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Understanding the reasons for the success of deep neural networks trained using stochastic gradient-
based methods is a key open problem for the nascent theory of deep learning. The types of data where these
networks are most successful, such as images or sequences of speech, are characterized by intricate
correlations. Yet, most theoretical work on neural networks does not explicitly model training data or
assumes that elements of each data sample are drawn independently from some factorized probability
distribution. These approaches are, thus, by construction blind to the correlation structure of real-world
datasets and their impact on learning in neural networks. Here, we introduce a generative model for
structured datasets that we call the hidden manifold model. The idea is to construct high-dimensional inputs
that lie on a lower-dimensional manifold, with labels that depend only on their position within this
manifold, akin to a single-layer decoder or generator in a generative adversarial network. We demonstrate
that learning of the hidden manifold model is amenable to an analytical treatment by proving a “Gaussian
equivalence property” (GEP), and we use the GEP to show how the dynamics of two-layer neural networks
trained using one-pass stochastic gradient descent is captured by a set of integro-differential equations that
track the performance of the network at all times. This approach permits us to analyze in detail how a neural
network learns functions of increasing complexity during training, how its performance depends on its size,
and how it is impacted by parameters such as the learning rate or the dimension of the hidden manifold.

DOI: 10.1103/PhysRevX.10.041044 Subject Areas: Computational Physics,
Statistical Physics

I. INTRODUCTION

The datasets on which modern neural networks are most
successful, such as images [1,2] or natural language [3], are
characterized by complicated correlations. Yet, most theo-
retical works on neural networks in statistics or theoretical
computer science do not model the structure of the training
data at all [4,5], which amounts to assuming that the
dataset is chosen in a worst-case (adversarial) manner.
A line of theoretical works complementary to the statistics
approach emanated from statistical physics [6–9]. These
works model inputs as elementwise independent identically

distributed (IID) random variables, with labels that are
either random or given by some random but fixed function
of the inputs. Despite providing valuable insights, these
approaches are by construction blind to even basic stat-
istical properties of real-world datasets such as their
covariance structure. This lack of mathematical models
for datasets is a major impediment for understanding the
effectiveness of deep neural networks.
The structure present in realistic datasets can be illus-

trated well with classic datasets for image classification,
such as the handwritten digits of the MNIST dataset [10] or
the images of the CIFAR10 dataset [11]. The inputs that the
neural network has to classify are images, so a priori the
input space is the high-dimensional RN , corresponding to
the number of pixels, withN large. However, the inputs that
can be recognized as actual images rather than random
noise span but a lower-dimensional manifold within RN ;
see Fig. 1. This manifold hence constitutes the actual input
space, or the “world,” of our problem. While the manifold
is not easily defined, it is tangible: For example, its
dimension can be estimated based on the neighborhoods
of inputs in the dataset [12–15] and is found to be around
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D ≈ 14 for MNIST and D ≈ 35 for CIFAR10, compared to
N ¼ 784 and N ¼ 3072, respectively. We call inputs
structured if they are concentrated on a lower-dimensional
manifold and, thus, have a lower-dimensional latent rep-
resentation, which consists of the coordinates of the input
within that manifold.
A complementary view on the data manifold is provided

by today’s most powerful generative models, called gen-
erative adversarial networks (GANs) [16]. A GAN G is a
neural network that is trained to take random noise as its
input and to transform it into outputs that resemble a given
target distribution. For example, GANs can generate
realistic synthetic images of human faces [17,18]. From
this point of view, the mapping from the hidden manifold to
the input space is given by the function that the GAN G
computes.

A. Main results

In this paper, and specifically in Sec. II, we introduce a
generative model for structured datasets in the above sense
that we call the hidden manifold model (HMM) [19]. It is a
generative model that produces tuples ð; y�Þ of high-
dimensional inputs x ∈ RN and their scalar labels y�.
The key idea is to construct the inputs such that they lie
on a lower-dimensional manifold; their labels are then a
function of only their position within that manifold. The
way the inputs are generated is akin to a learned single-
layer decoder with random inputs; it can also be viewed as a
single-layer generator neural network of a learned GAN. As
a result, inputs drawn from the HMM have nontrivial
correlations and do not follow a normal distribution, and

their labels y� cannot be written as a simple function of the
inputs x.
Our key theoretical result, presented in Sec. III, is to

show that, despite these correlations, the HMM is amenable
to an analytical treatment in a thermodynamic limit of large
dimensions N andD, large number of samples P, and fixed
respective ratios D=N and P=N. We derive the solution by
first demonstrating a “Gaussian equivalence property”
(GEP) (Proposition III.1). As a first application, we use
the GEP to derive a set of integro-differential equations that
captures the behavior of two-layer neural networks, with
K ¼ Oð1Þ hidden units, trained using stochastic gradient
descent. These equations extend the classical analysis of
the dynamics of two-layer neural networks on unstructured
data [20–23] to the hidden manifold and provide detailed
insight into the dynamics of learning.
We then use these equations to study the dynamics and

the performance of two-layer neural networks trained on
data generated by the HMM, in Sec. IV. We find the
specialization of hidden units, known from the canonical
teacher-student model. We analyze the learning for differ-
ent feature matrices and show that Hadamard matrices
perform slightly better than IID Gaussian ones. We show
analytically that the generalization performance deterio-
rates as the manifold dimension D grows. We show that
the learning rate has a very minor influence on the
asymptotic error and analyze how the final error of
the network changes as a function of the width of the
hidden layer.
Section V is devoted to a comparison of learning on the

HMM and on real datasets such as MNIST [10], fashion-
MNIST [24], or CIFAR10 [11]. In particular, we demon-
strate that neural networks learn functions of increasing
complexity over the course of training on both the HMM
and real datasets. We also compare the memorization of
some samples during the early stages of training between
the HMM to real data. These comparisons provide strong
evidence that the HMM captures the properties of learning
with one-pass stochastic gradient descent (SGD) and two-
layer neural networks on some of the standard benchmark
datasets rather faithfully.

B. Further related work

1. The need for models of structured data

Several works recognize the importance of the structure
in the datasets used for machine learning and, in particular,
the need to go beyond the simple componentwise IID
modeling [25–30]. While we focus on the ability of neural
networks to generalize from examples, two recent papers
study a network’s ability to store inputs with lower-
dimensional structure and random labels: Chung, Lee,
and Sompolinsky [31] study the linear separability of
general, finite-dimensional manifolds and their interesting
consequences for the training of deep neural networks
[32,33], while Rotondo, Cosentino Lagomarsino, and
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FIG. 1. We illustrate the notion of a hidden manifold in input
space using CIFAR10 example images. Each black point in-
dicates a possible input in a high-dimensional input space RN .
Most points in this space cannot be interpreted as images at all;
however, those points that can be interpreted as real images tend
to concentrate on a lower-dimensional manifold, here sketched as
a two-dimensional curved surface in a three-dimensional space.
The intrinsic dimension D of these lower-dimensional manifolds
has been measured numerically [12–15].
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Gherardi [34] extend Cover’s classic argument [35] to
count the number of learnable dichotomies when inputs are
grouped in tuples of k inputs with the same label. Recently,
Yoshida and Okada [36] analyzed the dynamics of online
learning for data having an arbitrary covariance matrix,
finding an infinite hierarchy of ordinary differential equa-
tions (ODEs). Their study implicitly assumes that inputs
have a Gaussian distribution, while our approach handles a
more general data structure. The importance of the spectral
properties of the data is recognized for learning in deep
neural networks by Saxe, McClelland, and Ganguli [37] in
the special case of linear neurons, where the whole network
performs a linear transformation of the data.

2. Relation to random feature learning

The hidden manifold model has an interesting link to
random feature learning with unstructured IID input data.
The idea of learning with random features goes back to the
mechanical perceptron of the 1960s [38] and was extended
into the random kitchen sinks of Rahimi and Recht [39,40].
Remarkably, random feature learning in the same scaling
limit as used in the theoretical part of this paper is analyzed
in several recent and concurrent works, notably in
Refs. [41,42] for ridge regression and in Ref. [43] for
max-margin linear classifiers. These papers consider full
batch learning (i.e., all samples are used at the same time),
which makes one difference from our online (one-pass
stochastic gradient descent) analysis. Another important
difference is that we study learning in a neural network with
two layers of learned weights, while the existing works
study simpler linear (perceptron-type) architectures where
only one layer is learned. Perhaps more importantly, in our
analysis, the features do not need to be random but can be
chosen deterministically or even be learned from data using
a GAN or an autoencoder. The principles underlying the
analytic solution of this paper as well as Refs. [41–43] rely
on the Gaussian equivalence property, which is stated and
used independently in those papers.

3. Gaussian equivalence and random matrix theory

Special cases of the Gaussian equivalence property were,
in fact, derived previously using random matrix theory in
Refs. [44–47], and this equivalent Gaussian covariates
mapping is explicitly stated and used in Refs. [42,43].
This formulation has recently been extended to a broader
setting of concentrated vectors encompassing data coming
from a GAN in Refs. [48,49], a version closer to our
formulation.

C. Reproducibility

We provide the full code to reproduce our experiments as
well as an integrator for the equations of motion of two-
layer networks online [50].

D. Learning setup

This paper focuses on the dynamics and performance of
fully connected two-layer neural networks with K hidden
units and first- and second-layer weights W ∈ RK×N and
v ∈ RK , respectively. Given an input x ∈ RN , the output of
a network with parameters θ ¼ ðW; vÞ is given by

ϕðx; θÞ ¼
XK
k

vkgðwkx=
ffiffiffiffi
N

p
Þ; ð1Þ

where wk is the kth row ofW and g∶R → R is the nonlinear
activation function of the network, acting componentwise.
We study sigmoidal and rectified linear unit (ReLU)
networks with gðxÞ ¼ erfðx= ffiffiffi

2
p Þ and gðxÞ ¼ maxð0; xÞ,

respectively.
We train the neural network on datasets with P input-

output pairs ðxμ; y�μÞ, μ ¼ 1;…; P, where we use the starred
y�μ to denote the true label of an input xμ. Networks are
trained by minimizing the quadratic training error EðθÞ ¼
1=2

P
P
μ¼1 Δ2

μ with Δμ ¼ ½ϕðxμ; θÞ − y�μ� using stochastic
(one-pass, online) gradient descent with constant learning
rate η and minibatch size 1:

θμþ1 ¼ θμ − η∇θEðθÞjθμ;xμ;y�μ : ð2Þ

Initial weights for both layers are always taken component-
wise IID from the normal distribution with mean 0 and
standard deviation 10−3.
The key quantity of interest is the test error or gener-

alization error of a network, for which we compare its
predictions to the labels given in a test set that is composed
of P� input-output pairs ðxμ; y�μÞ, μ ¼ 1;…; P�, that are not
used during training:

ϵgðθÞ≡ 1

2P�
XP�

μ

½ϕðxμ; θÞ − y�μ�2: ð3Þ

The test set in our setting is generated by the same
probabilistic model that generated the training data.

1. The canonical teacher-student model

The joint probability distribution of input-output pairs
ðxμ; y�μÞ is inaccessible for realistic datasets such as
CIFAR10, preventing analytical control over the test error
and other quantities of interest. To make theoretical
progress, it is therefore promising to study the generaliza-
tion ability of neural networks for data arising from a
probabilistic generative model.
A classic model for datasets is the canonical teacher-

student setup, where inputs xμ are drawn elementwise IID
from the standard normal distribution and labels are given by
a random, but fixed, neural network with weights θ� acting
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on the inputs: y�μ ¼ ϕðxμ; θ�Þ. The network that generates
the labels is called the teacher, while the network that is
trained is called the student. The model was introduced by
Gardner and Derrida [6], and its study provides many
valuable insights into the generalization ability of neural
networks from an average-case perspective, particularly
within the framework of statistical mechanics [7–9,51–
56] and also in recent works in theoretical computer science,
e.g., Refs. [42,57–59]. However, it has the notable short-
coming that its analysis crucially relies on the fact that inputs
are IID Gaussians and, hence, uncorrelated.

II. THE HIDDEN MANIFOLD MODEL

We now introduce a new generative probabilistic model
for structured datasets with correlations. To generate a
dataset containing P inputs in N dimensions, we first
choose D feature vectors fr, r ¼ 1;…; D. These are
vectors in N dimensions, and we collect them in a feature
matrix F ∈ RD×N . Next, we draw P vectors cμ with random
IID components drawn from the normal distribution with
mean zero and unit variance and collect them in the matrix
C ∈ RP×D. The vector cμ gives the coordinates of the μth
input on the lower-dimensional manifold spanned by the
feature vectors in F. We call cμ the latent representation of
the input xμ, which is given by the μth row of

X ¼ fðCF=
ffiffiffiffi
D

p
Þ ∈ RP×N; ð4Þ

where f is a nonlinear function acting componentwise. In
this model, the “world” of the data on which the true label
can depend is aD-dimensional manifold, which is obtained
from the linear span of F through a “folding” process
induced by the nonlinear function f. We note that the
structure of data of the same type arises in a learned
variational autoencoder network [60] with a single layer, or,
in a learned GAN network [16] with a single-layer
generator network, the matrix C then corresponds to the
random input, the F to the learned features, and f is the
corresponding output activation. The matrix F can be
generic with a certain normalization, such that its elements
are Oð1Þ. For our analysis to be valid, we later assume the
normalization given in Eq. (13) and balance condition
given by Eq. (14); other than that, our analysis holds for
arbitrary matrices F.
The labels are obtained by applying a two-layer neural

network with weights θ̃ ¼ ðW̃ ∈ RM×D; ṽ ∈ RMÞ within
the unfolded hidden manifold according to

y�μ ¼ ϕðcμ; θ̃Þ ¼
XM
m

ṽmg̃ðw̃mcμ=
ffiffiffiffi
D

p
Þ: ð5Þ

We draw the weights in both layers componentwise IID
from the normal distribution with unity variance, unless we
note it otherwise. The key point here is the dependency of

labels y�μ on the coordinates of the lower-dimensional
manifold cμ rather than on the high-dimensional data xμ
as illustrated in Fig. 2. We expect the exact functional form
of this dependence not to be crucial for the empirical part of
this work and that there are other forms that would present
the same behavior. Notably, it would be interesting to
consider ones where the latent representation is conditioned
to the labels as in conditional GANs [61] or the manifold
model of Ref. [33].

