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ABSTRACT
Massive black hole binaries (BHBs) are expected to form as the result of galaxy mergers; they
shrink via dynamical friction and stellar scatterings, until gravitational waves (GWs) bring
them to the final coalescence. It has been argued that BHBs may stall at a parsec scale and
never enter the GW stage if stars are not continuously supplied to the BHB loss cone. Here,
we perform several N-body experiments to study the effect of an 8 × 104 M� stellar cluster
(SC) infalling on a parsec-scale BHB. We explore different orbital elements for the SC, and
we perform runs both with and without accounting for the influence of a rigid stellar cusp
(modelled as a rigid Dehnen potential). We find that the semimajor axis of the BHB shrinks
by � 10 per cent if the SC is on a nearly radial orbit; the shrinking is more efficient when a
Dehnen potential is included and the orbital plane of the SC coincides with that of the BHB.
In contrast, if the SC orbit has non-zero angular momentum, only few stars enter the BHB loss
cone and the resulting BHB shrinking is negligible. Our results indicate that SC disruption
might significantly contribute to the shrinking of a parsec-scale BHB only if the SC approaches
the BHB on a nearly radial orbit.

Key words: black hole physics – methods: numerical – stars: kinematics and dynamics –
galaxies: nuclei – galaxies: star clusters: general.

1 IN T RO D U C T I O N

There is compelling evidence that supermassive black holes
(SMBHs) lie at the centre of galaxies since the earliest times
(Haehnelt & Rees 1993; Fan et al. 2003; Jiang et al. 2007, 2008;
Willott et al. 2007, 2010; Mortlock et al. 2011; Venemans et al. 2013;
Bañados et al. 2014; Wu et al. 2015). According to the hierarchi-
cal paradigm (White & Rees 1978), present-day galaxies assemble
through the merger of several progenitors, some of which possibly
hosting an SMBH at their centre. Thus, SMBH binaries (BHBs)
are expected to form as outcomes of galaxy mergers (Begelman,
Blandford & Rees 1980).

Althoughcurrent observational pieces of evidence of the exis-
tence of close BHBs are rather scanty (Komossa et al. 2003;
Rodriguez et al. 2006; Dotti, Sesana & Decarli 2012; Liu, Li
& Komossa 2014; Runnoe et al. 2015; Yan et al. 2015; Li
et al. 2016), the spiral-in and coalescence of a BHB is expected
to be an important source of gravitational waves (GWs, Thorne &
Braginskii 1976) in the frequency range of the Pulsar Timing Array
(Hobbs et al. 2010; Babak et al. 2016) and of future space-borne GW
detectors (e.g. LISA, Amaro-Seoane et al. 2017). Observing GW
emission from BHB mergers would then give us a crucial insight
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on the co-evolution of SMBHs and their host galaxies (Volonteri,
Haardt & Madau 2003; Sesana et al. 2004; Koushiappas & Zent-
ner 2006; Sesana, Volonteri & Haardt 2007; Tanaka & Haiman 2009;
Sesana et al. 2011), and would be a key test for the hierarchical
paradigm.

Early theoretical and numerical studies on the evolution of
BHBs highlighted the possible existence of a ‘final parsec prob-
lem’ (Milosavljević & Merritt 2003b). During the merger of their
host galaxies, the two SMBHs sink towards the centre of the com-
mon potential well by dynamical friction (Chandrasekhar 1943;
Milosavljević & Merritt 2001). When they are sufficiently close
to form a binary, slingshot ejections of stars further reduce their
orbital separation (Saslaw, Valtonen & Aarseth 1974). However,
the binary shrinking may slow down considerably and even stop,
if the loss cone (i.e. the region of the phase space harbouring stars
that can interact with the BHB) has been emptied and cannot be
refilled effectively. This is expected to happen when the binary
separation is of the order of 1 pc; thus, the BHB may never enter
the GW emission stage (Begelman et al. 1980; Milosavljević &
Merritt 2001; Yu 2002; Milosavljević & Merritt 2003b; Makino &
Funato 2004).

Several mechanisms have been identified as possible solutions for
the final parsec problem. If the BHB evolves in a gas rich nucleus,
gas drag can efficiently dissipate its binding energy and the BHB
may reach the GW emission stage within ∼100 Myr, regardless
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of the loss cone refilling (see e.g. Escala et al. 2004; Dotti, Colpi
& Haardt 2006; Goicovic et al. 2016). Alternatively, a massive
perturber, such as another massive black hole, a stellar cluster (SC),
a giant molecular cloud or the compact core of an infalling dwarf
galaxy, might have contributed to refilling the loss cone (see e.g.
Perets & Alexander 2008; Matsui & Habe 2009). The Brownian
motion of the BHB was also proposed as a significant driver of loss
cone refilling (Milosavljević & Merritt 2001; Chatterjee, Hernquist
& Loeb 2003; Milosavljević & Merritt 2003a), but recent studies
suggest that the wandering-induced shrinking of the BHB is not
efficient if the merger remnant is composed of � 106 stars (Bortolas
et al. 2016).

Recently, a number of semi-analytical and numerical studies
showed that the BHB stalling does not occur when the merger is
simulated ab initio (Berczik et al. 2006; Khan, Just & Merritt 2011;
Preto et al. 2011; Gualandris & Merritt 2012; Khan et al. 2012a,b,
2016). The most likely reason is that the merger remnant is generally
non spherical, and possibly rotates (e.g. Yu 2002; Khan et al. 2013;
Vasiliev, Antonini & Merritt 2014, 2015; Holley-Bockelmann &
Khan 2015; Gualandris et al. 2017). In triaxial potentials, the loss
cone can be efficiently replenished at all times, thanks to the action
of non-spherical torques, and the BHB coalescence can be reached
in few Gyr at most (Khan et al. 2011; Preto et al. 2011; Gualandris
& Merritt 2012; Khan et al. 2016; Bortolas et al. 2017).

