce here allows for the generation of new auxiliary hypotheses which
serve to explain observations that, under a different configuration, could
have been explained by nuancing an existing explanation.

2.3. Dirichlet process mixture models

Human reasoning processes have a characteristic ability to dealwith
uncertainties due to incomplete or noisy information and build open-
ended models of adaptive complexity. Much of this uncertainty is due
to unobserved variables and the relation between these. When reason-
ing about a particular course of events, we compare hypotheses about
the statistical structure of the world. A common problem is to detect
when observations can be partitioned into separate groups, where
each group is explained by a distinct cause. A solution to this are
Dirichlet process mixture models (DPMMs) (Teh et al., 2006; Doshi-
velez, 2009). These allow for inferring, for each data point, the group it
most likely belongs to. A version of the Dirichlet process was indepen-
dently proposed by Anderson (1991) for a theory of human category
learning. Fig. 1 illustrates the behaviour of the model. Notably, it allows
to model the classification into anomalies that require novel categories.
The inference of a separate category has a strong influence on the sub-
sequent belief updates, since data that belong to one category are as-
sumed to be independent of all other categories. Crucially, the
Dirichlet process prior assumes the existence of a potentially infinite
number of groups and is this amodel for open-ended learning, adapting
to increasing amounts of data by increasing model complexity. This
means that it provides a solution for the problem of model-selection, a
best model is to be chosen in terms of accuracy and complexity. The
Dirichlet process represents a suitable prior for such inferences and
DPMMs are a Bayesian solutions to the problem of structure learning
Gershman and Blei (2012). For this reason, DPMMs have found broad
application in the modelling of higher-order human cognition
(e.g., Kemp et al., 2010; Collins and Koechlin, 2012).

2.4. Model description

We harness the power of this approach in proposing a generic
DPMM that describes delusion formation and maintenance. We do
this in the context of a learner performing online inference about the la-
tent structure of the environment based on a set of observed events.
This constitutes a structure learningproblem in statistics, and the learner
is assumed to solve it (in a manner consistent with Bayesian inference)
by iterating two steps. First, the learner has to partition the data into
separate groups based onwhether they are explainable by the sameun-
derlying cause. Second, given the grouping of the data, the learner can
then infer a specific model for each group. We define the act of
explaining an event or observation as inference of a single cause. Causes
thus provide explanations for events. That is, they are models of the
learner's environment (i.e., they define a probability distribution over
current and future observations). The learner is equipped with a set of
prior beliefs which are encoded in a hierarchical generative model for
the events. Further, the learner has a set of existing models derived
from prior experience of the world, which can be used to explain new
observations. However, the existing explanations stand in competition
with a mechanism for generating new explanations constructed from
higher levels of the model, that is, from the prior over explanations.
The structure of the prior belief of the learner allows for a potentially in-
finite number of causes. This means that, depending on their priors,
learners can consider any new observation an anomaly, i.e. as belonging
to a hitherto unobserved cause. A formal description of our model is
given in the Appendix. We implement Bayesian inference for this
model using Algorithm 8 from Neal (2000).

The assumption of an infinite collection of causes allows learners
continually to discover new ones, building new theories, as they make



Fig. 1. Categorization and explanation in our framework (schematic). In the top panels, the same initial belief is depicted on the left and right, with separate explanations (causes)
represented by Gaussians. On the left, the new observation (black dot) has a larger deviation from the existing causes than on the right. Here, the model infers a new cause and fits a
corresponding cause to explain the observation (red Gaussian, bottom left). On the right, a less extreme observation is integrated into an existing cause (blue Gaussian, bottom right),
which leads to a change in the structure of the corresponding explanation. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version
of this article.)
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more and more observations. Still, at any point there is only a finite
number of causes (at most one per individual observation) and the
ease with which new causes are assumed is affected by priors and by
the concentration parameter α. Low values of α favour a small number
of causes that each account formany observations, while high values fa-
vour many small uniformly sized clusters of observations.