III. THE SOLUTION OF THE HIDDEN
MANIFOLD MODEL

A. The Gaussian equivalence property

The difficulty in analyzing HMM comes from the fact
that the various components of one given input pattern, say,
xμi and xνj, are correlated. Yet, a key feature of the model is
that it is amenable to an analytical treatment. To that end,
we study the standard thermodynamic limit of the statistical
physics of learning where the size of the input space
N → ∞, together with the number P → ∞ of patterns that
are presented for learning, while keeping the ratio α≡ P=N
fixed. In statistics, this limit corresponds to the challenging
high-dimensional limit. The hidden manifold model can
then be studied analytically if one assumes that the latent
dimension D, i.e., the dimension of the feature space, also
scales with N, meaning that it goes to ∞ with a fixed ratio
δ≡D=N which is of the order of 1 with respect to N, so
that we have

N;P;D → ∞; with fixed α≡ P
N

and δ≡D
N
: ð6Þ

In this limit, the relevant variables are the “local fields” or
preactivations that are acted upon by the neurons in the

FIG. 2. The hidden manifold model proposed here is a gen-
erative model for structured datasets, where inputs x [Eq. (4)]
(blue and green balls) concentrate on a lower-dimensional
manifold in input space (yellow surface). Their label y� is a
function of their position on the manifold; here, we show the
setup of a classification task with two classes y� ¼ �1. In our
analysis, the labels are generated according to Eq. (5).
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hidden layer. They can be shown to follow a Gaussian
distribution in the thermodynamic limit (6). We now make
this statement precise by formulating a GEP. We demon-
strate the power of this equivalence by deriving a set of
exact equations for online learning in Sec. III B.

1. Statement of the property

Let fCrgDr¼1 be D IID Gaussian random variables
distributed as N ð0; 1Þ. In the following, we denote by E
the expectation value with respect to this distribution.
Define N variables ui, i ¼ 1;…; N, as linear superpositions
of the Cr variables:

ui ≡ 1ffiffiffiffi
D

p
XD
r¼1

CrFir; ð7Þ

and M variables νm, m ¼ 1;…;M, as other linear super-
positions:

νm ≡ 1ffiffiffiffi
D

p
XD
r¼1

Crw̃m
r ; ð8Þ

where w̃m
r are the teacher weights [Eq. (5)]. Define K

variables λk as linear superpositions of fðuiÞ, where f is an
arbitrary function:

λk ≡ 1ffiffiffiffi
N

p
XN
i¼1

wk
i fðuiÞ; ð9Þ

where w̃k
i are the student weights [Eq. (1)]. We occasionally

write ðλ; νÞ to denote the tuple of all local fields λk and νm.
Denoting by hgðuÞi the expectation of a function gðuÞwhen
u is a normal variable with distribution u ∼N ð0; 1Þ, we
also introduce for convenience the “centered” variables:

λ̃k ≡ 1ffiffiffiffi
N

p
XN
i¼1

wk
i ½fðuiÞ − hfðuÞi�: ð10Þ

Notice that our notation keeps upper indices for indices
which take values in a finite range (k;l ∈ f1;…; Kg,
m; n ∈ f1;…;Mg), and lower indices for those which
have a range of the order of N (i; j ∈ f1;…; Ng;
r; s ∈ f1;…; Dg).
As the Cr are Gaussian, the ui variables are also

Gaussian variables, with mean zero and a matrix of
covariance

Uij ¼ E½uiuj� ¼
1

D

XD
r¼1

FirFjr: ð11Þ

Note that the covariances of the ui variables scale in the
thermodynamic limit as

E½u2i � ¼ 1; E½uiuj� ¼ Oð1=
ffiffiffiffi
D

p
Þ; i ≠ j: ð12Þ

We assume that, in the thermodynamic limit, theW, W̃, and
F matrices have elements of Oð1Þ and that, for i ≠ j,

1ffiffiffiffi
D

p
XD
r¼1

FirFjr ¼ Oð1Þ and
XD
r¼1

ðFirÞ2 ¼ D: ð13Þ

Notice that the only variables which are drawn IID from a
Gaussian distribution are the coefficients Cr. Most impor-
tantly, the matrices F and W can be arbitrary (and
deterministic) as long as they are “balanced” in the sense
that ∀p; q ≥ 1; ∀ k1;…; kp; r1;…; rq, we have

S
k1k2…kp
r1r2…rq ¼ 1ffiffiffiffi

N
p

X
i

wk1
i w

k2
i …w

kp
i Fir1Fir2…Firq ¼ Oð1Þ;

ð14Þ

with the q and p distinct. We also have a similar scaling for
the combinations involving the teacher weights w̃m

r . This
assumption is the key behind the Gaussian equivalence
property, and we discuss its interpretation immediately after
the statement of the GEP.
Property III.1. Gaussian equivalence property (GEP).—

In the asymptotic limit when N → ∞, D → ∞, with K, M,
and the ratio D=N finite, and under the assumption (14),
fλkg and fνmg are K þM jointly Gaussian variables, with
mean

E½λk� ¼ a
1ffiffiffiffi
N

p
XN
i¼1

wk
i ; E½νm� ¼ 0 ð15Þ

and covariance

Qkl ≡ E½λ̃kλ̃l� ¼ ðc − a2 − b2ÞWkl þ b2Σkl; ð16Þ

Rkm ≡ E½λ̃kνm� ¼ b
1

D

XD
r¼1

Skrw̃m
r ; ð17Þ

Tmn ≡ E½νmνn� ¼ 1

D

XD
r¼1

w̃m
r w̃n

r : ð18Þ

The “folding function” fð·Þ appears through the three
coefficients a, b, and c, which are defined as

a≡ hfðuÞi; b≡ hufðuÞi; c≡ hfðuÞ2i; ð19Þ

respectively, where hψðuÞi denotes the expectation value of
the function ψ when u ∼N ð0; 1Þ is a Gaussian variable.
The covariances are defined in terms of the three

matrices
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Skr ≡ 1ffiffiffiffi
N

p
XN
i¼1

wk
i Fir; ð20Þ

Wkl ≡ 1

N

XN
i¼1

wk
i w

l
i ; ð21Þ

Σkl ≡ 1

D

XD
r¼1

SkrSlr ; ð22Þ

whose elements are assumed to be of the order of Oð1Þ in
the asymptotic limit. The derivation of the property is given
in the Appendix A.
In Sec. III B, we see that the GEP allows us to develop an

analytical understanding of learning with the hidden
manifold model. We first discuss several aspects of the
GEP in detail.

2. Discussion

The Gaussian equivalence property states that the local
fields ðλ; νÞ follow a joint normal distribution if the weights
of the student fulfill the balance condition (14). In the
simplest case, where the xi are elementwise IID Gaussian,
joint Gaussianity of ðλ; νÞ follows immediately from the
central limit theorem (CLT). The CLT can also be applied
directly when input vectors x are drawn from a multidi-
mensional Gaussian with a fixed covariance matrix, which
is the setup of Yoshida and Okada [36]. In the hidden
manifold model considered here, the inputs xi ¼ fðuiÞ and,
thus, the xi are not normally distributed and have a
nontrivial covariance matrix. The GEP can be seen as a
central limit theorem for sums of weakly correlated random
variables, i.e., λk ∼

P
i w

k
i xi. In this case, the GEP estab-

lishes that λk is Gaussian, provided that the weights of the
student wk

i do not align “too much” with the weights of the
generator Fir. More precisely, we require that a sum such as
Skr ¼ 1=

ffiffiffiffi
N

p P
i w

k
i Fir remains of the order of 1 in the

thermodynamic limit (6). The balance condition is a
generalization of this idea to the higher-order tensors
defined in Eq. (14).
The expansion from the hidden manifold in RD to the

input space RN can equivalently be seen as a noisy
transformation of the latent variables C. As far as the local
fields ðλ; νÞ are concerned, we can replace the data matrix
X ¼ fðCF= ffiffiffiffi

D
p Þ with the matrix

X̃ ≃ a1þ bCF þ ðc − a2 − b2ÞZ; ð23Þ

where Z is a P × N matrix with entries drawn IID from the
normal distribution and 1 is a matrix of the same size as X
with all entries equal to one. We use the symbol ≃ here to
emphasize that the two matrices on the left- and right-hand
sides have matching first and second moments and are,
hence, equivalent in terms of their low-dimensional

projections but are not the same matrix. We can, thus,
think of the inputs X as a noisy transformation of the latent
variables, even without any explicit noise in Eq. (4).
We could also add noise to the expansion explicitly, for ex-

ample, as X ¼ fðFC= ffiffiffiffi
D

p Þ þ ζ or X ¼ fðFðCþ ζÞ= ffiffiffiffi
D

p Þ,
where ζ would be a noise matrix of appropriate dimensions.
These noise injections would indeed make the data high
dimensional or, if added directly to the latent variables C,
result in correlated noise in the input space. In all these cases,
theGEPapplies and guarantees that the noise ζwould change
only the variance of the noise term Z that appears after
application of theGEP (23).Our results are, thus, robust to the
injection of additional noise.
Finally, the GEP shows that there is a whole family of

activation functions fðxÞ [those that have the same values
for a, b, and c from Eq. (19)] that lead to equivalent
analytical results for the learning curves studied in
this paper.
Related results in random matrix theory.—A related

result to the Gaussian equivalence property is, in fact,
known in random matrix theory [41,44–48]. These works
study quantities that can be written as an integral over the
spectral density of the distribution of inputs x, such as the
test and training errors for a linear regression problem.
However, this spectral density is inaccessible analytically
for realistic data. The key idea is then to rewrite these
integrals by replacing the intractable spectral density with
the spectral density of a Gaussian model with matching first
and second moments. Using tools from random matrix
theory (RMT), one can show that certain integrals over both
spectra coincide. This mapping is explicitly used in
Refs. [42,43]. In order to apply tools from RMT, these
works have to assume that the weights F of the generator
are random. The advantage of the formulation of the GEP
above is that it does not require the matrix F to be a random
one and is valid as well for deterministic or learned weight
matrices, as long as the balanced conditions stated in
Eqs. (13) and (14) hold. This advantage allows one to
generalize these mappings to the case of deterministic
features using Hadamard and Fourier matrices, such as the
one used in Fastfood [62] or ACDC [63] layers. These
orthogonal projections are actually known to be more
effective than the purely random ones [64]. It also allows
generalization of the analysis in this paper for data coming
from a learned GAN, along the lines of Refs. [48,49]. We
illustrate this point below by analyzing the dynamics of
online learning when the feature matrix F is a deterministic
Hadamard matrix (cf. Sec. IV B).

B. The dynamics of stochastic gradient descent
for the hidden manifold model

To illustrate the power of the GEP, we now analyze the
dynamics of stochastic gradient descent (2) in the case of
online learning, where, at each step of the algorithm
μ ¼ 1; 2;…, the student’s weights are updated according
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to Eq. (2) using a previously unseen sample ðxμ; yμÞ. This
case is also known as one-shot or single-pass SGD. The
analysis of online learning has been performed previously
for the canonical teacher-student model with IID Gaussian
inputs [20–23,65] and has recently been put on a rigorous
foundation [55]. Here, we generalize this type of analysis to
two-layer neural networks trained on the hidden mani-
fold model.
The goal of our analysis is to track the mean-squared

generalization error of the student with respect to the
teacher at all times:

ϵgðθ; θ̃Þ≡ 1

2
E½ϕðx; θÞ − ỹ��2; ð24Þ

where the expectation E denotes an average over an input
drawn from the hidden manifold model [Eq. (4)] with label
y�μ ¼ ϕðcμ; θ̃�Þ given by a teacher network with fixed
weights θ̃� acting on the latent representation [Eq. (5)].
Note that the weights of both the student and the teacher, as
well as the feature matrix Fir, are held fixed when taking
the average, which is an average only over the coefficients
cμr. To keep notation compact, we focus on cases where
a ¼ EfðuÞ ¼ 0 in Eq. (19), which leads to λ̃k ¼ λk in
Eq. (10). A generalization to the case where a ≠ 0 is
straightforward but lengthy.
We can make progress with the high-dimensional aver-

age over x in Eq. (24) by noticing that the input x and its
latent representation c enter the expression only via the
local fields νm and λk [Eqs. (8) and (9)]:

ϵgðθ; θ̃Þ ¼
1

2
E

�XK
k

vkgðλkÞ −
XM
m

ṽmg̃ðνmÞ
�2

: ð25Þ

The average is now taken over the joint distribution of local
fields fλk¼1;…;K; νm¼1;…;Mg. The key step is then to invoke
the Gaussian equivalence Property III.1, which guarantees
that this distribution is a multivariate normal distribution
with covariances Qkl, Rkm, and Tnm [Eqs. (16)–(18)].
Depending on the choice of gðxÞ and g̃ðxÞ, this distribution
makes it possible to compute the average analytically; in
any case, the GEP guarantees that we can express ϵgðθ; θ̃Þ
as a function of only the second-layer weights vk and ṽm

and the matricesQkl, Rkm, and Tnm, which are called order
parameters in statistical physics [20–22]:

lim
N;D→∞

ϵgðθ; θ̃Þ ¼ ϵgðQkl; Rkn; Tnm; vk; ṽmÞ; ð26Þ

where, in taking the limit, we keep the ratio δ≡D=N finite
[see Eq. (6)].

1. The physical interpretation of the order parameters

The order parameter Rkn, defined in Eqs. (17) and (20),
measures the similarity between the action of the kth
student node on an input xμ and the nth teacher node
acting on the corresponding latent representation cμ. In the
canonical teacher-student setup, where (i) the input covari-
ance is simply Exixj ¼ δij and (ii) labels are generated by
the teacher acting directly on the inputs x, it can be readily
verified that the overlap has the simple expression
Rkn ≡ Eλkνn ∼ wkw̃n. It was, hence, called the teacher-
student overlap in the previous literature. In the HMM,
however, where the teacher and student networks act on
different vector spaces, it is not a priori clear how to
express the teacher-student overlap in suitable order
parameters.
The matrix Qkl ¼ ½c − b2�Wkl þ b2Σkl quantifies the

similarity between two student nodes k and l and has two
contributions: the latent student-student overlap Σkl, which
measures the overlap of the weights of two students nodes
after they are projected to the hidden manifold, and the
ambient student-student overlap Wkl, which measures the
overlap between the vectors wk; wl ∈ RN . Finally, we also
have that the overlaps of the teacher nodes are collected in
the matrix Tnm, which is not time dependent, as it is a
function of the teacher weights only.