Here, we test whether an additional process may replenish the
loss cone: the infall of an SC on to the BHB. SCs that form in prox-
imity of a galactic nucleus are expected to rapidly sink to the central
parsec by dynamical friction (Gerhard 2001; Kim & Morris 2003;
McMillan & Portegies Zwart 2003; Portegies Zwart, McMillan &
Gerhard 2003; Kim, Figer & Morris 2004; Gürkan & Rasio 2005;
Fujii et al. 2008). In fact, SC disruption has been proposed as one
of the most promising mechanisms to form nuclear SCs (Capuzzo-
Dolcetta 1993; Capuzzo-Dolcetta & Miocchi 2008; Arca-Sedda
et al. 2015; Arca-Sedda, Capuzzo-Dolcetta & Spera 2016), includ-
ing that of the Milky Way (Antonini et al. 2012).

Several young massive SCs (such as the Arches and the Quin-
tuplet) lie in the nucleus of the Milky Way, which is a relatively
quiescent galaxy (see Portegies Zwart, McMillan & Gieles 2010
for a recent review). Young massive SCs are even more common at
the centre of galaxy mergers, which are known to trigger bursts of
star formation (see e.g. Sanders et al. 1988). Since galaxy mergers
are suspected to lead to the formation of both BHBs and young
SCs, the dynamical-friction induced infall of a young SC on to a
parsec-scale BHB should be a rather likely event.

Here, we perform direct N-body simulations to study the infall
of an SC on a parsec-scale circular BHB. The paper is organized as
follows: in Section 2, we describe the numerical methods and initial
conditions of the simulations; in Section 3, we present our results;
our conclusions are drawn in Section 4.

2 M E T H O D S

In this paper, we performed direct N-body simulations of the infall
of an SC on to a parsec-scale BHB. To run the simulations, we
use the direct summation N-body code HIGPUS (Capuzzo-Dolcetta,
Spera & Punzo 2013). HIGPUS implements a Hermite sixth-order
integration algorithm (Nitadori & Makino 2008) with block time
steps (Aarseth 2003) and has been designed to run natively on
graphics processing units.

To model the SC, we adopt a spherical King model (King 1966),
with central dimensionless potential W0 = 5 and King’s core radius
rk = 0.4 pc. The SC is composed of N = 131 070 stars with masses

Table 1. Main features of the runs.

Run Galactic potential Angular Momentum Orbit

run 1 No No Perpendicular
run 2 No No Coplanar
run 3 No Yes Coplanar
run 1p Yes No Perpendicular
run 2p Yes No Coplanar
run 3p Yes Yes Coplanar

Notes. For each run (Column 1), we report whether an underlying galactic
potential is included (Column 2), if the initial orbit has some angular mo-
mentum (Column 3) and whether the orbit is coplanar or perpendicular with
respect to the BHB orbital plane (Column 3).

distributed according to a Kroupa (2001) initial mass function, with
mass range between 0.1 and 100 M�. The initial total mass of the
SC is MSC ≈ 8 × 104M�. Stellar evolution is not included in the
simulations.

Two SMBHs are placed in circular orbit in the x–z plane with
their centre of mass at the origin of the reference frame and with
angular momentum in the positive y direction. The initial distance
between the SMBHs is 1 pc and each SMBH has mass 106 M�. The
softening parameter of the simulation is set to ε = 10−4 pc, which
is several orders of magnitude smaller than the minimum distance
reached by the SMBHs.

In this work, we explored three different orbits for the cluster
infall. For each of them, we perform two runs: with and without
including the underlying galactic potential. Namely, the potential
of the host galaxy is included in runs 1p, 2p and 3p, whereas it
is absent in runs 1, 2 and 3. When present, the galactic potential
is described as a rigid potential, represented by Dehnen’s density
profile (Dehnen 1993)

ρ(r) = (3 − γ ) Mg

4π

r0

rγ (r + r0)4−γ
, (1)

with total mass Mg = 5 × 1010 M�, scale radius r0 = 250 pc and
inner density slope γ = 0.5.

In runs 1, 1p, 2 and 2p, the SC is initially in free fall, i.e. on a
radial orbit. In runs 1 and 1p (runs 2 and 2p), the orbital plane of
the SC is perpendicular (coplanar) with respect to the BHB orbital
plane. Finally, in runs 3 and 3p, the SC is placed at the apoapsis of an
eccentric orbit (e = 0.75, defined through the periapsis and apoapsis
distance in run 3p) with angular momentum along the y axis, but
with opposite sign with respect to the BHB angular momentum;
this maximizes the relative velocity between the SC and the BHB.
The centre of mass of the SC is initially located in y = 20 pc (runs 1
and 1p) and x = 20 pc (runs 2, 2p, 3 and 3p). Runs 1 and 2 (runs 1p
and 2p) are evolved for 5 Myr (10 Myr), whereas runs with angular
momentum (3, 3p) are evolved for 20 Myr. Table 1 is a summary of
the initial conditions of the six runs.

During the simulation, the centre of mass of the BHB is anchored
to its initial position. To ensure this, we modified HiGPUs so that,
after each time step, the binary centre of mass is re-centred at the
origin of the reference frame, and its velocity is set to zero. The
BHB recentring minimizes the binary wandering, which otherwise
would be too high in runs without the underlying galactic potential
(see Bortolas et al. 2016). For consistency, we anchored the BHB
centre of mass even in the runs including the galactic potential. We
checked that this choice does not affect the results of our simula-
tions by re-running run 2p without the BHB anchorage. We find
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1056 E. Bortolas, M. Mapelli and M. Spera

Figure 1. Time evolution of the stellar surface density projected on the x–z plane – i.e. the BHB orbital plane – for runs 1, 2, 3 (top three rows), and runs 1p,
2p, 3p (bottom three rows). The blue central dots mark the position of the two SMBHs. The colour code refers to the smoothed projected mass density of stars,
and the colour scaling is the same for all panels.

no appreciable differences in the evolution of the BHB and of the
disrupted SC.

