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ABSTRACT
All the giant planets in the Solar system host a large number of natural satellites. Moons in extrasolar systems are difficult
to detect, but a Neptune-sized exomoon candidate has been recently found around a Jupiter-sized planet in the Kepler-1625b
system. Due to their relative ease of detection, hot Jupiters (HJs), which reside in close orbits around their host stars with a period
of a few days, may be very good candidates to search for exomoons. It is still unknown whether the HJ population can host
(or may have hosted) exomoons. One suggested formation channel for HJs is high-eccentricity migration induced by a stellar
binary companion combined with tidal dissipation. Here, we investigate under which circumstances an exomoon can prevent
or allow high-eccentricity migration of a HJ, and in the latter case, if the exomoon can survive the migration process. We use
both semi-analytic arguments, as well as direct N-body simulations including tidal interactions. Our results show that massive
exomoons are efficient at preventing high-eccentricity migration. If an exomoon does instead allow for planetary migration, it
is unlikely that the HJ formed can host exomoons since the moon will either spiral on to the planet or escape from it during the
migration process. A few escaped exomoons can become stable planets after the Jupiter has migrated, or by tidally migrating
themselves. The majority of the exomoons end up being ejected from the system or colliding with the primary star and the host
planet. Such collisions might none the less leave observable features, such as a debris disc around the primary star or exorings
around the close-in giant.

Key words: celestial mechanics – planets and satellites: dynamical evolution and stability – planet–star interactions – binaries:
general.

1 IN T RO D U C T I O N

The abundance of moons in the Solar system suggests that moons
might be common in extrasolar systems. Exomoons might be
detected by a number of techniques, including their effect on the
transit signal of the host planet (both in transit timing, and duration),
or a direct transit signature for large exomoons (see e.g. Heller 2018a
for an overview). However, despite much effort, no exomoons have
been confirmed to date (e.g. Kipping et al. 2012, 2013a, b, 2014). A
total of 7 exomoon candidates, including Kepler-1625b I, have been
reported so far (Teachey & Kipping 2018; Fox & Wiegert 2020);
however, the exomoon interpretation of such systems has been put
into doubt and is still subject to debate (Heller, Rodenbeck & Bruno
2019; Kreidberg, Luger & Bedell 2019; Teachey et al. 2020; Kipping
2020). Nevertheless, Kepler-1625b I has opened up questions as to
how such massive exomoons could be formed (e.g. Heller 2018b;
Hamers & Portegies Zwart 2018).

The apparent absence of exomoons in detections so far suggests
that there is a shortage of satellites around planets – at least, within
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the range of exoplanets detected to date. The depletion of exomoons
has been studied theoretically by a number of authors in a variety of
contexts, including migration due to tides (Barnes & O’Brien 2002;
Adams & Bloch 2016; Sucerquia et al. 2019, 2020) or protoplanetary
disc torques (Namouni 2010; Spalding, Batygin & Adams 2016),
and planet–planet scattering (Nesvorný, Vokrouhlický & Morbidelli
2007; Gong et al. 2013; Hong et al. 2018).

Another possibility for exomoons to become unbound from their
host planet is excitation of the planet’s orbital eccentricity around
the parent star by von Zeipel–Lidov–Kozai (ZLK) oscillations (von
Zeipel 1910; Lidov 1962; Kozai 1962; Ito & Ohtsuka 2019; see Naoz
2016 and Shevchenko 2017 for a review) induced by a stellar binary
companion. These oscillations, combined with tidal evolution, can
shrink the host planet’s orbit and transform the planet into a hot
Jupiter (HJ; see e.g. Fabrycky & Tremaine 2007; Wu, Murray &
Ramsahai 2007; Naoz et al. 2011; Naoz, Farr & Rasio 2012;
Anderson, Storch & Lai 2016; Hamers 2017a; Stephan, Naoz &
Gaudi 2018).

In this paper, we study in more detail the latter scenario and focus
specifically on the survivability of exomoons around Jupiter-like
planets that are migrating due to the ZLK mechanism with tidal
friction. Recently, Martinez, Stone & Metzger (2019) presented
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a similar work studying tidal detachment of exomoons around
exoplanets excited to high eccentricity through ZLK oscillations
induced by a stellar binary companion. Our work can be considered
to be complementary, in the sense that we consider in more detail
compared to Martinez et al. (2019) the secular four-body effects. In
particular, we take into account the fact that a massive exomoon,
through its precession induced on the planetary orbit, can also
affect the secular evolution of the planet and even prevent ZLK-
driven high eccentricity of the planet in the first place. In addition,
we carry out direct four-body integrations of the entire evolution
of the system (with the planet starting with a small eccentricity),
unlike Martinez et al. (2019), who in their four-body integrations
focus on the detachment phase when the exoplanet is already highly
eccentric. Furthermore, unlike Martinez et al. (2019), in our four-
body integrations we include tidal interactions between all bodies.

Here, we consider moons more massive than Solar system coun-
terparts (mmoon > 10−4 MJ). Albeit the mass of natural satellites
is considered to be restricted within 10−4mplanet, where mplanet is
the host planet mass (Canup & Ward 2006), recent works point
out the possibility of large single-moon systems forming in proto-
planetary discs (Cilibrasi et al. 2018; Fujii & Ogihara 2020; Moraes &
Vieira Neto 2020). Moreover, the exomoon candidate Kepler-1625b
I appears to be in plain violation of the mass scaling relation of
satellites in the solary system (Heller 2018c), and massive moons
are more likely to be detected with current observational facilities
(Sucerquia et al. 2020).

The plan of this paper is as follows. In Section 2, we estimate
the role of exomoons in the high-eccentricity migration process of
HJs using analytic arguments. In Section 3, we confirm and refine
our analysis by means of direct N-body simulations. In Section 4,
we discuss our results and extend them to other high-eccentricity
migration mechanisms and conclude in Section 5.