2. Statement of the equations of motion

We derive a closed set of equations of motion that
describe the dynamics of the order parameters Rkm, Σkl,
Wkl, and vk when the student is trained using online SGD
(2). We stress at this point that in the online learning, at
each step of SGD, a new sample is given to the network.
The weights of the network are, thus, uncorrelated to this
sample, and, hence, the GEP can be applied at every step.
This approach is in contrast with the full-batch learning,
where the correlations between weights and inputs have to
be taken into account explicitly [43]. Integrating the
equations of motion and substituting the values of the
order parameters into Eq. (26) gives the generalization error
at all times. Here, we give a self-contained statement of the
equations and relegate the details of the derivation to
Appendix B.
A key object in our analysis is the spectrum of the matrix

Ωrs ≡ 1

N

X
i

FirFis: ð27Þ

We denote its eigenvalues and corresponding eigenvectors
by ρ and ψρ and write pΩðρÞ for the distribution of
eigenvalues. It turns out that it is convenient to rewrite
the teacher-student overlap as an integral over a density
rkmðρ; tÞ, which is a function of ρ and of the normalized
number of steps t ¼ P=N, which can be interpreted as a
continuous timelike variable. We then have
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RkmðtÞ ¼ b
Z

dρpΩðρÞrkmðρ; tÞ ð28Þ

with b≡ hufðuÞi [Eq. (19)]. In the canonical teacher-
student model, introducing such a density and the integral
that comes with it is not necessary, but in the HMM it is a
consequence of the nontrivial correlation matrix Exixj

between input elements. Adopting the convention that
the indices j; k;l; ι ¼ 1;…; K always denote student
nodes, while n;m ¼ 1;…;M are reserved for teacher
hidden nodes.
The equation of motion of the teacher-student density

can then be written as

∂rkmðρ; tÞ
∂t ¼ −

η

δ
vkdðρÞ

�
rkmðρÞ

XK
j≠k

vj
QjjI3ðk; k; jÞ −QkjI3ðk; j; jÞ

QjjQkk − ðQkjÞ2 þ
XK
j≠k

vjrjmðρÞQ
kkI3ðk; j; jÞ −QkjI3ðk; k; jÞ

QjjQkk − ðQkjÞ2

þ vkrkmðρÞ 1

Qkk I3ðk; k; kÞ − rkmðρÞ
XM
n

ṽn
TnnI3ðk; k; nÞ − RknI3ðk; n; nÞ

QkkTnn − ðRknÞ2

−
bρ
dðρÞ

XM
n

ṽnT̃nm QkkI3ðk; n; nÞ − RknI3ðk; k; nÞ
QkkTnn − ðRknÞ2

�
; ð29Þ

where dðρÞ ¼ ðc − b2Þδþ b2ρ. The teacher-teacher over-
lap Tnm ≡ Eνnνm [Eq. (18)], while T̃nm is the overlap of the
teacher weights after rotation into the eigenbasis of Ωrs,
weighted by the eigenvalues ρ:

T̃mn≡ 1

D

X
τ

ρτω̃
m
τ ω̃

n
τ ; where ω̃m

τ ¼ 1ffiffiffiffi
D

p
X
r

w̃m
r ψτr: ð30Þ

In writing the equations, we use the following shorthand for
the three-dimensional Gaussian averages:

I3ðk; j; nÞ≡ E½g0ðλkÞλjg̃ðνnÞ�; ð31Þ
which was introduced by Saad and Solla [22]. Arguments
passed to I3 should be translated into local fields on the
right-hand side by using the convention where the indices j,
k, l, and ι always refer to student local fields λj, etc., while
the indices n and m always refer to teacher local fields νn

and νm, respectively. Similarly,

I3ðk; j; jÞ≡ E½g0ðλkÞλjgðλjÞ�; ð32Þ
where having the index j as the third argument means that
the third factor is gðλjÞ rather than g̃ðνmÞ in Eq. (31). The
average in Eq. (31) is taken over a three-dimensional
normal distribution with mean zero and covariance matrix

Φð3Þðk; j; nÞ ¼

0
BB@

Qkk Qkj Rkn

Qkj Qjj Rjn

Rkn Rjn Tnn

1
CCA: ð33Þ

For the latent student-student overlap Σkl, it is again
convenient to introduce the density σklðρ; tÞ as

ΣklðtÞ ¼
Z

dρpΩðρÞσklðρ; tÞ; ð34Þ

whose equation of motion is given by

∂σklðρ; tÞ
∂t ¼ −

η

δ(dðρÞvkσklðρÞ
X
j≠k

vj
QjjI3ðk; k; jÞ −QkjI3ðk; j; jÞ

QjjQkk − ðQkjÞ2 þ vk
X
j≠k

vjdðρÞσjlðρÞQ
kkI3ðk; j; jÞ −QkjI3ðk; k; jÞ

QjjQkk − ðQkjÞ2

þ dðρÞvkσklðρÞvk 1

Qkk I3ðk; k; kÞ − dðρÞvkσklðρÞ
X
n

ṽn
TnnI3ðk; k; nÞ − RknI3ðk; n; nÞ

QkkTnn − ðRknÞ2

− bρvk
X
n

ṽnrlnðρÞQ
kkI3ðk; n; nÞ − RknI3ðk; k; nÞ

QkkTnn − ðRknÞ2 þ all of the above withl → k; k → l
�

þ η2vkvl
�
ðc − b2Þρþ b2

δ
ρ2
��XK

j;ι

vjvιI4ðk;l; j; ιÞ−2
XK
j

XM
m

vjṽmI4ðk;l; j; mÞ þ
XM
n;m

ṽnṽmI4ðk;l; n; mÞ):

ð35Þ
This equation involves again the integrals I3 and a four-dimensional average that we denote
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I4ðk;l; j; nÞ≡ E½g0ðλkÞg0ðλlÞgðλjÞgðνnÞ� ð36Þ

using the same notational conventions as for I3, so the four-dimensional covariance matrix reads

Φð4Þðk;l; j; nÞ ¼

0
BBB@

Qkk Qkl Qkj Rkn

Qkl Qll Qlj Rln

Qkj Qlj Qjj Rjn

Rkn Rln Rjn Tnn

1
CCCA: ð37Þ

The equation of motion for the ambient student-student overlap Wkl can be written directly:

dWklðtÞ
dt

¼ −ηvk
�XK

j

vjI3ðk;l; jÞ −
X
n

ṽnI3ðk;l; nÞ
�
− ηvl

�XK
j

vjI3ðl; k; jÞ −
X
n

ṽnI3ðl; k; nÞ
�

þ cη2vkvl
�XK

j;a

vjvaI4ðk;l; j; aÞ − 2
XK
j

XM
m

vjṽmI4ðk;l; j; mÞ þ
XM
n;m

ṽnṽmI4ðk;l; n; mÞ
�
: ð38Þ

Finally, the ODE for the second-layer weights vk is
straightforwardly given by

dvk

dt
¼ η

�XM
n

ṽnI2ðk; nÞ −
XK
j

vjI2ðk; jÞ
�
; ð39Þ

where we introduce the final shorthand I2ðk; jÞ≡
E½gðλkÞgðλjÞ�.

3. Solving the equations of motion

The equations of motion are valid for any choice of fðxÞ,
gðxÞ, and g̃ðxÞ. To solve the equations for a particular setup,
one needs to compute the three constants a, b, and c
[Eq. (19)] and the averages I3 and I4 [Eqs. (31) and (36)].
Choosing gðxÞ ¼ g̃ðxÞ ¼ erfðx= ffiffiffi

2
p Þ, they can be computed

analytically [21]. Finally, one needs to determine the
spectral density of the matrix Ωrs. When drawing the

(a) (b)

(c) (d)

FIG. 3. The analytical description of the hidden manifold generalization dynamics matches experiments even at moderate system size.
We plot the time evolution of the generalization error ϵgðαÞ (a) and the order parameters Rkm (b),Qkl (c) and second-layer weights vk (d)

obtained by integration of the ODEs (solid lines) and from a single run of SGD (crosses). Parameters: gðxÞ ¼ erfðx= ffiffiffi
2

p Þ, N ¼ 10 000,
D ¼ 100, M ¼ 2, K ¼ 2, η ¼ 0.2, and ṽm ¼ 1.
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entries of the feature matrix Fir IID from some probability
distribution with a finite second moment, the limiting
distribution of the eigenvalues pΩðρÞ in the integral (28)
and (34) is the Marchenko-Pastur distribution [66]:

pMPðρÞ ¼
1

2πδ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðρmax − ρÞðρ − ρminÞ
p

ρ
; ð40Þ

where ρmin ¼ ð1 − ffiffiffi
δ

p Þ2 and ρmax ¼ ð1þ ffiffiffi
δ

p Þ2, where we
recall that δ≡D=N. Note that our theory crucially also
applies to nonrandom matrices; we visit such an example in
Sec. IV B, where we also discuss the importance of this use
case. A complete numerical implementation of the equa-
tions of motion is available on GitHub [50].
We illustrate the content of the equations of motion in

Fig. 3, where we plot the dynamics of the generalization
error, the order parameters Rkm, Σkl, and Wkl, and the
second-layer weights vk obtained from a single experiment
with N ¼ 10000, D ¼ 100, and M ¼ K ¼ 2, starting from
small initial weights (crosses). The elements of the feature
matrix are drawn IID from the standard normal distribution,
as are the elements of the latent representations c. The solid
lines give the dynamics of these order parameters obtained
by integrating the equations of motion. The initial con-
ditions for the integration of the ODEs are taken from the
simulation. The ODE description matches this single
experiment really well even at moderate system sizes.
For Fig. 3, our choice of N and D results in δ ¼ 0.01,
and we check that the ODEs and simulations agree for
various values of δ; cf. Fig. 5.

4. Discussion

Yoshida and Okada [36] recently analyzed online learn-
ing for two-layer neural networks (1) trained on Gaussian
inputs, with a two-layer teacher acting directly on the inputs
x. Their approach consists of introducing distinct order
parameters Rkm

ðiÞ , Q
kl
ðiÞ, etc., for each distinct eigenvalue of

the input covariance matrixΩ. They analyze their equations
for covariance matrices with one and two distinct eigen-
values. Here, we first introduced the GEP (III.1) to show
that inputs which are not normally distributed, such as
X ¼ fðCF= ffiffiffiffi

D
p Þ, can be reduced to an effective Gaussian

model as far as the dynamics of learning are concerned.
Furthermore, the description of the learning dynamics we
just discussed allows us to analyze inputs with any well-
defined spectral density with just a single set of order
parameters Qkl, Rkm, and Tnm. This analysis is made
possible by introducing the integral over the order param-
eter densities rkmðρÞ, etc. As we see below, this integral can
actually be solved for small δ, which simplifies the
equations of motion considerably and allows for a detailed
analysis (cf. Sec. IV C).
We lastly comment on the role of the dimensionality in

our setup. Inspection of the test error (25) reveals that a

student has to recover the local fields of the teacher νm in
order to perform well (if she has the same activation
function as the teacher). If the student is trained directly
on the latent variables C, she could recover these local
fields perfectly and we would be back in the setup of Saad
and Solla [22]. In the HMM, the student is given only the
high-dimensional inputs X, which can be seen as a noisy
projection of the latent variables C (23). The high dimen-
sionality of the student inputs is, thus, a constraint that must
be overcome to learn well, because projection to high
dimensions is part of the data-generating process.
This process is to be contrasted with setups like random
features [39,40] or certain neural circuits in sensory process-
ing [67,68], where projection of the inputs to higher-
dimensional spaces is part of the analysis and generally
simplifies the subsequent learning problem.

IV. ANALYTICAL RESULTS

The goal of this section is to use the analytic description
of online learning to analyze the dynamics and the
performance of two-layer neural networks in detail.

A. Specialization of student nodes in the HMM

An intriguing feature of both the canonical teacher-
student setup and the hidden manifold model is that they
both exhibit a specialization phenomenon. Upon closer
inspection of the time evolution of the order parameter Rkm

in Fig. 3(b), we see that, during the initial decay of the
generalization error up to a time t ¼ P=N ∼ 10, all ele-
ments of the matrixRkm are comparable. In other words, the
correlations between the preactivation λk of any student
node and the preactivation νm of any teacher node is
roughly the same. As training continues, the student nodes
“specialize”: The preactivation of one student node
becomes strongly correlated with the preactivation of only
a single teacher node. In the example shown in Fig. 3, we
have strong correlations between the preactivation of the
first student and the first teacher node (R11) and similarly
between the second student and second teacher node (R22).
The specialization of the teacher-student correlations is
concurrent to a decorrelation of the student units, as can be
seen from the decay of the off-diagonal elements of the
latent and ambient student-student overlaps Σkl and Wkl,
respectively (bottom of Fig. 3). Similar specialization
transitions are observed in the canonical teacher-student
setup for both online and batch learning [22,69]; see Engel
and Van den Broeck [8] for a review.

B. Using nonrandom feature matrices

Our first example of the learning dynamics in Sec. IVA
is for a feature matrix F whose entries are taken IID from
the normal distribution. The derivation of the ODEs for
online learning, however, does not require that the feature
matrix F be random; instead, it requires only the balance
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condition stated in Eq. (14) as well as the normalization
conditions (13). To illustrate this point, we plot examples of
online learning dynamics with M ¼ K ¼ 2 in Fig. 4, with
the prediction from the ODE as solid lines and the result of
a single simulation with crosses. In blue, we show results
where the elements of Fir are drawn IID from the standard
normal distribution. For the experiment in orange,F ¼ HN ,
where HN is a Hadamard matrix [70]. Hadamard matrices
are N × N matrices—hence, δ ¼ 1—and are popular in
error-correcting codes such as the Reed-Muller code
[71,72]. They can be defined via the relation

HNH⊤
N ¼ NIN; ð41Þ

where IN is the N × N identity matrix. As we can see from
Fig. 4, the ODEs capture the generalization dynamics of the
Hadamard case just as well.