3 R ESULTS

Figs 1 and 2 show the time evolution of the simulations in the x–z
plane (i.e. the BHB orbital plane) and in the x–y plane, respectively.
From these figures, it is apparent that the evolution of the system
strongly depends on the initial angular momentum of the SC and
on the presence of the Dehnen potential.

3.1 The evolution of the BHB without Dehnen potential

In this section, we discuss the evolution of the BHB in runs 1, 2 and
3, in which we do not include a rigid Dehnen potential.

In both runs 1 and 2, the SC starts interacting with the BHB at
time t ∼ 1 Myr. During the interaction, stars belonging to the SC
undergo three-body interactions with the BHB. Fig. 3 shows the
evolution of the BHB orbital separation as a function of time. The
orbital separation changes very fast during the first interaction with
the SC, at t ∼ 1–1.1 Myr. Afterwards, the BHB keeps shrinking with
a much shallower asymptotic trend, and the change in the semimajor
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Figure 2. Same as Fig. 1, but the stellar surface density is projected on the x–y plane.

axis a between 3.5 and 5 Myr is only da/dt ∼ − 0.0025 pc Myr−1

in both runs. We also note that the BHB keeps orbiting in the initial
orbital plane.

When the interaction is almost over (in less than 5 Myr), the BHB
separation shrinks by ∼10 and ∼12 per cent in run 1 and run 2, re-
spectively. This implies that the SC infall effectively replenished
the loss cone of the BHB. As expected, the shrinking effect is more
important in run 2, where the orbit of the SC and that of the BHB are
coplanar. The reason is that the average relative velocity between
the SMBHs and the stars is lower in run 2 than in run 1, maximizing
the energetic exchange during the interaction. However, the differ-

ence of the final BHB semimajor axis between run 1 and 2 is only
∼20 per cent.

Similarly, Fig. 4 shows the behaviour of the hardening rate s,
defined as

s(t) = d

dt

1

a
, (2)

where a is the semimajor axis of the binary. The hardening rate
s(t) quantifies the time variation of the BHB binding energy
(the SMBH masses do not change with time). s(t) is maximum
(∼10−2 Myr−1 pc−1) during the first encounter between the SC and
the BHB, and then it rapidly drops to few× ∼10−5 Myr−1 pc−1.
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1058 E. Bortolas, M. Mapelli and M. Spera

Figure 3. Evolution of BHB separation and semimajor axis as a function
of time for the runs without Dehnen potential. Red dotted thick line (or-
ange solid thin line): semimajor axis (separation) in run 1. Dark blue solid
thick line (sea-green solid thin line): semimajor axis (separation) in run 2.
Black dashed thick line (grey solid thin line): semimajor axis (separation) in
run 3.

Figure 4. Evolution of the hardening rate (s, top panel) and of the eccen-
tricity (e, bottom panel) of the BHB as a function of time for the runs without
Dehnen potential. In all panels, red dotted line: run 1; blue solid line: run 2;
black dashed line: run 3.

The SC infall also produces a small but sudden jump in the BHB
eccentricity: e rises from 0 to ∼0.05 and to ∼0.03 after the first
encounter with the SC in runs 1 and 2, respectively.

Figs 3 and 4 also show the time evolution of the BHB in run 3
(with non-zero orbital angular momentum). The SC starts interact-
ing with the BHB at t ∼ 1.2–1.3 Myr, but the interaction is noticeably
weaker with respect to runs 1 and 2. The BHB immediately shrinks
of about 0.4 per cent, whereas after 5 Myr, its semimajor axis is
only 0.8 per cent smaller than its initial value; even after 20 Myr,
the BHB has shrunk by less than 1.5 per cent. In this run, the change
in the BHB eccentricity is also negligible.

The difference between runs 1, 2 and 3 is related to the number
of SC stars that are in the loss cone, defined as the region of the
phase space harbouring stars with angular momentum per unit mass
j lower than the angular momentum per unit mass of a circular binary
with the same semimajor axis, i.e.

j < JLC =
√

2GMBHBa, (3)

Figure 5. Fraction of stars inside the loss cone (i.e. obeying to the condition
in equation 3) as a function of time. The plot shows the loss cone population
in runs 1 (thin red dotted line), 2 (blue thin solid line), 3 (black thin dashed
line), 1p (orange thick dotted line) and 2p (sea-green thick solid line). Run
3p is not shown because the fraction of loss cone stars in run 3p is always
below 0.3 per cent.

where MBHB is the total mass of the BHB. The number of stars
inside the loss cone1 is shown in Fig. 5.

In runs 1 and 2, about 27 per cent of the stars populate the loss
cone at the beginning of the simulation. During the first approach,
the SC is progressively stripped by the tidal forces of the BHB (see
Figs 1 and 2). The tidal stripping forces many other stars to move
on more radial orbits (Hills 1991; Perets et al. 2009) and funnels
them inside the loss cone: At the maximum approach between the
SC and the BHB, ∼75 per cent of the stars lie in the loss cone.
The BHB expels stars very efficiently, and the loss cone population
gets gradually depleted as the stars are scattered on highly energetic
orbits: After 5 Myr, only ≈6 per cent of the stars still inhabit the
loss cone and they will likely become unbound in the next few Myr.

