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We present and implement a parquet approximation within the dual-fermion formalism based on
a partial bosonization of the dual vertex function which substantially reduces the computational
cost of the calculation. The method relies on splitting the vertex exactly into single-boson exchange
contributions and a residual four-fermion vertex, which physically embody respectively long-range
and short-range spatial correlations. After recasting the parquet equations in terms of the residual
vertex, these are solved using the truncated unity method of Eckhardt et al. [Phys. Rev. B 101,
155104 (2020)], which allows for a rapid convergence with the number of form factors in different
regimes. While our numerical treatment of the parquet equations can be restricted to only a few
Matsubara frequencies, reminiscent of Astretsov et al. [Phys. Rev. B 101, 075109 (2020)], the
one- and two-particle spectral information is fully retained. In applications to the two-dimensional
Hubbard model the method agrees quantitatively with a stochastic summation of diagrams over a

wide range of parameters.

I. INTRODUCTION

The two-dimensional Hubbard model even with a sin-
gle band still poses a formidable challenge to theorists.
Despite an immense collective effort, which led to the
development of many novel methods, the model has not
been solved exactly and no approximate method works
accurately in every regime. Arguably, one of the most
delicate, and at the same time most interesting, parame-
ter regime is realized in the doped Hubbard model at low-
temperatures and for intermediate-to-strong coupling in-
teractions, which is precisely the regime of relevance for
the low-energy modelization of the cuprate [1] and, as re-
cently suggested, of the nickelate superconductors [2, 3].

In this region there is no natural small parameter and
perturbative approaches are bound to fail. Most of the
features of the cuprate phase diagram, like the pseudogap
behavior of spectral [4, 5] and transport properties [6,
7], d-wave superconductivity [8-10], and a plethora of
other exotic phenomena such as unconventional density
waves [11], stripe order [12, 13], phase separation [9, 14,
15], or a T-linear resistivity [16, 17] have been reported.

The impossibility to apply conventional small-
parameter expansion schemes, makes it necessary to re-
sort to non-perturbative approaches. In this regard
dynamical mean-field theory (DMFT) [18], which ap-
proximates the self-energy with a local version which
can be computed from a self-consistent impurity model,
has become a reference method. Standard DMFT can
not capture the momentum-dependent physics of two-
dimensional systems, calling for cluster extensions, like
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the dynamical cluster approximation (DCA) [19] or the
cellular-DMFT [20, 21]. However, some relevant aspects
of the two-dimensional physics can not be captured by
cluster methods, which are limited to fairly small clus-
ters and therefore include only short-ranged correlations.
For instance, we refer here to the description of unconven-
tional charge-density, spin-density waves and pseudogap
features [4, 6], or, more in general, to the treatment of
long-range spatial correlations — a typical hallmark [22—
26] of strongly correlated physics in two-dimensions. A
proper treatment of these phenomena intrinsically re-
quires a fine resolution of the Brillouin zone, which could
be obtained in cluster DMFT only for very large clusters
beyond any practical implementation.

Diagrammatic extensions of DMFT [25] aim at includ-
ing spatial correlations beyond DMFT. Here it is impor-
tant to make the methods as cheap as possible from a
computational point of view, so that the number of lat-
tice momenta can be kept large.

In this framework, approaches based on the ladder ap-
proximation [27, 28] allow for a high-resolution in mo-
mentum space for the half-filled Hubbard model. In this
regime it is known a priori that spin fluctuations are
dominant, explaining the accuracy of the correspond-
ing ladder-treatments. Away from half-filling the situ-
ation becomes more complex, as the physics turns out
to be controlled by a delicate interplay between bosonic
fluctuations in different channels [29] even if spin fluc-
tuations still play a pivotal role in determining single-
particle spectral properties [30], possibly with signifi-
cant renormalization effects arising from other scattering
channels [31].