C. The limit of small latent dimension

The key technical challenge in analyzing the analytical
description of the dynamics is handling the integro-
differential nature of the equations. We can simplify the
equations in the limit of small δ≡D=N. Numerical
integration of the equations reveals that, at convergence,
the continuous order parameter densities rkmðρÞ and σklðρÞ
are approximately constant:

rkmðρÞ ¼ rkm; σklðρÞ ¼ σkl: ð42Þ

This observation is key, because making the ansatz (42)
allows us to transform the integro-differential equations for
the dynamics of rkmðρ; tÞ [Eq. (29)] and σklðρ; tÞ [Eq. (35)]
into first-order ODEs, provided we can perform the integral

over the eigenvalue distribution pΩðρÞ in Eqs. (28) and (34)
analytically. This situation is, for example, the case if we
take the elements of the feature matrix F IID from any
probability distribution with a bounded second moment, in
which case pΩðρÞ is given by the Marchenko-Pastur
distribution (40). We focus on this case for the remainder
of this section.
Let us note that the regime of small delta is also the

relevant regime for image datasets such as MNIST and
CIFAR10, whose δ has been estimated previously to be
around δMNIST ∼ 14=784 and δCIFAR10 ∼ 35=3072, respec-
tively [12–15]; cf. our discussion in the introduction.

1. The effect of the latent dimension D= δN

As a first application of this approach, we analyze the
dependence of the asymptotic test error ϵ�g on the latent
dimension D of the hidden manifold when the teacher and
student have the same number of hidden nodes, K ¼ M.
From inspection of the form of the order parameters after

integrating the full set of ODEs until convergence, we make
the following ansatz for the overlap matrices:

Σkl¼
�
S k¼l;

s otherwise;
Wkl¼

�
W k¼l;

w otherwise;
ð43Þ

Tnm¼
�
T n¼m;

t otherwise;
T̃nm¼

�
T̃ n¼m;

t̃ otherwise;
ð44Þ

Rkm¼
�
R k¼m;

r otherwise;
vk¼v; Am¼A: ð45Þ

Substituting this ansatz into the ODEs allows us to derive
closed-form expressions for ODEs governing the dynamics
of seven order parameters R, r, S, s, W, w, and v that are
valid for small δ and for any K ¼ M. The teacher-related
order parameters T, t, T̃, and t̃ describe the teacher and are
constants of the motion. They have to be chosen to reflect
the distribution from which the weights of the teacher
network are drawn in an experiment. The full equations of
motion are rather long, so instead of printing them here in
full we provide aMathematica notebook for reference [50].
The key idea of our analytical approach is to look for

fixed points of this ODE system and to substitute the values
of the order parameters at those fixed points into the
expression for the generalization error (26). To understand
the structure of the fixed points of the ODEs, we run a
numerical fixed point search of the ODEs from 1000 initial
values for the order parameters drawn randomly from the
uniform distribution. We find two types of solution. First,
there exist solutions of the form R ¼ r, S ¼ s, andW ¼ w.
This solution is a saddle point of the equations and is, thus,
not a stable fixed point of the dynamics. Instead, it
corresponds to a well-known “unspecialized” phase, when
networks with K > 1 hidden nodes have not yet specialized

FIG. 4. The ODE analysis is asymptotically correct for non-
random feature matrices F. We plot the time evolution of the
generalization error ϵg obtained by integration of the ODEs (solid
lines) and from a single run of SGD (2) (crosses) for two different
matrices F: (i) Elements Fir are drawn IID from the standard
normal distribution (blue); (ii) F is a Hadamard matrix [70].
fðxÞ ¼ sgnðxÞ, gðxÞ ¼ g̃ðxÞ ¼ erfðx= ffiffiffi

2
p Þ, N ¼ 1023, D ¼

1023, M ¼ 2, K ¼ 2, η ¼ 0.2, and ṽm ¼ 1.
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and, hence, achieve only the performance of a network with
K ¼ 1 hidden unit (cf. our discussion in Sec. IVA). The
learning dynamics approaches this saddle point at an
intermediate stage of learning but finally drifts away from
it toward a “specialized” solution. This second solution
corresponds to the asymptotic fixed point of the learning
dynamics where the student has specialized; i.e., we have R
large and r small, etc. Substituting the values of the order
parameters of this solution into Eq. (26) yields the
asymptotic generalization error of a student.
Making this argument rigorous requires a proof of global

convergence of the coupled, nonlinear integro-differential
equations of motion [(29), (35), (38), (39)] from random
initial conditions. This challenging mathematical problem
remains open, despite some recent progress for two-layer
neural networks with finite N and a large hidden layer [73–
77]. Thus, all predictions in this way ultimately need to be
compared to simulations to verify their accuracy.
We show the results of this analysis in Fig. 5. The crosses

are experimental results for which we train networks with
M ¼ K ¼ 2 on data from a hidden manifold with latent
dimension D ¼ 25, 50, 100, and 200, choosing the input
dimensionN to obtain the range of δ desired for each curve.
We plot the asymptotic error averaged over five runs with
dots; error bars indicate two standard deviations. The
lowest solid line in Fig. 5 is the theoretical prediction
obtained by the procedure just explained when assuming
that T ¼ 1, t ¼ 0, T̃ ¼ 1, and t̃ ¼ 0.
While the experimental results are approaching the

theoretical line as the latent dimension D increases, there

are qualitative differences in the shape of the δ dependence
for small δ. These differences arise due to the following
finite-size effect. While it is numerically easy to enforce
T ¼ 1, t ¼ 0 by orthogonalizing the teacher weight matrix,
it is not possible to explicitly control the reweighted
teacher-teacher overlap T̃nm [Eq. (30)]. The deviation of
T̃nm from the identity leads to the deviations we see at small
δ. We demonstrate this result in Fig. 5 by also plotting
theoretical predictions for T̃ ¼ 1 − x and t̃ ¼ x and choos-
ing x ¼ 1=D. These curves match the experiments much
better. Plotting the data with a linear y scale (not shown)
reveals that the solution obtained making the small-δ ansatz
(42) is valid until δ ∼ 0.2.

2. Learning rate η

We find that the asymptotic test error ϵ�g depends only
weakly on the learning rate η, as we show in Fig. 6 for
M ¼ K ¼ 2 and M ¼ K ¼ 6, together with the theoretical
prediction for t̃ ¼ 0. This theoretical prediction is again
obtained by using the ansatz (43) for the order parameters
and solving the resulting fixed point equations, as described
in the previous section, but this time varying the learning
rate η. The weak dependence of ϵg on η should be
contrasted with the behavior of the canonical teacher-
student setup, where the generalization error is proportional
to the learning rate in the case of additive Gaussian output
noise [55,78].
In the inset in Fig. 6, we plot the generalization dynamics

of a neural network trained on the HMM at different
learning rates. As expected, the learning rate controls the
speed of learning, with increased learning rates leading to

FIG. 5. The impact of the latent dimension δ≡D=N. We plot
the final test error ϵ�g of sigmoidal students trained on the hidden
manifold model with three different intrinsic dimensions D
as a function of δ ¼ D=N, where N is the input dimension.
The average is taken over five runs. The solid lines are the
asymptomatic theoretical predictions derived in Sec. IV C 1.
The shaded bars indicate experimental estimates [12–15] for δ
for the CIFAR10 dataset (left) and the MNIST dataset (right).
fðxÞ ¼ sgnðxÞ, gðxÞ ¼ g̃ðxÞ ¼ erfðx= ffiffiffi

2
p Þ, M ¼ K ¼ 2, η ¼ 0.2,

and ṽm ¼ 1.

FIG. 6. The impact of the learning rate η. We plot the final test
error ϵ�g of sigmoidal students trained on the hidden manifold
model for a range of learning rates η for sigmoidal networks with
K ¼ M ¼ 2 (blue lines) and K ¼ M ¼ 6 (green lines). We repeat
the experiments for two values of D, choosing N such that
δ ¼ D=N ¼ 0.01. Inset: Generalization dynamics during trai-
ning (K ¼ M ¼ 2). Parameters: fðxÞ ¼ sgnðxÞ, gðxÞ ¼ g̃ðxÞ ¼
erfðx= ffiffiffi

2
p Þ, δ ¼ 0.01, ṽm ¼ 1, and K ¼ M.
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faster learning until the learning rate becomes so large that
learning is not possible anymore; instead, the weights just
grow to infinity.

3. The impact of student size

Another key question in our model is how the perfor-
mance of the student depends on her number of nodes K.
Adding hidden units to a student who has less hidden units
than her teacher (K < M) improves her performance, as
would be expected. This result can be understood in terms
of the specialization discussed in Sec. IVA: Each additional
hidden node of the student specializes to another node of
the teacher, leading to improved performance. We see an
example of this improvement below in Sec. VA.
But what happens if we give the student more nodes than

her teacher has, K > M? It is instructive to first study the
overlapmatrices at the endof training.Weshow twoexamples
from an experiment with M ¼ 2 and K ¼ 6 at δ ¼ 0.01 for
networks starting from different initial conditions. In particu-
lar, we plot the rescaled teacher-student overlapmatrix vkRkm

in Figs. 7(b) and 7(c). We rescale Rkm by the second-layer
weights to account for two effects: first, the relative influence
of a given node to the output of the student, which is
determined by the magnitude of the corresponding second-
layerweight; and second,we have a symmetry in theoutput of
the student, since for the sigmoidal activation function
vkgðwkx=

ffiffiffiffi
N

p Þ ¼ −vkgð−wkx=
ffiffiffiffi
N

p Þ.
In the two overlap plots for K > M in Fig. 7, the student

nodes display many-to-one specialization: Several hidden
units of the student specialize to the same hidden node of
the teacher, essentially providing several estimates of the
value of this teacher node. Note that each student node
specializes to one and only one of the teacher nodes rather
than a combination of two or more teacher nodes. We find

this pattern of activations consistently across all of our runs
for various K andM. The fact that student nodes are evenly
distributed across teacher nodes is further motivated by the
fact that such an arrangement minimizes the generalization
error if the second-layer teacher weights ṽm have equal
magnitude and its first-layer weights w̃m have the same
norm. We anticipate that this specialization pattern is at
least in part due to the sigmoidal form of the activation
function gðxÞ. We note that the same many-to-one spe-
cialization of hidden units has been previously reported for
the same two-layer networks trained on IID inputs [55] and
that a similar pattern of specialization is observed for
networks with finite input and a wide hidden layer, where
this type of specialization is referred to as “distributional
dynamics” [74–77].
These observations motivate the following ansatz for the

overlaps of a student with K ¼ ZM hidden nodes (Z ∈ N):

Rkm ¼
�
R k mod M ¼ m mod M;

r otherwise;
ð46Þ

Σkl ¼
�
S k mod M ¼ l mod M;

s otherwise
ð47Þ

and similarly for Wkl, while we use the same parameter-
ization for the teacher order parameters T, t, T̃, t̃, A, and v.
Searching again for specialized fixed points of the resulting
equations for the seven time-dependent order parameters R,
r, S, s, W, w, and v and substituting their values into
Eq. (26) yields the predictions we indicate by solid lines in
Fig. 7, where we plot the asymptotic test error as a function
of Z≡ K=M. We can see small performance improvements
as the student size increases. We also plot, for the three
values of M used, the asymptotic test error measured in
experiments withD ¼ 50, 100, and 200. As we increaseD,

(a) (b)

FIG. 7. (a) Asymptotic generalization for online learning of a student with K ¼ ZM hidden nodes learning from a teacher withM ¼ 1
(blue lines), M ¼ 2 (violet lines), and M ¼ 4 (green lines) hidden nodes, respectively. The dotted, dash-dotted, and dashed lines
correspond to D ¼ 50, 100, and 200, respectively. Error bars indicate two standard deviations over five runs. The solid line is the
theoretical prediction obtained for t̃ ¼ 0. (b),(c) Teacher-student overlap Rkm [Eq. (17)], second-layer weights vk, and the normalized
overlap vkRkm obtained in two simulations used in the left plot withM ¼ 2 andK ¼ 6, starting from different initial conditions, all other
things being equal. Parameters: In all plots, fðxÞ ¼ sgnðxÞ, gðxÞ ¼ erfðx= ffiffiffi

2
p Þ, η ¼ 0.2, ṽm ¼ 1, δ ¼ 0.01, and η ¼ 0.2.
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the experimental results approach the theoretical prediction
for D → ∞.
We finally note that fixed points of the online dynamics

with many-to-one specialization have been described pre-
viously in the canonical teacher-student setup [55], which
found that this behavior leads to a more significant
improvement of student performance as K increases for
teacher tasks with y� ¼ ϕðxÞ compared to the improvement
we observe for the HMM. The same type of many-to-one
specialization is also found by Mei, Montanari, and
Nguyen [74] and Chizat and Bach [76], who consider a
complementary regime where the input dimension N stays
finite while the size of the hidden layer goes to infinity.

V. COMPARING THE HIDDEN MANIFOLD
MODEL TO REAL DATA

We finally turn our attention to the comparison of the
hidden manifold model to more realistic datasets, in our
cases classic image databases such as CIFAR10 (see Fig. 1
for two examples of images in CIFAR10).