The evolution of the loss cone population is totally different in run
3. The SC orbit in run 3 has non-zero angular momentum, thus stars
satisfying the condition given in (3) are initially only ≈7 per cent;
In fact, the average angular momentum per unit mass of stars at the
beginning of the simulation in run 3 is about twice the same quantity
in runs 1 and 2. In run 3, the fraction of stars in the loss cone is almost
constant for the first Myr because the non-zero angular momentum
protects the cluster against the BHB-induced tidal stripping. When
the SC reaches the maximum approach with respect to the BHB,
the slingshot interactions between stars and BHB expel nearly all
stars from the loss cone, which is almost completely depleted.

Fig. 6 shows the fraction of stars bound and unbound to the BHB
as a function of time for runs without the Dehnen potential. In runs
1 and 2, the fraction of bound stars drops after the first interaction
with the BHB. Only 10 per cent of stars are bound to the BHB at the
end of the simulation, regardless of the initial inclination between
the SC and the orbital plane of the BHB. This implies that most
stars in runs 1 and 2 receive a slingshot kick after the interaction
with the BHB, sufficiently strong to unbind them from the BHB.

In contrast, only ∼23 per cent of stars escape the BHB potential
in run 3. Given that the loss cone is almost empty after 5 Myr, stars
still orbiting the BHB will probably not undergo slingshot ejections,

1 Stars with positive energy (escapers) are not part of the loss cone population
even if their angular momentum is generally very low, as they will never
interact again with the BHB.
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Figure 6. Fraction of stars bound or unbound to the BHB as a function of
time for runs without Dehnen potential. At the beginning of the simulation,
all stars are bound to the BHB in runs 1 (orange dotted line), 2 (sea-green
solid line) and 3 (grey dashed line). When the BHB-SC interaction takes
place (t ∼ 1 Myr), the fraction of unbound stars (red dotted line for run
1, blue solid line for run 2, black dashed line for run 3) rapidly increases
because a lot of stars are ejected due to the slingshot mechanism.

unless stellar torques generated by other perturbers funnel such stars
in the loss cone region.

We further stress that the large fraction of unbound stars in runs
1 and 2 is a consequence of the absence of an underlying galactic
potential in these runs.

3.2 The evolution of the BHB with a Dehnen potential

In this section, we discuss the evolution of the BHB in runs 1p, 2p
and 3p, which include a rigid Dehnen potential.

In runs 1p and 2p, the first encounter between the SC and the
BHB happens at ∼0.2 Myr (Figs 1 and 2), and the velocity of the
SC at maximum approach is about twice that in runs 1 and 2 because
of the Dehnen potential. Given the higher orbital speed, the SC in
runs 1p and 2p is not entirely captured by the BHB during the first
periapsis passage: The partially stripped remnant of the SC reaches
the apoapsis and then falls back again on to the BHB (while the SC
is entirely stripped and captured by the BHB at the first periapsis
passage in runs 1 and 2). The Dehnen potential keeps most stars
bound to the system, so that they fall back to the centre and interact
with the BHB several times. In contrast, most stars interact with the
BHB only once and then are ejected from the system in the runs
without Dehnen potential.

Fig. 7 shows the evolution of the BHB semimajor axis as a
function of time for runs including the Dehnen potential. The final
semimajor axis of the BHB in runs 1p and 2p is similar to what
we found for runs 1 and 2: After 10 Myr, the BHB has shrunk
by ≈13 per cent in run 1p and by ≈15 per cent in run 2p. As we
already discussed for runs 1 and 2, the BHB shrinking is slightly
more efficient when the SC orbit is coplanar because the relative
velocity between the SC members and the BHB is lower.

However, there are several significant differences with respect
to runs 1 and 2. In the first ∼2 Myr, the semimajor axis of the
BHB does not shrink monotonically: It seems to undergo damped
oscillations between smaller and larger values in both runs 1p and

Figure 7. Evolution of BHB separation and semimajor axis as a function
of time for runs with the Dehnen potential. Red dotted thick line (orange
solid thin line): semimajor axis (separation) in run 1p. Dark blue solid thick
line (sea-green solid thin line): semimajor axis (separation) in run 2p. Black
dashed thick line (grey solid thin line): semimajor axis (separation) in run
3p.

2p (Fig. 7). In run 2p, the BHB semimajor axis even jumps to a
value of ∼1.05 pc after the first interaction.2

This happens because, if the Dehnen potential is included, the
BHB is a marginally soft binary (i.e. its binding energy is compara-
ble to the average kinetic energy of an intruder, according to Heg-
gie 1975) with respect to the SC as a single bullet. In fact, the binding
energy of the BHB (EBHB = G MBH1 MBH2/2 a � 4.3 × 1052 erg,
where MBH1 and MBH2 are the masses of the two SMBHs) is of
the same order of magnitude as the total kinetic energy of the
SC (EK, SC � 3.6 × 1052 erg) at the first periapsis passage (EK, SC

≈ 0.8EBHB for runs 1p and 2p). Although a hard binary (i.e. with
binding energy much larger than the average kinetic energy of an in-
truder) tends to shrink after a gravitational encounter, a marginally
soft binary might either increase or decrease its semimajor axis
(Heggie 1975).

At the first periapsis passage, the SC is still sufficiently compact
to interact with the BHB as a single intruder, rather than a tidally
disrupted system. Thus, initially the BHB is rather soft with respect
to the intruder, and its semimajor axis tends to oscillate between
larger and smaller values. At later times (>2 Myr), when the SC
is disrupted, the BHB interacts with single stars (rather than with
the SC as a whole). In this late stage, the BHB starts shrinking
monotonically because it is a hard binary with respect to each single
star it interacts with.