2 EXPECTATIONS BA SED O N SEMI-ANALYTI C
A R G U M E N T S

Before presenting detailed N-body simulations in Section 3, we first
discuss our expectations of the evolution of exomoons around mi-
grating Jupiter-like planets using semi-analytic arguments. Consider
a moon (mass mmoon) around a Jupiter-like planet (mass mplanet) in an
orbit with semimajor axis a1; we will refer to the latter orbit simply
as the ‘lunar orbit’. The planet-moon system is orbiting around a
primary star (mass mprim) with semimajor axis a2 � a1, and we
refer to the latter orbit as the ‘planetary orbit’. The primary star has
a companion star, the secondary star (mass msec), in an orbit (the
‘stellar orbit’) with semimajor axis a3 � a2.

If the planetary and stellar orbits are mutually highly inclined
(with an inclination i23 close to 90◦), then high-eccentricity ZLK
oscillations can be induced in the planetary orbit with a maximum
eccentricity approximately given by

e2,max =
√

1 − 5

3
cos2(i23). (1)

Equation (1) ignores the presence of the moon and assumes the
test particle limit (the planet being much less massive than the
stars), the quadrupole-order expansion order only, and zero initial
planetary eccentricity. The presence of short-range forces (SRFs) in
the planetary orbit (e.g. due to general relativity, tidal bulges, and/or
rotation) will typically reduce the maximum eccentricity implied
by equation (1). The maximum eccentricity in that case can be
calculated semi-analytically to quadrupole order using conservation

Figure 1. Evolution of semimajor axis and eccentricity of the orbits in two
simulations, one with a 0.01 MJ moon orbiting a Jupiter-sized planet, and
one without. The companion star has a mass of 0.5 M� and it is inclined
by 90◦ with respect to the Jupiter’s orbit. The orbits of the moon and the
Jupiter are coplanar and prograde. The moon ‘shields’ the Jupiter from the
perturbing companion star, preventing the increase in eccentricity and the
tidal migration.

of energy and angular momentum (e.g. Blaes, Lee & Socrates 2002;
Fabrycky & Tremaine 2007; Liu, Muñoz & Lai 2015).

In an orbit-averaged sense, a moon in orbit around the planet
effectively acts as an additional SRF in the planetary orbit. Therefore,
a moon can ‘shield’ the planetary orbit from the secular torque of the
stellar companion, and prevent high eccentricities and tidal migration
(e.g. Hamers et al. 2015; Hamers, Perets & Portegies Zwart 2016). An
example of the shielding effect (according to an N-body integration)
is given in Fig. 1, in which the presence of the moon quenches
the excitation of the planetary eccentricity, thus preventing the tidal
migration that would otherwise happen in the absence of the moon
(see Section 3 for details on the simulation).

Taking into account the secular effects of the moon and restricting
to the quadrupole expansion order, the maximum eccentricity in the
planetary orbit can be calculated approximately by solving for the
algebraic equation for the stationary e2 based on energy conservation
(Hamers et al. 2015)

C12

(
1 − e2

2,i

)−3/2
fq(e1,i, e2,i, j 1,i, j 2,i)

+C23

(
1 − e2

3,i

)−3/2
fq(e2,i, e3,i, j 2,i, j 3,i)

= C12

(
1 − e2

2

)−3/2
fq(e1,i, e2, j 1,i, j 2)

+C23

(
1 − e2

3,i

)−3/2
fq(e2, e3,i, j 2, j 3,i), (2)

where we defined the function

fq(ein, eout, j in, j out) ≡ 1 − e2
in + 15e2

in (êin · êout)
2

−3
(
1 − e2

in

) (
ĵ in · ĵ out

)2
, (3)

and the constants are

C12 = 1

8

Ga2
1

a3
2

mmoonmplanetmprim

mmoon + mplanet
; (4a)

C23 = 1

8

Ga2
2

a3
3

(mmoon + mplanet)mprimmsec

mmoon + mplanet + mprim
. (4b)

The eccentricity and normalized angular-momentum vectors of orbit
k are ek and j k , respectively; the subscript i denotes the initial vector.
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Stationary points in eccentricity (i.e. minima or maxima) correspond
to(

ê2 · ê3,i

)2 = 1 − (
ĵ 2 · ĵ 3,i

)2
, (5)

whereas the value of ĵ 2 · ĵ 3 at any point (including the stationary
point) can be obtained from angular-momentum conservation (ne-
glecting the angular momentum of the lunar orbit), i.e.

ĵ 2 · ĵ 3,i = 1

2
√

1−e2
2

√
1−e2

3,i

[
2
√

1 − e2
2,i

√
1 − e2

3,i ĵ 2,i · ĵ 3,i

+�2
�3

(
e2

2 − e2
2,i

)]
. (6)

Here, �k is the circular angular momentum of orbit k, i.e.

�1 = Ga1mmoonmplanet

mmoon + mplanet
; (7a)

�2 = Ga2(mmoon + mplanet)mprim

mmoon + mplanet + mprim
. (7b)

Equation (2) is approximate in the sense that it is valid to
quadrupole expansion order only and that the state of the lunar orbit
at the stationary point of the planetary orbit is set to the initial one,
i.e. e1 = e1,i in equation (2), and similarly for j 1. In practice, this is
a reasonable approximation, since we are interested in the stationary
point of e2 and not of e1.