A. Neural networks learn functions of increasing
complexity

The specialization transition that we discuss in Sec. IVA
has an important consequence for the performance of the
neural network, as we show in Fig. 8. As we train
increasingly large student networks on a teacher with M ¼
10 hidden units and second-layer weights ṽm ¼ 1=M, we
observe that learning proceeds in two phases. First, there is
an initial decay of the generalization error until all students
have roughly the same test error as the student with a single
hidden unit K ¼ 1. In a second phase, students with K > 1
break away from this plateau after further training and
achieve superior performance, with the larger networks

performing better. These improvements are a result of
specialization after approximately 103 epochs, which per-
mits the student network to capitalize on their additional
hidden nodes.
This way of visualizing specialization not only illustrates

its importance for student performance, it is also applicable
when training the same two-layer neural networks on more
realistic datasets such as MNIST [Fig. 8(b)] or fashion-
MNIST [24] and CIFAR (Fig. 10). The plots demonstrate
clearly that, in all these cases, the larger networks proceed
by first learning functions that are equivalent to the smaller
networks.
In all cases, specialization is preceded by a plateau where

the generalization error stays constant, because the student
is stuck at a saddle point in its optimization landscape,
corresponding to the unspecialized solution. This plateau
has been discussed extensively in the canonical teacher-
student setup [8,23,79,80] and, more recently, in the
context of recurrent and deep neural networks [37,81].
By comparing students of different sizes, this plateau can
also be demonstrated on image datasets, as we do above.
This learning of functions with increasing complexity has
also been observed in deep convolutional networks by
Kalimeris et al. [82], who use quantities from information
theory to quantify how well one model explains the
performance of another.
These observations are interesting, because they suggest

how to explain the ability of neural networks to generalize
well from examples when they have many more parameters
than samples in their training dataset. This explanation is a
key open problem in the theory of deep learning, since the
intuition from classical statistics suggests that, in these
cases, the networks overfit the training data and, thus,
generalize poorly [5,83]. It is possible that, by learning
functions of increasing complexity, networks are biased

(a) (b)

FIG. 8. Two-layer neural networks learn functions of increasing complexity. We plot the generalization error of sigmoidal two-layer
networks with an increasing number of hidden nodes K during a single run of online learning with the hidden manifold model with
δ ¼ 0.05, D ¼ 25, M ¼ 10, and ṽm ¼ 1=M on the HMM (a) and when trained on odd-versus-even digit classification on MNIST,
averaged over ten runs (b). Error bars indicate two standard deviations. For details, see Secs. VA and D. gðxÞ ¼ erfðx= ffiffiffi

2
p Þ, η ¼ 0.2, and

N ¼ 784. (b) Batch size 32.
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toward simple classifiers and avoid overfitting if their
training is stopped before convergence. This topic is an
active research area [84,85].

B. Memorization of random and realistic data

An interesting difference between random and realistic
data is demonstrated in a recent paper by Arpit et al. [86].
They train 100 two-layer networks (K ¼ 4096 hidden units
with ReLU activation, ten output units with softmax
activation) for a single epoch on the ten-class image
classification task on the CIFAR10 dataset, starting from
different initial conditions each time. At the end of training,
they measure the frequency with which each individual
image is classified correctly by the network across runs,
which we call the memorability of an image, which should
be thought of as a function of the image and the dataset that
contains it. We repeat this experiment on CIFAR10 and add
three different synthetic datasets (color codes refer
to Fig. 9):

(i) CIFAR10 (blue).—xμ: CIFAR10 images; y�μ ∈ ½0; 9�:
CIFAR10 label giving the class of that image.

(ii) Gaussian (orange).—Teacher acting on Gaussian
inputs. xμ: IID standard Gaussians; y�μ ¼
argmaxϕðxμ; θ�Þ.

(iii) TeacherS (green).—Teacher acting on structured
inputs. xμ ¼ fðFcμÞ; y�μ ¼ argmaxϕðxμ; θ�Þ.

(iv) HMM (red).—xμ ¼ fðFcμÞ; y�μ ¼ argmaxϕðcμ; θ�Þ.
The labels for the synthetic datasets are generated by two
teacher networks, one with input dimension N for the
Gaussian and TeacherS datasets and another with input
dimension D for the HMM. The teachers are two-layer

fully connected networks having M ¼ 2K hidden units
with ReLU activation function and ten nodes in the last
readout layer. Thus, the teacher’s output ϕð·; θ�Þ ∈ R10,
and the class for a given input is obtained as the index of the
output node with the highest value for that input.
We plot the memorabilities for all images in the training

set, sorted by their memorability, in Fig. 9. On the left, we
first reproduce the memorability curve for CIFAR10 that
was found by Arpit et al. [86] (solid blue curve), which
demonstrates that many examples are consistently classi-
fied correctly or incorrectly after a single epoch of training.
The memorability curve for a dataset containing the same
images with random labels (dashed blue curve) demon-
strates that randomized CIFAR10 does not contain images
that are particularly hard or easy to memorize. The smaller
variation in memorability for the randomized dataset is
largely due to the fact that it takes it more time to fit
randomized datasets [87]. After one epoch, the network
thus has a lower training accuracy on the randomized
dataset (cf. the inset in Fig. 9), which leads to the smaller
area underneath the curve. We verify that no easy or hard
samples appear when training the randomized datasets to
comparable training accuracy (not shown). In fact, the
memorability of datasets with random labels seems to coin-
cide after accounting for differences in the training error,
regardless of whether the inputs are CIFAR10 images,
Gaussian inputs, or structured inputs X ¼ fðCFÞ (4)
[dashed lines in Fig. 9(a)].
The memorability curves for the Gaussian, TeacherS,

and HMM datasets in Fig. 9(b) reveal that hard and easy
examples exist for TeacherS and HMM, which both contain
structured inputs X ¼ fðCFÞ, but not in the Gaussian

(a) (b)

FIG. 9. Neural networks have different memorization patterns for random and structured datasets. We plot the memorability of training
images, i.e., the frequency with which an image from the training set is correctly classified by a neural network after training for only a
single epoch. In (a) and (b), we reproduce the result of Arpit et al. [86] for CIFAR10 (full blue line). This curve demonstrates the
existence of hard and easy examples which are never, or always, classified correctly. (a) shows that this property disappears in all models
when the labels are reshuffled (dashed lines). The insets indicate the training accuracy after training, using circles for randomized
datasets and squares for unmodified data sets. (b) shows that these hard and easy examples also exist in the structured data models,
TeacherS (green line) and the HMM (red line), but not in the unstructured Gaussian one (orange line).
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dataset. The number of easy examples, but not their
existence, correlates well with the training accuracy on
these datasets, shown in the inset. In that sense, the hidden
manifold model is thus a more realistic model of imagelike
data than the canonical teacher-student setup.
Note that, by making the teacher network larger than the

students (M ¼ 2K), the learning problem is unrealizable
for all three synthetic datasets; i.e., there is no set of weights
for the student that achieve zero generalization error. The
absence of easy examples in the Gaussian dataset, thus,
suggests that unrealizability alone is insufficient to obtain a
dataset with easy examples. Our results also demonstrate
that memorability is not just a function of the input
correlations: CIFAR10 images, Gaussian inputs, and struc-
tured inputs yield the same memorability curves when their
labels are randomized. We leave it to future work to identify
some criterion, statistical or otherwise, that predicts either
whether a sample (xμ; y�μ) is easy (or hard) to memorize or
whether a training set contains easy examples at all.

VI. CONCLUDING PERSPECTIVES

We introduce the hidden manifold model as a generative
model for structured datasets that displays some of the
phenomena that we observe when training two-layer neural
networks on realistic data. The HMM has two key
ingredients, namely, high-dimensional inputs which lie
on a lower-dimensional manifold and labels for these
inputs that depend on the inputs’ position within the
low-dimensional manifold. We derive an analytical solution
of the model for online SGD learning of two-layer neural
networks. We, thus, provide a rich test bed for exploring the
influence of data structure on learning in neural networks.
Let us close this paper by outlining several important

directions in which our work is being (or should be)
extended.
Comparison to more deep learning phenomenology.—In

the spirit of our experiments in Sec. V, it is of great interest
to identify more properties of learning that are consistently
reproduced across experiments with realistic datasets and
network architectures and to test whether the HMM
reproduces these observations as well. Of particular interest
will be those cases where learning on realistic data deviates
from the HMM and how we can extend the HMM to
capture these behaviors.
Beyond online SGD.—Our analytical results on online

SGD rely on the assumption that each new sample seen
during training is conditionally independent from the
weights of the network up to that point. In practice,
samples are seen several or even many times during
training, giving rise to additional correlations. Taking those
correlations into account to analyze those cases is an
important future direction. First steps toward a solution
to this challenging problem were made using the dynamical
replica method [88,89] for two-layer networks and for
single-layer neural networks trained using full-batch

gradient descent, where all the samples in the training
set are used at every step of the algorithm [42,43,90].
Generalizing these results to two-layer networks is clearly a
direction for future work as well.
Learning with a multilayer network.—The present work

should be extended to learning with multilayer networks in
order to identify how depth helps to deal with structured
data. This challenge is serious, and it remains an open
problem to find explicitly solvable models of multilayer
(nonlinear) networks even in the canonical teacher-student
model where inputs are uncorrelated.
Multilayer generative model.—The hidden manifold

model is akin to a single-layer generator of a GAN. A
natural extension would be to take a generator with an
arbitrary number of layers. Multilayer generators are
explored in Refs. [41,49], whose results are analogous to
the Gaussian equivalence property and suggest that the full
solution of the online SGD or of the full-batch gradient
descent might also be within reach.
Conditioning the inputs on the labels.—In the HMM, the

true label y� of an input x is conditioned on its latent
representation c, i.e., its coordinates in the manifold. It may
be more realistic to consider models where, instead, the
latent representation is conditioned on the label of the input,
i.e., pðcjyÞ. A simple case of such a model that reduces to a
Gaussian mixture of two clusters was explored recently
[91]. This point of view is also taken implicitly in Ref. [33].
More generally, exploring different approaches to modeling
realistic inputs will allow us to better understand how data
structure influences learning.
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APPENDIX A: THE GAUSSIAN EQUIVALENCE
PROPERTY

1. Nonlinear functions of weakly correlated
Gaussian random variables

In order to derive the GEP we first establish some
auxiliary lemmas concerning the correlations between
nonlinear functions of weakly correlated random variables.
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a. Correlations of two functions

Lemma A1.—Given nþ p random variables organized
in two vectors,

x ¼

0
BBB@

x1

:

:

xn

1
CCCA; y ¼

0
BBB@

y1

:

:

yp

1
CCCA; ðA1Þ

with a joint Gaussian distribution, denote by E the expect-
ation with respect to this distribution. The first moments are
supposed to vanish:

Exi ¼ 0; Eyj ¼ 0; ðA2Þ

and we denote by Q, R, and εS the covariances:

E½xixj�¼Qij; E½yiyj�¼Rij; E½xiyj�¼ εSij: ðA3Þ

Let fðxÞ and gðyÞ be two functions of x and y, respectively,
regular enough so that Ex½xifðxÞ�, Ex½xixjfðxÞ�, Ey½yifðyÞ�,
and Ey½yiyjfðyÞ� exist, where Ex denotes the expectation
with respect to the distributionN ða;QÞ of x and Ey denotes
the expectation with respect to the distribution N ðb; RÞ
of x.
Then, in the ε → 0 limit,

E½fðxÞgðyÞ� ¼ Ex½fðxÞ�Ey½gðyÞ�

þ ε
Xn
i¼1

Xp
j¼1

Ex½xifðxÞ�ðQ−1SR−1ÞijEy½yjgðyÞ�

þOðε2Þ: ðA4Þ

Proof.—The result is obtained by a straightforward
expansion in ε.
The joint distribution of x and y is

Pðx; yÞ ¼ 1

Z
exp

�
−
1

2

�
x y

�
M−1

�
x

y

��
; ðA5Þ

where

M ¼
�

Q εS

εST R

�
: ðA6Þ

One can expand the inverse matrix M−1 to first order in ε:

M−1¼
�
Q−1 0

0 R−1

�
−ε

�
0 Q−1SR−1

R−1STQ−1 0

�
ðA7Þ

and substitute this result into the joint distribution (A5) to
find

Pðx; yÞ ¼ 1

Z
exp

�
−
1

2

�
x y

��
Q−1 0

0 R−1

��
x

y

��

×

�
1þ ε

Xn
i¼1

Xp
j¼1

xiðQ−1SR−1Þijyj þOðε2Þ
�
:

ðA8Þ

Using this expression, the result (A4) follows immedi-
ately. ▪
An immediate application of the lemma to the case when

n ¼ p ¼ 1 is the following. Consider two Gaussian ran-
dom variables u1 and u2 with mean zero and covariance

E½u21� ¼ 1; E½u22� ¼ 1; E½u1u2� ¼ εm12; ðA9Þ

and two functions f1 and f2. Define, for i ∈ f1; 2g,

ai ¼ hfiðuÞi; bi ¼ hufiðuÞi; ðA10Þ

where h:i denotes the average over the distribution of the
random Gaussian variable u distributed as N ð0; 1Þ.
Then, in the ε → 0 limit, the correlation between fðu1Þ

and gðu2Þ is given by

E½f1ðu1Þf2ðu2Þ� ¼ a1a2 þ εm12b1b2 þOðε2Þ: ðA11Þ

This result means that, if we consider centered functions
f̃iðuiÞ ¼ fiðuiÞ − ai, their covariance is

E½f̃1ðu1Þf̃2ðu2Þ� ¼ þεm12b1b2 þOðε2Þ: ðA12Þ

This result generalizes to correlation functions of higher
order, as stated in the following lemma.

b. Higher-order correlations

Lemma A2.—Consider m Gaussian random variables
u1;…; um with mean zero and covariance

∀ i∶E½u2i � ¼ 1; ∀ i ≠ j∶ E½uiuj� ¼ εmij; ðA13Þ

and m functions f1;…; fm. Define as before:

ai ¼ hfiðuÞi; bi ¼ hufiðuÞi; i ∈ f1;…; mg;
ðA14Þ

and define the centered functions as

f̃iðuÞ ¼ fiðuÞ − ai; ðA15Þ

then,
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lim
ε→0

1

εm=2 Ef̃1ðu1Þ…f̃mðumÞ

¼
8<
:

P
σ∈Π

mσ1σ2mσp−1mσp if p is even;

0 if p is odd;
ðA16Þ

where Π denotes all the m!=ð2m=2ðm=2Þ!Þ partitions of
f1;…; mg into m=2 disjoint pairs. This result means that,
for the moments involving only different indices, the
random variables f̃1ðu1Þ=

ffiffiffi
ε

p
;…; f̃mðumÞ=

ffiffiffi
ε

p
behave, in

the ε → 0 limit, like Gaussian variables with a covariance
matrix bibjmij.
Proof.—The covariance matrix U of the variables

u1;…; um has elements 1 on the diagonal and elements
of the order of ε out of the diagonal: U ¼ I þ εm. One can
expand U−1 in powers of ε:

U−1 ¼
X∞
p¼0

ð−εÞpmp: ðA17Þ

The integration measure over the variables u1;…; um can
be expanded as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2πÞm detM

p
e−ð1=2Þ

P
i
u2i
Y∞
p¼1

Gpðu1;…; umÞ; ðA18Þ

where

Gpðu1;…; umÞ ¼ 1þ
�
−
ε

2

�
pX

ij

ðmpÞijuiuj

þ 1

2!