A very general way to describe this interplay is to take
parquet-type diagrams into account [32-42]. However,
due to the heavy numerical cost of the parquet equa-
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FIG. 1. Schematic representation of the BEPS method. The
Hubbard model is mapped to a collection of impurities em-
bedded in a self-consistent bath (blue circles), which account
for local correlations. Nonlocal correlations are added in a
dual perturbation theory. Interaction between dual fermions
(arrows) is mediated by bosons (wiggly lines) and a fermion-
boson coupling (triangles). Left: Maki-Thompson correction.
Right: Aslamazov-Larkin correction.

tions, it appeared so far impossible to achieve a spatial
resolution comparable to that of the ladder approxima-
tions.

Recent papers have reported improvements in this di-
rection. First, Astretsov et al. [43] combined the dual
fermion (DF) approach [44] with the renormalization
group (RG), treating parquet diagrams only for the
two smallest Matsubara frequencies (we refer to this as
DP+RG). As a result, one can work with large clusters,
up to 32 x 32 sites in the mentioned manuscript. Sec-
ond, Eckhardt et al. [45] applied the truncated-unity [46]
form-factor expansion to the parquet equations (TUPS),
which corresponds to a truncated real-space representa-
tion of the vertex function F(k, k', q) with respect to its
two fermionic momentum arguments k and k', where
k = (k,v) denotes a momentum-energy. This approxi-
mation corresponds to the assumption of a short-ranged
dependence of the vertex F' on the fermionic momenta.
When this condition is satisfied, the truncated unity al-
lows for a very large lattice size and retains the full spec-
tral information encoded in the Matsubara frequencies.

In this work, we contribute to the current progress
by addressing two specific problems which arise in the
DP+RG and TUPS methods. On the one hand, the RG
treatment neglects spectral information from higher Mat-
subara frequencies and, hence, it is not straightforward to
obtain the spectral density (DOS) or susceptibilities. On
the other hand, the convergence of observables in TUPS
with the number of form factors can be slow in the regime
of strong spatial correlations.

In this work we propose a scheme based on the parquet
approximation for dual fermions [43, 44, 47] which over-
comes the limitations of the two mentioned approaches.
The method exploits a partial bosonization [48-52] of the
dual vertex function, similar to the channel decomposi-
tion [53-56] used in the context of the functional renor-

malization group (fRG, [57]) or in the microscopic Fermi
liquid theory [58].

The partial bosonization is performed in terms of the
recently introduced exact single-boson exchange (SBE)
decomposition of the vertex function [59]. The single-
boson exchange corresponds to fluctuations which cou-
ple to the bare interaction of the Hubbard model, and
they completely characterize the vertex at high frequen-
cies [60]. If we write the full vertex as the sum of the
single-boson exchange terms and of an irreducible term
®UIT the latter is a residual four-fermion vertex whose
frequency and momentum structure is simplified in two
important ways. First, ®Y"" decays for high energies in
all directions of the Matsubara frequency space [59]. This
is somewhat similar to the asymptotic behavior of the
fully 2PT vertex in standard parquet approaches [37, 60].
At the same time, @Y™ appears not to be affected by the
multiple strong-coupling divergences [31, 61-67] which
otherwise make the numerical treatment of 2PI vertices
problematic. In this respect, we note that one of the ad-
vantages of implementing parquet-based approximations
in the dual-fermion formalism is the possibility of avoid-
ing, at any stage of the procedure, to manipulate local
2P1 vertex functions [68], while fully retaining the whole
non-perturbative information that they encode [15, 67].

Further, it should be also emphasized that, in general,
®UIT is found to be significantly shorter-ranged in space
compared to the full vertex function, because many typ-
ical long-ranged correlations (such as spin- and charge-
density wave), correspond to single-boson exchange.

In this work we exploit these properties by formulat-
ing a truncated unity parquet solver similar to Ref. [45]
for the residual four-fermion vertex ®Y**. Since this ver-
tex describes low-energy and short-ranged correlations
we achieve a fast convergence of the parquet diagrams
with respect to Matsubara sums and in terms of the form-
factor expansion, making the converged solution of the
parquet equations much less computationally demanding
compared to previous calculation schemes.

