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Abstract

The large N limit of the four-dimensional superconformal index was computed and

successfully compared to the entropy of a class of AdS5 black holes only in the particular

case of equal angular momenta. Using the Bethe Ansatz formulation, we compute the

index at large N with arbitrary chemical potentials for all charges and angular momenta,

for general N = 1 four-dimensional conformal theories with a holographic dual. We con-

jecture and bring some evidence that a particular universal contribution to the sum over

Bethe vacua dominates the index at large N . For N = 4 SYM, this contribution correctly

leads to the entropy of BPS Kerr-Newman black holes in AdS5 × S5 for arbitrary values

of the conserved charges, thus completing the microscopic derivation of their microstates.

We also consider theories dual to AdS5 × SE5, where SE5 is a Sasaki-Einstein manifold.

We first check our results against the so-called universal black hole. We then explicitly

construct the near-horizon geometry of BPS Kerr-Newman black holes in AdS5 × T 1,1,

charged under the baryonic symmetry of the conifold theory and with equal angular mo-

menta. We compute the entropy of these black holes using the attractor mechanism and

find complete agreement with the field theory predictions.

http://arxiv.org/abs/2005.12308v2
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1 Introduction

There has been some progress in the microscopic explanation of the entropy of BPS asymp-

totically-AdS black holes, initiated with the counting of microstates of static magnetically-

charged black holes in AdS4 × S7 [1–3] and continued, more recently, with the counting for
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Kerr-Newman black holes in AdS5 × S5 [4–6].1 The latter result, in particular, shed light

on a long-standing puzzle. The holographic description of electrically-charged and rotating

BPS black holes in AdS5 × S5 is in terms of 1/16 BPS states of the dual four-dimensional

N = 4 super-Yang-Mills (SYM) boundary theory on S3. These states are counted (with

sign) by the superconformal index [11–13], and one would expect that the contribution from

black holes saturates it at large N . However, the large N computation of the superconformal

index performed in [12] gave a result of order one, while the entropy for the black holes is of

order N2, suggesting a large cancellation between bosonic and fermionic BPS states. On the

other hand, it has been argued in [5, 6] that non-trivial complex phases of the fugacities for

flavor symmetries can obstruct such a cancellation between bosonic and fermionic states —

as already observed in [1, 3] — and that the entropy of Kerr-Newman black holes is indeed

correctly captured by the index for complex values of the chemical potentials associated with

electric charges and angular momenta.

The family of AdS5 × S5 supersymmetric black holes found in [14–18] depends on three

charges Qa associated with the Cartan subgroup of the internal isometry SO(6), and two

angular momenta Ji in AdS5, subject to a non-linear constraint.
2 The entropy can be written

as the value at the critical point (i.e., as a Legendre transform) of the function [21]

S(Xa, τ, σ) = −iπN2 X1X2X3

τ σ
− 2πi

(
3∑

a=1

XaQa + τJ1 + σJ2

)
(1.1)

with the constraint X1 + X2 + X3 − τ − σ = ±1, where N is the number of colors of the

dual 4d N = 4 SU(N) SYM theory. The same entropy function can also be obtained by

computing the zero-temperature limit of the on-shell action of a class of supersymmetric

but non-extremal complexified Euclidean black holes [4, 22]. The two constraints with ±
sign lead to the same value for the entropy, which is real precisely when the non-linear

constraint on the black hole charges is imposed. The parameters Xa, τ and σ are chemical

potentials for the conserved charges Qa and Ji and can also be identified with the parameters

the superconformal index depends on. With this identification, we expect that the entropy

S(Qa, J1, J2) is just the constrained Legendre transform of log I(Xa, τ, σ), where I(Xa, τ, σ)

is the superconformal index.

Up to now, the entropy of AdS5 × S5 Kerr-Newman black holes has been derived from

the superconformal index and shown to be in agreement with (1.1) only in particular limits.

In [5], the entropy was derived for large black holes (whose size is much larger than the AdS

1The microstate counting for rotating black holes in AdS4 was performed in [7–9]. Those results have been

extended to other compactifications and other dimensions. See [10] for a more complete list of references.
2Supersymmetric hairy black holes depending on all charges have been recently found in [19,20], but their

entropy seems to be parametrically smaller in the range of parameters where our considerations apply.
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radius) using a Cardy limit of the superconformal index where Im(Xa), τ, σ ≪ 1. In [6], the

entropy was instead derived in the large N limit in the case of black holes with equal angular

momenta, J1 = J2.
3 The large N limit has been evaluated by writing the index as a sum

over Bethe vacua [24], an approach that has been successful for AdS black holes in many

other contexts.

It is one of the purposes of this paper to extend the derivation of [6] to the case of unequal

angular momenta, thus providing a large N microscopic counting of the microstates of BPS

Kerr-Newman black holes in AdS5×S5 for arbitrary values of the conserved charges. We will

make use of the Bethe Ansatz formulation of the superconformal index derived for τ = σ

in [25] and generalized to unequal angular chemical potentials in [24]. This formulation

allows us to write the index as a sum over the solutions to a set of Bethe Ansatz Equations

(BAEs) — whose explicit form and solutions have been studied in [6, 26–30] — and over

some auxiliary integer parameters mi. We expect that, in the large N limit, one particular

solution dominates the sum.4 We will show that the “basic solution” to the BAEs, already

used in [6], correctly reproduces the entropy of black holes in the form (1.1) for a choice of

integers mi. We stress that our result comes from a single contribution to the index, which is

an infinite sum. Such a contribution might not be the dominant one — and so our estimate

of the index might be incorrect — in some regions of the space of chemical potentials. It is

known from the analysis in [6] that when the charges become smaller than a given threshold,

new solutions take over and dominate the asymptotic behavior of the index. This suggests

the existence of a rich structure where other black holes might also contribute. However, we

conjecture and we will bring some evidence that the contribution of the basic solution is the

dominant one in the region of the space of chemical potentials corresponding to sufficiently

large charges.

We will also extend the large N computation of the index to a general class of supercon-

formal theories dual to AdS5×SE5, where SE5 is a five-dimensional Sasaki-Einstein manifold.

The analysis for J1 = J2 was already performed in [28]. For toric holographic quiver gauge

theories, we find a prediction for the entropy of black holes in AdS5×SE5 in the form of the

entropy function

S(Xa, τ, σ) = −iπN
2

6

D∑

a,b,c

Cabc
XaXbXc

τ σ
− 2πi

(
D∑

a=1

XaQa + τJ1 + σJ2

)
, (1.2)

with the constraint
∑D

a=1Xa − τ − σ = ±1, in terms of chemical potentials Xa for a basis

of independent R-symmetries Ra. The coefficients CabcN
2 = 1

4
TrRaRbRc are the ’t Hooft

3The same result has been later reproduced with a different approach in [23].
4It is argued in [29] that there exist families of continuous solutions. This does not affect our argument

provided the corresponding contribution to the index is subleading.
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anomaly coefficients for this basis of R-symmetries. The form of the entropy function (1.2)

was conjectured in [31] and reproduced for various toric models in the special case τ = σ

in [28]. We will give a general derivation, valid for all toric quivers and even more. We

will also show that both constraints in (1.2), which lead to the same value for the entropy,

naturally arise from the index in different regions of the space of chemical potentials. The

function (1.2) was also derived in the Cardy limit in [32].

In the last part of the paper we will provide some evidence that (1.2) correctly reproduces

the entropy of black holes in AdS5×SE5. We first check that our formula correctly reproduce

the entropy of the universal black hole that arises as a solution in five-dimensional minimal

gauged supergravity, and, as such, can be embedded in any AdS5×SE5 compactification. It

corresponds to a black hole with electric charges aligned with the exact R-symmetry of the

dual superconformal field theory and with arbitrary angular momenta J1 and J2. Since the

solution is universal, the computation can be reduced to that of N = 4 SYM and it is almost

trivial. More interesting are black holes with general electric charges. Unfortunately, to the

best of our knowledge, there are no available such black hole solutions in compactifications

based on Sasaki-Einstein manifolds SE5 other than S5. To overcome this obstacle, we will

explicitly construct the near-horizon geometry of supersymmetric black holes in AdS5×T 1,1

with equal angular momenta and charged under the baryonic symmetry of the dual Klebanov-

Witten theory [33]. Luckily, the background AdS5 × T 1,1 admits a consistent truncation to

a five-dimensional gauged supergravity containing the massless gauge field associated to the

baryonic symmetry [34–36]. We then use the strategy suggested in [21]: a rotating black hole

in five dimensions with J1 = J2 can be dimensionally reduced along the Hopf fiber of the

horizon three-sphere to a static solution of four-dimensional N = 2 gauged supergravity. We

will explicitly solve the BPS equations [37–39] for the horizon of static black holes with the

appropriate electric and magnetic charges in N = 2 gauge supergravity in four dimensions.

The main complication is the presence of hypermultiplets. By solving the hyperino equations

at the horizon, we will be able to recast all other supersymmetric conditions as a set of

attractor equations, and we will show that these are equivalent to the extremization of (1.2)

for the Klebanov-Witten theory with τ = σ. This provides a highly non-trivial check of our

result, and the conjecture that the basic solution to the BAEs dominates the index.

The paper is organized as follows. In Section 2 we review the setting introduced in [6]

and we evaluate the large N contribution of the “basic solution” to the BAEs to the index for

generic angular fugacities. We show that it correctly captures the semiclassical Bekenstein-

Hawking entropy of BPS black holes in AdS5×S5. In Section 3 we discuss the generalization

of this result to general toric quiver theories and find agreement with the entropy function

prediction (1.2) in certain corners of the space of chemical potentials. In Section 4 we

discuss the particular case of the universal black hole, which can be embedded in all string
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and M-theory supersymmetric compactifications with an AdS5 factor. In Section 5 we match

formula (1.2) with the entropy of a supersymmetric black hole in AdS5 × T 1,1, whose near-

horizon geometry we explicitly construct. Technical computations as well as some review

material can be found in several appendices.

Note added: while this work was ready to be posted on the arXiv, the preprint [40] appeared,

which discusses the index in the particular case τ = σ using a different approach.

2 The index of N = 4 SYM at large N

We are interested in evaluating the large N limit of the superconformal index of 4d N = 1

holographic theories. We will consider in this section the simplest example, namely N = 4

SU(N) SYM. The superconformal index counts (with sign) the 1/16 BPS states of the theory

on R× S3 that preserve one complex supercharge Q. These states are characterized by two

angular momenta J1,2 on S3 and three R-charges for U(1)3 ⊂ SO(6)R. We write N = 4

SYM in N = 1 notation in terms of a vector multiplet and three chiral multiplets ΦI and

introduce a symmetric basis of R-symmetry generators R1,2,3 such that RI assigns R-charge

2 to ΦI and zero to ΦJ with J 6= I. The index is defined by the trace [11, 12]

I(p, q, v1, v2) = Tr (−1)Fe−β{Q,Q†} pJ1+
r
2 qJ2+

r
2 vq11 vq22 , (2.1)

in terms of two flavor generators q1,2 =
1
2
(R1,2 − R3) commuting with Q, and the R-charge

r = 1
3
(R1 + R2 + R3). Notice that (−1)F = e2πiJ1,2 = eiπR1,2,3 . Here p, q, vI with I = 1, 2

are complex fugacities associated to the various quantum numbers, while the corresponding

chemical potentials τ, σ, ξI are defined by

p = e2πiτ , q = e2πiσ , vI = e2πiξI . (2.2)

The index is well-defined for |p|, |q| < 1.

It is convenient to redefine the flavor chemical potentials in terms of

∆I = ξI +
τ + σ

3
for I = 1, 2 . (2.3)

It is also convenient to introduce an auxiliary chemical potential ∆3 such that

τ + σ −∆1 −∆2 −∆3 ∈ 2Z+ 1 , (2.4)

and use the corresponding fugacities

yI = e2πi∆I . (2.5)
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The index then takes the more transparent form

I = TrBPS p
J1 qJ2 y

R1/2
1 y

R2/2
2 y

R3/2
3 . (2.6)

It shows that the constrained fugacities p, q, yI with I = 1, 2, 3 are associated to the angular

momenta J1,2 and the charges QI ≡ 1
2
RI .

Our starting point is the so-called Bethe Ansatz formulation of the superconformal index

[25, 24]. The special case that the two angular chemical potentials are equal, τ = σ, was

already studied in [6] (see also [29]). Here we take them unequal. The formula of [24] can be

applied when the ratio between the two angular chemical potentials is a rational number.5

We thus set

τ = aω , σ = bω with Imω > 0 (2.7)

and with a, b ∈ N coprime positive integers. We call H = {ω | Imω > 0} the upper half-

plane. We then have the fugacities

h = e2πiω , p = ha = e2πiτ , q = hb = e2πiσ with |h|, |p|, |q| < 1 . (2.8)

The formula in [24] allows us to write the superconformal index as a sum over the solutions

to a set of Bethe Ansatz Equations (BAEs). Explicitly, the index reads

I = κN
∑

û∈BAE

ZtotH
−1
∣∣∣
û
. (2.9)

The expressions of κN , H and Ztot for a generic N = 1 theory are given in [24]. Here, we

specialize them to N = 4 SU(N) SYM. The quantity

κN =
1

N !

(
(p; p)∞ (q; q)∞ Γ̃(∆1; τ, σ) Γ̃(∆2; τ, σ)

Γ̃(∆1 +∆2; τ, σ)

)N−1

(2.10)

is a prefactor written in terms of the elliptic gamma function Γ̃ and the Pochhammer symbol:

Γ̃(u; τ, σ) ≡ Γ(z; p, q) =

∞∏

m,n=0

1− pm+1qn+1/z

1− pmqnz
, (z; q)∞ =

∞∏

n=0

(1− zqn) , (2.11)

where z = e2πiu. The sum in (2.9) is over the solution set to the following BAEs:6

1 = Qi(u; ∆, ω) ≡ e2πi(λ+3
∑

j uij)
N∏

j=1

θ0
(
uji +∆1;ω

)
θ0
(
uji +∆2;ω

)
θ0
(
uji −∆1 −∆2;ω

)

θ0
(
uij +∆1;ω

)
θ0
(
uij +∆2;ω

)
θ0
(
uij −∆1 −∆2;ω

)

(2.12)

5This might sound like a strong limitation. However, the index (2.6) is invariant under integer shifts of

τ and σ compatible with (2.4). As proven in [24], the set of complex number pairs {τ, σ} ∈ H2 (two copies

of the upper half-plane) whose ratio becomes a (real) rational number after some integer shifts of τ and σ,

is dense in H2. Thus, by continuity, the formula of [24] fixes the large N limit of the superconformal index

for generic complex chemical potentials.
6The Bethe operators Qi should not be confused with the charges QI introduced before.
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written in terms of uij = ui − uj with i, j = 1, . . . , N and the theta function

θ0(u;ω) = (z; h)∞(h/z; h)∞ . (2.13)

The unknowns are the “complexified SU(N) holonomies”, which are expressed here in terms

of U(N) holonomies ui further constrained by

N∑

i=1

ui = 0 (mod Z) , (2.14)

as well as a “Lagrange multiplier” λ. The SU(N) holonomies are to be identified with the first

N−1 variables ui=1,...,N−1. As unknowns in the BAEs, they are subject to the identifications

ui ∼ ui + 1 ∼ ui + ω , (2.15)

meaning that each one of them naturally lives on a torus of modular parameter ω. Instead,

the last holonomy uN is determined by the constraint (2.14). The relation between SU(N)

and U(N) holonomies will be further clarified in Appendix A.2. The prescription in (2.9) is

to sum over all the inequivalent solutions on the torus [24]. The function H is the Jacobian

H = det

[
1

2πi

∂(Q1, . . . , QN)

∂(u1, . . . , uN−1, λ)

]
. (2.16)

Finally, the function Ztot is the following sum over a set of integers mi = 1, . . . , ab:

Ztot =
ab∑

{mi}=1

Z
(
u−mω; τ, σ

)
, (2.17)

where Z, for N = 4 SU(N) SYM, reads

Z =

N∏

i,j=1
i 6=j

Γ̃(uij +∆1; τ, σ) Γ̃(uij +∆2; τ, σ)

Γ̃(uij +∆1 +∆2; τ, σ) Γ̃(uij; τ, σ)
. (2.18)

The sum in (2.17) freely varies over the first N − 1 integers mi=1,...,N−1 as indicated, while

mN is determined by the constraint

N∑

i=1

mi = 0 . (2.19)

More details can be found in [24, 6]. In the following, when a double sum starts from 1 we

will leave it implicit.
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2.1 The building block

We will show that one particular contribution to the sums in (2.9) and (2.17) alone reproduces

the entropy function of [21] and therefore it captures the Bekenstein-Hawking entropy of BPS

black holes in AdS5×S5. To that aim, we are interested in the contribution from the so-called

“basic solution” to the BAEs [26, 27, 6], namely

ui =
N − i

N
ω + u , uij ≡ ui − uj =

j − i

N
ω , λ =

N − 1

2
. (2.20)

Here u is fixed by enforcing the constraint (2.14). We also consider the contribution from a

particular choice for the integers {mj}:

mj ∈ {1, . . . , ab} such that mj = j mod ab . (2.21)

Note that this choice for {mj} does not satisfy the constraint (2.19). Nevertheless, we show

in Appendix A.2 that this does not affect the contribution to leading order in N , in the sense

that changing the single entry mN has a subleading effect.

Now, the crucial technical point is to evaluate the following basic building block:

Ψ =

N∑

i 6=j

log Γ̃

(
∆+ ω

j − i

N
+ ω

(
mj −mi

)
; aω, bω

)
(2.22)

for N → ∞. Here ∆ plays the role of an electric chemical potential. In order to simplify

the discussion, we assume that N is a multiple of ab, i.e., we take N = abÑ . As we show

in Appendix A.3 this assumption can be removed without affecting the leading behavior at

large N .

We make use of the following identity [41]:

Γ̃(u; τ, σ) =

a−1∏

r=0

b−1∏

s=0

Γ̃
(
u+

(
rτ + sσ

)
; aτ, bσ

)
(2.23)

for any τ, σ ∈ H and any a, b ∈ N. This is immediate to prove exploiting the infinite product

expression of Γ̃. Now, exchanging a↔ b and r ↔ s in the formula, and then setting τ → aω,

σ → bω, we obtain the formula of [42]:

Γ̃(u; aω, bω) =

a−1∏

r=0

b−1∏

s=0

Γ̃
(
u+

(
as+ br

)
ω; abω, abω

)
. (2.24)

Going back to Ψ, we can thus write

Ψ =

a−1∑

r=0

b−1∑

s=0

N∑

i 6=j

log Γ̃

(
∆+ ω

j − i

N
+ ω

(
mj −mi + as + br

)
; abω, abω

)
. (2.25)
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Let us set i = γab+ c, j = δab+ d with γ, δ = 0, . . . , Ñ − 1 and c, d = 1, . . . , ab. Then

Ψ =
a−1∑

r=0

b−1∑

s=0

Ñ−1∑

γ,δ=0

ab∑

c,d=1︸ ︷︷ ︸
s.t. i 6=j

log Γ̃

(
∆+ ω

δ − γ

Ñ
+ ω

d− c

N
+ ω

(
d− c+ as+ br

)
; abω, abω

)
.

(2.26)

We will now perform two simplifications, and prove in Appendix A.1 that their effect is of

subleading order at large N . More precisely, Ψ is of order N2 while the two simplifications

modify it at most at order N if Im
(
∆/ω

)
6∈ Z × Im

(
1/ω

)
, or at most at order N logN if

∆ = 0. First, we substitute the condition i 6= j with the condition γ 6= δ in the summation.