Inference about the underlying cause of an observation proceeds in
two steps. In a first step, m potential explanations are drawn from the
generative modelM. For Gaussian models, the explanations correspond
to parameter values (μ, τ), which are drawn from the prior. In a second
step, these candidates are compared with the set of already known ex-
planations in terms of their plausibility (i.e. likelihoods). The plausibility
judgments are modulated by the respective prior probabilities. These
are proportional to the number of previous observations accounted for
by an existing explanation. The prior probability for previously unob-
served causes depends only on the α parameter, which encodes a gen-
eral expectation of new causes. The assignment to a cause is chosen
according to these factors. The proposals for new causes drawn from
the prior that were not selected are discarded after this step and new
proposals are drawn for the next inference. Following the assignment
of an observation to a cause, the next inference step is to integrate the
information into the model associated with that cause. The specific
form of this belief update depends on the form of the cause-specific
models. After updating the separate hypotheses, the higher-level beliefs
are updated. Thesemay include hyper-priors over the parameters of the
prior distribution for the cause-specific models and the belief about α.
Intuitively, after inferring many new causes, the belief about α will
change so that this becomes what is expected in the following. Iterating
over these belief updates constitutes aMarkov chain that leads to an ap-
proximation of the correct posterior belief (Neal, 2000).

3. Results

3.1. Simulation of the emergence of a delusion

As an illustration of our model's basic belief dynamics, we demon-
strate an inference process that can be characterized as appropriate or
delusional depending on the setting of a single parameter, the expected
precision of explanations μτ. In what follows, we explain data y ∈ ℝ
3

based on simple Gaussian assumptions. That is, the cause-specific
models are Gaussians characterized by mean and precision parameters
F y,ϕkÞ ¼ N y∣μk, τ

−1
k Þ��

. The prior distributions for the cause-specific

parameters μk and τk are independent normal (N μμ , τμ Þ
�

) and

half-normal (HN μτ , ττÞð ), respectively. These priors influence the gen-
eration of candidates for new explanations. They also play a role in the
process of updating the internal structure of existing explanations
(through Bayes' rule, as in all Bayesian accounts of inference).

Of special interest is μτ, the expected precision of explanations. Under
Gaussian assumptions, it is the mean of the prior on the precision pa-
rameter τk for explanation k. In other words, it specifies the prior belief
about the expected inverse variance of observations under any of the
currently held models. Generalizing beyond Gaussian assumptions,
the expected precision can be cast as the negative entropy of explana-
tions generated by the prior. In this view, high expected precision im-
plies a prior criterion for generating explanations: it favours those
explanations that, conditional on being true, assign a high likelihood
value to observations.

Such strong priors about the expected precision lead to an “over-
fitting” of explanations, that is, generating hypotheses that over-
accommodate the current data. This is related to a suggestion made in
previous accounts of delusional thinking (Stone and Young, 1997;
Mckay, 2012) that a bias toward “explanatory adequacy,” whereby the
likelihood is over-weighted at the expense of the prior, plays a role in
delusions. For example, Coltheart et al. (2010) develop their account
with reference to Capgras' delusion, which involves the belief that a
close friend or relative has been replaced by a physically identical im-
postor. Mckay (2012) explain Capgras' as arising from brain damage
or disruption, which causes the face recognition system to become dis-
connected from the autonomic nervous system, generating anomalous
data (Factor One). This disconnection occurs in conjunction with a
bias toward explanatory adequacy (Factor Two), such that the affected
individual updates beliefs as if ignoring the relevant prior probabilities
of candidate hypotheses.

Our DPMM account provides a different perspective. The possibility
to assign observations to different explanations allows for deviations
from the ideal of a single coherent belief system. In this account,
delusional belief updating results from an exaggerated preference for
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high-precision explanations. Observations are assigned to highly pre-
cise explanations, which, once generated, are evaluated only by their
likelihood, which will be high by construction. In this manner, our
framework allows for the co-existence of many high-precision explana-
tions, which corresponds to a compartmentalization of an individual's
worldview into many— possibly contradictory — models.

Fig. 2 illustrates this in the context of delusional mis-
identification as described in a case study of Capgras' delusion
(Hirstein and Ramachandran, 1997). Instead of attributing small
variations (whatever their origin) to randomness or coincidence,
patient DS infers additional explanatory structure. Hirstein and
Ramachandran (1997) proposed that Capgras' might be part of a
more general memory management problem:

When you or I meet a new person, our brains open a new file, as it
were, intowhich go all of ourmemories of interactionswith this person.
WhenDSmeets a personwho is genuinely new to him, his brain creates
a file for this person and the associated experiences, as it should. But if
the person leaves the room for 30 min and returns, DS's brain, instead
of retrieving the old file and continuing to add to it, sometimes creates
a completely new one. Why this should happen is unclear, but it may
be that the limbic emotional activation from familiar faces is missing
and the absence of this ‘glow’ is a signal for the brain to create a separate
file for this face (or else the presence of the ‘glow’ is needed for develop-
ing links between successive episodes involving a person).