In Fig. 2, we show various distances, in particular, the periapsis
distance of the planetary orbit, rperi, 2 = a2(1 − e2), as a function of a2,
whereas other parameters are fixed. We choose three different moon
masses: mmoon = 0.1, 0.01, and 0.001 MJ (top to bottom panels). All
other parameters are set to mplanet = 1 MJ, mprim = 1 M�, msec =
0.6 M�, a1 = 10−3 au, and a3 = 600 au. The other (initial) orbital
parameters are e1 = e2 = 0.01, e3 = 0.4, i1 = i2 = 0.57◦, i3 = 89◦,
ω1 = ω3 = 180◦, ω2 = 68.4◦, �1 = �2 = �3 = 0.01◦. Here, ik, ωk,
and �k denote the inclination, argument of periapsis, and longitude
of the ascending of orbit k, respectively. Note that, with this choice
of initial parameters, the initial mutual lunar orbit-planetary orbit
inclination is i12 = 0◦, and the initial mutual planetary-stellar orbit
inclination is i23 = 89◦.

We compute the maximum e2 by solving equation (2), neglecting
other SRFs such as tidal bulges and general relativistic corrections
and show the results in Fig. 2 with black dashed lines. In the
absence of the moon, the maximum planetary orbital eccentricity
would be instead given by equation (1). With a moon included, the
maximum eccentricity is strongly reduced depending on parameters
such as mmoon and a2. As a2 is increased, the ‘shielding’ effect of
the moon decreases, and the periapsis distance shrinks. The circles
in Fig. 2 show the periapsis distances obtained by numerically
solving the secular equations of motion using SECULARMULTIPLE

(Hamers & Portegies Zwart 2016; Hamers 2018, 2020), and are in
good agreement with the semi-analytic solutions of equation (2).

As the planetary orbit is excited in its eccentricity, its decreased
periapsis distance implies that satellites orbiting around the planet
could become unbound. Approximately, the orbital radius around
the planet for which satellites can remain stable is described by the
following ad hoc expression of the Hill radius,

rHill,2 = 1

2
a2(1 − e2)

(
mplanet

3mprim

)1/3

, (8)

where the maximum eccentricity e2 is obtained from equation (2),
and which is shown in Fig. 2 with the dotted green lines. The moon is
expected to remain bound to the planet as long as its orbital distance
around the planet is �rH, planet.

Figure 2. Various distances as a function of a2. Top, middle, and bottom
panels correspond to mmoon = 0.1, 0.01, and 0.001 MJ. Dashed black lines
show periapsis distances of the planetary orbit calculated using equation (2);
black circles show results from numerical solutions of the equations of motion
using SECULARMULTIPLE. The green dotted line shows the Hill radius of the
planet corresponding to equation (2) (see equation 8). The blue dashed line
shows the critical periapsis distance of the planetary orbit below which we
expect the planet to migrate due to tidal dissipation (see equation 9). The
horizontal red dotted line shows the tidal disruption radius of the planet (see
equation 12). The yellow dotted horizontal lines indicate the planetary radius.
The green and blue shaded areas indicate the region where the moon could
theoretically survive and the region where the tidal migration is expected to
occur, respectively. Massive moons prevent the formation of an HJ due to
the shielding effect, whereas low-mass moons typically cannot survive the
high-eccentricity migration process.

Tidal migration of the planet becomes possible only if its eccen-
tricity becomes sufficiently high. In Fig. 2, we show with the blue
dashed lines the periapsis distances of the planetary orbit, rperi, 2, TF,
below which we expect tidal dissipation to be efficient to shrink the
planetary orbit, and produce an HJ. We estimate the latter boundary
by equating the timescale for tidal friction to shrink the orbital
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semimajor axis by the order of itself (in the limit of e2 → 1) to the
ZLK time-scale of the planetary orbit excited by the stellar binary
companion, which yields

rperi,2,TF ∼ a2

2

[
τZLK

τTF
βa

(
Rplanet

a2

)8
]2/15

, (9)

where the ZLK timescale is defined as

τZLK ≡ P3

P2
P3

mmoon + mplanet + mprim + msec

msec

(
1 − e2

3

)3/2
, (10)

and the tidal dissipation-related time-scale is

τTF ≡ 1

27

tV,planet

3(kAM,planet + 2)

(
mplanet

Mprim

)2

, (11)

with tV,planet, kAM,planet, and Rplanet the viscous time-scale, apsidal
motion constant, and radius of the planet, respectively. Furthermore,
βa ≡ 451/160, and Pk denotes the orbital period of orbit k.
Equation (9) was derived by assuming the equilibrium tide model
(Hut 1981), and assuming pseudo-synchronization (i.e. that the spin
frequency is close to the orbital frequency at periapsis). Here, we
set kAM,planet = 0.19, tV,planet = 1.3 × 104 h (Socrates, Katz & Dong
2012).

The condition rperi, 2 < rperi, 2, TF is not sufficient for successful
migration of the planet, since the planet could be tidally disrupted
if it ventures too close to the primary star. Specifically, the latter is
expected to occur if rperi,2 < rTD,planet, where

rTD,planet = ηRplanet

(
mprim

mplanet

)1/3

, (12)

where we adopt η = 2.7 (Guillochon, Ramirez-Ruiz & Lin 2011).
Finally, we should consider that, for survival of the moon, the lunar
orbit should, evidently, at least be larger than Rplanet; in Fig. 2, we
show a yellow dotted horizontal line indicating r = Rplanet.

Fig. 2, which does not include additional SRFs, paints the fol-
lowing picture: even a relatively low-mass moon (10−3 MJ; bottom
panel) is able to effectively shield the planet, and prevent excitation
of the planetary orbit, unless a2 is large (� 5 au). The shielding effect
originates from an effective additional SRF acting on the orbit of the
planet around the primary star. This SRF is due to the quadrupole
moment of the moon, and causes the circulation of the planetary
argument of pericenter, suppressing the ZLK oscillations. However,
for large a2 and low mmoon, the excited planetary eccentricity is very
high, and the planet is expected to be tidally disrupted, rather than
to tidally migrate. Even if the planet manages to survive migration,
the small Hill radius during the migration phase would imply that no
moon could survive the process.