Our exact reformulation of the dual parquet equa-
tions requires the introduction of bosonic lines, which
are given by the screened interaction, and a fermion-
boson coupling (the Hedin vertex [69], see, e.g., [7T0-T4]).
In the dual fermion formalism the lattice quantities can
be expressed as the sum of local and nonlocal contribu-
tions [44]. In this spirit, we express the fermion-boson
coupling as the sum of the local impurity quantity plus
corrections,

Ak, q) = NP (v, w) + A"°"°%(k, q). (1)

Since the local approximation A & A\ corresponds to the
TRILEX approach [75], our method can also be seen
as a crossing-symmetric extension of TRILEX. An ex-
act prescription for the renormalization of the fermion-
boson coupling was recently presented in Ref. [76] for
lattice fermions. In this work we extend this concept
to dual variables and show how the parquet diagrams
can be systematically expressed in terms of boson ex-



change, such as the Maki-Thompson (single-boson ex-
change) and the Aslamazov-Larkin (two-boson exchange)
vertex corrections, shown in Fig. 1. They illustrate our
targeted application of the truncated unity: The strong
momentum-dependence of the Maki-Thompson diagram
is fully retained, whereas the more short-ranged spatial
dependence of the Aslamazov-Larkin diagram is captured
by a small number of form factors, making the method
computationally feasible. In the following, we refer to
this method as a boson exchange parquet solver (BEPS).

The paper is structured as follows. We introduce the
BEPS method in Sec. II. We benchmark the method at
half-filling against diagrammatic Monte Carlo in Sec. III,
we discuss the doped case in Sec. IV. We conclude in
Sec. V.

II. MODEL AND METHOD
A. Hubbard model

In the applications we consider the paramagnetic Hub-
bard model on the square lattice,

H=-1 Z CinCis + Uznmnm (2)

where ¢ = 1 is the nearest neighbor hopping which sets
the unit of energy. ¢, c! are the annihilation and creation
operators, ¢ =7,/ the spin index. U is the Hubbard
repulsion between the densities n, = cfc,. The spin
label o is suppressed where unambiguous.

B. Anderson impurity model

Our method is based on an auxiliary Anderson Impu-
rity Model (AIM) with the imaginary time action,

SAIM - Zcua ZV+/J‘ h ) VO' +UZnTwn~LW7 (3)

vo

where ¢*,c are Grassmann numbers, v and w are
fermionic and bosonic Matsubara frequencies, respec-
tively. Summations over Matsubara frequencies v, w con-
tain implicitly the factor T = 87!, the temperature. In
our scheme, the auxiliary AIM is exploited to solve the
lattice problem under investigation within the dynamical
mean-field theory (DMFT), which represents the starting
point of our analysis.

The specific hybridization function h, of our AIM cor-
responds, thus, to the self-consistent DMFT solution [18]
for the Hubbard model (2) where the local part of the lat-
tice Green’s function is adjusted to the local Green’s func-
tion g, (v) = —{c,,ck,) of the AIM, GPMFT (1) = g(v).

We require several higher correlation functions of the
AIM (3), namely, the four-point function,

g = el c chigr)
v = 0101 0202 V0'1 v4w, o1 v/ tw,ox v ol /s

where s are the Pauli matrices and the label a = ch, sp
denotes the charge and spin channel, respectively. This
defines the four-point vertex function f as,

(4),«

fa 791/1/’0.1 —
vv'w T

ﬁgvgu+w§wx’ + ZBngV’éw(sa,ch (4)
vv+wIv' v’ +w ’

Charge, spin, and singlet susceptibilities are given as,

Xo = = (P2up) + B{n)(n)0uda.ch, (5)
Xo == (Pzuri) (6)
where p" = ns +n; = n and p*® = ny —n, in the first

line are the charge and spin densities whereas p™ = ciel
and p~ = cjcy describe the creation and annihilation of
an electron pair. From the susceptibility we obtain the
screened interaction,

1
= U+ SUU?, (7)

where U" = U, U = —U,U® = 2U is the bare interac-
tion of the Hubbard model (2) in the respective channel.
Finally, we define the fermion-boson coupling of the im-
purity as [77],

2 Zaa/ Sy el < l/ac;k/+w,n’pg> + 5gu<n>5w5a,ch
GGy 0wl /U

Aw = , (8)

for the particle-hole channels, o = ch, sp, and

)\S — <CVTCW—V7~LPI> (9)
GvYu—rws, JUS’

for the singlet particle-particle channel, a = s.