�
−
ε

2

�
2pX

ijkl

ðmpÞijðmpÞkluiujukul

þ � � � : ðA19Þ

When we compute the integral of f̃1ðu1Þ…f̃mðumÞwith the
measure (A18), because of the fact that hf̃iðuiÞi ¼ 0, we
need to include terms coming from

Q
p Gpðu1;…; upÞ that

involve at least one power of each of the variables
u1;…; um.
When m is even, say, m ¼ 2r, for ε → 0, the term of this

kind with the smallest power of ε is the monomial u1…u2r
that comes from the rth order term in G1. This term gives

Ef1ðu1Þ…f2rðu2rÞ ¼
1

r!

�
ε

2

�
rX̂

i1j1…irjr
mi1j1mirjr

þOðεrþ1Þ; ðA20Þ

where the sum
P̂

i1j1…irjr runs over all permutations of the
indices 1;…; 2r. This result leads to Eq. (A16) for m even.
When m is odd, m ¼ 2rþ 1, for ε → 0, the leading

terms coming from
Q

Gp that give a nonzero result are

monomials of the type u11u2…u2rþ1. They are of the order
of Oðεrþ1Þ. This result proves Eq. (A16) for m odd. ▪
Corollary A3.—In the special case m ¼ 3, we get

E½f1ðu1Þf2ðu2Þf3ðu3Þ�
¼ a1a2a3 þ εða1m23b2b3 þ a2m13b1b3 þ a3m12b1b2Þ:

ðA21Þ

2. Derivation of the Gaussian equivalence property

The derivation is based on the computation of moments
of the variables λk and νm, showing that, in the thermo-
dynamic limit, all the moments are those of Gaussian
random variables. Here, we make explicit the derivation up
to fourth-order moments and leave the daunting higher-
order moments for a future formal proof of the GEP.

a. Covariances

We first compute the covariance matrix Gkl ¼ E½λ̃kλ̃l�:

Gkl ¼ 1

N

X
i;j

wk
i w

l
jE½fðuiÞ − a�½fðujÞ − a� ðA22Þ

¼ ðc − a2ÞWkl þ 1

N

X
i≠j

wk
i w

l
jE½fðuiÞ − a�½fðujÞ − a�:

ðA23Þ

In the last piece, we need to compute Ef½fðuiÞ −
a�½fðujÞ − a�g for two Gaussian random variables ui and
uj which are weakly correlated in the large N limit. In fact,
as i ≠ j:

Euiuj ¼ Uij ðA24Þ

is of the order of 1=
ffiffiffiffi
D

p
. In the thermodynamic limit, we

can apply Lemma A1, which gives

EfðuiÞfðujÞ ¼ a2 þ b2
1

D

XD
r¼1

FirFjr ði ≠ jÞ: ðA25Þ

From Eqs. (A23) and (A25), we get the covariance of λ
variables as written in Eq. (16). The covariance E½νmνn� is
analogous.
We now compute the covariance E½λ̃kνm�, which is

equal to

1ffiffiffiffi
N

p
XN
i¼1

wk
i

1ffiffiffiffi
D

p
XD
r¼1

w̃m
r E½fðuiÞCr�: ðA26Þ

The two variables ui and cr are Gaussian random variables
with a correlation
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E½uiCr� ¼
1ffiffiffiffi
D

p Fir ðA27Þ

which goes to zero as Oð1= ffiffiffiffi
N

p Þ in the thermodynamic
limit. We can, thus, use Lemma A1, and more precisely
Eq. (A12), to get

E½fðuiÞCr� ¼
1ffiffiffiffi
D

p FirhufðuÞihC2
ri ¼

bffiffiffiffi
D

p Fir: ðA28Þ

Using this result in Eq. (A26) gives Eq. (17).

b. Fourth moments of λ̃k variables

We study the fourth moment defined as

Gk1k2k3k4 ¼ hλ̃k1 λ̃k2 λ̃k3 λ̃k4i ¼ 1

N2

X
i1;i2;i3;i4

wk1
i1
wk2
i2
wk3
i3
wk4
i4
hf̃ðui1Þf̃ðui2Þf̃ðui3Þf̃ðui4Þi; ðA29Þ

where f̃ðuÞ ¼ fðuÞ − a is the centered function.
We shall decompose the sum over i1, i2, i3, and i4 depending on the number of distinct indices there are.
Distinct indices.—Let us study the first piece of the fourth moment hλk1λk2λk3λk4i:

Gk1k2k3k4
4 ¼ 1

N2

X0

i1;i2;i3;i4

wk1
i1
wk2
i2
wk3
i3
wk4
i4
hf̃ðui1Þf̃ðui2Þf̃ðui3Þf̃ðui4Þi; ðA30Þ

where the sum runs over four indices i1, i2, i3, and i4 which are distinct from each other. We can use the factorization
property of the fourth moments of fðuÞ of Lemma A2. This property gives

Gk1k2k3k4
4 ¼ 1

N2

X0

i1;i2;i3;i4

wk1
i1
wk2
i2
wk3
i3
wk4
i4
½hf̃ðui1Þf̃ðui2Þihf̃ðui3Þf̃ðui4Þi þ two perm�

¼
��

1

N

X0

i1;i2

wk1
i1
wk2
i2
hfðui1Þfðui2Þi

��
1

N

X0

i3;i4

wk3
i3
wk4
i4
hfðui3Þfðui4Þi

�
− corr

�

þ two perm: ðA31Þ

The correction terms come from pieces where the intersection between fi1; i2g and fi3; i4g is nonempty. If we first neglect
this correction, we find

Gk1k2k3k4
4 ¼ b4½ðΣk1k2 −Wk1k2ÞðΣk3k4 −Wk3k4Þ þ two perm�: ðA32Þ

Now, we show that the corrections are negligible. Consider the term i1 ¼ i3, i2 ≠ i4. This term gives a correction

−
1

N2

X0

i1;i2;i4

wk1
i1
wk2
i2
wk3
i1
wk4
i4
½hf̃ðui1Þf̃ðui2Þihf̃ðui1Þf̃ðui4Þi�: ðA33Þ

Using Eq. (A12)

hf̃ðui1Þf̃ðui2Þi ¼ b2Ui1i2 ¼ b2
1

D

XD
r¼1

Fi1rFi2r; ðA34Þ

we get the expression for the correction

−
1

N2D2
hufðuÞi4

X0

i1;i2;i4

wk1
i1
wk2
i2
wk3
i1
wk4
i4
Fi1rFi2rFi1sFi4s ¼ −

1ffiffiffiffi
N

p
D2

X
r;s

Sk1k3rs Sk2r S
k4
s : ðA35Þ

Using our hypothesis on the fact that the quantities S are of the order of one, this correction is clearly at most of the order of
Oð1= ffiffiffiffi

N
p Þ and, therefore, negligible.
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The last correction that we need to consider is the term where i1 ¼ i3 ¼ i and i2 ¼ i4 ¼ j. This term gives

−
1

N2

X0

i;j

wk1
i w

k2
j w

k3
i w

k4
j hf̃ðuiÞf̃ðujÞi2 ¼ −

1

NR2
hufðuÞi4

X
r;s

½Sk1k3rs Sk2k4rs − Sk1k3k2k4rrss �; ðA36Þ

which is again negligible in the large N limit.
Three distinct indices.—Let us study the contributions to

the fourth moment of λ coming from three distinct indices.
We study the case where i1 ¼ i4:

Ek1k2k3k4 ¼ 1

N2

X0

i1;i2;i3

wk1
i1
wk2
i2
wk3
i3
wk4
i1
hf̃ðui1Þ2f̃ðui2Þf̃ðui3Þi:

ðA37Þ

Using the expression for the third moment of functions of
u1, u2, and u3 found in Eq. (A21), we get

Ek1k2k3k4 ¼ cb2
1

N2

X0

i1;i2;i3

wk1
i1
wk2
i2
wk3
i3
wk4
i1
− corr

¼ cb2Wk1k4 ½Σk2k3 −Wk2k3 � − corr: ðA38Þ

The corrections come from cases when i1 ¼ i2 or i1 ¼ i3.
For instance, the piece with i1 ¼ i2 gives

−cb2
1

ND

X
r

Sk1k2k4r Sk3r ; ðA39Þ

which is Oð1=NÞ at most.
The only pieces that do not vanish in the large N limit

are, thus, the pieces similar to the one computed in
Eq. (A38). Putting all of them together, we find that the
contribution to hλ̃k1 λ̃k2 λ̃k3 λ̃k4i coming from pieces with
exactly three distinct indices in i1, i2, i3, and i4 is equal to

Gk1k2k3k4
3 ¼ cb2ðXk1k2;k3k4 þ Xk1k3;k2k4 þ Xk1k4;k2k3

þ Xk2k3;k1k4 þ Xk2k4;k1k3 þ Xk3k4;k1k2Þ;

where

Xk1k2;k3k4 ¼ Wk1k2 ½Σk3k4 −Wk3k4 �: ðA40Þ

Two distinct indices.—Let us now study the contri-
bution to the fourth moment of λ coming from two
distinct indices. We study first one piece of this contribu-
tion to the fourth moment, corresponding to i1 ¼ i2 ¼ i,
i3 ¼ i4 ¼ j:

Fk1k2k3k4 ¼ 1

N2

X0

i;j

wk1
i w

k2
i w

k3
j w

k4
j hf̃ðuiÞ2f̃ðujÞ2i: ðA41Þ

To leading order in the thermodynamic limit, we can write

hf̃ðuiÞ2f̃ðujÞ2i ¼ c2 ðA42Þ

and, therefore,

Fk1k2k3k4 ¼ c2Wk1k2Wk3k4 ðA43Þ

[the correction coming from i ¼ j being obviously at
most Oð1=NÞ].
We study now the second piece of this contribution to the

fourth moment, corresponding to i1 ¼ i2 ¼ i3 ¼ i, i4 ¼ j.
This piece is equal to

1

N2

X0

i;j

wk1
i w

k2
i w

k3
i w

k4
j hf̃ðuiÞ3f̃ðujÞi: ðA44Þ

Using

hf̃ðuiÞ3f̃ðujÞi ¼ bhuf̃ðuÞ3i 1
D

X
r

FirFjr; ðA45Þ

this piece gives

bhuf̃ðuÞ3i 1

ND

X
r

Sk1k2k3r Sk4r ; ðA46Þ

and it is, therefore, negligible.
Therefore, all the contributions to the fourth moment of λ

coming from exactly two distinct indices are of the type
(A43). They give a total contribution:

Gk1k2k3k4
2 ¼ c2½Wk1k2Wk3k4 þWk1k3Wk2k4 þWk1k4Wk2k4 �:

ðA47Þ

One distinct index.—The contribution to the fourth
moment hλk1λk2λk3λk4i coming from i1 ¼ i2 ¼ i3 ¼ i4 is
clearly of Oð1=NÞ and can be neglected.
Final result for the four-point correlation function of λ

variables.—We can now put together all the contributions
to the fourth moment hλ̃k1 λ̃k2 λ̃k3 λ̃k4i coming from pieces
with four distinct indices found in Eq. (A32), those with
three distinct indices found in Eq. (A40), and those with
two distinct indices found in Eq. (A47). Defining

Yk1k2 ¼ Σk1k2 −Wk1k2 ðA48Þ
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and recalling the definition (A40) of the X variables, we
obtain

hλ̃k1 λ̃k2 λ̃k3 λ̃k4i
¼ b4ðYk1k2Yk3k4 þ Yk1k3Yk2k4 þ Yk1k4Yk2k3Þ
þ b2cðXk1k2;k3k4 þ Xk1k3;k2k4

þ Xk1k4;k2k3 þ Xk2k3;k1k4 þ Xk2k4;k1k3 þ Xk3k4;k1k2Þ
þ c2½Wk1k2Wk3k4 þWk1k3Wk2k4 þWk1k4Wk2k4 �: ðA49Þ

We can see that this result is equal to

½b2Yk1k2 þ cWk1k2 �½b2Yk3k4 þ cWk3k4 � þ two perm; ðA50Þ

which shows that

hλ̃k1 λ̃k2 λ̃k3 λ̃k4i ¼ hλ̃k1 λ̃k2ihλ̃k3 λ̃k4i þ two permutations:

ðA51Þ

With this result, it is clear how to proceed with the
calculation of the fourth moments involving λ and ν
variables. We first need to study the moments with three
λ and one ν, then moments with two λ and two ν, and,
finally, the moments with one λ and three ν variables. In the
interest of conciseness, we do not spell out the full details of
this calculations here, which proceeds very similarly to the
calculations performed hitherto.
The generalization to higher moments of λ variables

employs the same combination of repeated use of
Lemma A2 and careful decomposition in subsets of
distinct indices. As a result, it can be seen that the set of
λ variables has a Gaussian distribution in the thermody-
namic limit.

APPENDIX B: DERIVATION OF THE
EQUATIONS OF MOTION

When we make a step of SGD, we update the weight wk
i

using a new sample, generated using a previously unused
sample according to

ðwk
i Þμþ1 − ðwk

i Þμ ¼ −
ηffiffiffiffi
N

p vkΔg0ðλkÞfðuiÞ; ðB1aÞ

vkμþ1 − vkμ ¼ −
η

N
gðλkÞΔ; ðB1bÞ

where Δ ¼ P
K
j¼1 v

jgðλjÞ −P
M
m¼1 ṽ

mg̃ðνmÞ. Note the dif-
ferent rescaling of the learning rate for the first- and second-
layer weights. From here on out, we drop the index μ on the
right-hand side as we work at a fixed iteration time. We
keep the convention of Sec. III A, where extensive indices
(taking values up to N or D) are below the line, while we
use upper indices when they take finite values up toM orK.
The challenge of controlling the learning in the

thermodynamic limit is to write closed equations using
matrices with only “upper” indices left. Furthermore, we
adopt the convention that the indices j; k;l; ι ¼ 1;…; K
always denote student nodes, while n;m ¼ 1;…;M are
reserved for teacher hidden nodes.