The region in a2 space that allows for the planetary migration never
overlaps with the region in which the moon can remain bound to the
planet. This is especially true for low-mass moons; for higher-mass
moons the two regions get closer, but still do not overlap, i.e. the
planet’s Hill radius is so small that no moon could feasibly remain
in a stable orbit around it (Domingos, Winter & Yokoyama 2006).

For higher mass moons (0.1 MJ; top panel), the shielding effect
is much more severe, and even planets at 10 au are still affected
by the presence of the moon. The planetary orbit can nevertheless
become sufficiently eccentric to potentially tidally migrate if a2 ∼
8 au (although the planet in that case is also close to being tidally
disrupted). However, the Hill radius for that a2 is sufficiently small
that moons are not expected to survive the migration process.

The above picture remains unchanged when also considering other
short-range force such as relativistic and tidal precession (see the

Appendix and Fig. A1). On the other hand, these arguments are
based on the secular (i.e. orbit-averaged) approximation, and ignore
many potentially important effects such as non-secular evolution, and
tides in the lunar orbit in addition to those in the planetary orbit. In
Section 3, we carry out more detailed N-body simulations to address
these caveats.

3 N- B O DY SI M U L AT I O N S

3.1 Numerical set-up

We employ the tsunami code (Trani in preparation) to directly
integrate the four-body system consisting of a moon-hosting planet,
the parent star, and the stellar companion. tsunami integrates the
equations of motion derived from a logarithmic Hamiltonian in an
extended phase space (Mikkola & Tanikawa 1999), using a chain
coordinate system to reduce round-off errors (Mikkola & Aarseth
1990), combined with Bulirsh–Stoer extrapolation to increase ac-
curacy (Stoer & Bulirsch 1980). We include the first-order post-
Newtonian correction to the gravitational acceleration, and the tidal
interaction force from Hut (1981).

As with the analytic estimates, we drop the spin-orbit tidal
coupling term, i.e. we assume mutual pseudo-synchronization at
every time-step. Tidal interactions between all the bodies in the
simulations are considered. We set the apsidal motion constant kAM =
0.1 for the planet and the moon, and kAM = 0.014 for the two stars. In
the Hut (1981) model, the efficiency of the tides is parametrized by
the time-lag of the bulges. We set the time-lag to τ = 0.66 × 102 s for
the planet and moon, and to τ = 0.15 s for the two stars, respectively.
The time-lag for the planet and the moon is about 102 higher than
what is estimated for high-eccentricity migration (Socrates et al.
2012); we make this choice in order to shorten the computational
time of the simulations. Such approach has been commonly used in
similar studies (e.g. Antonini, Hamers & Lithwick 2016). The time-
lag and tidal efficiency are none the less largely uncertain and strictly
depend on the rheology of the bodies (Ogilvie 2013; Efroimsky &
Makarov 2014; Makarov & Efroimsky 2014).

The radius of the bodies is chosen to be 1 R� for the star and
1 RJ for the planet. The radius of the moon is calculated from its
mass following Chen & Kipping (2017), while the radius of the
companion in solar radii is given by (msec/1 M�)0.881 (Kippenhahn,
Weigert & Weiss 2012). We also check for collisions at every time-
step; if a collision between two bodies is detected, the integration is
automatically stopped.

3.2 Comparison with our analytic estimate

We first run a controlled grid of simulations to better compare our
analytic estimate with the results from direct integration. We fix all
the initial parameters but the semi-major axis of the planet’s orbit
a2, which ranges between 1 and 10 au. All the initial parameters are
listed in Table 1. We run two sets of simulations for different lunar
masses: mmoon = 0.01 MJ and mmoon = 0.1 MJ. Each set consists of
200 realizations with different a2. The simulations were run for
2 × 107 yr. Table 2 summarizes the outcomes of the simulations.

Fig. 3 shows the minimum periapsis distance and other quantities
obtained from the simulations, along with the analytic estimates
analogue as in Fig. 2. There is a tight agreement between the
minimum periapsis distance expected from equation (2) and the
results from the simulations until rHill, 2 ∼ a1, i, i.e. when the planetary
Hill radius becomes comparable to the initial semimajor axis of the
moon. When this occurs, the moon becomes dynamically unstable
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Table 1. Initial parameters for the controlled grid of simulations.

Parameter Value

mprim ( M�) 1
msec ( M�) 0.6
mplanet ( MJ) 1
mmoon ( MJ) 0.1, 0.01 MJ

a3 ( au) 600
a2 ( au) 1–10
a1 ( au) 0.01
e3 0.4
e2 0.01
e1 0.01
i12 0
i23 π /2
ω3 π

ω2 0.38π
ω1 π

�3 0.01
�2 0.01
�1 0.01
M3 π

M2 0.3π
M1 1.66π

Note. m: mass; a: semimajor axis; e: eccentricity; i: inclination; ω: argument
of periapsis; �: longitude of the ascending node; M: mean anomaly. The
subscripts1, 2, and 3 refer to the primary-secondary orbit, the planet-primary
orbit, and the moon-planet orbit, respectively. All angles are expressed in
radians.

Table 2. Outcome fractions of the controlled grid simulations. Left column:
set with low-mass moons. Right column: set with high-mass moons. Each set
consists of 200 realizations.