Second and more importantly, we drop the term ω(d − c)/N in the argument. We then

redefine c→ ab− c, d → d+ 1, γ → γ − 1, δ → δ − 1 and obtain

Ψ ≃
a−1∑

r=0

b−1∑

s=0

Ñ∑

γ 6=δ

ab−1∑

c,d=0

log Γ̃

(
∆+ ω

δ − γ

Ñ
+ ω

(
d+ c+ 1− ab+ as + br

)
; abω, abω

)
(2.27)

where ≃ means equality at leading order in N . At this point we can resum over c, d using

(2.23) (with τ, σ → ω and a, b→ ab):

Ψ ≃
a−1∑

r=0

b−1∑

s=0

Ñ∑

γ 6=δ

log Γ̃

(
∆+ ω

δ − γ

Ñ
+ ω

(
1− ab+ as+ br

)
;ω, ω

)
. (2.28)

We recall the large N limit computed in [6]:

N∑

i 6=j

log Γ̃

(
∆+ ω

j − i

N
;ω, ω

)
= −πiN2 B3

(
[∆]′ω − ω

)

3ω2
+O(N) (2.29)

valid for Im
(
∆/ω

)
6∈ Z× Im

(
1/ω

)
. Here B3(x) is a Bernoulli polynomial:

B3(x) = x
(
x− 1

2

)(
x− 1

)
. (2.30)

It has the property that B3(1 − x) = −B3(x). The function [∆]′ω was defined in [6] in the

following way:

[∆]′ω =

{
z

∣∣∣∣ z = ∆ mod 1 , 0 > Im
( z
ω

)
> Im

( 1
ω

)}
. (2.31)

This function is only defined for Im
(
∆/ω

)
6∈ Z × Im

(
1/ω

)
, it is continuous in each open

connected domain, and it is periodic by construction under ∆ → ∆+1. In the following we

will also use the function [∆]ω = [∆]′ω − 1,

[∆]ω =

{
z

∣∣∣∣ z = ∆ mod 1 , Im
(
− 1

ω

)
> Im

( z
ω

)
> 0

}
. (2.32)
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−1

1

ω − 1

ω + 1

Figure 1: Fundamental strips for [∆]ω and [∆]′ω. The function [∆]ω is the restriction of ∆

mod 1 to the region Im(−1/ω) > Im(∆/ω) > 0 (in yellow, on the left), while [∆]′ω is the

restriction of ∆ mod 1 to the region 0 > Im(∆/ω) > Im(1/ω) (in blue, on the right).

The functions [∆]ω and [∆]′ω are the mod 1 reductions of ∆ to the fundamental strips shown

in Figure 1. Then we use the following formula:

1

ab

a−1∑

r=0

b−1∑

s=0

B3

(
x+ ω(as+ br − ab)

)
=

= B3

(
x− a + b

2
ω

)
+

2a2b2 − a2 − b2

4
ω2B1

(
x− a+ b

2
ω

)
, (2.33)

where B1(x) = x− 1
2
is another Bernoulli polynomial — and B1(1− x) = −B1(x). Thus

Ψ = −πiN2
B3

(
[∆]′ω − τ+σ

2

)

3τσ
− πiN2

12

(
2ab− a

b
− b

a

)
B1

(
[∆]′ω − τ+σ

2

)
+O(N) (2.34)

for Im
(
∆/ω

)
6∈ Z × Im

(
1/ω

)
. As a check, notice that

[
τ + σ − ∆

]′
ω
= τ + σ + 1 − [∆]′ω.

From the properties of B1,3(x) noticed above, it follows

Ψ(τ + σ −∆) = −Ψ(∆) (2.35)

at leading order in N . This is in accordance with the inversion formula of the elliptic gamma

function:

Γ̃(u; τ, σ) = 1/Γ̃(τ + σ − u; τ, σ) . (2.36)

The case ∆ = 0 requires some care, because [0]ω is undefined. Taking the limit of Ψ as

∆ → 0 from the left or the right, one obtains two values that differ by an imaginary quantity.

The limit from the right corresponds to taking [∆]′ω → 0 in (2.34), while the limit from the

left corresponds to [∆]ω → 0 (i.e., [∆]′ω → 1). The difference is

Ψ
∣∣∣
[∆]′ω→0

−Ψ
∣∣∣
[∆]ω→0

=
iπN2

6

(
3 + ab+

a

b
+
b

a

)
. (2.37)

Since Ψ is in any case ambiguous by shifts of 2πi because it is a logarithm, only the remainder

modulo 2πi is meaningful but this is an order 1 quantity which can be neglected. In fact it

10



turns out that, with N = abÑ , the quantity on the right-hand-side of (2.37) is always an

integer multiple of iπÑ , and so its exponential is a sign. We should also notice that, for

∆ = 0, our approximation gets corrections at order N logN .

2.2 The index and the entropy function

We are now ready to put all the ingredients together. Our working assumption is that, in

the large N limit, the index (2.9) is dominated by the basic solution (2.20) and the choice

of integers (2.21). Some evidence that the basic solution dominates the index for τ = σ has

been given in [6] (see also [29]).

The leading contribution to (2.9) originates from Ztot that can be evaluated using (2.34).

Indeed, the term κN is manifestly sub-leading. That the contribution of H is also subleading

follows from the analysis in [6] for τ = σ, since H only depends on the solutions to the BAEs

and not explicitly on τ and σ. The large N limit of the index at leading order is then

log I = Ψ(∆1) + Ψ(∆2)−Ψ(∆1 +∆2)−Ψ(0) , (2.38)

where the definition of the last term has an ambiguity of order 1.

Recall that in (2.4) we introduced the auxiliary chemical potential ∆3. Notice in partic-

ular that the chemical potentials are defined modulo 1. Using the basic properties

[∆ + 1]ω = [∆]ω , [∆ + ω]ω = [∆]ω + ω , [−∆]ω = −[∆]ω − 1 , (2.39)

we find

[∆3]ω = τ + σ − 1− [∆1 +∆2]ω . (2.40)

It follows from the definition of the function [∆]ω that [∆1+∆2]ω = [∆1]ω +[∆2]ω +n where

n = 0 or n = 1. The result then breaks into two cases.

If [∆1 +∆2]ω = [∆1]ω + [∆2]ω then

[∆1]ω + [∆2]ω + [∆3]ω − τ − σ = −1 , (2.41)

and, using (2.38) and (2.34),

log I = −πiN2 [∆1]ω [∆2]ω
(
τ + σ − 1− [∆1]ω − [∆2]ω

)

τ σ

= −iπN2 [∆1]ω [∆2]ω [∆3]ω
τ σ

.

(2.42)

To obtain this formula we used Ψ(0) = Ψ
∣∣
[∆]ω→0

. Notice that the contributions from B1

cancel out. As we will see in Section 3, this is a consequence of the relation a = c among

the two four-dimensional central charges in the large N limit.
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If [∆1 +∆2]ω = [∆1]ω + [∆2]ω + 1, namely [∆1 +∆2]
′
ω = [∆1]

′
ω + [∆2]

′
ω, then

[∆1]
′
ω + [∆2]

′
ω + [∆3]

′
ω − τ − σ = 1 , (2.43)

and

log I = −πiN2 [∆1]
′
ω [∆2]

′
ω

(
τ + σ + 1− [∆1]

′
ω − [∆2]

′
ω

)

τ σ

= −iπN2 [∆1]
′
ω [∆2]

′
ω [∆3]

′
ω

τ σ
.

(2.44)

This time we used Ψ(0) = Ψ
∣∣
[∆]′ω→0

.

As in [6], we can extract the entropy of the dual black holes by taking the Legendre

transform of the logarithm of the index. The precise identification of the charges associated

with the chemical potentials follows from (2.6). The prediction for the entropy can then be

combined into two constrained entropy functions

S±(XI , τ, σ,Λ) = −iπN2 X1X2X3

τ σ
− 2πi

(
3∑

I=1

XIQI + τJ1 + σJ2

)

− 2πiΛ

(
X1 +X2 +X3 − τ − σ ± 1

)
, (2.45)

where we used a neutral variableXI to denote either [∆I ]ω or [∆I ]
′
ω, we introduced a Lagrange

multiplier Λ to enforce the constraint, and we recall that QI = 1
2
RI . This completes our

derivation of the entropy of supersymmetric black holes in AdS5 × S5 for general angular

momenta and electric charges. The expression (2.45) represents indeed the two entropy

functions derived in [21], where it was shown that the (constrained) extremization of (2.45)

reproduces the entropy of a black hole of angular momenta J1 and J2 and charges QI . The

two results correspond to the two entropy functions that reproduce the same black hole

entropy, and are associated to two Euclidean complex solutions that regularize the black

hole horizon [4].

3 The index of quiver theories with a holographic dual

We want to generalize the large N computation of the superconformal index to theories

dual to AdS5×SE5 compactifications, where SE5 is a five-dimensional Sasaki-Einstein man-

ifold. We can write general formulæ with very few assumptions. We consider 4d N = 1

theories with SU(N) gauge groups as well as adjoint and bi-fundamental chiral multiplet

fields. To cancel gauge anomalies, the total number of fields transforming in the fundamen-

tal representation of a group must be the same as the number of anti-fundamentals. We also

12



require equality of the conformal central charges c = a in the large N limit, as dictated by

holography. Our analysis extends the results found in [28] for equal angular momenta.

We then assume that in the large N limit, as for N = 4 SYM, the leading contribution

to the superconformal index comes from the basic solution and the choice of integers {mi}
discussed in (2.21). As already shown in [28, 30], the basic solution to the BAEs for N = 4

SYM [26,27, 6] can easily be extended to quiver gauge theories by setting

uαβij ≡ uαi − uβj =
j − i

N
ω α, β = 1, . . . , G , (3.1)

where α, β run over the various gauge groups in the theory and G is the number of gauge

groups. Similarly, we choose the integers

mα
j ∈ {1, . . . , ab} such that mα

j = j mod ab . (3.2)

Notice in particular that neither uαβij nor mα
j depend on α, β. As for N = 4 SYM, the

contribution of the determinant H to the Bethe Ansatz expansion (2.9) is subleading [28].

Using the general expressions given in [24] and following the logic of Section 2, it is

easy to write the large N limit of the leading contribution to the superconformal index of a

holographic theory, with adjoint and bi-fundamental chiral fields. We find

log I =
N∑

i 6=j

[
∑

Iαβ

log Γ̃
(
uαβij −ω

(
mα

i −mβ
j

)
+∆Iαβ

; τ, σ
)
−

G∑

α=1

log Γ̃
(
uααij −ω

(
mα

i −mβ
j

)
; τ, σ

)]

(3.3)

where zαi = e2πiu
α
i are the gauge fugacities, uαi represent the basic solution (3.1) and mα

i are

given in (3.2). The sum over Iαβ is over all adjoint (if α = β) and bi-fundamental (if α 6= β)

chiral multiplets in the theory. The second sum is the contribution of vector multiplets.

When no confusion is possible, we will keep the gauge group indices implicit and just write

∆Iαβ
≡ ∆I . In the previous formula,

∆I = ξI + rI
τ + σ

2
, (3.4)

where rI is the exact R-charge of the field and ξI are the flavor chemical potentials. The

R-charges satisfy ∑

I∈W

rI = 2 (3.5)

for each superpotential term W in the Lagrangian. In this notation, the index W runs over

the monomials in the superpotential, while I ∈ W indicates all chiral fields appearing in a

given monomial. Using that each superpotential term must be invariant under the flavor

symmetries, but chemical potentials are only defined up to integers, we also require
∑

I∈W

ξI = nW for some nW ∈ Z . (3.6)

13



The values nW ≡ n0 = ±1 have been used in [43, 44] to study the Cardy limit. As a

consequence of the previous formulæ, for each superpotential term we have
∑

I∈W

∆I = τ + σ + nW . (3.7)

Hence, we stress that the chemical potentials ∆I are not independent. Notice that the

expression (3.3) correctly reduces to the one for N = 4 SYM, Eqn. (2.18), once we use the

definition (2.4) as well as the inversion formula for the elliptic gamma function (2.36). We

also need to use the exact R-charges rI = 2/3 of the chiral fields ΦI .

Applying (2.34), we can evaluate the large N limit of (3.3) and obtain

log I ≃ −πiN
2

3τσ

∑

I

[
B3

(
[∆I ]ω + 1− τ+σ

2

)
+
τσ

4

(
2ab− a

b
− b

a

)
B1

(
[∆I ]ω + 1− τ+σ

2

)]

+
πiGN2

3τσ

[
B3

(
1− τ+σ

2

)
+
τσ

4

(
2ab− a

b
− b

a

)
B1

(
1− τ+σ

2

)]
. (3.8)

The corrections are of order N logN or smaller. The formula is obtained by summing (2.34)

for each chiral multiplet, as well as (2.34) with [∆]ω → 0 (and opposite sign) for each

vector multiplet. We stress that (3.8) comes from a single contribution — in the Bethe

Ansatz expansion — to the index. Such a contribution might not be the dominant one, and

so our estimate of the index might be incorrect, in some regions of the space of chemical

potentials. However, we conjecture and we will bring some evidence that this contribution

always captures the semiclassical Bekenstein-Hawking entropy of BPS black holes.

Due to the presence of the brackets [∆I ]ω, the expression (3.8) assumes different analytic

forms in different regions of the space of chemical potentials ∆I . There are two regions where

the expression greatly simplifies. They correspond to the natural generalization of the two

regions for N = 4 SYM discussed in Section 2.2 and are expected to lead to the correct

black hole entropy. In particular, they smoothly reduce to the results obtained in the Cardy

limit [43,44,32] and match the previous analysis done for equal angular momenta [28]. The

first region corresponds to chemical potentials ∆I satisfying
∑

I∈W

[∆I ]ω = τ + σ − 1 . (3.9)

As we will discuss later, many models — in particular all toric ones — exhibit a corner in

the space of chemical potentials where this constraint is satisfied. We can define the rescaled

variables

∆̂I = 2
[∆I ]ω

τ + σ − 1
(3.10)

which, under the assumption (3.9), satisfy
∑

I∈W

∆̂I = 2 (3.11)
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and can be interpreted as an assignment of R-charges to the chiral fields in the theory. In

terms of ∆̂I the contributions in (3.8) combine into

log I ≃ −πiN
2

24

(τ + σ − 1)3

τσ

[∑
I

(
∆̂I − 1

)3
+G

]
(3.12)

+
πiN2

24

(τ + σ − 1)

τσ

(
1− τσ

(
2ab− a

b
− b

a

))[∑
I

(
∆̂I − 1

)
+G

]
.

Introducing the charge operator R(∆̂) of R-charges parametrized by ∆̂I and indicating with

Tr the sum over all fermions in the theory, we can also write

log I ≃ −πi
24

[
(τ + σ − 1)3

τσ
TrR(∆̂)3 − (τ + σ − 1)

τσ

(
1− τσ

(
2ab− a

b
− b

a

))
TrR(∆̂)

]
,

(3.13)

valid at leading order in N .

In the large N limit, theories with a holographic dual satisfy c = a. Using standard

formulæ for the central charges a and c in terms of the fermion R-charges [45], one finds

TrR = O(1) and a = 9
32
TrR3 +O(1) from which we obtain the final expression

log I ≃ −4πi

27

(τ + σ − 1)3

τσ
a(∆̂) , (3.14)

where

a =
9

32
N2

(∑
I

(
∆̂I − 1

)3
+G

)
(3.15)

at leading order in N . The result (3.14) was conjectured in [31] — see Eqn. (A.7). It is also

compatible with the Cardy limit performed in [43, 44].

We can find an analogous result in a second region of chemical potentials where

∑

I∈W

[∆I ]
′
ω = τ + σ + 1 , (3.16)

written in terms of the primed bracket [∆]′ω = [∆]ω+1. As discussed at the end of Section 2,

the contribution of vector multiplets can be written, up to subleading terms, as minus the

contribution of a chiral multiplet with [∆I ]
′
ω → 0. After defining another set of normalised

R-charges,

∆̂′
I = 2

[∆I ]
′
ω

τ + σ + 1
(3.17)

which satisfy ∑

I∈W

∆̂′
I = 2 (3.18)
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under the assumption (3.16), we can rewrite the index as

log I ≃ −πi
24

[
(τ + σ + 1)3

τσ
TrR(∆̂′)3 − (τ + σ + 1)

τσ

(
1− τσ

(
2ab− a

b
− b

a

))
TrR(∆̂′)

]

(3.19)

at leading order in N . This reduces to the simple expression

log I ≃ −4πi

27

(τ + σ + 1)3

τσ
a(∆̂′) (3.20)

for holographic theories.

In the remainder of this section we will interpret the general results (3.14) and (3.20) and

provide examples. In particular, we will show that both regions (3.9) and (3.16) in the space

of chemical potentials always exist in toric quiver gauge theories. We will also see that the

two expressions (3.14) and (3.20) lead to the very same result for the semiclassical entropy

of dual black holes, generalizing what happens for N = 4 SYM.

3.1 Example: the conifold

We start with the example of the Klebanov-Witten theory dual to AdS5 × T 1,1, the near-

horizon limit of a set of N D3-branes sitting at a conifold singularity [33]. This example was

already studied for equal angular momenta in [28] and our results are consistent with those

found there when we set τ = σ.

The theory has gauge group SU(N) × SU(N), bi-fundamental chiral multiplets A1, A2

transforming in the representation (N,N) and B1, B2 transforming in the representation

(N,N), and a superpotential

W = Tr
(
A1B1A2B2 −A1B2A2B1

)
. (3.21)

The global symmetry of the theory is U(1)R × SU(2)F1 × SU(2)F2 × U(1)B, where the first

factor is the superconformal R-symmetry with charge r, while the other three factors are

flavor symmetries. The charge assignments of chiral multiplets under the maximal torus are

in Table 1. The index is defined as

I = Tr (−1)F e−β{Q,Q†} pJ1+r/2 qJ2+r/2 v
QF1
F1

v
QF2
F2

vQB

B . (3.22)

It is convenient to introduce an alternative basis of R-charges RI with I = 1, 2, 3, 4, such

that each of them assigns R-charge 2 to one of the chiral multiplets and zero to the other

ones. Correspondingly, we associate a variable ∆I to each chiral multiplet. Notice that
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Field r QF1 QF2 QB R1 R2 R3 R4

A1
1
2

1 0 1 2 0 0 0

A2
1
2

−1 0 1 0 2 0 0

B1
1
2

0 1 −1 0 0 2 0

B2
1
2

0 −1 −1 0 0 0 2

Table 1: Charges of chiral multiplets in the Klebanov-Witten theory, under the maximal

torus of the global symmetry U(1)R ×SU(2)F1 × SU(2)F2 ×U(1)B. In the table we indicate

two useful basis. Notice that r and RI are R-charges, while QF1,2 and QB are flavor charges.

(−1)F = e2πiJ1,2 = eπiR1,2,3,4 . According to (3.4) and up to integer ambiguities, the variables

∆I are related to the chemical potentials for the charges in Table 1 by

∆1 = ξF1 + ξB +
τ + σ

4
, ∆3 = ξF2 − ξB +

τ + σ

4
,

∆2 = −ξF1 + ξB +
τ + σ

4
, ∆4 = −ξF2 − ξB +

τ + σ

4
+ (2Z+ 1) .

(3.23)

Then, the constraint (3.7) reads

∆1 +∆2 +∆3 +∆4 = τ + σ + nW (3.24)

and the index takes the more transparent form

I = TrBPS p
J1 qJ2 y

R1/2
1 y

R2/2
2 y

R3/2
3 y

R4/2
4 . (3.25)

This shows that ∆I are the chemical potentials associated to the charges QI ≡ RI/2.