1. First steps

We start by focusing on the dynamics of the first layer
[Eq. (B1)]. When we study the evolution of quantities that
are linear in the weights, like Skr and the order parameters
constructed from it, e.g., Σkl, we need to study

�XK
j¼1

vjgðλjÞ −
XM
m¼1

ṽmg̃ðνmÞ
�
g0ðλkÞfðuiÞ

¼
XK
j≠k

vjajk
i þ vkbk

i −
XM
n¼1

ṽncnk
i ; ðB2Þ

where

ajk
i ¼ gðλjÞg0ðλkÞfðuiÞ; ðB3Þ

bk
i ¼ gðλkÞg0ðλkÞfðuiÞ; ðB4Þ

cnk
i ¼ g̃ðνnÞg0ðλkÞfðuiÞ; ðB5Þ

while we keep the second-layer weights vk fixed. We can,
thus, follow the dynamics of Skr [Eq. (20)], which is linear
in the weights and enters the definition of the order
parameters Rkm [Eq. (17)] and Σkl [Eq. (22)]:

ðSkrÞμþ1−ðSkrÞμ

¼−
η

N
vk
X
i

Fir

�XK
j≠k

vjajk
i þvkbk

i −
XM
n

ṽncnk
i

�
: ðB6Þ

We want to average this update equation over a new
incoming sample, i.e., over the cr variables. Upon con-
traction with Fir in Eq. (B6), we are thus led to computing
the averages

Ajk
r ≡ 1ffiffiffiffi

N
p

X
i

E½Fira
jk
i � ¼ E½gðλjÞg0ðλkÞβr�; ðB7Þ

Bk
r ≡ E½gðλkÞg0ðλkÞβr�; ðB8Þ

and

Cnkr ¼ E½g̃ðνnÞg0ðλkÞβr�; ðB9Þ

where

βr ¼
1ffiffiffiffi
N

p
X
i

FirfðuiÞ: ðB10Þ
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The crucial fact that allows for an analytic study of online
learning is that, at each step μ of SGD, a previously unseen
input xμ is used to evaluate the gradient. The latent
representation cμ of this input is given by a new set of
IID Gaussian random variables cμr, which are thus inde-
pendent of the current weights of the student at that time. In
the thermodynamic limit, the GEP of the previous section
shows that, for one given value of r, the K þM þ 1

variables fλkg, fνmg, and βr have a joint Gaussian
distribution, making it possible to express the averages
over fλk; νm; βrg in terms of only their covariances.

Looking closer, we see that the average of Eqs. (B7)–
(B9) over this Gaussian distribution involves two sets of
random variables: on the one hand, the M þ K local fields
fνm; λkg, which have correlations of the order of 1, and, on
the other hand, the variable βr (for one given value of r). It
turns out that βr is only weakly correlated with the local
fields fνm; λkg [the correlation is Oð1= ffiffiffiffi

N
p Þ]. In

Appendix A 1, we discuss how to compute this type of
average and prove Lemma A1, which for the averages
(B7)–(B9) yields

Ajk
r ¼ 1

QkkQjj − ðQkjÞ2 fQ
jjE½g0ðλkÞλkgðλjÞ�E½λkβr� −QkjE½g0ðλkÞλjgðλjÞ�E½λkβr�

−QkjE½g0ðλkÞλkgðλjÞ�E½λjβr� þQkkE½g0ðλkÞλjgðλjÞ�E½λjβr�g; ðB11Þ

Bk
r ¼

1

Qkk E½g0ðλkÞλkgðλkÞ�E½λkβr�; ðB12Þ

Cnkr ¼ 1

QkkTnn − ðRknÞ2 fT
nnE½g0ðλkÞλkg̃ðνnÞ�E½λkβr� − RknE½g0ðλkÞνng̃ðνnÞ�E½λkβr�

−RknE½g0ðλkÞλkg̃ðνnÞ�E½νnβr� þQkkE½g0ðλkÞνng̃ðνnÞ�E½νnβr�g: ðB13Þ
This result yields

ðSkrÞμþ1 − ðSkrÞμ ¼ −
ηffiffiffiffi
N

p vk
�XK
j≠k

vjAjk
r þ vkBk

r −
XM
n

ṽnCnkr

�
; ðB14Þ

with only the single extensive index r left. While this
equation would appear to open up a way to write down the
equation of motion for the “teacher-student” overlap Rkm

by contracting Eq. (B14) with w̃m
r , we show in Appendix C

that such a program leads to an infinite hierarchy of
equations. To avoid this problem, we rotate the problem
to a different basis, as we explain in the next section.

2. Changing the basis to close the equations

We can close the equations for the order parameters by
studying their dynamics in the basis given by the eigen-
vectors of the operator

Ωrs ≡ 1

N

X
i

FirFis; ðB15Þ

which is a D ×D symmetric matrix, with diagonal ele-
ments Ωrr ¼ 1, and off-diagonal elements of the order of
1=

ffiffiffiffi
N

p
. Consider the orthogonal basis of eigenvectors

ψτ¼1;…;D of this matrix, with corresponding eigenvalues
ρτ, such that

X
s

Ωrsψτs ¼ ρτψτr: ðB16Þ

We suppose that the components of the eigenvectors ψτr are
of the order of 1, and we impose the following normali-
zation:

X
s

ψτsψτ0s ¼ Dδττ0 ;
X
τ

ψτrψτs ¼ Dδrs: ðB17Þ

In this basis, the teacher-student overlap Rkm [Eq. (17)] is
given by

Rkm ¼ b
D

X
τ

Γk
τ ω̃

m
τ ; ðB18Þ

where we introduce the projections

Γk
τ ¼

1ffiffiffiffi
D

p
X
r

Skrψτr ðB19Þ

and
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ω̃m
τ ¼ 1ffiffiffiffi

D
p

X
r

w̃m
r ψτr: ðB20Þ

Since ω̃m
τ is a static variable, the time evolution of Γk

τ is
given by

ðΓk
τÞμþ1 − ðΓk

τÞμ ¼ −
ηffiffiffi
δ

p
N
vk
X
r

ψτr

�XK
j≠k

vjAjk
r

þ vkBk
r −

XM
n

ṽnCnkr

�
: ðB21Þ

As we aim to compute the remaining sum over r, two types
of terms appear:

X
r

ψτrE½λkβr� ¼
1ffiffiffi
δ

p ½ðc − b2Þδþ b2ρτ�Γk
τ ¼

dτffiffiffi
δ

p Γk
τ ;

ðB22Þ

where we define dτ ¼ ðc − b2Þδþ b2ρτ, and

X
r

ψτrE½νnβr� ¼
bffiffiffi
δ

p ρτω̃
n
τ : ðB23Þ

Putting everything together, the final evolution of Γk
τ is

ðΓk
τÞμþ1 − ðΓk

τÞμ ¼ −
η

δN
vk
�
dτΓk

τ

X
j≠k

vj
QjjE½g0ðλkÞλkgðλjÞ� −QkjE½g0ðλkÞλjgðλjÞ�

QkkQjj − ðQkjÞ2

þ
X
j≠k

vjdτΓ
j
τ
QkkE½g0ðλkÞλjgðλjÞ� −QkjE½g0ðλkÞλkgðλjÞ�

QkkQjj − ðQkjÞ2 þ dτvkΓk
τ

1

Qkk E½g0ðλkÞλkgðλkÞ�

− dτΓk
τ

X
n

ṽn
TnnE½g0ðλkÞλkg̃ðνnÞ� − RknE½g0ðλkÞνng̃ðνnÞ�

QkkTnn − ðRknÞ2

−bρτ
X
n

ṽnω̃n
τ
QkkE½g0ðλkÞνng̃ðνnÞ� − RknE½g0ðλkÞλkg̃ðνnÞ�

QkkTnn − ðRknÞ2
�
: ðB24Þ

At this point, we note that the remaining averages appear-
ing in this expression, such as E½λkg0ðλkÞg̃ðνmÞ�, depend
only on subsets of the local fields fλk¼1;…;K; νm¼1;…;Mg. As
discussed above, the GEP guarantees that these random
variables follow a multidimensional Gaussian distribution,
so these averages depend only on the covariances of the
local fields Rkm, Qkl, and Tmn. To simplify the subsequent
equations, we use the shorthand notation for the three-
dimensional Gaussian averages

I3ðk; j; nÞ≡ E½g0ðλkÞλjg̃ðνnÞ�; ðB25Þ

which was introduced by Saad and Solla [22] and that we
discuss in the main text. To make this section self-
contained, we recall that arguments passed to I3 should
be translated into local fields on the right-hand side by
using the convention where the indices j, k, l, and ι always
refer to student local fields λj, etc., while the indices n and
m always refer to teacher local fields νn and νm, respec-
tively. Similarly,

I3ðk; j; jÞ≡ E½g0ðλkÞλjgðλjÞ�; ðB26Þ

where having the index j as the third argument means that
the third factor is gðλjÞ rather than g̃ðνmÞ in Eq. (B26). The
average in Eq. (B26) is taken over a three-dimensional
normal distribution with mean zero and covariance matrix

Φð3Þðk; j; nÞ ¼

0
B@

E½λkλk� E½λkλj� E½λkνn�
E½λkλj� E½λjλj� E½λjνn�
E½λkνn� E½λjνn� E½νnνn�

1
CA

¼

0
B@

Qkk Qkj Rkn

Qkj Qjj Rjn

Rkn Rjn Tnn

1
CA: ðB27Þ

3. Dynamics of the teacher-student overlap Rkm

We are now in a position to write the update equation for

ðRkmÞμþ1 − ðRkmÞμ ¼
b
D

X
τ

½ðΓk
τÞμþ1 − ðΓk

τÞμ�ω̃m
τ ; ðB28Þ

where we use that the ω̃m
τ are static. When performing the

last remaining sum over τ, two types of terms appear. First,
there is

T̃mn ≡ 1

D

X
τ

ρτω̃
m
τ ω̃

n
τ ; ðB29Þ

which depends only on the choice of the feature matrix Fir
and the teacher weights w�

mr and is, thus, a constant of the
motion. The second type of term is of the form
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1

D

X
τ

ρτΓl
τ ω̃

n
τ : ðB30Þ

This sum cannot be reduced to a simple expression in terms
of other order parameters. Instead, we are led to introduce
the density

rkmðρÞ ¼ 1

ερ

1

D

X
τ

Γk
τ ω̃

m
τ 1ðρτ ∈ ½ρ; ρþ ερ½Þ; ðB31Þ

where 1ð·Þ is the indicator function which evaluates to 1
if the condition given to it as an argument is true and
which otherwise evaluates to 0. We take the limit ερ → 0

after the thermodynamic limit. Then, we can rewrite the
order parameter Rkm as an integral over the density rkm,
weighted by the distribution of eigenvalues of the operator
Ωrs, pΩðρÞ:

Rkm ¼ b
Z

dρpΩðρÞrkmðρÞ: ðB32Þ

If, for example, we take the elements of the feature matrix
Fir to be elementwise IID from the normal distribution with
mean zero and unit variance, then the limiting density of
eigenvalues ofΩ is given by theMarchenko-Pastur law [66]:

pMPðρÞ ¼
1

2πδ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðρmax − ρÞðρ − ρminÞ
p

ρ
; ðB33Þ

where ρmin ¼ ð1 − ffiffiffi
δ

p Þ2 and ρmax ¼ ð1þ ffiffiffi
δ

p Þ2.
The update equation of rkmðρÞ can be obtained immedi-

ately by substituting the update equation for Γk
τ [Eq. (B24)]

into its definition [Eq. (B31)]. Finally, in the thermodynamic
limit, the normalized number of steps t ¼ P=N can be
interpreted as a continuous timelike variable, and sowe have

RkmðtÞ ¼ b
Z

dρpΩðρÞrkmðρ; tÞ; ðB34Þ

and we recover the equation of motion for rkmðρÞ, which we
restate here for ease of reading:

∂rkmðρ; tÞ
∂t ¼ −

η

δ
vk
�
dðρÞrkmðρÞ

X
j≠k

vj
QjjI3ðk; k; jÞ −QkjI3ðk; j; jÞ

QjjQkk − ðQkjÞ2

þ dðρÞ
X
j≠k

vjrjmðρÞQ
kkI3ðk; j; jÞ −QkjI3ðk; k; jÞ

QjjQkk − ðQkjÞ2

þ vkdðρÞrkmðρÞ 1

Qkk I3ðk; k; kÞ

− dðρÞrkmðρÞ
X
n

ṽn
TnnI3ðk; k; nÞ − RknI3ðk; n; nÞ

QkkTnn − ðRknÞ2

−bρ
X
n

ṽnT̃nm QkkI3ðk; n; nÞ − RknI3ðk; k; nÞ
QkkTnn − ðRknÞ2

�
; ðB35Þ

where dðρÞ ¼ ðc − b2Þδþ b2ρ. Note that, while we drop the explicit time dependence from the right-hand side to keep the
equation readable, all the order parameters on the right-hand side are explicitly time dependent, i.e., Qjj ¼ QjjðtÞ,
rkmðρÞ ¼ rkmðρ; tÞ, and the averages I3ð·Þ are also time dependent via their dependence on the order parameters [see
Eq. (B26) and the subsequent discussion]. In order to close the equations of motion, we now need to find the equations for
the order parameters that are quadratic in the weights.