Collisions mmoon

0.01 MJ 0.1 MJ

Planet-star – 0.015
Moon-star 0.27 0.005
Moon-planet 0.06 0.02
Total 0.33 0.04
Moon escaped
From planet 0.555 0.215
From system 0.345 0.145
Planet escaped
From system – 0.045
Planet migration within 1 au

0.315 0.015
Moon-turned-planet migration within 1 au

– 0.055
Planet + moon migration within 1 au

– –

and the secular approximation does not hold anymore. As expected,
less massive moons become dynamically unstable at smaller a2,
because the shielding effect is lower and the Jupiter can reach higher
eccentricities at the same a2.

3.2.1 Dynamical instability of low-mass moons

For low-mass moons, (mmoon = 0.01 MJ), the most common outcome
after the dynamical instability is the escape of the moon from the
planet. When this occurs, in about 60 per cent of the simulations the
moon gets immediately ejected from the system during the periapsis
passage of the planet. In the other 40 per cent, the moon becomes

Figure 3. Same as Fig. 2, but compared to the direct N-body simulations.
Various distances as a function of the initial semimajor axis of the planet.
Each marker is obtained from a single simulation, lines are obtained from
analytic arguments as in Section 2. Empty circle, cross, or square shows
the minimum periapsis distance of the planet. The marker shape denotes
the end state of the system. Empty circle: the moon is still bound to the
planet. Cross (any colour): the moon escaped from the planet. Red square:
the simulation stopped because a collision occurred between two bodies.
Black (blue) marker: the final planetary semimajor axis is larger (smaller)
than 1 au. Green dot: Hill radius corresponding to the minimum periapsis
distance. Dashed black line: minimum periapsis distance of the planet as
obtained from equation (2). Dot–dashed black line: minimum periapsis
distance allowed by the quadrupole approximation alone, neglecting the
moon (equation 1). Blue dashed line: minimum periapsis distance that allows
migration of the planet (equation 9). Red dotted line: tidal disruption radius
of the planet (equation 12). Orange dotted line: planetary radius. Top panel:
mmoon = 0.1 MJ; bottom panel: mmoon = 0.01 MJ. Note how the results from
the simulations start to diverge from the semi-analytical results as soon as
the planetary Hill radius becomes comparable to the moon’s semimajor axis
at 0.01 au.
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Figure 4. Evolution of orbital parameter for four different realization of the simulation grid of Section 3.2. Each realization represents a possible outcome of
the system evolution after the moon becomes dynamically unstable. Top panels: semimajor axis. Middle panels: eccentricity. Bottom panels: mutual inclination.
Top left-hand panel: collision of the moon with the primary star following lunar escape, which is the most common outcome for low-mass moons. Top right: tidal
decay of the moon following the excitation of its eccentricity due to the dynamical instability. Bottom left-hand panel: three-body scattering of the planet–moon
system with the primary star, with inward scattering of the moon and outward scattering of the planet. The planetary orbit gets subsequently ejected due to
dynamical instability triggered by the secondary star. Bottom right-hand panel: tidal migration of the moon around primary star after the three-body scattering.

a planet orbiting the primary star. This phase is only temporary,
however: once the moon escapes, its orbit is strongly perturbed by
the planet and its eccentricity grows until a collision with the star
occurs. This outcome is shown in the top left-hand panel of Fig. 4.

In 12 realizations, the moon collides with the planet instead. In
only one realization, the moon becomes a planet because the planet
dynamically decouples from the moon by tidal circularization before
the moon can collide with the star.
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After the moon escapes, the planetary eccentricity can be freely
excited by the ZLK mechanism and the Jupiter can tidally migrate.
In 63 realizations, the final planetary semimajor axis becomes less
than 1 au due to tidal circularization (blue crosses in Fig. 3). Notice,
however, that in all migration cases, the minimum periapsis distance
during the migration is less than the tidal disruption radius (red dotted
line in Fig. 3), suggesting that the Jupiter will be tidally disrupted in
the process.

3.2.2 Dynamical instability of massive moons

For higher moon masses, the dynamical instability of the moon
triggers an interesting interplay between tidal dissipation and the
ZLK mechanism. Once rHill, 2 ∼ a1, i, the eccentricity of the lunar
orbit is excited, which triggers the tidal circularization of the lunar
orbit. After the lunar orbit becomes tighter, the shielding effect is
smaller and the eccentricity of planet can be excited further, so that
the minimum periapsis distance is smaller than the one expected
from the analytic estimate, which assumes energy conservation (i.e.
no change in semimajor axis). In the top right-hand panel of Fig. 4, we
show the typical evolution of the orbital parameters in this scenario.
Such systems can be thus identified in the bottom panel of Fig. 3, as
the empty circles below the dashed black line that denotes the semi-
analytic result from equation (2). Only in a few simulations, the tidal
decay causes the inspiral and collision of the moon on to the planet.

Another unforeseen outcome is the ejection of the planet from
the system. In many cases, the planet–moon system effectively
undergoes a three-body encounter with the primary star. This often
leads to the prompt ejection of the moon and, in 9 simulations, even
the ejection of the planet.

The planet can also be scattered on an outward orbit, while the
moon remains on an inner orbit around the primary star. However, the
new orbit of the planet might be unstable due to the secondary star:
in this case, it will be ejected from the system following a scattering
with the secondary. This latter case is shown in the bottom left-hand
panel of Fig. 4. By this scattering mechanism, 10 moons end up as
planets around the primary star on an orbit at less than 1 au. In one
case, after becoming a planet, the moon migrates to a short-period
orbit via high-eccentricity tidal circularization (the bottom right-hand
panel of Fig. 4).