In the single-boson exchange (SBE) decomposition [59]
the full vertex f is split into three vertices V which are
reducible with respect to the bare interaction U, and one

residual four-fermion vertex V" irreducible w.r.t. U,
a _ Uirr,« ph,a ph,a pp,o _ (e}
v'w = Poviw +VVU 'w +vuu w+vl/u’,w+u+u’ 20

(10)

Note that the bare interaction U is subtracted twice as
a double counting correction, which leads to the correct
high-frequency asymptotics of f.

The (U-reducible) vertices V are given by the screened
interaction w and the fermion-boson coupling A,

Vi = A (11)
where o = ch,sp,s. We discuss their meaning in more
detail in Sec. IID for the lattice Hubbard model (2).

The U-irreducible vertex oUY'" represents, instead, a
natural starting point for approximations [76] of more
complex many-electron problems on a lattice, as it is also
the case in this work. We obtain it through Eq. (10),
after measuring the vertices in Egs. (4), (8), and (9)
with a continuous-time quantum Monte-Carlo (CTQMC)
solver [78-80] with improved estimators [81]. These
pieces are used to form the vertices V which are sub-
tracted from the full vertex f to obtain U,
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FIG. 2. Top: Dual self-energy. Arrows denote the dual
Green’s function G, large boxes represent the vertex function
F, small boxes the impurity vertex f. Bottom: Dyson equa-
tion, thin arrows represent the bare dual Green’s function G°.

C. Dual fermions

In the dual fermion formalism [44] the Hubbard
model (2) is mapped to the dual action [82],

Sld*,d) ==Y Gy~ djdio (12)
ko

1 Z Z o
1020304 % *
+Z fw/’w dkaldk’+q,02dk’03dk+q704'

k)k}'q g4

The Grassmann numbers d*,d represent the dual
fermions and the bare propagator is the nonlocal DMFT
Green’s function, G¥ = GPMFT _ 4. A common approxi-
mation is to neglect higher than quartic interactions be-
tween the dual fermions, the interaction is then given by
the vertex f of the AIM defined in Eq. (4). The bare
propagator G is then dressed with a dual self-energy,

Gy

ST Tmo

(13)

The self-energy reads in the general case ([83], cf. Fig. 2),

Zk = Z Gk’fgbu,wzo (14)
k/

1
ch 0 ch Sp 0 sp
_Z ZGk.ﬂrq |:Fkk'qu'q v'vw +3Fkk’qu/q V'Vw] .
k’q

Here, X,gq = (G;Gj44 denotes a bubble of dual Green’s
functions and F is the full vertex function of the dual
fermions. It has the leading term f, the impurity ver-
tex, higher terms are all one-particle irreducible diagrams
built from f and the dual Green’s function G [43].

After a self-consistent solution for X is obtained, we
recover the approximation for the self-energy of the Hub-
bard model (2) as,

g

Zlat — EDMFT _|_ ,
¥ v 1+ g,5%

(15)
where SPMFT and g, denote, respectively, the self-energy
and local Green’s function of the self-consistent DMFT

solution of the Hubbard model (2), obtained from the
corresponding auxiliary AIM (3).

