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Abstract. We consider the Navier-Stokes equations in a channel with varying
Reynolds numbers. The model is discretized with high-order spectral element ansatz
functions, resulting in 14′259 degrees of freedom. The steady-state snapshot solu-
tions define a reduced order space, which allows to accurately evaluate the steady-
state solutions for varying Reynolds number with a reduced order model within a
fixed-point iteration. In particular, we compare different aspects of implementing
the reduced order model with respect to the use of a spectral element discretization.
It is shown, how a multilevel static condensation [1] in the pressure and velocity
boundary degrees of freedom can be combined with a reduced order modelling
approach to enhance computational times in parametric many-query scenarios.

1 Introduction

The use of spectral element methods in computational fluid dynamics [1]
allows highly accurate computations by using high-order spectral element
ansatz functions. Typically, an exponential error decay can be observed under
p-refinement. See [2], [3], [4], [5], [6] for an introduction and overview of the
applications.

This work is concerned with the reduced basis method (RBM, [7]) of a
channel flow, governed by the Navier-Stokes equations, and discretized with
the spectral element method into 14′259 degrees of freedom. In particular, we
are interested in computing the steady-state solutions for varying Reynolds
number with a reduced order model, guaranteeing competitive computational
performances.

Section 2 introduces the governing equations and used fixed-point itera-
tion algorithm. Section 3 introduces the spectral element discretization, while
section 4 describes the model reduction approach. Numerical results are pro-
vided in section 5, while section 6 summarizes and concludes the work by
also providing new perspectives.

2 Problem Formulation

Let Ω ∈ R2 be the computational domain. Incompressible, viscous fluid mo-
tion in a spatial domain Ω over a time interval (0, T ) is governed by the in-
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compressible Navier-Stokes equations with velocity u, pressure p, kinematic
viscosity ν and a body forcing f , (1) - (2):

∂u

∂t
+ u · ∇u = −∇p+ ν∆u + f, (1)

∇ · u = 0. (2)

Boundary and initial conditions are prescribed as

u = d on ΓD × (0, T ), (3)

∇u · n = g on ΓN × (0, T ), (4)

u = u0 in Ω × 0, (5)

with d, g and u0 given and ∂Ω = ΓD ∪ ΓN , ΓD ∩ ΓN = ∅. The Reynolds
number Re depends on the viscosity ν through the characteristic velocity U
and characteristic length L via Re = UL

ν , [12].
In particular, we are interested in computing the steady states for varying

viscosity ν, such that ∂u
∂t = 0. A solution u(ν1) for a parameter value ν1, can

be used as an initial guess for a fixed point iteration to obtain the steady
state solution u(ν2) at a parameter value ν2, provided that the solution u(ν)
depends continuously on ν in the interval [ν1, ν2].

2.1 Oseen-Iteration

The Oseen-iteration is a secant modulus fixed-point iteration, which in gen-
eral exhibits a linear rate of convergence [8]. Given a current iterate (or initial
condition) uk, the linear system

−ν∆u + (uk · ∇)u +∇p = f in Ω, (6)

∇ · u = 0 in Ω, (7)

u = d on ΓD, (8)

∇u · n = g on ΓN , (9)

is solved for the next iterate uk+1 = u. A typical stopping criterion is that
the relative change between iterates in the H1 norm falls below a predefined
tolerance. An initial solution u0(ν0) is computed by time-advancement of
(1)–(2) from zero initial conditions at a parameter value ν0, and the whole
parameter domain is then explored by using a continuation method with the
Oseen-iteration.