We select three independent variables, say ∆1,∆2 and ∆3. Then, using (2.39) we find

that

[∆4]ω = τ + σ − 1− [∆1 +∆2 +∆3]ω . (3.26)

In general there are three possible cases:

[∆1 +∆2 +∆3]ω = [∆1]ω + [∆2]ω + [∆3]ω + n with n = 0, 1, 2 (3.27)

that we call Case I, II and III, respectively.7

Case I corresponds to the corner of moduli space (3.9) where

[∆1]ω + [∆2]ω + [∆3]ω + [∆4]ω = τ + σ − 1 . (3.28)

7For the sake of comparison, the notation is the same as in [28].
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In this corner, we can use (3.14). One can explicitly compute, at leading order in N ,

TrR(∆̂)3 = N2

(
2 +

4∑

I=1

(
∆̂I − 1

)3
)

= 3N2
(
∆̂1∆̂2∆̂3 + ∆̂1∆̂2∆̂4 + ∆̂1∆̂3∆̂4 + ∆̂2∆̂3∆̂4

)

(3.29)

imposing
∑4

I=1 ∆̂I = 2. Using (3.10), we can write the index (3.14) as

log I ≃ −πiN
2

τσ

(
[∆1]ω[∆2]ω[∆3]ω + [∆1]ω[∆2]ω[∆4]ω + [∆1]ω[∆3]ω[∆4]ω + [∆2]ω[∆3]ω[∆4]ω

)

(3.30)

with the constraint (3.28).8

Case III corresponds to the corner of moduli space (3.16). Indeed

[∆1]
′
ω + [∆2]

′
ω + [∆3]

′
ω + [∆4]

′
ω = τ + σ + 1 . (3.31)

In this corner, we can use (3.20) and (3.17) and find

log I ≃ −πiN
2

τσ

(
[∆1]

′
ω[∆2]

′
ω[∆3]

′
ω + [∆1]

′
ω[∆2]

′
ω[∆4]

′
ω + [∆1]

′
ω[∆3]

′
ω[∆4]

′
ω + [∆2]

′
ω[∆3]

′
ω[∆4]

′
ω

)

(3.32)

with the constraint (3.31).

The entropy, which is the logarithm of the number of states, is given by the Legendre

transform of the index, i.e., by the critical value of the entropy function

S = −πiN
2

τσ

(
X1X2X3 +X1X2X4 +X1X3X4 +X2X3X4

)

− 2πi

(
τJ1 + σJ2 +

4∑

I=1

XIQI

)
− 2πiΛ

( 4∑

I=1

XI − τ − σ ± 1

)
.

(3.33)

Here the variables XI stand for [∆I ]ω or [∆I ]
′
ω depending on whether we are in case I or III,

respectively, and the ± sign is chosen accordingly. One can check that the two signs lead to

the same entropy. We will give a general argument in Section 3.3.

In Section 5 we will compare the field theory result (3.33) with the entropy of black

holes in AdS5 × T 1,1, in the special case that J1 = J2 ≡ J and the SU(2)F1 × SU(2)F2

symmetry is unbroken. To that purpose, let us specialize the index to the case that τ = σ

and ξF1 = ξF2 = 0, which corresponds to X1 = X2 and X3 = X4. It is then useful to define

the new variables

XR = X1 +X3 , XB =
X1 −X3

2
, (3.34)

8For toric models, discussed in detail in Section 3.2, we can compute the index using formula (3.52). The

’t Hooft coefficients are expressed in terms of toric data as Cabc =
∣∣det{va, vb, vc}

∣∣, where va are the integer

vectors defining the toric fan [46]. For the conifold: v1 = (1, 0, 0), v2 = (1, 1, 0), v3 = (1, 1, 1) , v4 = (1, 0, 1)

and thus C123 = C124 = C134 = C234 = 1 (and symmetrizations), recovering the expression above.
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associated to R-symmetry and baryonic symmetry, respectively. The entropy function takes

the simplified form

S = −πiN
2

2τ 2
XR

(
X2

R − 4X2
B

)
− 2πi

(
2τJ +XR r +XBQB

)
− 2πiΛ

(
2XR − 2τ ± 1

)
. (3.35)

3.2 Example: toric models

In this section we consider the gauge theory dual to an AdS5 × SE5 geometry, where SE5 is

a toric Sasaki-Einstein manifold. The theory lives on a stack of N D3-branes sitting at the

toric Calabi-Yau singularity C(SE5) obtained by taking the cone over SE5 [33,47]. There is

a general construction to extract gauge theory data from the geometry of the Calabi-Yau

singularity [48–51]. The main complication compared to the C3 and the conifold cases is

that there is no one-to-one correspondence between bi-fundamental fields ΦI (and associated

variables ∆I) and R-symmetries Ra. However, we will argue in general that there always

exist two corners of the space of chemical potentials where (3.9) and (3.16) are satisfied and

the results (3.14) and (3.20) are valid. There are also other corners that should be analyzed

separately for every specific model. Our findings are consistent with the case-by-case analysis

performed in [28] for equal angular momenta.

We first need to understand how to write the trial central charges a(∆̂) and a(∆̂′) that

enter in the expressions (3.14) and (3.20). Since the quantities ∆̂I and ∆̂′
I satisfy the

constraints (3.11), they can be interpreted as a set of trial R-charges for the chiral fields in

the quiver. In the toric case, we can find an efficient parametrization of the trial R-charges

of fields using the data of the toric diagram. Let us review how this is done.

A toric Calabi-Yau threefold singularity can be specified by a fan, i.e., a convex cone in

R3 defined by D integer vectors va = (1, ~va) lying on a plane. The restrictions ~va of those

vectors to the plane define a regular convex polygon with integer vertices called the toric

diagram. In the list {va} we should include all integer vectors such that ~va is along the

perimeter of the polygon, i.e., we should include all integer points along the edges of the

toric diagram. Moreover, we take the points ~va to be ordered in a counterclockwise fashion.

The number of vectors in the fan is associated with the total rank of the global symmetry

of the dual field theory [50]: for a toric model with D vectors in the fan (including integer

points along the edges of the toric diagram) there is a flavor symmetry of rank D−1, besides

the R-symmetry U(1)R.
9 This allows us to parametrize flavor and R-symmetries in terms

of variables associated with the vertices of (and integer points along) the toric diagram. In

particular, the possible R-charges of fields in a toric theory can be parametrized using D

9The distinction between R- and flavor symmetries changes in the case of extended supersymmetry.
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variables δa satisfying the constraint

D∑

a=1

δa = 2 , (3.36)

and the corresponding R-charge can be written as

R(δ) =
D∑

a=1

δa
2
Ra (3.37)

in terms of a basis {Ra}. This is done as follows [52]. In a minimal toric phase,10 the

theory contains a number G of gauge group factors SU(N) equal to twice the area of the

toric diagram. Moreover, defining the vectors ~wa = ~va+1 −~va lying in the plane (we identify

indices modulo D, so that, for example, ~vD+1 ≡ ~v1), for each pair (a, b) such that ~wa can

be rotated counterclockwise into ~wb in the plane with an angle smaller than π, there are

precisely11 det{~wa, ~wb} bi-fundamental chiral fields Φab with R-charge

R[Φab] = δa+1 + δa+2 + . . .+ δb . (3.38)

Interestingly, for all toric models the trial central charge a(δ) is a homogeneous function of

degree three at large N :

a(δ) =
9

32
TrR(δ)3 =

9N2

64

D∑

a,b,c=1

Cabc δa δb δc . (3.39)

Here N2Cabc =
1
4
TrRaRbRc are the ’t Hooft anomaly coefficients, which can be read from

the toric data through Cabc =
∣∣det{va, vb, vc}

∣∣ [46]. Another important property of toric

models that we will use in the following is that the constraints

∑

I∈W

R[ΦI ] = 2 , (3.40)

that must be satisfied for each monomial term W in the superpotential, always reduce to

(3.36). Indeed, it follows from tiling techniques [48–52] that the R-charges R[ΦI ], I ∈ W , of

the chiral fields entering in a superpotential monomial W correspond to a partition of the

10There are many different quiver theories that describe the same IR SCFT. They are called “phases”, and

are related by Seiberg dualities. The toric phases are the quiver theories where all gauge groups are SU(N)

with the same rank N . It turns out that all toric phases have the same number G of gauge groups, but

have different matter content. The “minimal” phases correspond to the quivers with the smallest number of

chiral fields. There could be one or more minimal toric phases, for a given IR SCFT.
11The condition on the angle guarantees that the formula for the number of fields gives a non-negative

integer.
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D elementary R-charges {δ1, . . . , δD} into sums of the form (3.38), with each δa entering in

just one R[ΦI ].

We can similarly parametrize the chemical potentials ∆[Φ] entering the superconformal

index in terms of D basic quantities ∆a, a = 1, . . . , D. For the chiral fields Φab we have

∆[Φab] = ∆a+1 +∆a+2 + . . .+∆b . (3.41)

The conditions ∑

I∈W

∆[ΦI ] = τ + σ + nW , (3.42)

to be imposed for each monomial term W in the superpotential (and where nW is the same

for all monomial terms), are then equivalent to

D∑

a=1

∆a = τ + σ + nW . (3.43)

Independently of the value of nW , we have

[∆D]ω = τ + σ − 1−
[∑D−1

a=1
∆a

]

ω

. (3.44)

In general [∑D−1

a=1
∆a

]

ω

=
D−1∑

a=1

[∆a]ω + n (3.45)

where n = 0, . . . , D − 2, thus dividing the space of parameters into D − 1 regions.

Two regions are particularly important for our analysis. The region n = 0 corresponds

to
D∑

a=1

[∆a]ω = τ + σ − 1 , (3.46)

while n = D − 2 corresponds to

D∑

a=1

[∆a]
′
ω = τ + σ + 1 . (3.47)

We can argue that the two regions (3.46) and (3.47) are always realized somewhere in the

space of parameters. For example, we can choose one elementary variable, say ∆1, to live in

the fundamental strip Im(−1/ω) > Im
(
∆1/ω

)
> 0 (see Fig. 1) and slightly on the right of

the vertical line passing through τ + σ− 1, while all the other ∆a to live in the fundamental

strip and slightly on the left of the vertical line passing through zero. One easily verifies that

they can be arranged to satisfy (3.46). A similar construction gives parameters satisfying
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(3.47). We now argue that (3.46) and (3.47) imply (3.9) and (3.16), respectively. We start

noticing that

D∑

a=1

[∆a]ω = τ + σ − 1 ⇒ Im

(
1

ω

∑D

a=1
[∆a]ω

)
= Im

(
− 1

ω

)
. (3.48)

Since each of the [∆a]ω lives in the fundamental strip Im(−1/ω) > Im
(
[∆a]ω/ω

)
> 0, the

previous equation implies that Im(−1/ω) > Im
(∑

a∈S[∆a]ω/ω
)
> 0 for any proper subset S

of the indices {1, . . . , D}. Thus (3.46) implies that
[∑

a∈S
∆a

]
ω
=
∑

a∈S
[∆a]ω (3.49)

for any proper subset S ( {1, . . . , D}. This implies that all charges in (3.41) split, in the

sense that
[
∆a+1 + . . .+∆b

]
ω
= [∆a+1]ω + . . .+ [∆b]ω. At this point, since all

[
∆[ΦI ]

]
ω
split

and each ∆a enters precisely once in every superpotential constraint, the condition (3.9) is

a consequence of (3.46).12 A similar argument shows that (3.47) implies (3.16). Notice that

the region specified by (3.9) can be larger than (3.46) and, similarly, the region specified

by (3.16) can be larger than (3.47). This, in particular, happens for Calabi-Yau cones with

codimension-one orbifold singularities. This is the case of the models SPP and dP4 discussed

in [28].13 For all the cones without orbifold singularities that we checked, the two regions

(3.9) and (3.46) coincide. It would be interesting to see if this is a general result.

We are now ready to evaluate the index. Consider region (3.9) first. Since the chemical

potentials [∆I ]ω split, the rescaled quantities

∆̂a = 2
[∆a]ω

τ + σ − 1
with

D∑

a=1

∆̂a = 2 (3.50)

12There is an alternative algorithm that produces potentials ∆I satisfying (3.9). Choose a perfect matching

pα of the dimer model of the theory [50]. It divides the chiral fields into two groups: those ΦP appearing

in the perfect matching, and those ΦNP not doing so. Choose the potentials ∆NP to be in the fundamental

strip and slightly on the left of the origin. Each superpotential term W contains one and only one of the

fields ΦP (by definition of perfect matching): choose the corresponding ∆P to be in the fundamental strip

and slightly on the right of the point τ + σ − 1, in such a way that (3.9) for that particular W is satisfied.

The drawback of this construction is that it does not tell us what the independent variables ∆a are.
13Models with codimension-one orbifold singularities are characterized by toric diagrams where at least

one vector ~va lies in the interior of an edge. The parameters δa associated with integer points lying in the

interior of an edge of the polygon enter in the parametrization (3.38) of the R-charges of chiral fields, but no

elementary field carries precisely charge δa. In order to recover the region (3.9), we can require the following.

Construct a set M by grouping the points {1, . . . , D} along the toric diagram in the following way: Break

each edge in two pieces at a non-integer point, and then for each vertex form a group (that will be an element

of M) that contains the vertex itself and all other integer points (if any) along the two pieces of edges on the

two sides. (In the absence of orbifold singularity, M necessarily coincides with {1, . . . , D}.) Then require

that the sums split over the groups in M for every proper subgroup S′ ( M , and for every possible choice

of M . This region is typically larger than (3.46).
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provide a parametrization of the R-charges of chiral fields in the quiver in the sense discussed

above. Using the general formula (3.39) we can then write

a(∆̂) =
9N2

64

D∑

a,b,c=1

Cabc ∆̂a ∆̂b ∆̂c . (3.51)

Plugging it into (3.14) and re-expressing the result in terms of the chemical potentials [∆a]ω,

we find the large N limit of the superconformal index in region (3.9):

log I ≃ −πiN2
D∑

a,b,c=1

Cabc

6

[∆a]ω[∆b]ω[∆c]ω
τσ

,

D∑

a=1

[∆a]ω = τ + σ − 1 . (3.52)

A similar argument shows that, in region (3.16),

log I ≃ −πiN2
D∑

a,b,c=1

Cabc

6

[∆a]
′
ω[∆b]

′
ω[∆c]

′
ω

τσ
,

D∑

a=1

[∆a]
′
ω = τ + σ + 1 . (3.53)

We will show in the next section that both (3.52) and (3.53) lead to the same entropy.

3.3 The entropy function

For toric holographic quivers, we have found two different expressions, (3.52) and (3.53), for

the large N limit of the superconformal index that are valid in two different regions in the

space of chemical potentials. The two expressions differ only for the constraint and give rise

to the very same entropy. This generalizes an observation made in [4] for N = 4 SYM and

holds for general quivers.

To show that, we define two entropy functions

S± = −πiN2
D∑

a,b,c=1

Cabc

6

XaXbXc

τσ
− 2πi

(
τJ1 + σJ2 +

D∑

a=1

XaQa

)

− 2πiΛ

( D∑

a=1

Xa − τ − σ ± 1

)
, (3.54)

where Λ is a Lagrange multiplier and we used neutral variables Xa to denote either [∆a]ω or

[∆a]
′
ω. Each of the electric charges Qa ≡ Ra/2 is defined in terms of an R-charge Ra that

assigns charge 2 to all chiral multiplets Φab such that δa appears in the decomposition (3.38),

and zero to all the other ones. The ’t Hooft anomaly coefficients are defined by

CabcN
2 =

1

4
TrRaRbRc . (3.55)
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Above, S+ is the prediction for the entropy of the dual black hole based on the superconformal

index in the region of parameters (3.9) while S− in the region (3.16). The form of the entropy

function (3.54) was first conjectured in [31].

Observe that, since S± ± 2πiΛ are homogeneous functions of degree one in (Xa, τ, σ),

the values of the functions S±(Xa, τ, σ,Λ) at the critical point are related to the Lagrange

multiplier by

S±

∣∣
crit

= ∓2πiΛ . (3.56)

Observe also that, if Qa, Ji are real (as charges should be), then the two functions are related

by S+(Xa, τ, σ,Λ) = S−

(
−Xa,−τ ,−σ,Λ

)
. Hence, if (Xa, τ, σ,Λ) is a critical point of S+,

then
(
−Xa,−τ ,−σ,Λ

)
is a critical point of S− with critical value

S−

∣∣
crit

= S+

∣∣
crit

. (3.57)

For arbitrary and general real charges Qa and Ji, the critical value of S+ is not real. For

N = 4 SYM, however, it becomes real and equal to the entropy when imposing the non-

linear constraint on conserved charges that characterizes supersymmetric black holes [21,4].

The same phenomenon was already observed in AdS4 in [3]. We expect the same to be true

for general black holes in Sasaki-Einstein compactifications. Even if this were wrong and S+

were not real, it would still makes sense to identify the entropy with ReS+. In all cases, we

see from (3.57) that both constraints in (3.54) lead to the very same result for the entropy.

The entropy functions (3.54) give our general result for the entropy of black holes in

AdS5 × SE5. We derived it for toric quiver gauge theories, but the very same argument can

be extended to a class of more general non-toric quivers. In particular, the expression (3.54)

only depends on the ’t Hooft anomaly coefficients Cabc for a basis of R-symmetries and, as

such, we expect that it is the correct result for generic holographic quiver theories.

4 The universal rotating black hole

In this section we discuss the case of the universal rotating black hole which has electric

charge aligned with the exact R-symmetry of the theory. The black hole arises as a solution

of minimal gauged supergravity in five dimensions and, as such, it can be embedded in any

AdS5 × SE5 compactification of type IIB and, more generally, in any AdS5 solution of type

II or M theory.14 Due to its universal character, most of the analysis is identical to the one

for AdS5 × S5. It is however interesting to see how the details work.

14It is believed and checked in many cases that the effective theory for all such compactifications can be

consistently truncated to minimal gauged supergravity.
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The universal black hole in AdS5 was found in [17] in minimal gauged supergravity in

five dimensions. It has charge Q under the graviphoton and angular momenta J1 and J2 in

AdS5.
15 The entropy can be compactly written as [53]

S(Q, J) = 2π
√
3Q2 − 2a(J1 + J2) (4.1)

where we introduced the quantity

a =
πℓ35

8G
(5)
N

, (4.2)

where G
(5)
N is the five-dimensional Newton constant and ℓ5 is the radius of AdS5. The

conserved charges must satisfy the nonlinear constraint

8Q3 + 6aQ2 − 6a(J1 + J2)Q− 2aJ1J2 − 4a2(J1 + J2) = 0 (4.3)

for the BPS black hole to have a smooth horizon.

Consider now the uplift of the universal black hole to AdS5×SE5, where SE5 is a Sasaki-

Einstein manifold. In such an embedding, the standard holographic dictionary identifies a

with the central charge of the dual CFT4. The black hole carries angular momenta J1 and

J2 and an electric charge aligned with the exact R-symmetry of the dual CFT4. We need to

check that its entropy is reproduced by our result (3.14) (the same result can be similarly

obtained using (3.20) instead). It is convenient to parametrize the chemical potentials as

∆a =
τ + σ − 1

2

(
∆̂(0)

a + δ̂a

)
, (4.4)

where ∆̂
(0)
a is the exact superconformal R-symmetry of the dual CFT4 while δ̂a parametrize

a basis of flavor symmetries. These quantities satisfy

D∑

a=1

∆̂(0)
a = 2 ,

D∑

a=1

δ̂a = 0 . (4.5)

The entropy of the universal black hole is given by the Legendre transform of (3.14). Using

(3.46) we can write the entropy function as

S = −4πi

27

(τ + σ − 1)3

τσ
a
(
∆̂(0) + δ̂

)
− 2πi

(
(τ + σ − 1)Q+ τJ1 + σJ2

)
, (4.6)

where we introduced a charge Q = 1
2

∑D
a=1 ∆̂

(0)
a Qa in the direction of the exact R-symmetry,

and set all other charges to zero. We need to extremize the function S with respect to τ ,

15To compare with the notations of [17]: Qthere = −
√
3gQhere and G

(5)
N = 1, ℓ5 = 1/g.
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σ and δ̂a subject to the constraint (4.5). By a-maximization, since ∆̂
(0)
a is the exact R-

symmetry, the function is extremized at δ̂a = 0. We can then restrict the entropy function

to

S = −4πia

27

(τ + σ − 1)3

τσ
− 2πi

(
(τ + σ − 1)Q+ τJ1 + σJ2

)
, (4.7)

where a ≡ a
(
∆̂(0)

)
is the central charge of the CFT4, or, introducing a Lagrange multiplier

Λ,

S = −4πia
∆3

τσ
− 2πi

(
3∆Q + τJ1 + σJ2

)
− 2πiΛ

(
3∆− τ − σ + 1

)
. (4.8)

If we set a = aN=4 = 1
4
N2, the function (4.8) becomes identical to the entropy function of

N = 4 SYM for equal charges Q1 = Q2 = Q3 ≡ Q, which is known to correctly reproduce

(4.1) [21]. An analytic derivation of (4.1) and (4.3) for N = 4 SYM is explicitly discussed

in [4] and for equal angular momenta in [6]. The charge constraint (4.3) is obtained as the

requirement that the extremum of S be real.