D. Strategy overview

In the following we develop an efficient method for the
summation of parquet diagrams. We begin to explain our
strategy by noting that recently an exact diagrammatic
decomposition was presented in Ref. [59], which separates
diagrams from the vertex function that correspond to
single-boson exchange. For the vertex function of the
dual fermions this decomposition reads (o = ch, sp),

a _ FUirr,a ph,a ph,a pp,a «
Firg=Prprg " A% T A% T A gk n —2U%. (16)

Here, the vertices A represent the single-boson ex-
change of the dual fermions and ®U™ denotes a four-
fermion ‘rest’ vertex, analogous to the impurity quan-
tities V and @Y previously introduced in Eq. (10),
respectively. Hereafter, we will adopt in general capi-
tal (small) letters for lattice (impurity) quantities. The
label ‘Uirr’ indicates that ®V™ does not have inser-
tions of the bare interaction U [59]. The decomposition
shares a similarity with the traditional parquet decompo-
sition [31, 37, 76] because single-boson exchange occurs in
the horizontal (ph) and vertical (ph) particle-hole chan-
nels and in the (singlet) particle-particle (pp) channel.
The SBE vertices have the structure shown in Fig. 3,

AP (KK q) =A% (k, Q)W (q)A* (K, ),
APPS (kK q) =A° (k, q)W*® (¢) A° (K, q),

(17a)
(17b)

where W denotes the screened interaction of the dual
fermions and A is the (dual) fermion-boson coupling, see
also Appendix A. We explain how the SBE decomposi-
tion (16) can help to overcome two open problems that
arise in the DP+RG and TUPS methods [43, 45]:

(i) The SBE vertices A control the asymptotics of the
full vertex F [60, 76, 84], hence, the decomposition (16)
helps to separate high from low energy scales. Consis-
tent with this observation, in this work, we formulate
the parquet equations for the four-fermion vertex &Y™
of the SBE decomposition (16), restricting ourselves to
a handful of Matsubara frequencies, in the same spirit
as the DP+RG ansatz of Astretsov et al. [43]. However,
since ®U decays with respect to all of its frequency
arguments, this can be done without a significant loss of
spectral information, whereas the DP4+RG method omits
information from Matsubara frequencies |v| > T

(ii) The boson W (gq) encodes the physics of long-ranged
fluctuations, for example, the spin fluctuations of the

WOL

FIG. 3. A vertex correction corresponding to single-boson
exchange. Triangles represent the fermion-boson coupling,
the wiggly line denotes the screened interaction.



Hubbard model near half-filling [23, 85]. This explains
the possible emergence of strong dependencies on the
bosonic momentum q in the full vertex F'.

A procedure often used to simplify the treatment of the
momentum dependence of two-particle diagrams [46, 54,
86] is to expand the full vertex in terms of form factors,

Fo( 0, q) =Y (k) F (kK q) (€ K),

kk’

(18)

where 1) denotes a form factor and £ = (£,v) is an appro-
priate multi-index denoting form-factor index and Mat-
subara frequency. Eq. (18) is exact, but in the truncated
unity approach only a few form factors are taken into
account which capture short-ranged real space correla-
tions [45, 87]. Typically, one uses a specific number of
form factors, N, = 1,5,9,13,..., which corresponds to
truncation of the real space expansion after the zeroth
(1, corresponding to the local approximation), first (5),
second (9), third (13) nearest neighbors and so forth.

We note here that the truncation does not affect
the momentum q and is therefore appropriate for the
SBE vertex AP" of the horizontal particle-hole channel
in Eq. (17a). However, due to the crossing-symmetry,
bosonic fluctuations contribute to F' also in the vertical
particle-hole channel (o = ch, sp),

and a further boson arises from singlet fluctuations,

APPE (kK q) = (20)
Equations (19) and (20) indicate that a problem can
arise from a straightforward application of the trun-
cated unity approximation to the full vertex F', because
it implies a (truncated-unity) cutoff also for bosonic
fluctuations with momenta k'’ — k and q + k' + k [cf.
Eq. (16)], which may be long-ranged. Therefore, in
our scheme, we exploit the truncated unity approxi-
mation only for the vertex ®V' in Eq. (16), retain-
ing the full momentum-dependence of the SBE vertices
A. Indeed, the momentum-dependence of ®V'" is short-
ranged, leading to a faster convergence of the form-factor
expansion, that is,
V(L l,q) = 0, (21)
when £ or £ correspond to long distances in the real
space.