3.3 Population synthesis study

To investigate the role of moons in a more general and realistic
setup, we first generate a Monte Carlo set of star–planet–companion
systems in the following way. The mass of the primary star and the
planet are fixed to 1 M� and 1 MJ, respectively, while the secondary
mass is drawn from a uniform distribution between 0.08 and 0.6
(Ngo et al. 2016). The binary orbital period and eccentricity are
drawn from Raghavan et al. (2010). The semimajor axis of the planet
is uniformly sampled between 1 and 5 au. We also impose that the
planet fulfils the stability criterion of Holman & Wiegert (1999). The
inclination i23 between the orbit of the companion and the orbit of
the planet is drawn uniformly in cos i23 between 70◦ and 110◦.

We generate a total of 6000 triple systems, and we evolve them
for 2 Myr. At the end of the run, we select those simulations in
which the Jupiter migrates below 1 au and re-run them adding a
moon around the planet. In total, we find 1854 simulations in which
the Jupiter migrates below 1 au without colliding with the star.
Afterwards, we randomly select 1000 initial conditions from these
1854 runs and add a moon around the Jupiter. The semimajor axis

Table 3. Outcome fractions of the Monte Carlo simulations. Left column:
set with low-mass moons. Right column: set with high-mass moons.

Moon fate mmoon

0.01 MJ 0.1 MJ

Bound to planet (efficient shielding) 0.006 0.091
Inspiral on planet 0.186 0.196
Collision with primary at planet periapsis 0.296 0.227
Escape from planet 0.512 0.486
Post-escape fate

Collision with primary 0.138 0.122
Collision with planet 0.003 0.009
Turned primary planet 0.013 0.064
Turned circumbinary planet – 0.001
Ejected from system 0.358 0.290

Collisions mmoon

Planet–primary 0.024 0.037
Moon–primary 0.434 0.349
Moon–planet 0.189 0.205
Total 0.647 0.591
Planet migration within 1 au

0.172 0.150
Moon–turned–planet migration within 1 au

– 0.022
Planet+moon migration within 1 au

– –

of the moon is uniformly sampled between 2(Rplanet + Rmoon) and
rHill, 2, and its eccentricity is set to 0.01. We perform a total of 2
sets of 1000 realizations, one with mmoon = 0.1 MJ and one with
mmoon = 0.01 MJ, and run them for 10 Myr.

Table 3 summarizes the outcome of the Monte Carlo simulations.
The results confirm the trends presented in Section 3.2: there are no
cases of planets successfully migrating together with the moon.

Small moons are less likely to remain bound to their host planets
and more likely to collide with the primary star. More massive moons
induce more efficient shielding, so that in about 9 per cent of the
systems the planet remains on its original orbit along with its moon.

In all the other cases, the moon becomes dynamically unstable,
and either in-spirals on the planet, collides with the star or escapes
from the planet. The moon can be ejected immediately from the
system or remain orbiting the primary star as a planet.

This latter state is however temporary, because once the moon
escapes, its orbit remains very close to that of the host planet
(e.g. Trani et al. 2016). Thus, the moon undergoes scatterings with
the planet until there is a collision, an ejection or the two orbits
dynamically decouple via tidal circularization around the primary.

Fig. 5 shows the semimajor axis and eccentricity of stable moons-
turned planets. The orbit of the moon can become stable only if (1)
the moon or the planet tidally circularize turning into short-period
planets, (2) the planet collides with the star, or (3) the planet gets
ejected (only possible for massive moons). The colour of the markers
in Fig. 5 indicates the scenario that led the moon to become a stable
planet.

About 6 per cent of the 0.1 MJ moons can become a stable planet
around the primary. Of those, more than 33 per cent undergo tidal
migration around the primary, becoming hot Neptunes. Due to the
higher number of collision and ejections from the system, fewer
0.01 MJ moons turn into planets. A substantial fraction of moons
(∼36 per cent and ∼29 per cent for 0.01 and 0.1 MJ, respectively)
get ejected from the system, becoming free-floating planets. There is
a very small probability (0.1 per cent) that a 0.1 MJ massive moon can
become a circumbinary planet, orbiting the binary in a P-type orbit.
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Figure 5. Semimajor axis and eccentricity of stable moon-turned planets
around the primary after escaping the host planet. Squares: 0.1 MJ moons.
Triangles: 0.01 MJ moons. The colour indicates the pathway that led the
lunar orbit to become stable. Red colour: the host planet collided with the
star. Green colour: the host planet was ejected from the system. Blue colour:
the host planet tidally migrated close to the star. The cluster at ∼0.01 au and
zero eccentricity is constituted by moons that have tidally migrated around
the primary star.

4 D ISCUSSION

4.1 Relevance to other high-eccentricity migration models

Both the N-body simulations and the semi-analytic arguments
indicate that it is highly unlikely for HJs to migrate inwards
while retaining their moons in the binary-ZLK migration model.
Moreover, the moon can actually damp the excitation of the planetary
eccentricity, preventing the tidal decay of the Jupiter.

It is reasonable to ask to what extent our results hold in the other
high-eccentricity migration scenarios, such as the coplanar model
(Petrovich 2015), the secular chaos model (Wu & Lithwick 2011;
Hamers et al. 2017), the ZLK model with a planetary perturber (e.g.
Naoz et al. 2011; Hamers 2017b), or the planet–planet scattering
model (Rasio & Ford 1996; Weidenschilling & Marzari 1996;
Chatterjee et al. 2008). Assessing the survivability of moons in these
scenarios would require detailed calculations, but it is possible to
estimate the effect of the presence of the moon with simple analytic
considerations.