Here, instead of memory files, we suggest that observations are filed
away in separate explanations. A delusion results because the expecta-
tion of high precision leads to over-precise explanations that do not
generalize and therefore lead to large prediction errors in the face of ad-
ditional data. At the same time, the compartmentalization of separate
explanations prevents belief change and elaboration in spite of these
large prediction errors since it prevents “joining the dots”. These ele-
ments combined lead to the phenomenon of aberrant salience as pro-
posed in predictive coding accounts of psychosis (Kapur, 2003). Our
framework explains this aberrant (increased) salience as prediction
Fig. 2.A simulation of delusionalmis-identification. In a case study, Hirstein and Ramachandran
face looking in different directions (here, we represent the photographs as points on a line; obs
shows a simulation of inference in healthy observers: a single underlying cause (“the same pe
right, the inference observed in patient DS simulated (“different women who looked just lik
differed only in the expected precision (left: μτ ¼ 1

100, right: μτ=100). Inputs and all other para

4

errors resulting from overly precise explanations. The emergence of
central delusional beliefs is all but inevitable under these circumstances:
anything confirming an existing explanation will (simply by the me-
chanics of the Bayesian inference mechanism associated with our
DPMM) increase this explanation's “pull”, but not its reach, while any-
thing contradicting it is explained away with high precision.

While our framework is silent on the content of the central beliefs
that are likely to emerge, it allows for models where candidate explana-
tions generated are predominantly self-related, derogatory, grandiose,
etc. Specific models of this kind within the proposed framework will
be the focus of future work.

3.2. Simulation of delusion maintenance

In order to show delusionmaintenance, we againmake Gaussian as-
sumptions, but this timewith an established central belief. We simulate
two learners differing only in expected precision μτ, with identical initial
belief and presented with identical observations. Fig. 3 shows the main
result. Two belief systems differing only in their priors on μτ change in a
radically different manner when presented with observations that are
either integrated (low μτ) into the existing explanations (i.e. clusters),
or mostly require new explanations (high μτ) to be accounted for. Ob-
servations are created by sampling from a uniform distribution and
the initial belief is represented by a cluster (n1=200) constituting an
initial central hypothesis. After generation of 50 new observations, we
compute the predicted labels for them. Next, we compute the posterior
for the labels zi and the cause-specific parameters ϕk = (μk, τk),k=1,...
by running a Gibbs sampler for 10 iterations, which is sufficient for con-
vergence of the (now updated) central hypothesis. In each iteration the
labels are re-sampled according to their full-conditional probabilities
and the cause-specific are parameters re-estimated accordingly. This
corresponds to Algorithm 8 in Neal (2000).

Fig. 3 shows the change in the belief regarding the “central hypoth-
esis”. The bottom left panel shows the updated belief of an agent with a
(1997) presented Capgras' patient DSwith a sequence of photographs of the samemodel's
ervations that are perceptually similar fall close on this abstract dimension). The left panel
rson, photographed multiple times”; represented as a single Gaussian) is inferred. On the
e each other”; represented by multiple Gaussians). The two simulations from our model
meters were equal.



Fig. 3. Belief preserving evidence integration. Initial belief (upper row) and final belief (lower row) after inference given new observations. The difference infinal beliefs is a function of the
expected precision μτ alone. All other settings and inputs are the same. Bottom left: μτ~HN(100,10). The existing explanation (blue Gaussian) is elaborated (i.e., broadened) in response to
new observations, which are to a considerable extent integrated into the already existing, but now elaborated, model. Bottom right: μτ~HN(1/100,10). The existing explanation is
narrowed, but its dominance remains unaffected. New observations which do not fit it exactly are explained away (i.e., assigned to their own little ad hoc explanations). While both of
theseways of processing the same information correspond to Bayesian inference (albeit under different values for μτ), the inference process on the right can be characterized as delusional.
Further details and the code for reproducing this simulation can be found here: https://tinyurl.com/y3m79qdw. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
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relatively low value of μτ, i.e. a value encoding the expectation of rather
imprecise observations, corresponding to wide cause distributions. For
this learner, the updated belief given the presented observations is
more imprecise. In otherwords, it has become capable of integrating ob-
servations that where somewhat outside its initial distribution, leading
to awidening of the density. This can be seen as signalling a reduction of
certainty regarding the initial explanation for the observations. The
right column shows the updated belief of an agent with a relatively
high value of the expected precision parameter μτ. Given this prior,
the agent ends up with a belief that is not changed much in terms of
“content” (i.e. the expected observations under the model k, namely
μk) and is more precise than before. Inference with such a prior exhibits
a confirmatory arbitration of evidencewhich leads to the reinforcement
of current beliefs. Even slight deviations are treated as outliers so as to
maintain the parameters and meaning of the central hypothesis. Note
the simple Gaussians we used here serve to make a general point. It is
in principle straightforward to replace themwith more complex Bayes-
ian networks representing nontrivial causal structures.