E. Parquet expressions for the residual vertex

In Ref. [45] the TUPS was introduced to reduce the
algorithmic complexity of the parquet equations for the
full vertex function F. Here, our aim is to apply the
TUPS to the residual vertex ®Y"* only. Hence, as an-
ticipated in the previous section, we need to recast the
parquet equations for F' into a formally equivalent set of
equations for ®VI'". Starting from the traditional par-

Aﬁ’a(k, K. q) = ,}Az>fuch(k7 k+q,k —k) (19) quet equations [32-34, 37| for dual fermions [43, 47], we
2 derive in Appendix B the following parquet expressions,
33— 4dasp Aph,sp(k k+qk —Fk) which could be interpreted like a set of parquet equations
2 ’ ’ ’ for the residual vertex,
(:[)Uirr,ch _ Uirr,ch Mph,ch ]-Mph,ch Mph,sp 1Mpp,s 3Mpp,t 29
kg = Pore T Mg T 5 Mk kg -k T 5 Mkkra -k T Mk ki rq T MR kg (22a)
; ; 1 1 1
Uirr,sp __  _Uirr,sp ph,sp ph,ch ph,sp pDp,S pp,t
g = Puvw + My = 5Mpiigw -kt Miriqr -k — 5Mikirrg T 5Midd kg (22b)
; ; 1 1 3
Uirr, Uirr, s h,ch h, h,ch h,
Oy = o MG Mk = 5 Mg+ 5 MGk — 5 MEg S ke (22c)
; ; 1 1 ; 1 1 .
Uirr,t _ _Uirrt it h,ch h, h,ch h,
QU = QU MIEL - SMPL o S MEE - DM e (220)

Here, the labels ch,sp,s,t denote the charge, spin, sin-
glet, and triplet channels, respectively. On the right-
hand-side, ©V™ denotes the local analog to ®V" com-
puted from the AIM, see Sec. IIB. This vertex plays a
similar role as the fully irreducible vertex of the tradi-
tional parquet equations (cf. Appendix B), which, in the
parquet approximation, is given by the bare dual fermion

(

interaction f [cf. Eq. (12)]. It is important to remark
that Eqgs. (22a)-(22d) represent the parquet expression
for the residual vertex ®Y"*. Hence, they are fully equiv-
alent to the parquet approximation for dual fermions. In
spite of its analytical equivalence to the usual parquet
expressions, the formulation used here differs from the
perspective of the numerical implementation. In fact, in



our BEPS method the starting point is represented by
the corresponding residual vertex U™ of the AIM.

To further explicate the BEPS formalism, one should
also note that the vertex M on the right-hand-side plays
essentially the role of the reducible vertex of the tradi-
tional parquet formalism. The main difference is, how-
ever, that single-boson exchange diagrams are excluded
from M. Therefore, M can be regarded as a vertex which
describes the multi-boson exchange (MBE, cf. Fig. 4)
processes. To evaluate it in practice, we require an ana-
log to the Bethe-Salpeter equations (BSE), which in the
conventional formalism identifies the different scattering-
channels through a separation of the two-particle re-
ducible processes in the corresponding sectors.

To this end, we define an auxiliary vertex T, which
represents boson exchange processes of all orders in a
given channel. Similarly to the BSE in the conventional
formalism, it is given in terms of the ladder equations,

ph,ch _ xUirr,ch ph,ch 1 ph,ch 3 ph,sp
Skk’q (I’kk’ - Mkk’ - 5 k.k+q.k'—k §Ak,k+q,k'
ph,sp __ g Uirr,sp ph,sp ph,ch 1 ph,sp
Skk’ (I)Ick’ Mk:k’q *Ak U o “kik+a,k —
pp,s  _ g Uirr,s pPp,S = APh,ch § ph,sp
Skk’q = (I)kk’q - Mkk’q + Akk’,q—k’fk - 2Akk’,q7k’
pp,t  __ FUirr,t pp,t 1 ph,ch 1 ph,sp
Sikg =Py — Mg, + §Akk',q—k'—k + §Akk',q—k'—