The second important difference with respect to runs 1 and 2 is the
derivative of the semimajor axis with time (da/dt). Although in runs
1 and 2, the semimajor axis stalls after the first encounter (because
the loss cone gets depleted), in runs 1p and 2p, the semimajor axis
keeps shrinking during the entire simulation. This is due to the fact
that all stars in runs 1p and 2p remain bound to the system under
the effect of the global potential. Thus, they can interact with the
BHB more than once, when reaching the periapsis of their orbit.

2 As a matter of fact, a small jump in the binary semimajor axis also appears
at the beginning of the SC–BHB interaction in run 2 (Fig. 3); however, the
immediate disruption of the SC by the binary hinders any further semimajor
axis oscillation.
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Figure 8. Evolution of the hardening rate (s, top panel) and of the eccen-
tricity (e, bottom panel) of the BHB as a function of time for runs with the
Dehnen potential. In all panels, red dotted line: run 1p; blue solid line: run
2p; grey dashed line: run 3p.

This effect is also apparent from the hardening rate (Fig. 8). The
BHB hardening rate oscillates as a consequence of the oscillations
in the BHB semimajor axis. The hardening rate between 3.5 and
5 Myr is s ≈ 0.019 (s ≈ 0.014) pc−1 Myr−1 in run 1p (run 2p), and
even at later times (between 8.5 and 10 Myr), its value is of the
order of 10−2 pc−1 Myr−1. Thus, the BHB hardening efficiency in
runs 1p and 2p is higher than in runs 1 and 2 at late times.

From Fig. 8, it is also apparent that the eccentricity of the BHB
increases almost instantaneously to 0.06–0.08 during the first in-
teraction, whereas it does not change significantly afterwards. This
result is similar to what we find for runs 1 and 2.

The fraction of stars inside the BHB loss cone flc for runs 1p
and 2p is shown in Fig. 5: At the beginning of the simulation, flc is
the same as in runs 1 and 2 (≈27 per cent). The BHB-induced tidal
stripping funnels about half of the SC members into the loss cone
during the first ≈0.2 Myr. The faster BHB-SC interaction in runs 1p
and 2p results in a smaller number of stars initially funnelled in the
loss cone; however, the depletion of the BHB loss cone is slower
when the Dehnen potential is included. This results from the fact
that stars may undergo repeated slingshot interactions before being
definitely expelled from the loss cone.

Figs 7 and 8 also show the time evolution of the BHB in run
3p. Due to the initial orbital angular momentum of the SC, the
fraction of stars in the loss cone is extremely low, and the binary
shrinking is not effective. In particular, the BHB semimajor axis has
shrunk by ≈0.4 per cent after 10 Myr when its hardening rate is only
s ≈ 2.5 × 10−4 pc−1 Myr−1, and even after 20 Myr, it has shrunk
only by ≈0.6 per cent. Initially, no stars inhabit the loss cone in run
3p; after 10 Myr (20 Myr), only ≈0.16 (0.27) per cent of stars are
found in the loss cone. Also, the BHB eccentricity does not change
significantly in run 3p (Fig. 8). Thus, we can conclude that the
properties of the BHB in runs 3 (without Dehnen potential) and 3p
(with Dehnen potential) are very similar.

3.3 Structure of the SC remnant

The interaction with the BHB leads to the complete disruption of
the SC. What is the final spatial distribution of stars around the
BHB? Figs 1 and 2 show the projected stellar surface density in
the x–z and x–y plane, whereas Fig. 9 shows the final radial density
distribution of stars.

Figure 9. Radial density distribution of stars after 5 Myr (10 Myr) in runs
1, 2, 3 (1p, 2p, 3p). The final density profile is compared with the initial
density distribution (light-blue dash-dotted line). Thin dotted red line: run 1;
thin solid blue line: run 2; thin dashed black line: run 3; thick dotted orange
line: run 1p; thick solid sea-green line: run 2p; thick dashed grey line: run
3p. The initial density profile is computed with respect to the cluster centre
of mass, whereas the other density profiles are computed with respect to the
BHB centre of mass.

In runs 1 and 2, the disruptive interaction lowers the central
density of the SC by 2 to 3 orders of magnitude. Most of the SC
mass is scattered out of the initial tidal radius (rt = 10 pc), and
the final density of the SC behaves as ρ(r) ∝ r−2. The stars keep
memory of their initial orbit because stars still bound to the BHB
after 5 Myr distribute on a prolate (triaxial) morphology in run 1
(run 2), whose longest axis lies along the cluster infall direction.

In runs 1p and 2p, the stellar distribution after 10 Myr is almost
isotropic and less influenced by the initial conditions. The density
distribution is cored within the BHB orbit, and decreases as ρ ∝ r−2

between 1 and 20 pc, whereas it rapidly vanishes at larger distances.
In fact, the density profile ρ ∝ r−2 resulting from the four radial
runs is approximately what we expect for a relaxed stellar system
around a point mass; Antonini et al. (2012) simulated the infall of
several globular clusters on an SMBH and obtained a similar trend
for the density at large radii.

If the SC is initially on a non-zero angular momentum orbit, stars
settle on a disc-like structure (aligned with the initial SC orbit),
whose external radius is R � 20 pc and whose thickness is � 0.1 R.
If the Dehnen potential is not included, the SC remnant is strongly
asymmetric, as the BHB potential is almost Keplerian and most
stars keep orbiting along the initial SC orbit. If the Dehnen cusp is
present, the additional potential induces a precession on the stellar
orbits, which results in a three-lobed overdensity within the disc
(bottom right-hand panel of Fig. 1). The density profile of stars in
runs 3 and 3p is also shown in Fig. 9, but one should keep in mind
that the final stellar distribution in these two runs is far from being
spatially isotropic.