The picture outlined in Section 2 is largely unchanged when the
ZLK oscillations are induced by a massive planetary perturber. In
general, the shielding effect can be approximately estimated by
comparing the quadrupole ZLK time-scale TZLK of the inner and
outer triple systems, constituted by the moon–planet–star system
and the planet–star–perturber system, respectively. When inner ZLK
time-scale is much shorter than the outer one, TZLK, inn 
 TZLK, out,
the ZLK oscillations of the outer orbit will be quenched, i.e. (Hamers
et al. 2015):

TZKL,inn

TZKL,out
=

=
(

a3
2

a1a
2
3

)3/2 (
mmoon + mplanet

mmoon + mplanet + mprim

)1/2

·

· mpert

mprim

(
1 − e2

2

1 − e2
3

)3/2


 1 (13)

where mpert is the mass of the perturber, whether a companion star
or a planet. The main difference with respect to a stellar perturber

is that, to compensate for the smaller mass (TZLK, out ∝ 1/mpert), the
perturbing planet needs to be very close to the orbit of the Jupiter, in
order for the outer ZLK time-scale to be shorter than the inner one.

Our analysis also applies to the coplanar model proposed by
Petrovich (2015), wherein the planetary eccentricity is excited by
an outer planet lying in the same orbital plane. In this case, the same
Hamiltonian expansion used for the ZLK mechanism can describe
the evolution of the system. However, differently from the mutually
inclined case, there is no angular momentum exchange between
the two planets at the quadrupole-order approximation. In fact, the
eccentricity growth occurs on the time-scale of the octupole-order
approximation. As described in Section 2, the presence of the
moon acts as an additional short-range force that causes the apsidal
precession of the planetary orbit. In this sense, we can estimate
the shielding effect by comparing the quadrupole time-scale of the
moon with the octupole time-scale from the perturbing planet. From
Antognini (2015), T oct

ZKL = T
quad

ZKL /
√

εoct, where

εoct = a2

a3

e3

1 − e2
3

. (14)

Hence, we can write the shielding condition (equation 13) for the
coplanar scenario as

TZKL,inn

TZKL,out

√
εoct 
 1. (15)

Since the octupole time-scale is longer than the quadruple one,
the moon shielding effect is increased in this scenario: moons can
better shield perturbations from a coplanar perturber compared to an
inclined pertuber.

It is more challenging to predict the role of moons in the
secular chaos model of Wu & Lithwick (2011). In this scenario,
the eccentricity growth is due to the overlap of higher order secular
resonances, e.g. between apsidal or nodal precession frequencies,
in a multiplanet system. The moon presence would affect such
frequencies, likely shifting the loci in phase space where eccentricity
diffusion among planets takes place.

Finally, in the planet–planet scattering scenario, the eccentricity
grows at the dynamical time-scale (comparable to the planetary
orbital period), much faster than the secular timescale of the ZLK
mechanism. Hence, the presence of the moon does not affect the
growth of eccentricity. On the other hand, close planetary encounters
can eject the moons on wide orbits and perturb the innermost ones
(Deienno et al. 2014).

4.2 Comparison to related works and impact on exomoon
detectability

Recent works have investigated survivability of exomoons of close-
in giant planets. Alvarado-Montes, Zuluaga & Sucerquia (2017),
Sucerquia et al. (2019), and Tokadjian & Piro (2020) assume that
the giant planet has successfully migrated close to star, and focus
on the spin-orbit evolution of the coupled giant–star–moon system
driven by mutual tides. They show that tides drive the migration of
the lunar orbit over the time-scale of >1 Gyr, possibly leading the
lunar ejection.

Particularly, Sucerquia et al. (2019) assume that once the moon
reaches the planetary Hill radius, it will escape from the system, and
model the post-escape dynamical evolution for 0.5 Myr using N-body
simulations. They find that about 50 per cent of the moons survive
the escape and become temporary planets on unstable orbits. This
figure agrees with our results for low-mass moons (the left column
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of Table 3), even though the mechanism leading to the instability is
inherently different.

We further show that by ∼10 Myr, most of the moons have either
collided or have been ejected from the system. Only ∼1 per cent
of the low-mass moons can remain as a stable planet, after their
host planet has migrated close to the star. As a cautionary note,
perturbations from the secondary star might increase the likelihood of
the moon to collide with the primary star, so that such collisions could
be increased in our scenario with respect to the single-star systems.

The detectability of exomoons around close-in giants was recently
investigated by Sucerquia et al. (2020), who studied their secular
migration due to time-dependent spin-orbit tidal coupling. They find
that low-mass (mmoon/mplanet < 10−4) moons are less likely to survive
migration and they are also difficult to detect. On the other hand,
large exomoons migrate slower and are more likely to be detected
via transit-timing-variation and transit-duration-variation. Here, we
have shown that regardless of the lunar mass, moons are unlikely to
survive the ZLK high-eccentricity migration of HJs. Thus, any future
detection of an exomoon around an HJ would rule out its migration
via this mechanism.

Our results also indicate that the lunar dynamical instability does
not necessarily lead to the lunar ejection, but can lead the moon to
tidally migrate towards stabler, tighter orbits around the planet (the
top right-hand panel of Fig. 4), and even spiralling on to the planet.
This interplay occurs when the perturbation from the secondary star
on to the planet is barely strong enough to affect the lunar orbit, i.e.
when the planetary Hill radius during one ZLK cycle is comparable
to the lunar semimajor axis. The same mechanism could also occur in
other scenarios, such as when the dynamical instability is triggered by
the lunar outward migration, as considered in the works cited above.
Spiral-in events could result in exorings around close-in giants,
observable as additional dips in the planetary transit light curve
(Canup 2010; Tusnski & Valio 2011; Kenworthy & Mamajek 2015).
Debris around close-in giants could also outgas, fuelling a plasma
torus observable via high-resolution transmission spectroscopy (Oza
et al. 2019; Gebek & Oza 2020).