At this point, the result for the universal black hole simply follows from the homogeneity

properties of (4.8):

S(Q, J1, J2) =
a

aN=4

SN=4

(aN=4

a
Q,

aN=4

a
J1,

aN=4

a
J2

)
. (4.9)

It is then immediate to derive the relations (4.1) and (4.3), thus completing our derivation.

5 AdS5 Kerr-Newman black holes in T 1,1

We would like to compare the entropy function we obtained in Section 3 from the large

N limit of the superconformal index of generic (toric) quiver gauge theories, with the

Bekenstein-Hawking entropy of BPS black holes in the corresponding 5d gauged super-

gravities. In particular, the setup we would like to analyze is that of type IIB supergravity

on asymptotically AdS5 × SE5 spacetimes, where SE5 is a toric Sasaki-Einstein manifold,16

reduced and truncated to a 5d N = 2 gauged supergravity on AdS5. Unfortunately, with

the exception of the case of S5 truncated to the so-called 5d STU model, and the case of any

SE5 truncated to minimal N = 2 gauged supergravity (that we analyzed in Section 4), all

other known consistent truncations are to gauged supergravities with hypermultiplets (be-

sides vector multiplets), and no supersymmetric black hole solutions have been constructed

in such theories to date.

The strategy we propose to perform a test of our field theory results is as in [21]. We

assume that a 5d BPS rotating black hole solution exists. Such a solution has the topology

16More precisely, the cone over SE5 is a toric Calabi-Yau threefold.
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of a fibration of AdS2 over S
3 (the three-sphere being the topology of the event horizon), and

thus we can reduce it along the Hopf fiber of S3. This gives a (putative) 4d BPS rotating

black hole solution, with the same entropy.17 The reduction generates an extra vector field

A0, corresponding to the isometry along the Hopf fiber. The 4d black hole has one unit

of magnetic charge under A0, corresponding to the first Chern class of the Hopf fibration.

Calling J1 and J2 the 5d angular momenta along two orthogonal planes, the quantity J1+J2

appears in 4d as the electric charge under A0, while J1−J2 becomes the angular momentum

of the 4d black hole. Constructing such a 4d rotating black hole solution is still a difficult

task, and an attractor mechanism is not known in general.18 However, if we restrict to 5d

black holes with two equal angular momenta J1 = J2 (so that the isometry of the squashed

S3 is enhanced from U(1)2 to U(1) × SU(2)), then the 4d black hole is static: in this case

we can determine its entropy by exploiting the attractor mechanism in the near-horizon

geometry [37–39], without actually constructing the whole solution.

The simplest non-trivial example is when SE5 is T
1,1, the base of the conifold Calabi-Yau

threefold, whose holographic dual is the Klebanov-Witten gauge theory [33]. We already

presented the field theory analysis in Section 3.1. On the other hand, starting from 10d type

IIB supergravity on T 1,1, we can exploit a consistent truncation that preserves SU(2)2×U(1)
isometry, down to a 5d N = 2 gauged supergravity with the graviton multiplet, two vector

multiplets and two hypermultiplets. This is the second truncation presented in Section 7

of [34] (see also [35,36]). On the AdS5 vacuum, one vector multiplet (sometimes called “Betti

multiplet”) is massless and is associated to the baryonic symmetry, while the other vector

multiplet is massive.

Hence, with the simplification that J1 = J2 and only the R-symmetry and baryonic

symmetry charges are turned on (while the SU(2)2 isometry of T 1,1 is unbroken), we will

be able to match the Legendre transform of the superconformal index at large N with the

extremization problem that comes from the attractor mechanism in supergravity. It follows

that the bulk and boundary computations of the entropy exactly match.

5.1 Reduction from 5d to 4d and the attractor mechanism

A 5d N = 2 Abelian gauged supergravity with nV vector multiplets and nH hypermultiplets

— whose main building blocks we summarize in Appendix B — is specified by the following

data [57–59]:

17The 4d solution has an exotic asymptotic behavior, that follows from the reduction of AdS5 [54].

Nonetheless, it has a regular extremal horizon, whose area determines the entropy.
18There are however some general results for theories with vector multiplets [55, 56].
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1. A very special real manifold SM of real dimension nV , specified by a symmetric tensor

of Chern-Simons couplings CIJK with I, J,K = 1, . . . , nV + 1. The coordinates are ΦI

with the cubic constraint

V(Φ) ≡ 1

6
CIJKΦ

IΦJΦK = 1 . (5.1)

2. A quaternionic-Kähler manifold QM of real dimension 4nH with coordinates qu.

3. A set of nV + 1 Killing vectors kuI (that could be linearly dependent, or vanish) on

QM, compatible with the quaternionic-Kähler structure, representing the isometries

to be gauged by the vector fields AI . Each Killing vector comes equipped with a triplet

of moment maps ~PI .
19

On the other hand, a 4d N = 2 Abelian gauged supergravity with nV + 1 vector multiplets

and nH hypermultiplets — that we summarize in Appendix C — is specified by the following

data (see for instance [60, 61]):

1. A special Kähler manifold KM of complex dimension nV +1, with coordinates zI and

I = 1, . . . , nV +1. We will work in a duality frame in which the geometry is specified by

holomorphic sections XΛ(z), with Λ = 0, . . . , nV + 1, and a holomorphic prepotential

F (X), homogeneous of degree two.

2. A quaternionic-Kähler manifold QM of real dimension 4nH with coordinates qu.

3. In duality frames in which all gaugings are purely electric, a set of nV + 2 Killing

vectors kuΛ (that could be linearly dependent, or vanish) on QM, compatible with the

quaternionic-Kähler structure, representing the isometries to be electrically gauged by

the vector fields AΛ. Each Killing vector comes equipped with a triplet of moment

maps ~PΛ (see footnote 19).

We reduce the 5d theory on a circle, that will eventually be the Hopf fiber of S3. Following

[62–66, 21] we use the ansatz

ds2(5) = e2φ̃ds2(4) + e−4φ̃
(
dy −A0

(4)

)2

ΦI = −e2φ̃ Im zI .
(5.2)

Here y is the direction of the circular fiber, that we take with range 4π/g in terms of the

coupling g = ℓ−1
5 inversely proportional to the AdS5 radius ℓ5, therefore the size of the circle

is e−2φ̃ 4π/g. Because of the constraint V(Φ) = 1 in (5.1), the field φ̃ is redundant and can

19If nH = 0, instead, one has to specify nV Fayet-Iliopoulos parameters ζI , not all vanishing.
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be eliminated with e−6φ̃ = −V(Im zI). On the other hand, A0
(4) is the Kaluza-Klein vector.

As noted in [67,21], a Scherk-Schwarz twist for the gravitino as in [65] is necessary to satisfy

the BPS conditions in 4d. We prefer to work in a gauge in which all bosonic fields are

periodic around the circle, but there are flat gauge connections ξI turned on along y. This

corresponds to the ansatz

AI
(5) = AI

(4) + Re zI
(
dy −A0

(4)

)
+ ξIdy , (5.3)

together with no y-dependence for any field. Notice that this ansatz is invariant under the

redefinitions

zI → zI + δξI , AI
(4) → AI

(4) + δξIA0
(4) , ξI → ξI − δξI (5.4)

where δξI are real parameters. We will fix this redundancy below. The reduction of the 5d

theory can be found in Appendix D. The resulting 4d data in terms of 5d ones are as follows.

1. The special Kähler manifold in 4d is described by the prepotential

F (X) =
1

6
CIJK

X̌IX̌JX̌K

X0
with X̌I = XI + ξIX0 . (5.5)

The holomorphic sections XΛ can be used as homogeneous coordinates, and the phys-

ical scalars are identified with the special coordinates zI = XI/X0.

2. The quaternionic-Kähler manifold in 4d is the same as in 5d.

3. The 4d Killing vectors kuI are inherited from 5d, while the additional Killing vector is

ku0 = ξIkuI ⇒ ~P0 = ξI ~PI , (5.6)

and is gauged by the Kaluza-Klein vector field A0
(4).

Next, we study the attractor equations for the near-horizon limit of 4d BPS static black

hole solutions [37–39]. Our goal is to use the BPS equations to fix the VEVs in massive

vector multiplets and hypermultiplets, and be left with an extremization principle for the

scalars in massless vector multiplets, similarly to [68, 69]. We consider the near-horizon

geometry AdS2 × S2:

ds2near-horizon = − r2

L2
A

dt2 +
L2
A

r2
dr2 + L2

S ds
2
S2 , (5.7)

where LA and LS are the radii of AdS2 and S2, respectively. Electric and magnetic charges

are defined as appropriate integrals over S2 in the near-horizon region, respectively:

qΛ =
g

4π

∫

S2

16πG
(4)
N

δS4d

δFΛ
, pΛ =

g

4π

∫

S2

FΛ . (5.8)
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Here G
(4)
N is the 4d Newton constant, related to the 5d one by

4π

G
(5)
N g

=
1

G
(4)
N

, (5.9)

while S4d is the 4d supergravity action. The 4d black holes we are interested in have both

electric and magnetic charges. The magnetic charge p0 = 1 is equal to the first Chern class of

the Hopf fibration. On the other hand, we fix the redundancy (5.4) by setting the remaining

magnetic charges to zero. In Appendix E we compute the relation of the 5d charges QI and

angular momentum J measured at infinity, with the 4d charges measured at the horizon. We

should be careful that only massless vector fields are associated to conserved charges. We

indicate as BI
J the matrix of linear redefinitions such that BI

JA
J
µ are the 5d mass eigenstates

in the AdS5 vacuum, and we take the index T to run only over the massless vectors BT
JA

J
µ.

The corresponding conserved charges are QT ≡ QJ(B
−1)JT. We find

p0 = 1 , q0 = 4G
(4)
N g2J +

1

3
CIJKξ

IξJξK ,

pI = 0 , qT = 4G
(4)
N g2QT +

1

2
CTJKξ

JξK ,
(5.10)

where J1 = J2 ≡ J , while the “non-conserved charges” qJ 6=T will be fixed by the equations

of motion. Notice that the conserved charges QT are the same, but possibly in a different

basis, as the charges Qa introduced in Sections 3.2 and 3.3.20

Using a symplectic covariant notation, electric and magnetic charges form a symplectic

vector

Q = (pΛ, qΛ) . (5.11)

One also defines
~P = (0, ~PΛ) , ~Q = 〈 ~P ,Q〉 , (5.12)

where vectors are triplets and 〈V,W 〉 = VΛW
Λ−V ΛWΛ is the symplectic-invariant antisym-

metric form.

To find covariantly-constant spinors, we impose the following twisting ansatz:

ǫi = − ~Q · ~σ j
i Γt̂r̂ǫj , (5.13)

whose square gives ~Q· ~Q = 1. Here Γt̂r̂ is the antisymmetric product of two gamma matrices

with flat indices t̂ and r̂. We choose a gauge in which Q1 = Q2 = 0 and

Q3 = −1 (5.14)

20Similarly, the restriction of CIJK to CTJK with curly indices is the same, but possibly in a different

basis, as the ’t Hooft anomaly coefficients Cabc previously defined.
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at the horizon, as in [68].

The remaining BPS conditions are in general complicated, but they simplify at the hori-

zon [37–39]. First, Maxwell’s equations give

Kuhuv〈Kv,Q〉 = 0 , (5.15)

where we defined

Ku = (0, kuΛ) (5.16)

because we work in a duality frame with purely electric gaugings. In fact, (5.15) in this case

is equivalent to

pΛkuΛ = 0 (5.17)

that must hold in the full solution simply because of spherical symmetry (see Appendix E).

Second, vanishing of the hyperino variation implies

〈Ku,V〉 = 0 , (5.18)

where V(z, z̄) = eK/2(XΛ, FΛ) is the covariantly-holomorphic section defined in (C.3) and

FΛ = ∂ΛF (X). Third, we have the attractor equations21

∂

∂zI

(Z
L

)
= 0 ,

Z
L = 2ig2L2

S , (5.19)

where the derivatives are with respect to the physical scalars zI and we defined

Z = 〈Q,V〉 , L = 〈P3,V〉 . (5.20)

The equation on the right in (5.19) determines LS, and thus the horizon area.

5.2 Example: the conifold

We apply the general strategy to the case of the conifold. We start with the 5d N = 2

gauged supergravity with nV = 2 vector multiplets and nH = 2 hypermultiplets constructed

in Section 7 of [34] (called the “second model” in that paper), obtained from a consistent

reduction of 10d type IIB supergravity on T 1,1 that preserves the SU(2)2 × U(1) isometry.

In Appendix B.1 we have recast its action as in the general formalism, and in Appendix D.1

we have reduced it down to 4d N = 2 gauged supergravity. We are now ready to look for

BPS near-horizon black hole solutions.

21There is an extra factor of 2 in front of L2
S compared to [60, 3, 68] due to the different normalization of

kinetic terms in the Lagrangian (C.2): this is noticed footnote 4 of [65] and in footnote 10 of [21].
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Using (B.46) and (B.47), the conditions (5.14) and (5.17) take the form:

{
P 3
0 = −1

ku0 = 0
⇒ bΩ1,2 = cΩ1,2 = 0 , ξ1 = −ξ2 = −1

3
, (5.21)

where bΩ1,2, c
Ω
1,2, a, φ, C0, u are the scalar fields in hypermultiplets. In fact, since (5.17) must

hold in the whole solution, so (5.21) does. Using the form (B.47) of the moment maps, this

is consistent with Q1 = Q2 = 0. The hyperino condition (5.18) then gives

X1 +X2 = 0 (5.22)

at the horizon, where XΛ are the holomorphic sections. The fields C0 and φ are not fixed

by the equations of motion. However, together they form the axiodilaton of type IIB su-

pergravity and are thus fixed by the boundary conditions that set them in terms of the

complexified gauge coupling of the boundary theory. As apparent from the expression of ku2
in (B.46), a is a Stückelberg field that breaks an Abelian gauge symmetry and is eaten up

as the corresponding gauge field becomes massive via Higgs mechanism.

The remaining BPS conditions are the attractor equations (5.19). Given CIJK in (B.42),

the prepotential is

F (X) =
X̌1
(
(X̌2)2 − (X̌3)2

)

X0
where X̌I = XI + ξIX0 . (5.23)

Using special coordinates zI = XI/X0 as well as homogeneity of the prepotential F (X), one

can easily show that the two equations in (5.19) are equivalent to

∂Λ

[
e−K/2

(
Z(X)− 2ig2L2

S L(X)
)]

= 0 , (5.24)

where the derivatives are with respect to independent sections XΛ. In these equations LS

should be regarded as one of the unknowns. Notice that (5.19) or (5.24) give, in general,

isolated solutions in terms of (zI , LS), however the sections XΛ are only fixed up to the

“gauge” redundancy (related to Kähler transformations on KM) XΛ → efXΛ. In order

to remove the redundancy, we choose to fix L(X) to a constant, which can elegantly be

imposed by taking a derivative of the square bracket in (5.24) with respect to L2
S as well.

More precisely, expanding Z and L using (B.47), we consider the following set of equations:

∂Λ

[
X1
(
(X2)2 − (X3)2

)

(X0)2
+ q̂ΛX

Λ − 2ig2L2
S

(
3X1 −X0 − 2e−4u(X1 +X2)− α

)]
= 0

∂

∂L2
S

[
X1
(
(X2)2 − (X3)2

)

(X0)2
+ q̂ΛX

Λ − 2ig2L2
S

(
3X1 −X0 − 2e−4u(X1 +X2)− α

)]
= 0

(5.25)
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where

q̂I = qI −
1

2
CIJKξ

JξK , q̂0 = q0 −
1

3
CIJKξ

IξJξK . (5.26)

The first line is the same as (5.24), except for the addition of the constant α that does not

affect the equations. The second line fixes the gauge L = α. Notice that (5.22) should be

imposed after solving (5.25).

From the point of view of AdS/CFT, only massless vector fields correspond to symmetries

of the boundary theory and only their charges are conserved and fixed by the boundary

conditions. On the contrary, the “charges” under massive vector fields are not conserved,

and their radial profile should be determined by the equations of motion. The spectrum

of the 5d supergravity under consideration around its supersymmetric AdS5 vacuum was

computed in [34] and we report it in our conventions in (B.49). In the basis

AR ≡ A1 − 2A2 , A3 , AW ≡ A1 + A2 ,

kR ≡ 1
3
(k1 − k2) , k3 , kW ≡ 1

3
(2k1 + k2) ,

(5.27)

it turns out that AR (corresponding to the R-symmetry) and A3 are massless, while AW is

massive because of Higgs mechanism eating up the Stückelberg field a. In (5.27) we have

indicated also the Killing vectors of the corresponding gauged isometries. On the black hole

background the mass eigenstates may change (because the gauge kinetic functions have a

non-trivial radial profile), however the fact that

kR = k3 = 0 (5.28)

everywhere — which follows from (5.21) — guarantees that there is no hypermultiplet source

in the 5d Maxwell equations (E.3) and thus the Page charges QR and Q3 are conserved (while

QW is not).

Indeed, the variation in (5.25) with respect to X2 gives the complex equation

2
X1X2

(X0)2
+ q̂2 + 4ig2L2

S e
−4u = 0 (5.29)

that fixes u and the “non-conserved charge” q2 in terms of the sections and LS. We can then

use the hyperino condition (5.22) to eliminate X2 as well. Notice that the second condition

in (5.21) implies that in 5d we cannot turn on a “flat connection” for AW along the circle.

We are left with the unknowns X0, X1, X3, L2
S. One can check that, when (5.22) and

(5.29) are in place, the remaining equations in (5.25) are equivalent to the conditions of

extremization of the function

S = β

[
X1
(
(X1)2 − (X3)2

)

(X0)2
+ q̂0X

0 + 3q̂RX
1 + q̂3X

3 − 2ig2L2
S

(
3X1 −X0 − α

)
]

(5.30)
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with respect to the variables X0, X1, X3, L2
S. Here β is a constant included for later conve-

nience, while q̂R is the charge with respect to the massless vector AR:

q̂R =
q̂1 − q̂2

3
=

g

4π

∫

S2

16πG
(4)
N

δS4d

δFR
− 1

6

(
C1JK − C2JK

)
ξJξK = 4g2G

(4)
N QR . (5.31)

It is encouraging that we find an extremization problem in which only conserved charges

appear. Since S is homogeneous in XΛ of degree 1 except for the term involving α, it follows

that S
∣∣
crit

= 2iαβg2L2
S at the critical point. With the choice

αβ =
π

2iG
(4)
N g2

(5.32)

we obtain that S
∣∣
crit

is the black hole entropy:

S
∣∣
crit

=
4πL2

S

4G
(4)
N

= SBH , (5.33)

and therefore S is the entropy function. Using (5.10) and (5.26) we can express the 4d charges

q̂0, q̂T computed at the horizon in terms of the 5d black hole charges J , QT computed at

infinity:

S =
1

α

[
π

2iG
(4)
N g2

(X1)3 −X1(X3)2

(X0)2
− 2πi

(
JX0 + 3QRX

1 +Q3X
3
)

− 2πiΛ
(
3X1 −X0 − α

)]
, (5.34)

where we redefined the Lagrange multiplier L2
S = 2iG

(4)
N Λ for convenience.

It remains to spell out the AdS/CFT dictionary between gravity and field theory charges.