4. Order parameters that are quadratic in the weights

There are two order parameters that appear when evaluating the covariance of the λ variables:

Qkl ≡ E½λkλl� ¼ ½c − b2�Wkl þ b2Σkl: ðB36Þ

We look at both Wkl and Σkl in turn now.
Equation of motion for Wkl.—For the student-student overlap matrix

Wkl ¼ 1

N

XN
i

wk
i w

l
i ; ðB37Þ

we find, after some algebra, that updates read
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ðWklÞμþ1 − ðWklÞμ ¼ −
η

N3=2 v
k
XN
i

wl
i

�XK
j≠k

vjajk
i þ vkbk

i −
XM
n

ṽncnk
i

�

−
η

N3=2 v
l
XN
i

wk
i

�XK
j≠l

vjajl
i þ vlbl

i −
XM
n

ṽncnl
i

�

þ η2

N2
vkvl

XN
i

fðuiÞ2g0ðλkÞg0ðλlÞ
�XK

j;ι

vjvιgðλjÞgðλιÞ þ
XM
n;m

ṽnṽmg̃ðνnÞg̃ðνmÞ

−2
XK
j

XM
m

vjṽmgðλjÞg̃ðνmÞ
�
: ðB38Þ

For the terms linear in the learning rate η, we can immediately carry out the sum over i, which yields terms of the type

1ffiffiffiffi
N

p
X
i

wl
i E½gðλjÞg0ðλkÞfðuiÞ� ¼ E½g0ðλkÞλlgðλjÞ� ¼ I3ðk;l; jÞ; etc: ðB39Þ

The term quadratic in the learning rate η requires the evaluation of terms of the type

1

N

X
i

E½fðuiÞ2g0ðλkÞg0ðλlÞgðλjÞgðλιÞ� ¼ cE½g0ðλkÞg0ðλlÞgðλjÞgðλιÞ�: ðB40Þ

The sum over i thus makes this second-order term contribute to the total variation of Wkl at leading order, and we are left
with an average over four local fields, for which we introduce the shorthand

I4ðk;l; j; ιÞ≡ E½g0ðλkÞg0ðλlÞgðλjÞgðλιÞ�; ðB41Þ

where we use the same notation as we did for I3ð·Þ [Eq. (B26)]. The full equation of motion for Wkl thus reads

dWklðtÞ
dt

¼ −ηvk
�XK

j

vjI3ðk;l; jÞ −
X
n

ṽnI3ðk;l; nÞ
�
− ηvl

�XK
j

vjI3ðl; k; jÞ −
X
n

ṽnI3ðl; k; nÞ
�

þ cη2vkvl
�XK

j;a

vjvaI4ðk;l; j; aÞ − 2
XK
j

XM
m

vjṽmI4ðk;l; j; mÞ þ
XM
n;m

ṽnṽmI4ðk;l; n; mÞ
�
: ðB42Þ

Equation of motion for Σkl.—After rotating to the basis ψτ, we have

Σkl ≡ 1

D

X
r

SkrSlr ¼ 1

D

X
τ

Γk
τΓl

τ : ðB43Þ

It is then immediate that

ðΣklÞμþ1 − ðΣklÞμ ¼
1

D

X
τ

ðΓl
τ Þμ½ðΓk

τÞμþ1 − ðΓk
τÞμ� þ

1

D

X
τ

ðΓk
τÞμ½ðΓl

τ Þμþ1 − ðΓl
τ Þμ�

þ η2

D2N

X
τ

XR
r;s

ψτrψτsE½Δ2g0ðλkÞg0ðλlÞβrβs�: ðB44Þ

The terms linear in η can be obtained directly by substituting in the update equation for Γk
τ [Eq. (B24)] and are similar to the

update equation for rkmðρÞ. As for the term quadratic in η, we have to leading order
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η2

DN

XR
r;s

ψτrψτsE½Δ2g0ðλkÞg0ðλlÞβrβs� ¼
η2

DN

XR
r

ðψτrÞ2E½Δ2g0ðλkÞg0ðλlÞ�E½β2r �

¼ η2

N
E½Δ2g0ðλkÞg0ðλlÞ�

�
ðc − b2Þρτ þ

b2

δ
ρ2τ

�
; ðB45Þ

where we use that covariance of βr is given by

E½β2r � ¼ c − b2 þ b2

δ

X
t

Ω2
rt: ðB46Þ

To deal with the remaining sum over τ, we again make use of the fact that the equation of motion for Σkl depends on the
eigenvector index τ only through the eigenvalue ρτ. Introducing the density

σklðρÞ ¼ 1

ερ

1

D

X
τ

Γk
τΓl

τ 1ðρτ ∈ ½ρ; ρþ ερ½Þ; ðB47Þ

as we did for rkmðρÞ [Eq. (B31)], we have

ΣklðtÞ ¼
Z

dρpΩðρÞσklðρ; tÞ ðB48Þ

with

∂σklðρ; tÞ
∂t ¼ −

η

δ

�
dðρÞvkσklðρÞ

X
j≠k

vj
QjjI3ðk; k; jÞ −QkjI3ðk; j; jÞ

QjjQkk − ðQkjÞ2

þ vk
X
j≠k

vjdðρÞσjlðρÞQ
kkI3ðk; j; jÞ −QkjI3ðk; k; jÞ

QjjQkk − ðQkjÞ2

þ dðρÞvkσklðρÞvk 1

Qkk I3ðk; k; kÞ

− dðρÞvkσklðρÞ
X
n

ṽn
TnnI3ðk; k; nÞ − RknI3ðk; n; nÞ

QkkTnn − ðRknÞ2

− bρvk
X
n

ṽnrlnðρÞQ
kkI3ðk; n; nÞ − RknI3ðk; k; nÞ

QkkTnn − ðRknÞ2

þ all of the above with l → k; k → l
�

þ η2vkvl
�
ðc − b2Þρþ b2

δ
ρ2
��XK

j;ι

vjvιI4ðk;l; j; ιÞ

−2
XK
j

XM
m

vjṽmI4ðk;l; j; mÞ þ
XM
n;m

ṽnṽmI4ðk;l; n;mÞ
�
: ðB49Þ

5. Second-layer weights

Finally, we treat each of the second-layer weights of the student v as an order parameter in its own right. Their equations
of motion are readily found from their SGD update [Eq. (B1b)] and read

dvk

dt
¼ η

�XM
n

ṽnI2ðk; nÞ −
XK
j

vjI2ðk; jÞ
�
; ðB50Þ

where we introduce the final shorthand
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I2ðk; jÞ≡ E½gðλkÞgðλjÞ�; etc: ðB51Þ

where we again use the notation we introduced for I3ð·Þ [Eq. (B26)].

6. Generalization error

Having introduced the shorthand for the integrals I2ðk; jÞ [Eq. (B51)], we realize that their form also enters the formula
for the generalization error

ϵgðθ; θ̃Þ ¼
1

2
E

�XK
k

vkgðλkÞ −
XM
m

ṽmg̃ðνmÞ
�2

¼ 1

2

X
k;l

vkvlI2ðk;lÞ þ
1

2

X
n;m

ṽnṽmI2ðn;mÞ −
X
k;n

vkṽnI2ðk; nÞ: ðB52Þ

For example, for a student with gðλkÞ ¼ erfðλk= ffiffiffi
2

p Þ and a teacher with g̃ðνmÞ ¼ maxð0; νmÞ, we find that

ϵgðQkl; Rkn; Tnm; vk; ṽmÞ ¼ 1

π

X
k;l

vkvl arcsin
Qklffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þQkk
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þQll
p −

X
k;n

vkṽn
Rknffiffiffiffiffiffi

2π
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þQkk
p

þ 1

4π

X
n;m

ṽnṽm
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TmmTnn − ðTnmÞ2
q

þ Tnm

�
π þ 2 arctan

Tnmffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TmmTnn − ðTnmÞ2

p
��

: ðB53Þ

7. Summary of the derivation

We have now completed the program that we embarked
upon at the beginning of this Appendix: We derive a closed
set of equations of motion for the teacher-student overlap
Rkm [Eqs. (B32) and (29)], the student-student overlap
Qkl ¼ ½c − b2�Wkl þ b2Σkl [Eqs. (38), (34), and (35)],
and the student’s second-layer weights vk [Eq. (39)]. These
equations give us complete access to the dynamics of a
neural network performing one-shot stochastic gradient
descent on a dataset generated by the hidden manifold
model. We can now integrate these equations and substitute
the values of the order parameters at any time into the
expression for the generalization error (26), thereby
tracking the dynamics of the generalization error at all
times. We describe this procedure in more detail next.

8. Explicit form of the integrals I3 and I4
for sigmoidal students

The explicit forms of the integrals I3 and I4 that appear in
the equations of motion for the order parameters and the
generalization error for networks with gðxÞ ¼ g̃ðxÞ ¼
erfðx= ffiffiffi

2
p Þ were first given by Refs. [21,22]. Here, we

state them to make the paper as self-contained as possible.
Denoting the elements of the covariance matrix such as Φ3

[Eq. (B27)] as ϕij, we have

I3ð·; ·; ·Þ ¼
2

π

1ffiffiffiffiffiffi
Λ3

p ϕ23ð1þ ϕ11Þ − ϕ12ϕ13

1þ ϕ11

ðB54Þ

with

Λ3 ¼ ð1þ ϕ11Þð1þ ϕ33Þ − ϕ2
13: ðB55Þ

For the average I4, we have a covariance matrix Φð4Þ that is
populated in analogy to Φð3Þ [Eq. (B27)], we have

I4ð·; ·; ·; ·Þ ¼
4

π2
1ffiffiffiffiffiffi
Λ4

p arcsin

�
Λ0ffiffiffiffiffiffiffiffiffiffiffiffi
Λ1Λ2

p
�
; ðB56Þ

where

Λ4 ¼ ð1þ ϕ11Þð1þ ϕ22Þ − ϕ2
12; ðB57Þ

Λ0 ¼ Λ4ϕ34 − ϕ23ϕ24ð1þ ϕ11Þ − ϕ13ϕ14ð1þ ϕ22Þ
þ ϕ12ϕ13ϕ24 þ ϕ12ϕ14ϕ23; ðB58Þ

Λ1 ¼ Λ4ð1þ ϕ33Þ − ϕ2
23ð1þ ϕ11Þ − ϕ2

13ð1þ ϕ22Þ
þ 2ϕ12ϕ13ϕ23; ðB59Þ

Λ2 ¼ Λ4ð1þ ϕ44Þ − ϕ2
24ð1þ ϕ11Þ − ϕ2

14ð1þ ϕ22Þ
þ 2ϕ12ϕ14ϕ24: ðB60Þ

APPENDIX C: THE EQUATIONS OF MOTION
DO NOT CLOSE IN THE TRIVIAL BASIS

Here, we give a short demonstration that it is not possible
to close the equations for order parameters if we do not
rotate their dynamics to the basis given by the eigenvectors
of Ω, which is what we do in our derivation in Sec. III B.
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1. Order parameters that are linear in the weights

To start with a variable that is linear in the weights, take the time evolution of Skr . It is clear that the tensor structure of the
result (B14) is of the form

ðSkrÞμþ1 − ðSkrÞμ ¼ −
η

N

�X
l

Dkl
X
s

ΩrsSls þ
X
m

Ekm
X
s

Ωrsw̃m
s

�
; ðC1Þ

where Dkl and Ekm are known quantities, expressed in terms of the matrices Q, T, and R, and we introduce the operator

Ωrs ¼
1

N

X
i

FirFis; ðC2Þ

which has diagonal elements equal to 1 and off-diagonal elements of the order of 1=
ffiffiffiffi
N

p
.

In particular, we can use this evolution to study the evolution of R:

ðRkmÞμþ1 − ðRkmÞμ ¼ −hufðuÞi η
N

�X
l

Dkl 1

D

X
rs

w̃m
r ΩrsSls þ

X
m

Ekm 1

D

X
rs

w̃r
sΩrsw̃m

s

�
: ðC3Þ

The point of this analysis is to show that the time evolution
of Skr involves ðΩSÞlr . Therefore, to know the evolution of
S, we need the one of ΩS. This process is not innocuous
because, in order to have dynamical evolution equations
with only “up” indices, we need to contract it. The
evolution of Rkm, which is proportional to the scalar
product (in the R-dimensional manifold space) of Sk and
w̃m, is thus given by the scalar product of ΩSk and w̃m.
It is not difficult to see that the evolution of ΩS will

require knowing Ω2S, etc. So we have an infinite hierarchy
of coupled equations, which would be hard to analyze. Yet,
we can find closed equations by changing the basis for S.

APPENDIX D: ADDITIONAL DETAILS ON THE
NUMERICAL EXPERIMENTS IN SEC. V A

For the experiments demonstrating the learning of fun-
ctions of increasing complexity discussed in Sec. VA, we

constructed datasets for binary classification by splitting
the image datasets as follows:

(i) MNIST.—Even vs odd numbers.
(ii) Fashion-MNIST.–T-shirt or top, pullover, dress,

sandal, and bag vs trouser, coat, shirt, sneaker,
and ankle boot.

(iii) CIFAR10.—Airplane, bird, deer, frog, and ship vs
automobile, cat, dog, horse, and truck.

We first demonstrate in Fig. 10 that sigmoidal networks
show the same learning of functions of increasing complex-
ity discussed in Sec. VA for CIFAR10 when trained on
MNIST or fashion-MNIST. Note that for CIFAR10, in
particular, we see the effects of overtraining set in after
several epochs, when the generalization error starts to
increase again (we use plain SGD without any explicit
regularization in these experiments).
We also repeat these experiments for ReLU networks

with activation function gðxÞ ¼ maxð0; xÞ. While the

FIG. 10. Two-layer sigmoidal neural networks learn functions of increasing complexity on different datasets. We plot the mean-
squared error as a function of training time for sigmoidal networks with an increasing hidden layer when trained on three different
datasets. The curves are obtained by averaging ten different runs, starting from different initial weights. Error bars indicate one standard
deviation. For all plots, gðxÞ ¼ erfðx= ffiffiffi

2
p Þ, Gaussian initial weights with standard deviation 10−3, and batch size 32.
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dynamics of ReLU students also show a progression from
simple to more complex classifiers, the run-to-run fluc-
tuations are much larger than for the sigmoidal students.
This result is true both quantitatively, but also qualita-
tively: For example, networks sometimes get stuck in
really suboptimal minimizers for a long time. Hence,
plotting the mean trajectories is not as informative, as the
standard variations would be very high, so in Fig. 11 we
instead show representative curves for individual runs of
ReLU students for all three datasets and for online
learning from a teacher with g̃ðxÞ ¼ maxðx; 0Þ, M ¼ 10,
and ṽm ¼ 1=M.
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Zdeborová, Generalisation Error in Learning with Random

Features and the Hidden Manifold Model, in Proceedings of
the 37th International Conference on Machine Learning
(2020).

[91] F. Mignacco, F. Krzakala, Y. M. Lu, and L. Zdeborová,
The role of Regularization in Classification of High-
Dimensional Noisy Gaussian Mixture, in Proceedings of
the 37th International Conference on Machine Learning
(2020).
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