Under conditions of delusional belief updating (i.e., aberrant μτ), the
separation of explanatory categories prevents making connections be-
tween observations that challenge current beliefs and which could
lead to very different beliefs altogether. Applying the simulation in 3
to the example by Coltheart et al. (2010) (p. 279), we may take the
input to represent the various observations of their Capgras' patient:

For example, the subject might learn that trusted friends and family
believe the person is hiswife, that this personwears awedding ring that
has his wife's initials engraved in it, that this person knows things about
the subject's past life that only his wife could know, and so on.
5

Each of these observations would normally lead to a change in the
central belief. However, the generation of ad-hoc explanations as in
our simulation could explain how the subject maintains the impostor
belief.

4. Discussion

We have introduced a framework allowing for the description and
generative construction of delusional inference. This is based on approx-
imate Bayesian inference using Dirichlet process mixture models ap-
plied to structure learning problems. We have shown how an optimal
inference algorithm can, endowed with particular higher-order beliefs,
exhibit behaviour resembling delusional inference. Importantly, the
outcome of the inference process was influenced by the prior beliefs
about the expected precision of explanations. A strong belief in precise
observations leads to the plentiful generation of over-fitting explana-
tions, some of which are bound to coincide with an observation, leading
to their acceptance over an a priori more plausible explanation.

4.1. Relation to previous work

Hierarchical predictive coding is one of the most promising compu-
tational frameworks for the description of delusions, and a misalign-
ment in the hierarchical signalling of precision has often been invoked
as the underlying reason for the emergence of delusions (Corlett et al.,
2007, 2009; Fletcher and Frith, 2009; Sterzer et al., 2018). Our frame-
work is fully consistent with these ideas. Indeed, it is exactly (not to
say precisely…) an exaggerated expected precision μτ which is

https://tinyurl.com/y3m79qdw
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sufficient to explain the formation andmaintenance of delusional infor-
mation processing. However, the approach we introduce goes beyond
previous predictive coding accounts of delusions in that it comes with
a fully specified generative algorithm. Furthermore, the large prediction
errors entailed by an over-fitting structure learning process provide the
basis for the phenomenon of aberrant salience, which in our framework
can explain the emergence of central beliefs with high “pull”
surrounded by ad-hoc explanations shielding them from elaboration.

Our model builds on and extends latent cause models in reinforce-
ment learning (Courville et al., 2006; Redish and Johnson, 2007).
Gershman et al. (2010) showed how state classification can be derived
as rational inference in a Dirichlet process mixture model. While these
authors focus on the role of the concentration parameter α, we investi-
gate the role of prior beliefs on the inference of new causes and belief
change. Another important difference is that in their model, inputs con-
sist of features which include the context that needs to be inferred,
while in our model the agent receives no additional cue about context
but has to infer this from the observations alone. Furthermore, our
model has an additional hierarchical layer which allows for varying
prior beliefs about the precision of observations.

4.2. Single-factor versus dual-factor explanations of delusions

There is a debate about whether delusions can be explained by a sin-
gle factor orwhether there need to be at least two. Hierarchical predictive
coding is the classic example of a single-factor framework (Fletcher and
Frith, 2009), while two factors are required according to Coltheart et al.
(2010). Ourmodel speaks to this question in that it provides a generative
process where changing a single parameter is enough to get from appro-
priate to delusional thinking. While this indicates that one-factor expla-
nations of delusion formation and maintenance are possible, the
framework does not preclude the presence of additional factors. For
example, the process of hypothesis generation could be disordered in ad-
dition to the expected precision μτ. Furthermore, the framework allows
for quantitative comparisons of single-factor and k-factor hypotheses.