First, the gauge group ranks in field theory are determined by (see Appendix E.1)

N2 =
8π

27G
(5)
N g3

=
2

27G
(4)
N g2

. (5.35)

This is in agreement with (4.2) using a = 27
64
N2 for the Klebanov-Witten theory. Second, the

angular momentum J is the same in gravity and in field theory. Third, the electric charges

are identified as

r = 2QR , QB =
4

3
Q3 . (5.36)

This is determined as follows. From (B.36) we infer that the gravitino components have

charge QR = ±1
2
. In the boundary field theory, the corresponding operators are of the

schematic form Tr(FµνΓ
νλ) (where F is a field strength and λ a gaugino) and have charge

r = ±1 under U(1)R. We deduce the first relation in (5.36). Obtaining the second relation is
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more subtle because no supergravity field is charged under A3: what is charged are massive

particles obtained from D3-branes wrapped on the 3-cycle of T 1,1, corresponding to dibaryon

operators AN
1,2 or BN

1,2 in field theory. The 5d supergravity gauge field A3 comes from the

reduction of the Ramond-Ramond field strength FRR
5 of 10d type IIB supergravity on T 1,1.

Therefore, from the 10d flux quantization condition we can deduce the 5d charge quantization

condition 4Q3/3N ∈ Z (see the details in Appendix E.1). In field theory the dibaryon

operators have charge QB = ±N , implying the second relation in (5.36). Alternatively,

we could compare the Chern-Simons terms restricted to massless vector fields in the 5d

Lagrangian with the ’t Hooft anomalies of the boundary theory. Taking into account the

’t Hooft anomalies Tr(r3) = 3
2
N2 and Tr(rQ2

B) = −2N2 at leading order in N , the restriction

of the 5d Chern-Simons action in (B.2) to AW → 0 matches the general expression

SCS =
g3

24π2

∫
Tr(QaQbQc)F

a ∧ F b ∧Ac (5.37)

after setting AR → 2Ar and A
3 → 4

3
AB. These correspond to (5.36).

Rewriting the entropy function (5.34) in terms of field theory charges, we find

S =
1

α

[
−27πiN2

4

(X1)3 −X1(X3)2

(X0)2
− 2πi

(
JX0 +

3

2
rX1 +

3

4
QBX

3

)

− 2πiΛ
(
3X1 −X0 − α

)]
. (5.38)

This exactly matches the entropy function (3.35) we found in field theory from the large

N limit of the superconformal index of the Klebanov-Witten theory, after the change of

coordinates X0 → 2ατ , X1 → 2αXR/3, X
3 → 4αXB/3.
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A Subleading effect of simplifications

A.1 Simplifications of the building block

We want to show that the terms neglected in passing from (2.26) to (2.27) are subleading

at large N . We will first analyze the effect of dropping the term ω(d − c)/N from the

arguments of the gamma functions, in all those terms with γ 6= δ. We will later estimate the

contribution from the terms with γ = δ that were discarded from the sum.

Defining

f(z) =

Ñ∑

γ 6=δ

log Γ̃

(
z + ω

δ − γ

Ñ
; abω, abω

)
, (A.1)

we want to show that
∣∣∣f
(
z + Cω/Ñ

)
− f(z)

∣∣∣ ≤ O(N logN) , (A.2)

where C = (d − c)/ab, z = ∆ + ω
(
d − c + as + br

)
and c, d = 1, . . . , ab, r = 0, . . . , a − 1,

s = 0, . . . , b− 1. Without loss of generality we can assume C > 0, because the case C < 0 is

analogous while C = 0 is trivial. As in [6], we discard the Stokes lines ∆ ∈ Z + Rω except

the point ∆ = 0, because the limit we compute would be singular along those lines anyway.

If ∆ is not on a Stokes line, then the restriction of f to a straight line in the complex plane

passing through the points z and z+ω is a C∞ complex function. In the case ∆ = 0, instead,

we consider the restriction of f to a straight closed segment from z to z + Cω/Ñ and one

can check that f is C∞ along that segment, because for γ 6= δ the segment, suitably shifted,

does not hit zeros nor poles of any of the gamma functions in (A.1) (in both cases, f is a

holomorphic function in a neighbourhood of the restricted domain). A complex analogue of

the Mean Value Theorem (MVT) then states that

Re
f
(
z + Cω/Ñ

)
− f(z)

ω
=
C

Ñ
Re f ′

(
z + c̄1ω/Ñ

)

Im
f
(
z + Cω/Ñ

)
− f(z)

ω
=
C

Ñ
Im f ′

(
z + c̄2ω/Ñ

)
(A.3)

with c̄1, c̄2 ∈ (0, C). Summing the absolute values, it follows the bound
∣∣∣∣∣
f
(
z + Cω/Ñ

)
− f(z)

ω

∣∣∣∣∣ ≤
1

Ñ

(∣∣∣f ′
(
z + c̄1ω/Ñ

)∣∣∣+
∣∣∣f ′
(
z + c̄2ω/Ñ

)∣∣∣
)

(A.4)

where we used |C| ≤ 1− 1
ab
< 1. It is therefore sufficient to show that

1

Ñ

∣∣∣f ′
(
z + c̄ω/Ñ

)∣∣∣ ≤ O(N logN) (A.5)
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for any c̄ ∈ (0, C). Notice that 0 < c̄ < 1− 1
ab
.

We reason as follows. For ∆ 6∈ Z + Rω, the arguments of the elliptic gamma functions

in (A.1) remain at an Ñ -independent distance from the zeros and poles, that in our case are

placed at the points

u0,i = (1 + i)ab ω , u∞,j = (1− j)ab ω for i, j ∈ Z≥1 , (A.6)

respectively. The orders of the zeros and poles are i and j respectively. The ratio
∣∣Γ̃′/Γ̃

∣∣ is
bounded on the range of possible arguments, therefore

1

Ñ

∣∣∣f ′
(
z + c̄ω/Ñ

)∣∣∣ ≤ Ñ max
t∈[−ab, 3ab−a−b]

∣∣∣∣∣
Γ̃′
(
∆+ tω; abω, abω

)

Γ̃
(
∆+ tω; abω, abω

)
∣∣∣∣∣ = O(Ñ) . (A.7)

The case ∆ = 0 is more subtle since, as Ñ grows, the arguments of some of the gamma

functions can get increasingly close to zeros or poles instead of staying at an Ñ -independent

distance, and the Ñ -independent bound above does not apply. This happens when

z = ū0,i ∈ {u0,i, u0,i ± ω} or z = ū∞,j ∈ {u∞,j, u∞,j ± ω} . (A.8)

One can easily see that for ∆ = 0, z can range from (1− ab)ω to (3ab− a− b− 1)ω, so that

the problematic points we may approach are the simple zero at u0,1, the simple pole at u∞,1,

and the double pole at u∞,2.

We now introduce a few results for later use. For a meromorphic function g whose zeros

include {zi} of order {mi} and whose poles include {pj} of order {nj}, one can write

g(z) =

∏
i(z − zi)

mi

∏
j(z − pj)nj

s(z), (A.9)

where s(z) is meromorphic with zeros and poles at the remaining zeros and poles of g that

were not included in {zi} and {pj}. Taking the derivative of this expression and computing

g′/g, one finds
g′(z)

g(z)
=
∑

i

mi

z − zi
−
∑

j

nj

z − pj
+ h(z), (A.10)

where h(z) = s′(z)/s(z) is meromorphic with simple poles at the remaining zeros and poles of

g that were not included in {zi} and {pj}. Therefore we can apply (A.10) to the meromorphic

function Γ̃ and say that

1

Ñ

∣∣∣f ′
(
z + c̄ω/Ñ

)∣∣∣ ≤ 1

Ñ

Ñ∑

γ 6=δ

∣∣∣∣∣
Γ̃′
(
z + uc̄γ,δ; abω, abω

)

Γ̃
(
z + uc̄γ,δ; abω, abω

)
∣∣∣∣∣

≤ 1

Ñ

Ñ∑

γ 6=δ

(
1

|z + uc̄γ,δ − 2abω| +
1

|z + uc̄γ,δ|
+

2

|z + uc̄γ,δ + abω|

)
+ (Ñ − 1)K (A.11)
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where we defined

uc̄γ,δ = ω
δ − γ + c̄

Ñ
, K = max

t∈[−ab, 3ab−a−b]

∣∣hΓ̃(tω)
∣∣ (A.12)

and hΓ̃ is the meromorphic function associated to Γ̃ in (A.10). We can bound its value with

an Ñ -independent quantity because it is holomorphic on the range of possible arguments.

If z 6= ū0,1, ū∞,1, ū∞,2, the outlying sums in (A.11) will be of order O(Ñ) since z + uc̄γ,δ will

be at least at a distance |ω| away from the zeros and poles. To complete our proof when

z = ū0,1, ū∞,1, ū∞,2, we now need to bound the quantities

Rx =
1

N

N∑

γ 6=δ

1∣∣x+ δ−γ+c̄
N

∣∣ with x = 0,±1 , (A.13)

where we wrote N in place of Ñ in order not to clutter the formulae. We recall that

0 < c̄ < 1 − 1/ab. Considering x = 0 first, we reparametrize the sum in terms of δ − γ so

that, after some manipulations, it becomes

R0 =

N−1∑

M=1

(
N −M

M + c̄
+
N −M

M − c̄

)
< 2

N−1∑

M=1

N −M

M − c̄
. (A.14)

The summand on the right is a positive decreasing function of M , therefore it can be bound

by its integral:

R0 <
2(N − 1)

1− c̄
+ 2

∫ N−1

1

N − x

x− c̄
dx = O(N logN) . (A.15)

To ensure convergence of sums and integrals it is crucial to recall that 1− c̄ > (ab)−1. In a

similar way, for x = +1 we can write

R1 =
N−1∑

M=1

(
N −M

N +M + c̄
+

N −M

N −M + c̄

)
<

N−1∑

M=1

2 = O(N) , (A.16)

while for x = −1 we can write

R−1 =

N−1∑

M=1

(
N −M

N −M − c̄
+

N −M

N +M − c̄

)
< 2

N−1∑

M=1

N −M

N −M − c̄
<

2(N − 1)

1− c̄
= O(N) .

(A.17)

It remains to show that the terms we discarded from (2.26) when substituting the con-

dition i 6= j with the condition γ 6= δ give a subleading contribution. These are the terms

in (2.26) with γ = δ, whose total contribution is

Φ = Ñ

a−1∑

r=0

b−1∑

s=0

ab∑

c 6=d

log Γ̃

(
∆+ ω

d− c

N
+ ω

(
d− c+ as + br

)
; abω, abω

)
. (A.18)
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We need to show that this is subleading in the large N limit. We will bound the absolute

value of the summand for all possible c 6= d, r, s and drop the sums since they give an overall

order O(1) factor. After choosing a branch of the logarithm, the phases of Γ̃ can clearly only

give an order Ñ contribution to (the imaginary part of) Φ.

For what concerns the absolute value of Γ̃, reasoning in a very similar way to the γ 6= δ

case discussed above, we see that if ∆ is not on a Stokes line then
∣∣log |Γ̃|

∣∣ is bounded above

by an N -independent quantity and thus Φ is of order O(N). When ∆ = 0, the argument

of Γ̃ can only approach zeros or poles if z = ω
(
d − c + as + br

)
∈ {u0,1, u∞,1, u∞,2}. Using

(A.9), we can write

log

∣∣∣∣Γ̃
(
z + ω

d− c

N
; abω, abω

)∣∣∣∣ = log

∣∣∣∣∣∣

(
z + ω d−c

N
− u0,1

)
sΓ̃

(
z + ω d−c

N

)

(
z + ω d−c

N
− u∞,1

) (
z + ω d−c

N
− u∞,2

)2

∣∣∣∣∣∣
(A.19)

where sΓ̃ is a function which is regular at u∞,1, u∞,2 and non-zero at u0,1. We can therefore

bound
∣∣log |sΓ̃|

∣∣ over its possible arguments with an N -independent constant, so that it con-

tributes to Φ at order O(N). When z = u0,1, u∞,1, u∞,2, only one of the factors multiplying

sΓ̃ is of order O(logN) while the other two do not approach zero and can be bounded by an

N -independent constant. Explicitly,

Ñ

∣∣∣∣∣log
∣∣∣∣Γ̃
(
z + ω

d− c

N
; abω, abω

)∣∣∣∣

∣∣∣∣∣ ≤ 2Ñ

∣∣∣∣∣log
∣∣∣∣ω
d− c

N

∣∣∣∣

∣∣∣∣∣+O(N) = O(N logN) . (A.20)

A.2 SU(N) vs. U(N) holonomies

In what follows, as it is done in Section 2 and Section 3, in order to parametrize the SU(N)

holonomies uSU we introduce U(N) holonomies uU, constrained by

N∑

i=1

uUi = 0 . (A.21)

With the choice of bases for the Cartan subalgebras of SU(N) and U(N) required to write the

BA operators as in (2.12), the relation between the two sets of holonomies when expressing

a generic element of the Cartan subalgebra of SU(N) is

uUi = uSUi for i 6= N , uUN = −
N−1∑

j=1

uSUj . (A.22)

Note that the holonomies are only defined modulo Z.

The SU(N) superconformal index defined by (2.9) contains a sum over {mSU
i } that picks

up (representatives of) solutions to the BAEs whose residue can contribute to the index, as

39



explained in [24] and made explicit in (2.17). Under a shift {mSU
i } of the SU(N) holonomies,

the U(N) holonomies shift by corresponding amounts given by

mU
i = mSU

i , mU
N = −

N−1∑

j=1

mSU
j . (A.23)

Given these identifications for the holonomies and shifts, the SU(N) quantities are always

equal to the first N−1 U(N) quantities, so that in the following we will drop the superscripts

SU and U, remembering that u1,...,N−1 and m1,...,N−1 are independent while uN and mN are

determined by (A.22) and (A.23), respectively.

One might then worry that the choice of {mj} given in (2.21) is not allowed, since the

last integer mN there does not satisfy (A.23). Specifically, let us choose

mj ∈ {1, . . . , ab} such that mj = j mod ab , for j = 1, . . . , N − 1 , (A.24)

so that mN is fixed by (A.23) to be a negative integer of O(N). To match with the choice in

(2.21), we want to replace this with mN = N mod ab and in {1, . . . , ab}. We will show that

this replacement does not affect the value of Z to leading order in N . This will be done in

two steps. We will first show that the function Z evaluated on a configuration {u1, . . . , uN}
which is obtained from the basic solution by shifting one or more variables ui by multiples

of 2abω (or even of abω, in many cases), is the same as Z evaluated on the basic solution.

Using this property, Z is unaltered if evaluated on the following shifted value of mN :

m̃N ∈ {1, . . . , 2ab} such that m̃N =

(
−

N−1∑

i=1

mi

)
mod 2ab . (A.25)

We will then show that the contribution to Z of the single holonomy uN is subleading,

provided m̃N ∈ {1, . . . , 2ab}. Therefore, choosing insteadmN = N mod ab and in {1, . . . , ab}
as we did in (2.21) does not change Z at leading order in N . This completes the proof.

As shown in [24], when evaluated on solutions to the BAEs, the function Z for a general

semi-simple gauge group is invariant under independent shifts of any gauge holonomy by

abω. This is proven assuming that gauge and global symmetries are non-anomalous. In our

case, this result only allows us to shift the ui’s while preserving the SU(N) constraint. This

property does not allow us to independently shift the last holonomy uN , since it is always

fixed by the SU(N) constraint. We now show that an independent shift of uN by a multiple

of abω is also an invariance of Z for N = 4 SU(N) SYM, when this function is evaluated on

the basic solution. In order to prove this, one has to use the property

Γ̃
(
u+mabω, aω, bω

)
(A.26)

= (−e2πiu)− ab
2
m2+ a+b−1

2
m (e2πiω)−

ab
6
m3+

ab(a+b)
4

m2− a2+b2+3ab−1
12

m θ0(u, ω)
m Γ̃(u, aω, bω)
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that was proven in [24], the fact that the U(N) BA operators are periodic modulo ω in the

ui’s, and the explicit form of the basic solution (2.20). Applying (A.26), we first have that

∏

i 6=j

Γ̃
(
uij +∆+mabω(δiN − δjN); aω, bω

)
(A.27)

= e−πiabm2(1+2∆)+2πi(a+b−1)m
∑

i uiN+πiab(a+b)m2ω
∏

i

θ0(uNi +∆, ω)m

θ0(uiN +∆;ω)m

∏

i 6=j

Γ̃(uij +∆; aω, bω) ,

and so from (2.12), (2.18) and (2.20) one obtains

Z(ui +mabωδiN ; aω, bω,∆)

=
∏

i

(
θ0(uNi +∆1, ω) θ0(uNi +∆2, ω) θ0(uiN , ω) θ0(uiN +∆1 +∆2, ω)

θ0(uiN +∆1, ω) θ0(uiN +∆2, ω) θ0(uNi, ω) θ0(uNi +∆1 +∆2, ω)

)m

Z(ui; aω, bω,∆)

= (−1)m(N−1) e2πimλQ−m
N (ui;ω,∆)Z(ui; aω, bω,∆)

= Z(ui; aω, bω,∆) . (A.28)

In the steps above we also used the theta function reflection property

θ0(u;ω) = −e2πiu θ0(−u;ω) . (A.29)

More generally, we can show that this shift invariance is true for quiver gauge theories,

when Z is evaluated on the basic solution and the chemical potentials uαN are shifted by

a multiple of 2abω (or even of abω, in many cases) simultaneously for all gauge groups

SU(N)α. The steps are the same as in (A.28). We should notice that the expression for any

particular Lagrange multiplier λα is more complicated than for N = 4 SYM, but the sum of

all Lagrange multipliers is simple:

e2πi
∑G

α=1 λα = (−1)nχ(N−1) , (A.30)

where α runs over the G SU(N) gauge group factors and nχ is the number of chiral multiplets

in the theory. Performing these steps one obtains

Z
(
uαi +mabωδiN ; aω, bω,∆

)
(A.31)

=
e2πim

∑G
α=1 λα (−1)−mG(N−1)+mab(N−1)(nχ−G)

(∏
αQ

α
N (u

α
i ;ω,∆)

)m Z(uαi ; aω, bω,∆)

= (−1)m(G−nχ)(ab+1)(N−1) Z(uai ; aω, bω,∆) .

There are now different cases in which the sign in the last line disappears. First, in the case

of toric quiver gauge theories one uses the relation [48, 49]

G− nχ +NW = 0 (A.32)
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between the number of gauge groups, of chiral multiplets, and of superpotential terms, as

well as the fact that the number NW of superpotential terms is even, to show that the sign

disappears. Second, if N is odd then the sign disappears. Third, if the coprime integers a, b

are both odd22 then the sign disappears. Fourth and most importantly, if we take m even

then the sign disappears.

We now proceed to show that the contribution to Z of a single holonomy ui is subleading,

provided that mi<N ∈ {1, . . . , ab} and mN ∈ {1, . . . , 2ab}. In the building block Ψ defined

in (2.22), the contribution of a single holonomy ui consists of the two terms

Φ±
i ≡

N∑

j(6=i)

log Γ̃

(
z± ± ω

j − i

N
; abω, abω

)
, (A.33)

where we have defined

z± ≡ ∆± ω
(
mj −mi

)
+ ω

(
as + br

)
. (A.34)

In particular, for the case i = N we will use the shift property just proven to substitute mN

with m̃N defined in (A.25).