3 Spectral Element Discretization

The Navier-Stokes problem is discretized with the spectral element method.
The spectral/hp element software framework used is Nektar++ in version
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4.3.5, [9]1. The discretized system to solve in each step of the Oseen-iteration
is given by (10) as A −DT

bnd B
−Dbnd 0 −Dint

B̃T −DT
int C

vbndp
vint

 =

fbnd0
fint

 , (10)

where vbnd and vint denote velocity degrees of freedom on the boundary and
in the interior, respectively. Correspondingly, fbnd and fint denote forcing
terms on the boundary and interior, respectively. The matrix A assembles
the boundary-boundary coupling, B the boundary-interior coupling, B̃ the
interior-boundary coupling and C assembles the interior-interior coupling of
elemental velocity ansatz functions. In the case of a Stokes system, it holds
that B = B̃T , but this is not the case for the Oseen equation, since the
linearization term (uk · ∇)u is present in (6). The matrices Dbnd and Dint

assemble the pressure-velocity boundary and pressure-velocity interior con-
tributions, respectively.

The linear system (10) is assembled in local degrees of freedom, resulting
in block matrices A,B, B̃, C,Dbnd and Dint, each block corresponding to a
spectral element. In particular, this means that the system is singular in this
form. To solve the system, the local degrees of freedom need to be gathered
into the global degrees of freedom [1]. Since C contains the interior-interior
contributions, it is invertible and the system can be statically condensed into A−BC−1B̃T BC−1DT

int −DT
bnd 0

DintC
−1B̃T −Dbnd −DintC

−1DT
int 0

B̃T −DT
int C

 vbndp
vint


=

fbnd −BC−1fintDintC
−1fint

fint

 . (11)

By taking the top left 2×2 block and reordering the degrees of freedom such
that the mean pressure mode of each element is inserted into the correspond-
ing block of Â results in [

Â B̂

Ĉ D̂

] [
b
p̂

]
=

[
f̂bnd
f̂p

]
, (12)

where D̂ is invertible, such that a second level of static condensation can be
employed. We have:[

Â− B̂D̂−1Ĉ 0

Ĉ D̂

] [
b
p̂

]
=

[
f̂bnd − B̂D̂−1f̂p

f̂p

]
. (13)

When the vector b is computed, which contains the velocity boundary degrees
of freedom and the mean pressure modes, the remaining solution components

1 See www.nektar.info.
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are computed by reverting the steps of the static condensations [1]. The main
computational effort lies in solving the final system (14)

(Â− B̂D̂−1Ĉ)b = f̂bnd − B̂D̂−1f̂p. (14)

Additionally, the matrices C and D̂ need to be inverted, which due to the
elemental block structure requires inverting submatrices in the size of the
degrees of freedom per element for each submatrix.

4 Reduced Order Modelling

The reduced order model (ROM) aims to represent the full order solution
accurately in the parameter domain of interest. Two ingredients are essential
to RB modelling, a projection onto a low order space of snapshot solutions
and an offline-online decomposition for computational efficiency, [16]. A set
of snapshots is generated by solving (14) over a coarse discretization of the
parameter domain and used to define a projection space U of size N . The
proper orthogonal decomposition computes a singular value decomposition
of the snapshot solutions to 99.9% of the most dominant modes [7], which
defines the projection matrix U ∈ RNδ×N to project system (14) and obtain
the reduced order solution bN .

4.1 Offline-Online Decomposition

The offline-online decomposition [7] allows fast input-output evaluations in-
dependent of the original model size Nδ. It is a crucial part of an efficient
reduced order model but since the static condensation includes the inversion
of the parameter-dependent matrix C, an intermediate projection is intro-
duced.

The reduced order model considers the top left 2×2 block of (11), i.e., one
level of static condensation [1]. During the offline phase, full-order solutions
have been computed over the parameter domain of interest, which now serve
as a projection space to define the reduced order setting. This projection
space incorporates the transformation of local velocity boundary degrees of
freedom to global velocity boundary degrees of freedom and the reordering
of mean pressure degrees of freedom. The projection space then takes the
form U = PMV with a permutation matrix P to reorder the degrees of
freedom and a transformation M from local to global degrees of freedom.
The collected offline data V contain the gathered velocity and mean pressure
modes as well as interior pressure modes.