3.4 Distribution of the stellar orbital elements

We now focus on the orbital parameters of stars that remain bound
to the BHB and to the Dehnen potential (if present) by the end of the
simulation. We stress that this study is limited by the fact that we
cannot take in account any possible dynamical interaction between
SC stars and the pristine nuclear stellar population.
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Figure 10. Distribution of semimajor axis a (left-hand panels), eccentricity
e (central panels) and inclination i (right-hand panels) of the stellar orbits (i
is measured with respect to the plane of the BHB) in runs 1 (red, horizon-
tally shaded histograms), 2 (blue, vertically shaded histograms) and 3 (black
empty histograms) at different simulation times: The top row shows the ini-
tial distribution (t = 0), the central row shows the distribution at t = 1 Myr
and the bottom row shows the distribution at t = 5Myr. Green dashed
line in the central panels: thermal eccentricity distribution f(e) de = 2e de
(Jeans 1919); green dashed line in the right-hand panels: isotropic distribu-
tion of inclinations f(i) di = sin (i)/2 di.

Fig. 10 shows the orbital properties of stars bound to the BHB
in runs 1, 2 and 3 (without Dehnen potential), whereas Fig. 11
shows the properties of stars bound to the BHB and the Dehnen
potential for runs 1p, 2p and 3p. The stellar orbital properties are
shown at different times: (i) at the beginning of the integration, (ii)
when the interaction between the SC and the BHB just started, and
(iii) after 5 Myr (10 Myr) in runs without (with) the Dehnen rigid
potential.

In all runs, the distribution of star semimajor axis initially peaks
around ∼10 pc, which is the initial average semimajor axis of stars
in the SC. After the interaction, the distribution of semimajor axes
becomes noticeably broader, especially in runs 1 and 2. Table 2
lists the fraction of non-escaping stars whose semimajor axis is
smaller than a given threshold value; if the initial orbit is radial, �
0.5 per cent of stars have semimajor axis smaller than 1 pc: Their
final orbits are inside the semimajor axis of the BHB, and they may
further interact with it. While this percentage is small, these stars
can have a further effect on the binary orbital shrinking. The fraction
of stars with semimajor axis smaller than 5 pc is higher when the
radial infall is coplanar (runs 2 and 2p), as the coupling between
the SC and the BHB is stronger and more stars settle on low-energy
orbits tightly bound to the BHB.

The distribution of inclinations i of the stellar orbit with respect to
the BHB orbital plane strongly depends on the initial orbital plane
of the SC in runs 1, 2 and 3: While bound stars in run 1 preserve
a nearly perpendicular orbital inclination with respect to the orbital
plane of the BHB, the distribution of bound stars in run 2 is more
isotropic. In run 3, the SC–BHB interaction initially drives all stars

Figure 11. Distribution of semimajor axis a (left-hand panels), eccentricity
e (central panels) and inclination i (right-hand panels) of the stellar orbits
(i is measured with respect to the plane of the BHB) in runs 1p (red, hor-
izontally shaded histograms), 2p (blue, vertically shaded histograms) and
3p (black empty histograms) at different simulation times: The top row
shows the initial distribution (t = 0), the central row shows the distribution
at t = 0.5 Myr and the bottom row shows the distribution at t = 10Myr.
Green dashed line in the central panels: thermal eccentricity distribution
f(e) de = 2e de (Jeans 1919); green dashed line in the right-hand panels:
isotropic distribution of inclinations f(i) di = sin (i)/2 di.

Table 2. Fraction of bound stars with semimajor axis a smaller than 1, 5,
10 and 20 pc.

a<1 pc a<5 pc a<10 pc a<20 pc

run 1 0.25 per cent 5.2 per cent 12 per cent 42 per cent
run 2 0.64 per cent 6.0 per cent 13 per cent 43 per cent
run 3 0 0 8.2 per cent 53 per cent
run 1p 0.03 per cent 4.5 per cent 32 per cent 92 per cent
run 2p 0.14 per cent 6.4 per cent 31 per cent 90 per cent
run 3p 0 0 36 per cent 99.9 per cent

Notes. Column 1: run name; Columns 2–5: fraction of bound stars whose
semimajor axis is <1 pc (Column 2); <5 pc (Column 3); <10 pc (Column
4); <20 pc (Column 5). The listed fractions are computed after 5 Myr from
the beginning of the simulation in runs 1, 2 and 3 and after 10 Myr in runs
1p, 2p and 3p.

with i < 90◦ on orbits with i � 90◦; by the end of the run, almost
all stars in run 3 rotate in the opposite direction to the BHB, except
for a few stars that probably experienced a strong interaction with
the BHB. The counter rotation of most stars results from the choice
of giving to the SC an orbital angular momentum opposite to that
of the BHB.

The final distribution of stellar inclinations in runs with the
Dehnen potential is similar for runs 1p and 2p, suggesting that
stellar inclinations may reach the same equilibrium configuration
if one waits long enough; however, after 10 Myr, a small fraction
of stars in these runs still keep memory of the initial conditions
of the simulation (e.g. there is a small peak in the distribution of
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Figure 12. Cumulative distribution of unbound stars Nu, whose radial ve-
locity is greater than a threshold velocity v0 as a function of v0 after 5 Myr in
runs 1, 2, 3 and after 10 Myr in runs 1p, 2p. Red dotted thin line: run 1; blue
solid thin line: run 2; black dashed thin line: run 3; orange dotted thick line:
run 1p; sea-green solid thick line: run 2p; no stars escape from the system in
run 3p. The dash-dotted vertical line at v0 = 533 km s−1 shows the escape
velocity from the Milky Way at three virial radii (Smith et al. 2007; Piffl
et al. 2014).

inclinations at ∼90◦ in run 1p). In addition, ≈70 per cent of bound
stars in runs 1p and 2p settle on orbits whose inclination is smaller
than 90◦; this indicates that stars preferentially align their orbital
angular momentum with the BHB one. Such result is not surprising
as gravitational torques induced by the binary can drag a number
of stars into corotating orbits (e.g. Mapelli et al. 2005). Despite the
fact that in run 3p most stars keep memory of their initial inclination
(∼180◦), even in this run some stars are dragged on to corotating
orbits by the gravitational torques of the binary, as 0.3 per cent of
them have an inclination smaller than 90◦ after 10 Myr.