We will now show that Φ±
i is subleading. In the case i = N this will allow us to choose

m̃N as in (2.21). In order to do this we want to bound the absolute value of the summand

log Γ̃ in Φ±
i . What follows will be completely analogous to the argument used to show that

(A.18) is subleading. After choosing a branch of the logarithm, the phases of Γ̃ can only

contribute at order O(N) to Φ±
i . As before, we exclude Stokes lines and note that for ∆ 6= 0

we can bound
∣∣log |Γ̃|

∣∣ with an N -independent constant so that |Φ±
i | = O(N). For ∆ = 0,

z± have the range

z± ∈ {−2ab+ 1, . . . , 4ab− a− b− 1}ω , (A.35)

and the argument of Γ̃ may approach zeros or poles when z± = ū0,1, ū0,2, ū∞,1, ū∞,2, ū∞,3,

which are defined in (A.8). If this is the case, further inspection is required. Using again

(A.9), we can write

log Γ̃

(
z± ± ω

j − i

N
; abω, abω

)
= log

[∏2
m=1

(
z± ± ω j−i

N
− u0,m

)m
sΓ̃
(
z± ± ω j−i

N

)
∏3

n=1

(
z± ± ω j−i

N
− u∞,n

)n

]
(A.36)

where sΓ̃ is a function that is regular at u∞,1, u∞,2, u∞,3, and non-zero at u0,1, u0,2. This

allows us to bound
∣∣log |sΓ̃|

∣∣ with an N -independent constant, and its contribution to Φ±
i is

of order O(N). When z± = ū0,1, ū0,2, ū∞,1, ū∞,2, ū∞,3 the logarithms of the other factors

22This restriction is quite uninfluential, because the set of pairs {τ +Z, σ+Z} such that τ/σ = a/b ∈ Q>0

with a, b both odd is still dense in H2.
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are either bounded by an N -independent constant, or are of the form

N∑

j 6=i

∣∣∣∣∣log
∣∣∣∣x±

j − i

N

∣∣∣∣

∣∣∣∣∣ ≤ (N − 1) logN , (A.37)

where x = 0,±1. Notice that the use of the shift property previously proved plays a major

role here. If we tried to apply this argument directly without first shifting mN , we would

have to consider an O(N) number of poles or zeros whose order is also O(N). This would

lead to an O(N3 logN) bound, which does not help. What we did shows that a single Φ±
i

is of order O(N logN) for any choice of the corresponding mi. In particular this allows us

to choose m̃N = N mod ab ∈ {1, . . . , ab} as we do in (2.21), without affecting the leading

behavior of the building block Ψ.

A.3 Generic N

Here we generalize the computation done in Section 2.1 and consider a generic N which is

not necessarily a multiple of ab. We will exploit many of the arguments in Section A.1. Let

N = abÑ + q, where q ∈ {0, . . . , ab−1}. We need to examine the leading order contribution

of the building block

Ψ =

a−1∑

r=0

b−1∑

s=0

N∑

i 6=j

log Γ̃

(
∆+ ω

j − i

N
+ ω

(
mj −mi + as+ br

)
; abω, abω

)
. (A.38)

As shown in the final part of Section A.2, the contribution to the building block of a single

holonomy ui is subleading. Therefore the contribution of the last q holonomies uabÑ+1, . . . , uN

is also subleading and can be discarded. Now, the sum over i 6= j only goes up to abÑ ,

and we can decompose the indices as in (2.26). Neglecting the γ = δ terms using the same

argument as after (A.18), we get

Ψ ≃
a−1∑

r=0

b−1∑

s=0

Ñ−1∑

γ 6=δ=0

ab−1∑

c,d=0

log Γ̃

(
∆+ ω

δ − γ

Ñ + q
ab

+ ω
d− c

N
+ ω

(
d− c+ as + br

)
; abω, abω

)
.

(A.39)

As in Section A.1, we want to drop ω(d − c)/N in the argument of the elliptic gamma

function, and we can use the same reasoning given there, with the minor change that (A.13)

takes the form

R̃x =
1

N + q
ab

N∑

γ 6=δ

1∣∣∣x+ δ−γ+c̄
N+q/ab

∣∣∣
, x = 0,±1 . (A.40)

The same bounds as for Rx can be used here, since one can show that

R̃0 = R0 , R̃±1 ≤ R±1 . (A.41)
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We can then use (2.23), as we did in Section 2.1, to change the moduli of the elliptic gamma

function from (abω, abω) to (ω, ω):

Ψ ≃
a−1∑

r=0

b−1∑

s=0

Ñ−1∑

γ 6=δ=0

ab−1∑

c,d=0

log Γ̃

(
∆+ ω

δ − γ

Ñ + q
ab

+ ω
(
d− c+ as + br

)
; abω, abω

)

=

a−1∑

r=0

b−1∑

s=0

Ñ−1∑

γ 6=δ=0

log Γ̃

(
∆+ ω

δ − γ

Ñ + q
ab

+ ω
(
1− ab+ as+ br

)
;ω, ω

)

=
1

(ab)2

a−1∑

r=0

b−1∑

s=0

Ñ−1∑

γ 6=δ=0

ab−1∑

c,d=0

log Γ̃

(
∆+ ω

δ − γ

Ñ + q
ab

+ ω
(
1− ab+ as+ br

)
;ω, ω

)
.

(A.42)

In the last equality, to make future steps clearer, we added a sum over c, d even though

nothing depends on c and d.

Now, in order to get the desired result we trace our steps backwards. First, we will

reintroduce the term ω(d − c)/N into the argument of the elliptic gamma functions. Then

we will add to the sum in (A.42) the γ = δ terms to form the sum over i 6= j up to abÑ .

Finally we will add terms containing the last q holonomies uabÑ+1, . . . , uN in order to build

the complete sum up to N . These are the exact same steps we just performed to express Ψ

as in (A.42) up to subleading terms, with the only difference being that the moduli of Γ̃ are

now (ω, ω) rather than (abω, abω). Therefore the same arguments can be used, with only

slight modifications involving the number and order of zeros and poles, but since these are

parametrized here by r and s that are N -independent, this is of no consequence. At this

point, Ψ at leading order is

Ψ ≃ 1

(ab)2

a−1∑

r=0

b−1∑

s=0

N∑

i 6=j

log Γ̃

(
∆+ ω

j − i

N
+ ω

(
1− ab+ as+ br

)
;ω, ω

)
, (A.43)

and using the result of [6] (that is our equation (2.29)) we obtain

Ψ ≃ − πiN2

3(aω)(bω)

1

ab

a−1∑

r=0

b−1∑

s=0

B3

(
[∆]′ω + ω

(
as+ br − ab

))
. (A.44)

Then, using the property of Bernoulli polynomials (2.33), we finally get (2.34).

B 5d N = 2 Abelian gauged supergravity

We report here the general form of 5d N = 2 Abelian gauged supergravity with nV vector

multiplets and nH hypermultiplets [57–59].23 The graviton multiplet contains a graviton, a

23A more complete discussion was developed in [70].
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gravitino and a vector; each vector multiplet contains a vector, a gaugino and a real scalar;

each hypermultiplet contains four real scalars and a hyperino. All fermions are Dirac, but

can conveniently be doubled with a symplectic Majorana condition. We follow the notation

of [71]. We use indices

I, J,K = 1, . . . , nV + 1 , i, j = 1, . . . , nV , u, v = 1, . . . , 4nH (B.1)

for the gauge fields AI
µ, for the scalars φi in vector multiplets, and for the scalars qu in

hypermultiplets, respectively. The data that define the theory are:

1. A very special real manifold SM of real dimension nV .

2. A quaternionic-Kähler manifold QM of real dimension 4nH .

3. A set of nV +1 Killing vectors on QM compatible with the quaternionic-Kähler struc-

ture (if nH = 0, nV + 1 FI parameters not all vanishing).

The Killing vectors could be linearly dependent or vanish.

The bosonic Lagrangian is given by

8πG
(5)
N e−1

L5d =
Rs

2
− 1

2
Gij(φ) ∂µφ

i∂µφj − 1

2
huv(q)Dµq

uDµqv − 1

4
GIJ(φ)F

I
µνF

Jµν

+
e−1

48
CIJK ǫ

µνρσλ F I
µνF

J
ρσA

K
λ − g2V (φ, q) . (B.2)

Here G
(5)
N is the 5d Newton constant, e d5x is the spacetime volume form, Rs is the scalar

curvature, F I
µν is the field strength of AI

µ, g is a coupling constant, and V is the scalar

potential. Let us explain the other terms.

Very special geometry. The scalars φi are real coordinates on the very special real mani-

fold SM [72]. The latter is specified by the totally symmetric tensor CIJK (which, controlling

also the Chern-Simons couplings, should be suitably quantized) as the submanifold

SM =
{
V(Φ) ≡ 1

6
CIJK ΦIΦJΦK = 1

}
⊂ RnV +1 . (B.3)

Here ΦI are coordinates on RnV +1, and give rise to “sections” ΦI(φi) on SM. The metrics

GIJ and Gij for vector fields and vector multiplet scalar fields are

GIJ(φ) = −1

2

∂

∂ΦI

∂

∂ΦJ
logV

∣∣∣
V=1

, Gij(φ) = ∂iΦ
I ∂jΦ

J GIJ

∣∣∣
V=1

(B.4)

where ∂i ≡ ∂/∂φi. We recognize that G is the pull-back of G from RnV +1 to SM. From

(B.3) it immediately follows

CIJK ΦIΦJ∂iΦ
K
∣∣
V=1

= 0 . (B.5)
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With a little bit of algebra one then obtains a more explicit expression for G:

GIJ = −1

2
CIJKΦ

K +
1

8
CIKLCJMNΦ

KΦLΦMΦN
∣∣∣
V=1

. (B.6)

It follows that the kinetic term for vector multiplet scalars can also be written as

− 1

2
Gij ∂µφ

i∂µφj =
1

4
CIJK ΦI∂µΦ

J∂µΦK
∣∣∣
V=1

. (B.7)

One can define on SM the sections with lower indices:

ΦI ≡ 2

3
GIJΦ

J
∣∣∣
V=1

=
1

6
CIJKΦ

JΦK
∣∣∣
V=1

=
1

3

∂V
∂ΦI

∣∣∣
V=1

. (B.8)

With simple algebra one can show the following identities:

ΦIΦ
I = 1 , GIJ =

9

2
ΦIΦJ − 1

2
CIJKΦ

K ,

∂iΦI = −2

3
GIJ ∂iΦ

J , ΦI ∂iΦ
I = ΦI∂iΦI = 0 .

(B.9)

In particular, ∂iΦ
I for i = 1, . . . , nV are the tangent vectors to SM in RnV +1 while ΦI is a

1-form orthogonal to SM. Another identity (and similar ones obtained by lowering one or

both of the indices I, J with the metric G) is

Gij ∂iΦ
I∂jΦ

J = GIJ − 2

3
ΦIΦJ , (B.10)

where GIJ is the inverse of GIJ . To prove it, one observes that the tensor on the LHS is the

projector on SM, and then verifies that the expression on the RHS has the same property.

When the manifold SM is a locally symmetric space, one can find a constant symmetric

tensor CIJK with upper indices such that [57]

CIPQCP (JK CLM)Q =
4

3
δI(J CKLM) . (B.11)

With some algebra, it follows that

ΦI =
3

2
GIJΦJ =

9

2
CIJKΦJΦK , GIJ = 2ΦIΦJ − 6CIJKΦK , (B.12)

as well as

CIJK =
1

8
GILGJM GKN CLMN . (B.13)
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Quaternionic-Kähler geometry. The scalars qu are real coordinates on the quaternionic-

Kähler manifold QM with metric huv(q) [73]. For nH ≥ 2,24 this is a 4nH-dimensional Rie-

mannian manifold with holonomy SU(2)×Sp(nH)/Z2. To express this fact, it is convenient

to introduce local “vielbeins” f iA
u with i = 1, 2 (not to be confused with the index i of very

special geometry) in the fundamental of SU(2) and A = 1, . . . , 2nH in the fundamental of

Sp(nH), such that

huv = f iA
u f jB

v ǫijΩAB , (B.14)

where ǫij and ΩAB are the invariant tensors of SU(2) and Sp(nH), respectively. Regarding

(iA) as a composite index, the inverse of the matrix f iA
u is f u

iA = huvf jB
v ǫjiΩBA. One can

then construct a locally-defined triplet of almost complex structures

~J v
u ≡ (Jx) v

u = −if iA
u f v

jA (σx) j
i (B.15)

where x = 1, 2, 3 is in the adjoint of SU(2) and ~σ are the Pauli matrices. The derived triplet

of almost symplectic forms is ~Juv = ~J t
u htv. They are antisymmetric, using that ~σ j

i ǫjk is

symmetric.25 The almost complex structures automatically satisfy the quaternion relation

(Jx) s
u (Jy) t

s = −δxyδtu + ǫxyz(Jz) t
u . (B.17)

The Levi-Civita connection takes values in su(2) × sp(nH). Calling ω i
uj and ρ A

uB the two

projections, respectively, they are determined by the requirement that f iA
u be covariantly

constant with respect to the full connection:

0 = ∇vf
iA

u + f jA
u ω i

vj + f iB
u ρ A

vB . (B.18)

We can alternate between the vector and bispinor notations of SU(2) with26

~ωu = −i ω j
ui ~σ

i
j , ω j

ui =
i

2
~ωu · ~σ j

i . (B.20)

24The case nH = 1 is special because SU(2)2/Z2
∼= SO(4) and so the holonomy condition does not impose

any constraint on (orientable) Riemannian manifolds. However, supersymmetry requires (B.25) which we

can take as the definition of a quaternionic-Kähler manifold of dimension 4. A 4-dimensional space satisfying

(B.25) is Einstein with self-dual Weyl curvature.
25Using the fact that a 2× 2 matrix can be expanded in the basis {1, ~σ}, we also find

2f iA
u f v

jA = δvuδ
i
j + i ~J v

u · ~σ i
j . (B.16)

26The SU(2) connection satisfies ǫjmω n
um ǫni = ω j

ui , in particular ω j
uj = 0, and a similar condition is

satisfied by ρ. This follows from the properties of the Pauli matrices. In going between the vector and

bispinor notation one can use the identities

~σ m
n · ~σ j

i = δjnδ
m
i − ǫmjǫni , ~σ j

i × ~σ m
ℓ = i

(
~σ m
i δjℓ − δmi ~σ j

ℓ

)
. (B.19)
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The two connections are extracted from (B.18) through: ω j
ui δ

B
A + δji ρ

B
uA = −f w

iA ∇uf
jB

w .

From (B.18) it immediately follows

∇̃w
~J v
u ≡ ∇w

~J v
u + ~ωw × ~J v

u = 0 . (B.21)

In other words, ~J is covariantly constant with respect to its natural SU(2) connection ~ω.

From the integrability condition of (B.18) one also obtains (in bispinor and vector notation):

R s
uv t = R j

uvi f
s

jA f iA
t +R B

uvA f s
jB f jA

t = −1

2
~Ruv · ~J s

t +R B
uvA f s

jB f jA
t , (B.22)

where R s
uv t is the Riemann tensor of huv and we defined

R j
uvi ≡ 2∂[uω

j
v]i − 2ω

k
[u|i ω

j
v]k or ~Ruv ≡ 2∂[u~ωv] + ~ωu × ~ωv

R B
uvA ≡ 2∂[uρ

B
v]A − 2ρ

C
[u|A ρ

B
v]C .

(B.23)

In particular

R s
uv t

~J t
s = 2nH

~Ruv , (B.24)

i.e., the SU(2) field strength ~Ruv is the su(2) projection of the Riemann curvature.

One can prove [74] (see also [73, 75]) that SU(2) × Sp(nH) holonomy manifolds with

nH ≥ 2 are automatically Einstein. In fact, they satisfy a stronger property: the Riemann

curvature is the sum of the Riemann tensor of HPnH and of a Weyl part,

Ruvst =
R

8nH(nH + 2)

(
hs[uhv]t + ~Juv · ~Jst − ~Js[u · ~Jv]t

)
+

+
(
f iA
u f jB

v ǫij
)(
f kC
s f ℓD

t ǫkℓ
)
WABCD . (B.25)

The tensor WABCD is totally symmetric and controls the Weyl curvature, which is contained

in Sp(nH): it gives rise to a traceless (and thus Ricci flat) contribution to the Riemann

curvature. From that expression we obtain

Rvt =
R

4nH
hvt , ~Ruv =

R

4nH(nH + 2)
~Juv . (B.26)

The first equation shows that the manifold is Einstein. The second equation shows that the

SU(2) part of the curvature is completely fixed in terms of the triplet of complex structures.

The tensor WABCD expresses the freedom in the Sp(nH) part.

While quaternionic-Kähler manifolds can have any size, local supersymmetry requires27

λ ≡ R

4nH(nH + 2)
= −1 , (B.27)

fixing the scalar curvature [73]. Hence the manifold of hypermultiplet scalars is a non-trivial

quaternionic-Kähler manifold with negative scalar curvature.

27Had we chosen a canonical normalization for the action of hypermultiplet scalars, the scalar curvature

would be fixed in terms of the Planck mass to λ = −m−2
Pl [73]. This reproduces the fact that the manifold

of hypermultiplet scalars is hyper-Kähler in rigid supersymmetry.
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Isometries and gauging. We consider gaugings of Abelian isometries of the quaternionic-

Kähler manifold QM by the vectors AI
µ. The isometries are generated by (possibly vanishing

or linearly dependent) Killing vectors kuI (q) that also satisfy a quaternionic version of the

triholomorphic condition:

hw(u∇v)k
w
I = 0 , ~J w

u (∇wk
v
I )− (∇uk

w
I )
~J v
w = λ ~J v

u × ~PI . (B.28)

The second equation expresses the fact that the derivative of each Killing vector commutes

with the triplet of complex structures, up to a rotation parametrized by the SU(2) sections
~PI . Notice that the LHS can be written, after lowering v, as 2∇̃[u

(
~Jv]sk

s
I

)
, therefore in the

hyper-Kähler case that λ = 0 and the SU(2) bundle is trivial, this reduces to the familiar

condition that the three symplectic forms ~Juv be preserved by the isometries. By taking the

cross product of the second equation in (B.28) with ~J u
v we obtain

2nHλ ~PI = ~J v
u ∇vk

u
I . (B.29)

This shows that on quaternionic Kähler manifolds, the sections ~PI are completely fixed in

terms of the Killing vectors. With a little bit of work28 we obtain

∇̃u
~PI = ~Juw k

w
I . (B.30)

This shows that ~PI are a triplet of moment maps for the action of kuI . Taking a derivative

and using that 2∇̃[u∇̃v]
~PI = ~Ruv × ~PI we get back the second equation in (B.28), showing

that the correction term on the RHS is unavoidable. The divergence of (B.30) gives

∇̃u∇̃u
~PI = −2nHλ~PI , (B.31)

showing that the moment maps are eigenfunctions of the Laplacian.

Finally, let us consider for the moment the general case that the Killing vectors might

form a non-Abelian group:

[kI , kJ ]
u = 2ks[I∇sk

u
J ] = f K

IJ kuK , (B.32)

where on the LHS is the Lie bracket and f K
IJ are the structure constants. Multiplying

(B.28) by ∇vk
u
J and using (B.29), and then exploiting the derivative ∇w of (B.32), we obtain

kuI ~Juv k
v
J = f K

IJ
~PK + λ ~PI × ~PJ . (B.33)

This is called the equivariance relation. In the Abelian case we just set f to zero. In the

special case nH = 0 that there are no hypermultiplets, all Killing vectors vanish and the only

28We take the derivative ∇̃ of (B.29), recalling that ~J is covariantly constant. From the algebraic Bianchi

identity we have Ruvst
~Jus = 1

2R
s

vt u
~J u
s = nH

~Rvt = nHλ ~Jvt. Then we use that the vectors are Killing, as

well as the properties of quaternionic-Kähler manifolds.
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remnant of the quaternionic-Kähler structure is the condition ~PI × ~PJ = 0. The solution, up

to SU(2) rotations, is P x
I = δx3ζI where ζI are the so-called Fayet-Iliopoulos (FI) parameters,

which in this case are extra parameters one needs to specify.

We now have all the ingredients to write the covariant derivative

Dµq
u = ∂µq

u + g AI
µk

u
I , (B.34)

as well as the scalar potential

V = P x
I P

x
J

(
1

2
Gij∂iΦ

I∂jΦ
J − 2

3
ΦIΦJ

)
+

1

2
huv k

u
I k

v
J Φ

IΦJ

= P x
I P

x
J

(
1

2
GIJ − ΦIΦJ

)
+

1

2
huv k

u
I k

v
J Φ

IΦJ

(B.35)

that couples the scalars on SM and QM. To go to the second line we used (B.10).