The projected system is then of the form

AN = UT
[

A−BC−1B̃T BC−1DT
int −DT

bnd

DintC
−1B̃T −Dbnd −DintC

−1DT
int

]
U, (15)



A Spectral Element Reduced Basis Method in Parametric CFD 5

Fig. 1. Rectangular domain for the channel flow, shown is the 4× 8 spectral
element grid.

and upon its solution, the interior velocity dofs can be computed by re-
substituting into (11) at the reduced order level. To achieve fast reduced
order solves, the offline-online decomposition expands (15) in the parameter
of interest and computes the parameter independent projections offline to
be stored as small-sized matrices of the order N × N . Since in an Oseen-
iteration each matrix is dependent on the previous iterate, the submatrices
corresponding to each basis function is assembled and then formed online
using the reduced basis coordinate representation of the current iterate. This
is analogous to reduced order assembly of the nonlinear term in the Navier-
Stokes case, [16].

5 Model and Numerical Results

We consider a channel flow in the domain considered in Fig. 1, similar to the
model considered in [13]. The rectangular domain Ω(x, y) = [0, 36]× [0, 6] is
decomposed into 32 spectral elements. The spectral element expansion uses
modal Legendre polynomials of order p = 12 in the velocity. The pressure
ansatz space is chosen of order p− 2 to fulfill the inf-sup stability condition,
[10], [11]. The inflow is defined for y ∈ [2.5, 3.5] as ux(0, y) = (y−2.5)(3.5−y).
At x = 36 is the outflow boundary, everywhere else are zero velocity walls.
Note that the velocity boundary degrees of freedom are along the boundaries
of the spectral elements and not only the domain boundary, resulting in 3072
local degrees of freedom for this problem. This is a simplified model of a
contraction-expansion channel [12], where flow occurs though a narrowing
of variable width. Variations in the width have been moved to variations in
the Reynolds number and only the section after the narrowing comprises the
computational domain. The relation to the Reynolds number is established
with U = 1

4 as the maximum inflow velocity and L = 1 as the width of the
narrowing as Re = 1

4ν .
Consider a parametric variation in the viscosity ν, ranging from ν =

0.0075 to ν = 0.0025, which corresponds to Reynolds numbers between 33
and 100. The solution for ν = 0.0075 is shown in Fig. 2. It is slightly un-
symmetrical, which marks the onset of the Coanda effect [14], [15], which
is a known phenomenon characterized as a ‘wall-hugging’ effect occurring at
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these Reynolds numbers. The solution for ν = 0.0025 is shown in Fig. 3.
Here, the Coanda effect is fully developed as the flow orients itself along the
boundaries. Using model reduction with the form (11), which allows the

Fig. 2. Full order, steady-state solution for ν = 0.0075. Top is the velocity
in x-direction, below is the velocity in y-direction.

Fig. 3. Full order, steady-state solution for ν = 0.0025. Top is the velocity
in x-direction, below is the velocity in y-direction.

offline-online decomposition or using form (14), which has the lowest full-
order system size, resulted in similar computational results. Shown in Fig. 4
is the relative H1

0 (Ω) error in the velocity between the full order and reduced
order model.

While the full-order solves were computed with Nektar++, the reduced-
order computations were done in a separate python code. To compare com-
putational gains, compute times between a full order solve and a reduced
order solve both implemented in python are taken. The compute times re-
duce by a factor of 50, i.e., for a single iteration step from about 40s to
under 1s. Current work also aims to extend the software to make it available
as a SEM-ROM software framework within the AROMA-CFD project (see
Acknowledgment) as ITHACA-SEM.
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Fig. 4. Relative error in the velocity over the parameter domain.

6 Conclusion and Outlook

It has been shown that the reduced basis technique generates accurate re-
duced order models of small size for channel flow discretized with spectral
elements up to a Reynolds number of 100. The use of basis functions obtained
by the spectral element method suggests a potential important synergy be-
tween high-order and reduced basis methods, see also [6]. Due to the multi-
level static condensation used here, particular care must be taken to achieve
an offline-online decomposition. The domain decomposition into spectral el-
ements shows a resemblance to reduced basis element methods (RBEM),[17]
[18]. A comparison of both approaches could be the subject of further inves-
tigation.
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