In all radial runs, the eccentricities of bound stars are much higher
than a thermal distribution, as stars keep memory of the initial radial
orbit of the SC; the eccentricity distributions look similar for such
radial runs even if perpendicular runs 1, 1p always have a slight
overabundance of highly eccentric stars compared to the coplanar
runs 2, 2p. The large fraction of very eccentric objects also indicates
that most bound stars are only marginally bound to the system.

The distribution of eccentricities in run 3 is initially very similar
to the thermal distribution (Jeans 1919), but this is probably because
the initial orbital eccentricity of the SC is e = 0.75, i.e. it is really
close to the mean-square value of the thermal eccentricity distri-
bution. At later times, such distribution is still close to the thermal
one, but more power is found at high eccentricities, indicating that
the BHB funnels stars on more radial orbits.

The initial eccentricity distribution of stars in run 3p still peaks
at e = 0.75, but the higher initial velocity of the SC in this run
makes the distribution narrower compared to the one of run 3. At
late times, the eccentricity distribution of run 3p slightly broadens
and a small peak is found at e ≈ 0.9, as a probable signature of
weak slingshot interactions.

3.5 Hyper-velocity stars

Fig. 12 shows the cumulative distribution of the radial velocity
vr of stellar escapers, i.e. stars that become unbound during the

simulation; here, vr represents the component of the stellar veloc-
ity vector projected along the radial direction. From Fig. 12, it is
apparent that a large number of stars become unbound in runs 1, 2
and 3 (without Dehnen potential), but their velocity is >100 km s−1

only in few cases.
The fastest escapers in runs 1 and 3 attain a velocity

vr ∼ 200 km s−1 at most. Run 2 produces a marginally larger num-
ber of fast escapers: Four objects attain an escape speed greater than
the estimated escape speed from the Milky Way at three virial radii:
≈533 km s−1 according to Piffl et al. (2014).

In contrast, Fig. 12 shows that only few tens of stars become un-
bound in runs 1p and 2p (with Dehnen potential), but their velocity
is always >600 km s−1. In particular, only 10 and 21 stars out of 105

get unbound in run 1p and 2p, respectively, whereas no star leaves
the potential well in run 3p.

The velocity attained by the escapers in runs 1p and 2p can reach
values as high as 5000 km s−1 and 20 000 km s−1, respectively.3

Again, coplanar orbits (run 2p) are more efficient in producing high
velocity stars than perpendicular SC orbits (run 1p). We stress that
all the escapers in runs 1p and 2p can be classified as genuine hyper-
velocity stars (Hills 1988; Brown et al. 2005, 2006), produced by
the interaction with the BHB.

4 D I S C U S S I O N A N D C O N C L U S I O N S

In this paper, we simulated the disruption of an SC by a BHB.
We explored several different configurations for the SC-BHB in-
teraction: with and without a rigid Dehnen potential, considering
an SC orbital eccentricity e = 1 and 0.75, and assuming 0 or 90◦

inclination between the orbital plane of the SC and that of the BHB.
Runs without a Dehnen potential are quite unrealistic because

the BHB is expected to lie in the centre of the galactic potential
well. However, we ran them because they represent a very simple
test case and because we can infer the role of the galactic potential
from the comparison between runs with and runs without a galactic
potential.

When the initial SC orbit has non-zero angular momentum
(e = 0.75), only few stars enter the BHB loss cone. As a conse-
quence, the hardening rate of the BHB is almost negligible. This
result is nearly unaffected by the presence of a Dehnen potential.

In contrast, if the initial orbit of the SC is radial (e = 1), the infall
of the SC effectively refills the loss cone of the BHB: The semi-
major axis of the BHB changes by �10 per cent within 5–10 Myr.
Even if nearly radial orbits are not expected to be common, they can
be produced by collisions between molecular clouds. In particular,
the collision of two molecular clouds close to the central parsec
of a galaxy might trigger the formation of an SC with very low
orbital angular momentum (e.g. Hobbs & Nayakshin 2009; Mapelli
et al. 2012). For instance, Tsuboi, Miyazaki & Uehara (2015) re-
cently showed that at least part of the star formation observed within
the Galactic Centre may be triggered by collisions between molec-
ular clouds.

In our simulations, if the Dehnen potential is not included and
the SC infalls radially, the semimajor axis of the BHB shrinks
very fast during the first encounter with the SC, but then it stalls.
In contrast, if the Dehnen potential is included, the hardening of

3 If we do not anchor the BHB centre of mass to the origin of our reference
frame, the number of produced hyper velocity stars is similar to what we
show in Fig. 12; however, the maximum velocity attained by such hyper
velocity stars drops to about 6,000 km s−1.
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the BHB is initially less efficient, but then the BHB keeps shrink-
ing at a significant rate for the entire simulation (10 Myr). The
reason of this difference is that most stars that interact with the
BHB acquire a kick velocity of several ten to several hundred
km s−1. If only the SC and the BHB contribute to the potential
well, these stars end up unbound and completely ejected from the
system. Thus, they cannot undergo more than one interaction with
the BHB.

In contrast, if the rigid Dehnen potential is included, these kick
velocities are too low to unbind a star: Most stars remain bound to
the potential well. After reaching their new apoapsis, these stars fall
back towards the centre of the potential well and might interact with
the BHB several times. Thus, the BHB keeps shrinking for a longer
time because each star can undergo multiple interactions with the
BHB.