The covariant derivative of the supersymmetry parameter ǫSUSY
i (subject to symplectic-

Majorana condition, with i = 1, 2) is

Dµǫ
SUSY
i =

(
∇µδ

j
i −

i

2
~Vµ · ~σ j

i

)
ǫSUSY
j (B.36)

with connection

~Vµ = Dµq
u ~ωu − g AI

µ~rI and ~rI = kuI ~ωu − λ ~PI ,

= ∂µq
u ~ωu + gλAI

µ
~PI

(B.37)

where λ is the constant (B.27). Under gauge transformations29

δqu = g αIkuI , δAI
µ = −∂µαI (B.38)

with parameters αI , using (B.26), (B.30) and (B.33) one can show that ~Vµ transforms as an

SU(2) connection:

δ~Vµ = ∂µ~Λ + ~Vµ × ~Λ with ~Λ = g αI~rI . (B.39)

Therefore, Dµǫ
SUSY
i is covariant if ǫSUSY

i transforms as

δǫSUSY
i =

i

2
~Λ · ~σ j

i ǫ
SUSY
j . (B.40)

29The covariant derivative transforms as δDµq
u = g αIDµk

u
I .
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B.1 Conifold truncation in the general framework

Here we embed the consistent truncation of type IIB supergravity on T 1,1 to a 5d N = 2

gauged supergravity with a so-called “Betti multiplet”, described in Section 7 of [34] (called

the “second model” in that paper), in the general framework. The model has nV = 2 and

nH = 2. We identify the fields

φi =

(
u+ v

w

)

CF

, ΦI =




e−4(u+v)/3

−e2(u+v)/3 cosh 2w

−e2(u+v)/3 sinh 2w




CF

, AI =



A

aJ1
aΦ1




CF

, qu =




bΩ1
bΩ2
cΩ1
cΩ2
a

φ

C0

u




CF

(B.41)

where “CF” indicates the notation of [34]. The scalar fields bΩ, cΩ are complex and we used

z1 = Re(z), z2 = Im(z) to indicate their real and imaginary parts, while u, v, w, a, φ, C0 are

real. The hypermultiplet scalars C0 and φ together form the type IIB axiodilaton C0+ ie−φ.

Then we identify the Chern-Simons couplings

C122 = −C133 = 2 (B.42)

and symmetric permutations thereof, while all other components vanish, and the very special

geometry of SO(1, 1)× SO(1, 1):

Gij =

(
4/3 0

0 4

)
, GIJ = e−

4
3
(u+v)




1
2
e4(u+v) 0 0

0 cosh(4w) − sinh(4w)

0 − sinh(4w) cosh(4w)


 . (B.43)

The tensor CIJK has non-vanishing components C122 = −C133 = 1/2 and permutations.

The quaternionic-Kähler manifold is SO(4,2)
SO(4)×SO(2)

. Its metric is

huvdq
udqv = e−4u−φdbΩdbΩ + e−4u+φ

(
dcΩ − C0db

Ω
)(
dcΩ − C0dbΩ

)

+
1

2
e−8u

(
2da+ Re

(
bΩdcΩ − cΩdbΩ

))2
+

1

2
dφ2 +

1

2
e2φdC2

0 + 8du2 .
(B.44)

In this normalization R = −32 and thus λ = −1. The SU(2) connection is

ω1 − iω2 = e−2u−φ/2dbΩ + i e−2u+φ/2
(
dcΩ − C0db

Ω
)

ω3 =
1

2
e−4u

(
2da+ Re

(
bΩdcΩ − cΩdbΩ

))
− 1

2
eφdC0 .

(B.45)
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Finally, we identify the Killing vectors

k1 = 3

(
−bΩ2

∂

∂bΩ1
+ bΩ1

∂

∂bΩ2
− cΩ2

∂

∂cΩ1
+ cΩ1

∂

∂cΩ2

)
+ 2

∂

∂a
, k2 = 2

∂

∂a
, k3 = 0 (B.46)

and the corresponding moment maps

P x
1 =



3eφ/2−2u(cΩ1 − C0b

Ω
1 + e−φbΩ2 )

3eφ/2−2u(C0b
Ω
2 − cΩ2 + e−φbΩ1 )

3− e−4u(2 + 3bΩ2 c
Ω
1 − 3bΩ1 c

Ω
2 )


 , P x

2 =




0

0

−2e−4u


 , P x

3 = 0 . (B.47)

The SU(2) connection and the moment maps were given in [36] and can be translated into the

notation of [34] (up to a conventional minus sign in the gauge fields) using the identifications

φi =

(
−3u3

u2

)

HLS

, AI =




A1

k11 − k12
2

k11 + k12
2




HLS

, qu =

(
2Re b10, 2 Im b10, 2Re b

2
0, 2 Im b20,

k

2
, φ, a, u1

)T

HLS

(B.48)

where “HLS” indicates the notation of [36].

The theory has a supersymmetric AdS5 vacuum at u = v = w = bΩ = cΩ = 0 and

any value of a, C0, φ (in particular, the axiodilaton can take any value). The potential is

V
∣∣
AdS

= −6 leading to AdS radius ℓ5 = g−1. The spectrum therein was computed in [34]

(see its Table 2). We are particularly interested in the spectrum of vector fields and the

Killing vectors they couple to:

AR ≡ A1 − 2A2 , A3 : m2 = 0 , AW ≡ A1 + A2 : m2 = 24g2 .

kR = 1
3
(k1 − k2) , k3 kW = 1

3
(2k1 + k2)

(B.49)

The vector AW acquires a mass by Higgs mechanism, eating the Stückelberg scalar a. The

mass eigenstates are

BI
JA

J
µ where B =



1 −2 0

0 0 1

1 1 0


 (B.50)

is the matrix that diagonalizes them (see also Appendix E).

C 4d N = 2 Abelian gauged supergravity

We summarize the salient features of 4d N = 2 Abelian gauged supergravity with nV vector

multiplets and nH hypermultiplets, following [60, 61, 71]. The graviton multiplet contains a
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graviton, two gravitini and a vector; each vector multiplet contains a vector, two gaugini

and a complex scalar; each hypermultiplet contains four real scalars and two hyperini (all

fermions can be taken Majorana). We use indices

Λ,Σ = 0, . . . , nV , i, j = 1, . . . , nV , u, v = 1, . . . , 4nH (C.1)

for the gauge fields AΛ
µ , for the complex scalars zi in vector multiplets, and for the real

scalars qu in hypermultiplets, respectively. The data that define the theory are:

1. A special Kähler manifold KM of complex dimension nV .

2. A quaternionic-Kähler manifold QM of real dimension 4nH .

3. A set of nV +1 Killing vectors on QM compatible with the quaternionic-Kähler struc-

ture (if nH = 0, nV + 1 FI parameters not all vanishing).

The Killing vectors could be linearly dependent or vanish.

It is always possible to find a duality frame in which all gaugings are purely electric. In

such frames the bosonic Lagrangian is

8πG
(4)
N e−1

L4d =
Rs

2
− gī(z, z̄) ∂µz

i∂µz̄̄ − 1

2
huv(q)Dµq

uDµqv

+
1

8
ImNΛΣ(z, z̄)F

Λ
µνF

Σµν +
e−1

16
ReNΛΣ(z, z̄)F

Λ
µνF

Σ
ρσǫ

µνρσ − g2V (z, z̄, q) . (C.2)

The notation is mostly as in Appendix B. Let us explain the other terms.

Special Kähler geometry. The scalars zi are complex coordinates on the special Kähler

manifold KM [61]. This is a Kähler-Hodge manifold — i.e., a Kähler manifold with Kähler

potential K(z, z̄) and metric gī(z, z̄) = ∂i∂̄K as well as a line bundle (i.e., a holomorphic

vector bundle of rank 1) L such that its first Chern class coincides (up to a constant) with

the Kähler class ω = i∂∂̄K of the manifold30 — further endowed with a flat Sp(nV + 1,R)

symplectic bundle. The manifold comes equipped with a covariantly-holomorphic section of

the tensor product of the symplectic bundle with the U(1)-bundle U associated to L,

V =

(
LΛ

MΛ

)
such that

DiV ≡ ∂iV + 1
2
(∂iK)V

Dı̄V ≡ ∂ı̄V − 1
2
(∂ı̄K)V = 0 ,

(C.3)

obeying the constraints

〈V,V〉 ≡ MΛL
Λ − LΛMΛ = −i (C.4)

30Because fermions are sections of the square root of L, the Kähler class of KM equal to the first Chern

class of L is required to be an even integer cohomology class.
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and

〈V, DiV〉 = 0 , (C.5)

where we introduced the Sp-invariant antisymmetric form i〈 , 〉. Equivalently, there is a

holomorphic section of the tensor product of the symplectic bundle with L,31

v(z) = e−K/2 V ≡
(
XΛ

FΛ

)
such that

Div ≡ ∂iv + (∂iK) v

Dı̄v ≡ ∂ı̄v = 0 ,
(C.6)

in terms of which the constraint (C.4) reads

K = − log
(
i 〈v, v̄〉

)
= − log

[
2 Im

(
XΛFΛ

)]
, (C.7)

while the constraint (C.5) becomes 〈v,Div〉 = 〈v, ∂iv〉 = 0. From (C.3)–(C.5) it is easy to

prove the following properties (or equivalent ones written in terms of v):

〈DiV,V〉 = 0 , D̄DiV = gī V , 〈DiV, D̄V〉 = i gī

〈DiV, DjV〉 = 0 , D[iDj]V = 0
(C.8)

from which the Kähler metric is extracted in a symplectic-invariant way.

The rescaling ofXΛ, FΛ under Kähler transformations suggests to useXΛ as homogeneous

coordinates on KM. It is always possible to find symplectic frames32 in which the Jacobian

matrix eλi(z) = ∂i
(
Xλ/X0

)
(with λ = 1, . . . , nV ) is invertible. Notice that

det
(
eλi
)
= (X0)nV +1 det

(
XΛ, ∂iX

Λ
)
= (X0)nV +1 det

(
XΛ, DiX

Λ
)

(C.9)

where the two square matrices on the right have size nV +1, therefore the matrix
(
XΛ, ∂iX

Λ
)

is invertible as well. Invertibility of the Jacobian ensures that we can use XΛ as homogeneous

coordinates, and regard FΛ(X) as homogeneous functions of degree 1, namely XΣ∂ΣFΛ = FΛ.

From (C.5) and (C.8), written as 〈v, ∂iv〉 = 〈∂iv, ∂jv〉 = 0, one obtains the equations

(
XΛ, ∂iX

Λ
)
∂[ΛFΣ]

(
XΣ, ∂jX

Σ
)
= 0 . (C.10)

Invertibility of the matrix implies ∂[ΛFΣ] = 0. Hence, in these frames, the sections FΛ

are the derivatives of a holomorphic homogeneous function F (X) of degree 2, called the

prepotential, namely FΛ = ∂ΛF . In such frames, the Kähler potential and thus the geometry

are completely specified by the prepotential. The coordinates ti ≡ X i/X0 with i = 1, . . . , nV

are called special coordinates.

31In particular, A = ∂K is the Chern connection on L. Moreover, DiV = eK/2Div and Dı̄V = eK/2Dı̄v.
32See [76] for examples of frames in which, instead, a prepotential does not exist.
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The couplings of vector fields to the scalars zi are determined by the (nV +1)× (nV +1)

period matrix N , which is uniquely defined by the relations

MΛ = NΛΣ L
Σ , Dı̄MΛ = NΛΣDı̄L

Σ
. (C.11)

Explicitly, one needs to invert the matrix relation
(
FΛ, Dı̄FΛ

)
= NΛΣ

(
XΣ, Dı̄X

Σ)
. The

requirement that gī be positive definite guarantees that the rightmost matrix is invertible

[61]. Indeed, introducing the square matrix LΛ
I =

(
LΛ, Dı̄L

Λ
)
of size nV +1, one can rewrite

the scalar products in (C.4), (C.5) and (C.8) as

LT
(
N −N T

)
L = 0 , L†

(
N −N †

)
L = −i diag

(
1, gī

)
. (C.12)

The first equation shows that NΛΣ is a symmetric matrix, given the invertibility of L. The
second equation then, assuming that gī is positive definite, proves that L is invertible and

that ImNΛΣ is negative definite. It also gives an expression for ImNΛΣ that, after taking

the inverse, reads

DiL
ΛD̄L

Σ
gī + L

Λ
LΣ = −1

2

((
ImN

)−1
)ΛΣ

. (C.13)

This relation, or the equivalent one in terms of the holomorphic section, will be used to

rewrite the scalar potential below. When a prepotential exists, N is obtained from

NΛΣ = FΛΣ + 2i
(ImFΛΓ)X

Γ (ImFΣ∆)X
∆

XΩ(ImFΩΨ)XΨ
, (C.14)

where FΛΣ = ∂Λ∂ΣF . In this expression N is manifestly symmetric.

Finally, one can define the tensor

C̃ijk = 〈DiDjV, DkV〉 = 〈V, DkDiDjV〉 . (C.15)

Using (C.3)–(C.8) and the fact that the metric is Kähler, one easily proves that C̃ijk is totally

symmetric and covariantly holomorphic, Dℓ̄ C̃ijk = 0 where C̃ has twice the charge of V. One

can prove that (V, DiV,V, Dı̄V) pointwise form a basis for the symplectic bundle [61], hence

DiDjV = i C̃ijkg
kk̄Dk̄V (C.16)

follows by taking the product of the LHS with the basis. Among other things, C̃ controls

the curvature tensor: Rı̄jk̄ℓ = gjı̄gℓk̄+ gjk̄gℓı̄− C̃jℓmC̃ı̄k̄n̄g
mn̄. In special coordinates the tensor

C̃ takes the particularly simple form

C̃ijk = eK ∂i∂j∂kF(t) with F(t) = (X0)−2F (X) (C.17)

and ti = X i/X0.
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Hypermultiplets and gauging. The part of the action involving the hypermultiplets has

the same features as in the 5d case, summarized in Appendix B: the hypermultiplet scalars qu

(with u = 1, . . . , 4nH) are coordinates on a quaternionic-Kähler manifold QM with metric

huv(q). As before, we consider gauging of Abelian isometries of QM, generated by nV + 1

(possibly vanishing or linearly dependent) Killing vectors kuΛ(q) that must be compatible

with the quaternionic-Kähler structure, with associated triplets of moment maps ~PΛ(q). In

full generality one could consider both electric and magnetic gaugings, described by Killing

vectors kuΛ and kuΛ, respectively, and transforming as a vector under Sp(nV + 1,R) duality

transformations. It is always possible to find a duality frame in which all gaugings are purely

electric, and we will work in such a frame. Notice that there is no guarantee that in this

frame a prepotential exists.

The scalar potential is

V = 2P x
ΛP

x
Σ e

K
(
gīDiX

ΛD̄X
Σ − 3XΛX

Σ
)
+ 4 eKhuv k

u
Λk

v
ΣX

ΛX
Σ

= −P x
ΛP

x
Σ

((
ImN

)−1ΛΣ
+ 8 eKXΛX

Σ
)
+ 4 eKhuv k

u
Λk

v
ΣX

ΛX
Σ
.

(C.18)

To go to the second line we used (C.13).

The covariant derivative of the supersymmetry parameter ǫSUSY
i (subject to symplectic-

Majorana condition, with i = 1, 2) is

Dµǫ
SUSY
i =

(
∇µδ

j
i −

i

2
Aµδ

j
i −

i

2
~Vµ · ~σ j

i

)
ǫSUSY
j (C.19)

with connections
~Vµ = ∂µq

u ~ωu + gλAI
µ
~PI

Aµ =
i

2
λ
[
(∂αK)∂µz

α − (∂ᾱK)∂µz̄
ᾱ
]
.

(C.20)

Here ~Vµ is the SU(2) connection that descends from the quaternionic-Kähler manifold QM,

as in the 5d case (B.37). Instead Aµ descends from the connection on the U(1)-bundle U on

the special Kähler manifold KM.

D Reduction with background gauge fields

Following [65] we will now reduce, piece by piece, the bosonic Lagrangian (B.2) of 5d N = 2

gauged supergravity down to 4d. We start in 5d with nV vector multiplets and nH hyper-

multiplets. We use indices

I, J = 1, . . . , nV + 1 , Λ,Σ = 0, . . . , nV + 1 , u, v = 1, . . . , 4nH . (D.1)
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We indicate the 5d vector fields as ÂI
M (where M,N = 0, . . . , 4 are spacetime indices)

and parametrize the vector multiplet scalars in terms of sections ΦI subject to the cubic

constraint V(Φ) = 1 in (B.3). The hypermultiplet scalars are qu. We employ the rather

standard Kaluza-Klein reduction ansatz (5.2) and (5.3):

ĝMN =

(
e2φ̃gµν + e−4φ̃A0

µA
0
ν −e−4φ̃A0

µ

−e−4φ̃A0
ν e−4φ̃

)
, ĝMN =

(
e−2φ̃gµν e−2φ̃A0µ

e−2φ̃A0ν e4φ̃ + e−2φ̃A0
ρA

0ρ

)
,

e(5) = e2φ̃ e(4) , ΦI = −e2φ̃ zI2 , ÂI
M =

(
AI

µ − zI1A
0
µ, z

I
1 + ξI

)
. (D.2)

The last coordinate, that we call y and whose range ∆y we leave generic for now, is compact-

ified on a circle of length e−2φ̃∆y, and no field depends on it. We indicated as ĝMN and e(5)

the 5d metric and the square root of its determinant, and as gµν and e(4) (with µ, ν = 0, . . . , 3

spacetime indices) their 4d counterparts. In 4d we end up with nV + 1 vector multiplets,

and we indicate as AΛ
µ the vector fields. The physical scalars in 4d vector multiplets are the

complex fields zi. With a useful abuse of notation, we utilize the very same index I for 5d

vector fields and 4d physical scalars, zI , because in 4d we have one more vector field than

in 5d. We also use the notation

zI1 ≡ Re zI , zI2 ≡ Im zI . (D.3)

Notice that the real scalar φ̃ can be eliminated with the 5d constraint,

e−6φ̃ = −V(z2) , (D.4)

then the scalars zI can be treated as independent. The real parameters ξI represent back-

ground gauge fields along the circle, therefore, up to a gauge transformation, this ansatz is

equivalent to a Scherk-Schwarz reduction.

The reduction of the Einstein term gives

8πG
(4)
N L1 = e(5)

R̂s

2
= e(4)

[
Rs

2
− 3 ∂µφ̃ ∂

µφ̃− e−6φ̃

8
F 0
µνF

0µν

]
+ total derivatives . (D.5)

Here R̂s and Rs are the 5d and 4d Ricci scalars, respectively. The 4d and 5d Newton

constants are related by
1

G
(4)
N

=
∆y

G
(5)
N

. (D.6)

In the following, for clarity, we will omit the factor 8πG
(4)
N . The reduction of the kinetic term

of vector multiplet scalars gives

L2 = −e(5)
1

2
GIJ ĝ

MN∂MΦI∂NΦ
J = e(4)

[
−e

4φ̃

2
GIJ∂µz

I
2∂

µzJ2 + 3 ∂µφ̃ ∂
µφ̃

]
. (D.7)
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The last term exactly cancels the second term in L1, therefore

L1 + L2 = e(4)

[
Rs

2
− e4φ̃

2
GIJ ∂µz

I
2 ∂

µzJ2 − e−6φ̃

8
F 0
µνF

0µν

]
. (D.8)

The reduction of the kinetic term of hypermultiplet scalars gives

L3 = −e(5)
1

2
huv ĝ

MND̂Mq
uD̂Nq

v

= e(4)

[
−1

2
huv Dµq

uDµqv − g2e6φ̃

2

(
ku0 + zI1k

u
I

)
huv
(
kv0 + zJ1 k

v
J

)]
.