The collision of the moon and planets with the host star could also
leave a debris disc of gas and dust around the star. This particular
case was considered in detail by Martinez et al. (2019), who find
that tidally detached exomoons on a highly eccentric orbit could
evaporate, leaving an eccentric debris disc around the primary. Such
a disc could explain the unusual dipping and secular dimming in the
light curve of KIC 8462852, also known as Boyajian’s Star (Boyajian
et al. 2016; Wright & Sigurdsson 2016; Metzger, Shen & Stone 2017;
Boyajian et al. 2018; Wyatt et al. 2018).

In this work, we have neglected the spin-orbit coupling term of
tidal interactions. While spin-orbit coupling is an important factor
when assessing the long-term stability of exomoons, previous studies
have shown that such evolution occurs over time-scales much longer
than the time-scales considered in our work (�10 Myr versus�1 Gyr,
e.g. Alvarado-Montes et al. 2017; Sucerquia et al. 2019). Therefore,
including the effect of spin would not alter our conclusions.

5 C O N C L U S I O N S

The first exomoon detection might occur in this decade. Besides the
speculation that they might harbour life (Williams, Kasting & Wade
1997; Heller & Zuluaga 2013; Heller et al. 2014; Martı́nez-Rodrı́guez
et al. 2019), the detection of exomoons can provide unique insights
on planetary formation and evolution.

In this work, we have explored the role of exomoons in the high-
eccentricity migration of HJs in the binary-ZLK scenario. Exomoons

around Jupiters are not only unlikely to survive the migration of
their host planet, but can even prevent the migration process by
suppressing the ZLK oscillations induced by the secondary star. We
term this effect as ‘moon shielding’.

The shielding effect is caused by apsidal precession induced by the
moon on the planetary orbit around the primary star, which occurs
on the ZLK time-scale of the primary–planet–moon system. If this
ZLK time-scale is longer than that of the primary–secondary–Jupiter
system, the planetary eccentricity can be freely excited. The periapsis
of the planet shrinks until the moon becomes dynamically unstable,
which can lead to a variety of outcomes, the most common of which
is the collision of the moon with the primary star.

We sampled a slice of the initial parameter space that leads to
the formation of an HJ in this scenario, and evolved such systems
by including the presence of a moon around the planet. We evolved
the systems using highly accurate direct N-body integration, which
included the effects of tides on each body, and relativistic precession.

In ∼10 per cent of the systems, a massive (0.1 MJ) moon is able to
shield the planet efficiently from the perturbations of the secondary
star. For less massive moons (0.01 MJ), the percentage of efficiently
shielded planets drops to 0.6 per cent in qualitative agreement with
our semi-analytic predictions. In all other cases, the moon becomes
dynamically unstable.

In ∼20 per cent of the times, the dynamical instability leads the
moon to inspiral on to the planet. These kind of events can potentially
form a system of rings around close-in giants, which would be
detectable as additional dips in the planetary transit light curve (e.g.
Heller 2018a).

Between ∼20 and 30 per cent of the exomoons collide immedi-
ately with the primary star, while the others will temporarily keep
orbiting the primary as planets. In this latter case, the lunar orbit
undergoes scatterings with the former host planet, until either one
collides, gets ejected, or tidally circularizes around the primary. In
total, ∼30–35 per cent of the moons get ejected from the system and
become free-floating planets.

A moon colliding with its parent star might leave an eccentric
debris disc around the star. Such a disc could be at the origin of
the anomalous light curve of KIC 8462852 (Metzger et al. 2017;
Martinez et al. 2019), and even be observable in the near-infrared
(e.g. Jura 2003; Farihi, Gänsicke & Koester 2013). The engulfment of
massive exomoons could also explain the chemical dishomogeneity
in binary systems (e.g. Nagar, Spina & Karakas 2020).

Only about 1–6 per cent of the moon-turned planets can become
a stable planet around the primary, and about 2 per cent of the
most massive moons undergo tidal decay and become hot Neptunes
(Fig. 5).

In the case that an exomoon will be detected around a close-in
giant, this will be indicative of the migration mechanism of its host
planet. Based on our population synthesis study and semi-analytic
calculations, we can exclude that an exomoon could survive the
migration of its host Jupiter in the binary-ZLK scenario.
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Kipping D. M., Nesvorný D., Buchhave L. A., Hartman J., Bakos G. Á.,
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APPENDI X: ANALYTI C ESTI MATES
I N C L U D I N G SH O RT R A N G E FO R C E S

In Section 2, we calculated the maximum eccentricity reached by
the planet using equation (2), which considers the effect of the
moon but neglects additional short-range forces such as those due
to general relativistic corrections and tidal bulges. In Fig. A1, we
show a similar figure as Fig. 2, except that we included short-
range forces in the planet-moon orbit due to the lowest order
post-Newtonian (PN) terms, as well as due to tidal bulges. These
short-range forces give rise to additional apsidal motion, which
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Figure A1. Similar to Fig. 2, here with the inclusion of additional short-range forces in the planet-moon orbit due to general relativistic corrections (1PN
terms), and tidal bulges in the planet assuming an apsidal motion constant of kAM, planet = 0.19, and a planetary radius of Rplanet = 1 RJ.

tends to quench secular eccentricity excitation. Here, the semi-
analytic calculation is carried out by adding the relevant terms to
the Hamiltonian in equation (2) (e.g. Fabrycky & Tremaine 2007),
assuming a planetary apsidal motion constant of kAM, planet = 0.19,
and a planetary radius of Rplanet = 1 RJ. We also include numerical
results using SECULARMULTIPLE (black open circles), which confirm
the validity of the semi-analytic approach.

With additional short-range forces included, the picture described
in Section 2 does not fundamentally change: moons around relatively

close planets (a2 ∼ few au) are effectively able to shield the planetary
orbit, preventing migration of the planet. Much less massive moons,
or moons around planets with larger a2, have less shielding strength,
but in this case, it is unlikely that they could survive the migration
process.
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