We stress that the simulations presented here neglect the effects
of dynamical friction induced by the pristine stellar population on
the infalling SC (because the Dehnen potential is modelled as a rigid
potential). Gravitational drag can bring the SC remnant on orbits
closer to the BHB and further assist the BHB shrinking. However,
Petts & Gualandris (2017) recently showed that dynamical friction
is inefficient in bringing SC stars on orbits closer than ∼2 pc from
the central massive object(s), even if one assumes a very dense SC
infalling from 5 to 15 pc distance.

Another effect we neglected is the loss cone refilling induced
by a massive perturber (the SC, in our case) on the pristine stellar
population, as this mechanism was already explored in a series of
previous studies (Perets & Alexander 2008; Matsui & Habe 2009):
They demonstrated that a massive object is able to deflect the or-
bits of many stars belonging to the pristine galaxy core and fun-
nel them on to the loss cone, enhancing the binary shrinking. In
particular, Matsui & Habe (2009) analysed how the BHB shrink-
ing rate can be boosted by the infall of a compact dwarf galaxy
merging with the BHB host galaxy. They consider the infall of
an object whose mass is ∼10 times the BHB mass (while in our
runs MSC ≈ 0.04MBHB), and they do not study the phase–space
redistribution of stars belonging to the infalling stellar system, fo-
cusing on the effects of the dwarf-induced loss cone repopulation
instead.

Finally, we stress that in our simulations the change in the BHB
semimajor axis was explored only for a limited number of cases,
and in a forthcoming study, we will investigate what happens for
different orbital properties and masses of the SC and different BHB
separations. However, we can already make some guess on the effect
of a different choice of initial conditions, by means of some analytic
consideration. The change of the semimajor axis likely depends on
(i) the initial semimajor axis of the BHB, (ii) the initial relative
velocity between SC and BHB, (iii) the total mass of the SC, and
(iv) the mass of the BHB.

The geometric cross-section of the BHB scales as the square of
the semimajor axis. Thus, the effect of SC infall would have been
stronger for a wider BHB because all SC members would have
passed inside the separation between the two SMBHs. However,
this effect is mitigated by gravitational focusing: The trajectory
of an SC star is deflected by the gravitational pull of the BHB.
Accounting for gravitational focusing, the effective periapsis dis-
tance between the centre-of-mass of the SC and that of the BHB is
p ≈ b2 v2

i /[2 G (MBHB + MSC)], where b is the impact parameter,
vi is the initial relative velocity between the BHB and the SC, G is
the gravitational constant, MBHB is the BHB mass and MSC is the
SC mass (Sigurdsson & Phinney 1993). In our runs 1, 2, 1p and
2p, we chose vi = 0, which implies p ∼ 0. Thus, the result of these

runs can be considered as an upper limit to the effect of three-body
encounters on the BHB shrinking. For a small impact parameter
(of the same order of magnitude as the BHB semimajor axis), the
shrinking of the binary is completely determined by the ratio be-
tween the SC mass and the BHB mass because the average relative
change of the BHB binding energy �Eb/Eb per encounter scales as
(Hills 1983; Quinlan 1996; Colpi, Mapelli & Possenti 2003; Mapelli
et al. 2005)

�Eb

Eb
= ξ

m∗
MBHB

, (4)

where m∗ is the average mass of a single star, and ξ is a dimen-
sionless factor (ξ ∼ 1–10 for small impact parameters; Hills 1983).
Equation (4) implies that the expected variation of the BHB semi-
major axis due to SC infall is

1 − af

ai
∼ 0.1

(
ξ

1

) (
N∗
105

) (
m∗/MBHB

10−6

)
, (5)

where af and ai are the final and initial BHB semimajor axis, re-
spectively, whereas N∗ is the number of stars in the SC.

The change of semimajor axis derived from this back-of-the-
envelope calculation is remarkably similar to the value we obtained
from our runs 1, 2, 1p and 2p (i.e. the simulations where the SC is
on a radial orbit). Thus, we might expect that an SC with N∗ � 106

on a nearly radial orbit would have lead an ∼106 M� BHB close
to the regime where the orbital decay by GW emission is efficient.
However, it must be kept in mind that only a small fraction of SC
members can efficiently interact with the BHB once the semimajor
axis has dropped to 
1 pc. Dedicated simulations are needed to
probe this extreme situation. Moreover, to derive equation (5), we
implicitly assumed that each star scatters with the BHB only once
(as in the runs without Dehnen potential). As we have discussed in
Section 3, this assumption gives us a lower limit to the efficiency of
BHB hardening.

In this paper, we also investigated the fate of the SC. In all runs,
the SC is almost completely disrupted by the interaction with the
BHB. SCs infalling with non-zero orbital angular momentum settle
on a disc-like structure, whose morphology strongly depends on the
initial SC eccentricity and on the presence of a Dehnen potential.
No hypervelocity stars are produced if the SC orbit has non-zero
angular momentum.

If the SC is on a radial orbit and the Dehnen potential is not
included, ∼95 per cent of stars are kicked on to unbound orbits,
and only a small fraction of the initial SC keeps orbiting the BHB.
These bound stars settle into a small subsystem whose shape is
strongly influenced by the initial SC orbit; The final distribution of
stars follows a trend ρ(r) ∝ r−2.

If the SC infall is radial and the Dehnen potential is included,
most stars remain bound to the global potential and are generally
confined within ∼50 pc from the BHB. Only few tens of stars be-
come unbound in this case, but their velocities are of the order of
several thousand km s−1. Thus, these are genuine hypervelocity
stars. These features represent the main observational imprints of
an SC that was recently disrupted by a BHB.
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