(D.9)

Here D̂Mq
u = ∂Mq

u + g ÂI
Mk

u
I is the 5d covariant derivative in (B.34), while

Dµq
u = ∂µq

u + g AI
µk

u
I + g A0

µ ξ
IkuI = ∂µq

u + g AΛ
µk

u
Λ (D.10)

is the 4d covariant derivative, and we defined the new Killing vector

ku0 ≡ ξIkuI . (D.11)

The reduction of the gauge kinetic term gives

L4 = −e(5)
1

4
GIJ F̂

I
MN F̂

JMN

= e(4)

[
−e

−2φ̃

4
GIJ

(
F I
µ − zI1F

0
µν

)(
F Jµν − zJ1F

0µν
)
− e4φ̃

2
GIJ ∂µz

I
1∂

µzJ1

]
,

(D.12)

where F̂MN and Fµν are the 5d and 4d field strengths, respectively. We used F̂ I
µ4 = ∂µz

I
1 and

F̂ I
µν = F I

µν − zI1F
0
µν + 2A0

[µ∂ν]z
I
1 .

In order to reduce the Chern-Simons term, we extend the geometry (5.2) to a 6d bulk

whose boundary is the original 5d space. A convenient way to do that is to complete the

circle parametrized by y into a unit disk with radius ρ ∈ [0, 1]. We extend the 5d connections

ÂI in (5.3) to 6d connections ÃI as follows:

ÃI = AI + ξIA0 + ρ2(zI1 + ξI)
(
dy −A0

)
. (D.13)

We then write the Chern-Simons action term as
∫

5d

L5 =

∫

5d

1

12
CIJK F̂

I ∧ F̂ J ∧ ÂK =

∫

6d

1

12
CIJK F̃

I ∧ F̃ J ∧ F̃K . (D.14)

Substituting F̃ I = dÃI and performing the integrals over dρ2 ∧ (dy−A0), we extract the 4d

reduced Lagrangian

L5 =
1

16
CIJKǫ

µνρσ

[(
zI1 + ξI

)
F J
µνF

K
ρσ −

(
zI1z

J
1 − ξIξJ

)
FK
µνF

0
ρσ +

zI1z
J
1 z

K
1 + ξIξJξK

3
F 0
µνF

0
ρσ

]
.

(D.15)
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Notice that the contributions containing the ξI ’s are standard theta terms.

Finally, the reduction of the scalar potential gives

L6 = −e(5)g2V = −e(4)g2
[
P x
I P

x
J

(
e2φ̃

2
Gij∂iΦ

I∂jΦ
J− 2e6φ̃

3
zI2z

J
2

)
+
e6φ̃

2
huvk

u
I k

v
Jz

I
2z

J
2

]
. (D.16)

We proceed now with recasting the various pieces of the action in the general form (C.2)

of 4d N = 2 gauged supergravity with nV + 1 vector multiplets and nH hypermultiplets.

The Einstein term receives its contribution from L1:

L
′
1 = e(4)

Rs

2
. (D.17)

The kinetic term of vector multiplet scalars gets contributions from L2 and L4:

L
′
2 = −e(4)

e4φ̃

2
GIJ

(
∂µz

I
2∂

µzJ2 + ∂µz
I
1∂

µzJ1

)
= −e(4) gIJ̄ ∂zI∂µz̄J̄ , (D.18)

where we defined the Hermitian metric

gIJ̄ =
e4φ̃

2
GIJ̄ . (D.19)

The kinetic term of hypermultiplet scalars gets its contribution from L3,

L
′
3 = −e(4)

1

2
huv Dµq

uDµqv , (D.20)

with the covariant derivative Dµ defined in (D.10)-(D.11). The gauge kinetic term receives

contributions from L1 and L4:

L
′
4 = −e(4)

e−6φ̃

8

[
F 0
µνF

0µν + 4gIJ
(
F I
µν − zI1F

0
µν

)(
F Jµν − zJ1F

0µν
)]

= e(4)
1

8
ImNΛΣ F

Λ
µνF

Σµν

(D.21)

where we defined the field-dependent matrix of gauge couplings

ImNΛΣ = −e−6φ̃

(
1 + 4gKLz

K
1 z

L
1 −4gKJz

K
1

−4gIKz
K
1 4gIJ

)
(D.22)

in which the indices Λ,Σ run over 0 and then the values of I, J . On the other hand, the

field-dependent theta terms are contained in L5:

L
′
5 = L5 =

1

16
ReNΛΣ ǫ

µνρσFΛ
µνF

Σ
ρσ (D.23)

where

ReNΛΣ =

(
1
3
CKLM

(
zK1 z

L
1 z

M
1 + ξKξLξM

)
−1

2
CJKL

(
zK1 z

L
1 − ξKξL

)

−1
2
CIKL

(
zK1 z

L
1 − ξKξL

)
CIJK

(
zK1 + ξK

)
)
. (D.24)

59



It turns out that gIJ̄ and NΛΣ descend from the following prepotential:

F (X) =
1

6
CIJK

X̌IX̌JX̌K

X0
with X̌I ≡ XI + ξIX0

=
1

6
CIJK

XIXJXK

X0
+

1

2
CIJK

(
ξIXJXK + ξIξJXKX0 +

1

3
ξIξJξK(X0)2

)
.

(D.25)

The terms in parenthesis involving the ξI ’s only affect standard theta terms, which are topo-

logical and thus do not enter in the equations of motion. Indeed, using special coordinates

zI = XI/X0 and in the Kähler frame |X0|2 = 1, one derives the Kähler potential33

K = − log

(
1

6i
CIJK

(
zI − z̄I

)(
zJ − z̄J

)(
zK − z̄K

))
= − log

(
8 e−6φ̃

)
(D.26)

from which the Kähler metric (D.19) with (B.6) follows. On the other hand

FΛΣ =

(
1
3
CKLM

(
zKzLzM + ξKξLξM

)
−1

2
CJKM

(
zKzM − ξKξL

)

−1
2
CIKM

(
zKzM − ξKξL

)
CIJK

(
zK + ξK

)
)

(D.27)

from which the matrix N in (D.22) and (D.24) follows. It might be useful

(X0)−2XΛ
(
ImFΛΣ

)
XΣ = 4CIJK

(
1
3
Im(zIzJzK)− 1

2
Im(zIzJ)Re(zK)

)

= −4

3
CIJKz

I
2z

J
2 z

K
2 = e−K = 8 e−6φ̃ ,

(D.28)

as well as
(
ImFIΣ

)
XΣ/X0 = i CIKMz

K
2 z

M
2 .

Finally, the scalar potential gets contributions from L3 and L6:

L
′
6 = −e(4)g2

[
P x
I P

x
J

(
e2φ̃

2
Gij∂iΦ

I∂jΦ
J − 2e6φ̃

3
zI2z

J
2

)
+

+
e6φ̃

2
huv

(
kuI k

v
Jz

I
2z

J
2 + (ku0 + zI1k

u
I )(k

v
0 + zJ1 k

v
J)
)]

= −e(4)g2
[
−P x

ΛP
x
Σ

((
ImN )−1ΛΣ + 8 eKXΛX

Σ
)
+ 4 eKhuvk

u
Λk

v
ΣX

ΛX
Σ
]
.

(D.29)

To manipulate the first line we used (B.10) as well as

((
ImN

)−1
)ΛΣ

+ 8 eKX(ΛXΣ) = −e6φ̃
(
0 0

0 1
4
gIJ − zI2z

J
2

)
, (D.30)

which immediately follows from (D.22). Notice in particular that ~P0 drops out of the po-

tential and cannot be extracted from it, but it is still determined as ~P0 = ξI ~PI from (D.11).

The action L ′
6 exactly reproduces the potential in (C.18).

33The completely covariant expression for the Kähler potential is e−K = 8 |X0|2 e−6φ̃.

60



Summarizing, the compactification gives the following map from 5d to 4d data:

5d

nV vector multiplets

SM with CIJK

QM with huv(q)

gauging of kuI

reduction with ξI−−−−−−−−−−→
background fields

4d

nV + 1 vector multiplets

KM with F =
1

6
CIJK

X̌IX̌JX̌K

X0

QM with huv(q)

gauging of kuΛ =
(
ξJkuJ , k

u
I

)

(D.31)

where X̌I = XI + ξIX0.

D.1 Reduction of the conifold truncation

The reduction of the 5d conifold truncation described in Appendix B.1 gives a 4d supergravity

with the following data. The prepotential is

F =
X̌1
(
(X̌2)2 − (X̌3)2

)

X0
. (D.32)

It induces the vector multiplet scalar metric

gIJ̄ =
1

2




1

2(z12)
2

0 0

(z22)
2 + (z32)

2

(
(z22)

2 − (z32)
2
)2 − 2 z22 z

3
2(

(z22)
2 − (z32)

2
)2

Symmetrized
(z22)

2 + (z32)
2

(
(z22)

2 − (z32)
2
)2




(D.33)

that depends on zI2 , the theta terms (D.24) that depend on zI1 and ξI , while the gauge

coupling function ImNΛΣ takes a lengthier expression that depends on zI1 and zI2 and can be

easily derived from (D.22). Since in 5d k3 = 0, the 4d extra Killing vector is k0 = ξ1k1+ξ
2k2.

E Black hole charges and their reduction

The electric black hole charges computed in [18] in our notation read

QT = − 1

8πG
(5)
N g

∫

S3
∞

GTJ ⋆5 F̂
J , (E.1)

where the integral is taken on the three-sphere at infinity, and are dimensionless. We recall

that only a subspace ÂT
µ of the vector fields are massless on the AdS5 vacuum, and the index
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T runs over them. The massless vectors are such that the hypermultiplet scalars sit at a

fixed point of the gauged isometries, and are thus identified by the conditions

kuT(q) = 0 . (E.2)

Indeed, let BI
J be a matrix of linear redefinitions such that BI

JÂ
J
µ are mass eigenstates.

Such a matrix is characterized by BI
JG

JNkuNhuvk
v
L = λINB

N
L where λ is the diagonal matrix

of squared masses (in units of g2). The corresponding linear transformation of charges

is QI → QJ (B
−1)JI , while the Killing vectors corresponding to the mass eigenstates are

kuJ(B
−1)JI . Now consider a massless vector and let the index T be such that λTT = 0 (not

summed over T). Using non-degeneracy of the metrics GIJ and huv, one easily proves that

kuJ(B
−1)JT = 0, which is (E.2).

Now, the equations of motion for the bosonic fields of 5d gauged supergravity that follow

from (B.2) are

d
(
GIJ ⋆5 F̂

J
)
=

1

4
CIJKF̂

J ∧ F̂K − g huv k
u
I ⋆5 D̂qv

R̂MN = GIJ

(
F̂ I
MP F̂

JP
N − 1

6
ĝMN F̂

I
PQF̂

JPQ

)

+ Gij ∂Mφ
i∂Nφ

j + huv D̂Mq
uD̂Nq

v +
2

3
ĝMN g

2V .

(E.3)

Notice that (E.2) is just the condition not to have a source in the T-th component of

Maxwell’s equation from the hypermultiplets. We can express the charges QT in terms

of integrals at the horizon [77] using the EOMs (E.3):

QT = − 1

8πG
(5)
N g

[∫

S3
r

GTJ ⋆5 F̂
J +

∫

S3
r×I[r,∞]

(
1

4
CTJK F̂

J ∧ F̂K − g huv k
u
T ⋆5 D̂qv

)]
. (E.4)

The first term is an integral evaluated at radius r, that we will take to be the horizon

location. The second term is a correction, integrated on a cylinder S3 × I where I is the

interval from r to ∞, that leads to a Page charge. Assuming that the condition kuT(q) = 0

remains true also on the black hole background,34 the third term vanishes.

We can apply a similar manipulation to the angular momenta Ja=1,2. Given the spacetime

Killing vectors Ka ≡ KM
a ∂M , the angular momenta are defined in [18] as

Ja =
1

16πG
(5)
N

∫

S3
∞

⋆5 dKa (E.5)

34In the case of the conifold compactification discussed in Section 5.2, this assumption is true, see (5.28).

We expect the assumption to be true in all cases.
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where we have indicated with the same symbol Ka ≡ KaMdx
M the 1-forms dual to the

Killing vectors, and the integral is evaluated once again at infinity. One can show that the

Killing equation implies

d ⋆5 dK = 2R̂MNK
M ⋆5 dx

N . (E.6)

We can then use the EOMs (E.3) to replace the Ricci scalar R̂MN . We assume that S3

is invariant under the isometries generated by Ka, therefore, indicating as iK the interior

product, the integral of ĝMNK
M ⋆5 dx

N = iK(⋆51) vanishes. We also assume that iKdφ
i = 0.

We obtain

Ja =
1

16πG
(5)
N

[∫

S3
r

⋆5 dKa + 2

∫

S3×I

(
GIJ

(
iKa

F̂ I
)
∧ ⋆5F̂ J + huv

(
iKa

D̂qu
)
⋆5 D̂qv

]
. (E.7)

Now let us proceed and reduce the charges to 4d imposing the ansatz (D.2), in particular

ÂI = AI + ξIA0 + (zI1 + ξI)(dy − A0)

F̂ I = F I − zI1F
0 + dzI1 ∧ (dy − A0) ,

(E.8)

and performing the integrals along the circle. Notice that because of (D.6) and since the

horizon areas in 5d and 4d are related by Area(5) = ∆yArea(4), the black hole entropy is the

same in 5d and 4d. We find∫

S3

GIJ ⋆5 F̂
J = ∆y

∫

S2

e−2φ̃GIJ ⋆4
(
F J − zJ1F

0
)

CIJK

∫

S3×I

F̂ J ∧ F̂K = −∆y CIJK

∫

S2
r

(
2zJ1F

K − zJ1 z
K
1 F

0
)
.

(E.9)

In the second equality we used that zI1 → 0 at infinity. The electric charges are thus

QT =
1

g

∫

S2
r

δS4d

δF T
− 1

8πG
(4)
N g

CTJK

∫

S2
r

(
1

2
ξJFK +

1

4
ξJξKF 0

)
, (E.10)

where
δS4d

δFΛ
=

1

16πG
(4)
N

(
ImNΛΣ ⋆4 F

Σ + ReNΛΣF
Σ
)

(E.11)

are the derivatives of the action obtained from (C.2) with (D.22) and (D.24).

We define the 4d dimensionless magnetic charges as

pΛ =
g

4π

∫

S2

FΛ , (E.12)

where the integral can be done at any radius because of the Bianchi identities. On the other

hand, the first Chern class of the circle fibration — that we take to be the Hopf fibration of

S3 — is 1
∆y

∫
dA0 = 1. Thus, we obtain a properly quantized p0 = 1 if we set

∆y =
4π

g
. (E.13)
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We will use this normalization from now on.

Let us now reduce the angular momentum. We consider the case J1 = J2, with J1,2

normalized such that they generate orbits of length 2π, and define J = (J1 + J2)/2. The

corresponding Killing vector and dual 1-form are

KM∂M =
∆y

4π

∂

∂y
=

1

g

∂

∂y
, KMdx

M =
1

g
e−4φ̃(dy −A0) . (E.14)

The first term in (E.7) gives

∫

S3

⋆5 dK = −∆y

g

∫

S2

e−6φ̃ ⋆4 F
0 . (E.15)

To reduce the second term we use iKF̂
I = −1

g
dzI1 , integrate by parts, and use the EOMs

(E.3). To reduce the third term we use iKD̂qu =
(
zI1 + ξI

)
kuI and iω(⋆ 1) = ⋆ ω for a 1-form

ω. Eventually

J =
1

8πG
(4)
N g

{∫

S2
r

[
−1

2
e−6φ̃ ⋆4 F

0 + e−2φ̃GIJ z
I
1 ⋆4

(
F J − zJ1F

0
)

(E.16)

− CIJK

(
1

4
zI1z

J
1F

K − 1

6
zI1z

J
1 z

K
1 F

0

)]
+

∫

S2×I

⋆4 g k
u
0 huv Dqv

}

=
1

g

∫

S2
r

δS4d

δF 0
− 1

8πG
(4)
N g

[
CIJKξ

IξJ
∫

S2
r

(
1

4
FK +

1

6
ξKF 0

)
+

∫

S2×I

⋆4 g k
u
0 huv Dqv

]
.

The four-dimensional angular momentum of the black hole solution is proportional to J1−J2,
which vanishes in the case under consideration. This implies that we can impose spherical

symmetry on S2. The section Dqv is charged under the Abelian vector fields AΛ
µ , therefore

the magnetic fluxes pΛ give rise to an effective spin s on S2. However, the spin spherical

harmonics [78, 79] have total angular momentum j ≥ |s|, which should vanish in order

to have a spherically-symmetric configuration. Since the Abelian symmetries are realized

non-linearly on Dqv as soon as kuΛ 6= 0, we obtain the condition

pΛkuΛ(q) = 0 (E.17)

for spherically-symmetric black hole solutions. Without loss of generality, in Section 5 we

have set pI = 0 which implies ku0 = 0. We then see that the last term in (E.16) vanishes.

The magnetic charges that appear in the attractor equations of [39], in our conventions,

are (E.12) while the electric charges are

qΛ =
g

4π

∫

S2
r

GΛ with GΛ = 16πG
(4)
N

δS4d

δFΛ
. (E.18)
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Setting pI = 0, we obtain the following dictionary between 5d and 4d charges:

q0 = 4G
(4)
N g2 J +

1

3
CIJKξ

IξJξKp0

qT = 4G
(4)
N g2QT +

1

2
CTJK

1

2
ξJξKp0 .

(E.19)

E.1 Baryonic charge quantization in the conifold theory

In order to fix the exact relation between the supergravity charge Q3 and the field theory

baryonic charge QB, we deduce the Dirac quantization condition satisfied by A3
µ from the

consistent reduction of [34].

The metric of T 1,1 is

ds2 =
1

6

∑

i=1,2

(
dθ2i + sin2 θi dϕ

2
i

)
+ η2 with η = −1

3

(
dψ +

∑

i=1,2

cos θi dϕi

)
. (E.20)

We define the 2-forms35

J =
1

6

(
sin θ1 dθ1 ∧ dϕ1 + sin θ2 dθ2 ∧ dϕ2

)
=

1

2
dη

Φ =
1

6

(
sin θ1 dθ1 ∧ dϕ1 − sin θ2 dθ2 ∧ dϕ2

)
.

(E.21)

The expansion of the 10d RR field strength FRR
5 in [34] around the AdS5 × T 1,1 vacuum

(where u = v = w = bΩ = cΩ = 0), keeping only the dependence on the gauge fields and the

Stückelberg scalar a, in our conventions reads

FRR
5 = 4g ⋆5 1− 2g−1 (⋆5Da) ∧ (η − gÂ1)− g−2 (⋆5 dÂ

2) ∧ J + g−2 (⋆5 dÂ
3) ∧ Φ

− g−3 dÂ2 ∧ J ∧ (η − gÂ1)− g−3 dÂ3 ∧ Φ ∧ (η − gÂ1)

+ g−4 J ∧ J ∧
(
Da+ 2(η − gÂ1)

)
,

(E.22)

where ⋆5 is the Poincaré dual in AdS5 while Da = da + 2g(Â1 + Â2). Dirac’s quantization

condition reads
1

2
√
π κ10

∫

C5

FRR
5 ∈ Z (E.23)

for any closed 5-cycle C5. Here κ10 is the 10d gravitational coupling, related to the 5d Newton

constant by
Vol(T 1,1)

g5κ210
=

1

8πG
(5)
N

(E.24)

where Vol(T 1,1) = 16π3/27. Applying (E.23) to C5 = T 1,1 and imposing that there are N

units of 5-form flux, we recover (5.35). On the other hand, let us apply (E.23) to the 5-cycle

35The 2-form J should not be confused with the angular momentum of the black hole.
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X2 × S3, where X2 is the non-trivial 2-cycle of T 1,1 while S3 is a spatial 3-sphere in AdS5.

Using
∫
X2
J = 0 and

∫
X2

Φ = 4π/3 as well as (5.35), we obtain

1

2
√
π κ10

∫

X2×S3

FRR
5 =

1

6πG
(5)
N gN

∫

S3

(
⋆5 F̂

3 + F̂ 3 ∧ Â1
)
= − 4

3N
Q3 ∈ Z , (E.25)

where F̂ 3 = dÂ3. According to (E.3) and using (B.42) and (B.43), the combination in

parenthesis gives the Page charge Q3, which is conserved and quantized. Taking the 3-

sphere to spatial infinity, it coincides with the charge defined in (E.1).
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