Our framework takes the perspective that belief states are never
per se delusional, but rather the way information is processed can be
delusional. From this perspective, it is the combination of the
largely immutable central belief and the disconnected auxiliary
hypotheses proliferating around it which together constitute the
delusion. The delusionality does not lie in any one belief but in
the way a belief (i.e., a model of the world) is prevented from
being deepened and broadened. Instead, all the information that
could drive such a deepening and broadening is explained away.
While the models in our simulations were simply clusters of
observations explained by Gaussians, Dirichlet process mixture
models are not restricted to such simple examples. In principle,
such Gaussian clusters can be replaced with elaborate causal
models as in Tenenbaum et al. (2011). From the perspective of
our framework, delusions are initially adequate causal models in
need of elaboration. They are formed by arresting the development
of a particular causal model and are maintained by the same
mechanism — keeping the model insulated from new evidence.

4.3. Limitations and extensions

Our model does not by itself speak to the question howmaladaptive
expected precision μτ could evolve developmentally. However, it fits
closely with the concept of epistemic trust. This is “an individual's will-
ingness to consider new knowledge from another person as trustwor-
thy, generalizable, and relevant to the self” (Fonagy and Allison, 2014)
and is of great clinical importance in the conceptualization and treat-
ment of borderline personality disorder. Our framework allows us to in-
terpret μτ as an inverse quantification of epistemic trust (i.e., as a
quantification of epistemic mistrust): low μτ leads to the integration of
new information and to a corresponding broadening and enrichment
6

of existing models of the world, while high μτ leads new information
to be explained away when it doesn't fit an existing model exactly, ac-
companied by a narrowing of explanations. This provides a mechanistic
computational account of epistemic (mis)trust, and it will be interesting
to study the relation between empirical measures of expected precision
μτ and epistemic trust in future work.

An important limitation is that we have not estimated μτ from
observed behaviour. Not least, this is due to the difficulty of devis-
ing behavioural experiments where participants are given scope to
behave in a sufficiently open-ended manner for ecologically valid
forms of delusional behaviour to emerge while still keeping to a
controlled experimental setting. For the study of delusional belief
dynamics, popular experiments in computational psychiatry such
as reversal learning tasks (Schlagenhauf et al., 2014; Waltz, 2017)
or the beads task (Adams et al., 2018; Baker et al., 2019) are too re-
stricted in the range of behaviour they allow. We therefore face the
challenge of coming up with tasks that enable us to apply our
framework to experimental data.

Examples of applications of DPMMs to experimental data are Collins
and Koechlin (2012) andDonoso et al. (2014), where the authorsmodel
inferential computations underlying reasoning processes in the pre-
frontal cortex (PFC). Specifically, they showed that the PFC is involved
in themonitoring of the reliability of the current and a number of coun-
terfactual behavioural strategies in a learning paradigm. While in their
tasks the reasoning processeswere about behavioural strategies, similar
metacognitive processes may be used in the inferential domain, for ex-
ample in model selection. In this domain, it is challenging to infer
metacognitive processes from behavioural data because the mapping
from reasoning to actions is hard to constrain adequately— not too sim-
ple (e.g., tasks involving binary choices, not requiring higher-order rea-
soning) and not too open-ended (defying formal analysis and
modelling). It is therefore important to ground the design of such
tasks in formal accounts such as the one we propose here. Further-
more, functional imaging combined with formal modelling can re-
veal differences in inference processes that may not be expressed
in directly observable behaviour. Taken together, behavioural
tasks calibrated for meta-inference, neuroimaging, and hierarchical
modelling frameworks like the one proposed here hold promise for
the understanding of delusions, which play out mostly within the
unobservable realm of thought and only rarely relate to behaviours
in predictable ways.

5. Conclusion

Our proposed framework is an initial attempt at a formal concep-
tualization of delusional thinking. While previous computational
descriptions stopped short of proposing a fully generative process,
our framework provides this. It covers the spectrum from delusional
to appropriate treatment of new information with adjustments to
only a single parameter, and it can describe the emergence and
maintenance of a delusion as a one-factor process. Furthermore,
our framework is consistent with Bayesian inference and hierarchi-
cal predictive coding. While this is only a first step which without
doubt will be improved upon and empirical applications are still
missing, it sets a benchmark by combining the properties just men-
tioned: generativity, simplicity, single-factor sufficiency, and consis-
tency with Bayesian inference.
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Appendix ADetails of model and inference algorithm

Formally, our model performs inference for a mixture model with a
Dirichlet process (DP) prior. We assume a data set y= (y1,…,yn) and a
corresponding set of latent labels z = (z1,…,zn). The generative model
can be written as follows:

ϕk � G0 ð1Þ

z1;…znð Þ � CRP αð Þ ð2Þ

yi � F yi;ϕzi

� �
; i ¼ 1;…;n ð3Þ

CRP denotes the Chinese restaurant process, a particular representa-
tion of the DP that provides a probability distribution over the space of
data partitions. For the choiceswemake in our simulation, this becomes

μk j μμ ; τμ � N μμ ; τμ
� �

ð4Þ

τk j μτ ; ττ � HN μτ ; ττð Þ ð5Þ

z1;…; znð Þ � CRP αð Þ ð6Þ

yi � N μzi ; τzi
� �

; i ¼ 1;…;n: ð7Þ

Based on the partition structure in the generative model we can
write the joint probability as

p y; z;ϕð Þ: ¼ p zjαð Þ
Y

k∈1;…;K

Y
i:zi¼k

pN yijμk; τkð ÞpN μkjμμ ; τμ
� �

pHN τkjμτ; ττð Þ
0
@

1
A;

ð8Þ

where pG(y|θ) denotes the density of distribution G(θ) evaluated at y.
Due to exchangeability of the DP, we can compute the full-conditional
distributions by assuming the current observation has index n, where
the full-conditional has a simple form that we use to perform Gibbs
sampling:

P zn ¼ k j yn; ðμk; τkÞ
� �Kþm

k¼1 ; nkf gKk¼1;α;m
� �

¼ p zn ¼ k j z1;…; zt−1ð Þ � pN yi j μk; τkð Þ
ð9Þ

with the prior probability for that assignment, p(zn = k|z1,…,zn-1),
given by

nk

n� 1þ α
, if k is an existing cause, i:e: k≤K ð10Þ

α=m
n� 1þ α

, if k is a new cause, i:e: K < k < K þm ð11Þ

and temporary candidate parameters for them new components drawn
their respective priors μk~N(μμ,τμ) and τk~HN(μτ,ττ), k= K< k< K+m.

The parameters {z1,…,zn,ϕ1,…,ϕK} represent the state of a Markov
chain that is iteratively updated and can be used to estimate functions
of the posterior over the parameters. Specifically, we iterate draws
from the full-conditionals of the z and the cluster parameters ϕ accord-
ing to Algorithm 8 in Neal (2000).

Simulation details

For the simulations for Fig. 3, we first initialize a single the cluster
with an initial dataset Dinit = {(yi, zi)}i=1

200 . This means computing the
7

posterior for cluster k given all data with zi = k. We simulated
Random-Walk-Metropolis-Hastings single chains to obtain J=1000
samples from the posterior ϕj

∗ ~ π(μk, τk ∣ μμ, τμ, μτ, ττ) and setting

ϕk ¼ 1
J ∑

J
jϕ

⁎
j .

Given this initial belief state (amixture with a single cluster), which
was kept identical for the simulations with different priors, we perform
Bayesian inference usingMarkov chainMonte Carlo sampling according
to Algorithm 8 in Neal (2000). Specifically, we scan through new batch
of data Dnew ={yi∗}i=1

50 and sample the labels initial values for the zi∗, i=
1,…, 50 according to the predictive probabilities. For each change in the
partition implied by the zi, we update the affected cluster parameters by
performing 10 MCMC steps toward the posterior (as described for the
initialization), starting from an initialization at the previous estimate.
After the initialization pass, we perform additional iterations where
we iterate 20 times over all observations, both Dinit and Dnew and re-
sample the cluster labels according to the algorithm detailed above.
The simulation was performed with the following hyperparameter set-
tings: μμ=0.0, τμ=1/10, ττ=10 andwith the prior only differing forHN
(μτ(j),ττ), where, μτ(1)=1/100 and μτ(2)=100 for the twomodels. The sim-
ulation was implemented in Julia (https://julialang.org) and our code is
freely available at: https://tinyurl.com/y3m79qdw.
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