Here finally the SBE vertex A, which was introduced
in Sec. IID, enters the parquet equations. Further, by
comparison with Egs. (22a)-(22d) one sees that also the
multi-boson exchange represented by M contributes to
the kernel. Ladder diagrams generated by A and M are
shown in Fig. 4. Although it may not be true in general,
we observed in our numerical applications that A yields
the dominant contribution to the kernel S. In these cases,
S can be considered to mainly represent single-boson ex-
change, while the contribution of M, that is, the feedback
of the multi-boson exchange on the kernel, is required to
retain the exact equivalence to the parquet approxima-
tion for dual fermions (see Appendix B).

For given vertices V'™, A and Green’s function G the
vertices M and ®U' in Egs. (22a)-(25d) can be deter-
mined self-consistently. One advantage of this calculation
scheme is that ®Y'™ and M decay at high frequencies.
Combined with the asymptotics of the dual propagator
G x ”—12 this leads to a rapid decay of Matsubara summa-
tions [88]. It is not necessary to take vertex asymptotics
into account [60, 89]. Furthermore, the spatial depen-
dence of the residual vertex ®Y' is short-ranged com-
pared to the full vertex F', which we exploit in Sec. IIG
for a truncated unity approximation.

h h, ph,
iy =Skig T Z Skk“ G Grorg T,
kll
_ gph,a ph,a
=Skrrq T Mikry s (23)
for the particle-hole channels (« = ch, sp) and
Tppﬁ _Sppﬁ }Z Sppﬁ GunG Tppﬁ
kk'q —Pkk'q T 9 kk!q k" T q—k" Lk g
k//
— PP 4 ppd (24)
kk'q kk'q

for the particle-particle channels (§ = s,t), where S de-
notes the respective ladder kernel. Note that the vertex
T itself is not of interest here and need not be evalu-
ated. Instead, Egs. (23) and (24) serve to evaluate all
ladder diagrams starting from the second order, that is,
the vertex M. The ladder kernel is defined as follows,

o+ Akk’ erhir — 200, (25a)
kT ;Ak%fs ek — 2U, (25b)
kT §A£7éc—hk',kuk - % P g — U™ + 33U, (25¢)
kT % o bk~ % Tt e (25d)

F. Diagrammatic building blocks

As in the traditional parquet formalism the Green’s
function is dressed with a self-energy 3, which can be
calculated using the Schwinger-Dyson Eq. (14) [where
the full vertex is given via Eq. (16)].

However, the parquet equations for the residual ver-
tex ®UIT in Sec. II E also require further prescriptions to
calculate the fermion-boson coupling A and the screened
interaction W, which are used to form the SBE vertices
A in Egs. (17a) and (17b). The fermion-boson coupling
is a three-leg vertex which does not contain insertions of
the bare Hubbard interaction U, see also Ref. [74]. We
obtain it by removing the SBE vertex AP" from the full
vertex F' and attaching two (dual) Green’s functions. We
begin with the charge and spin channels (a = ch,sp),

2

This equation highlights a peculiarity of bosonic corre-
lation functions in the dual fermion approach (see Ap-
pendix A): Whenever we form a bosonic end-point of a
dual fermion diagram using two Green’s functions, we
also attach the impurity vertex A. As a result, the
leading contribution to A is not simply 1, as for lattice

Oéq = A — APh ik qGr Grr4qApr,- (26)



fermions [76], but it is the fermion-boson coupling A of

the impurity, which is defined by all corresponding fully

local diagrams of the auxiliary AIM [90, 91].
Next, we write the screened interaction as

w®(w)

1= wo(w)o(g)”

where w®(w) is the screened interaction of the AIM de-

fined in Eq. (7) and II is the dual polarization function,

I%(q) = > A0, GrGrighfy, (28)
k

W (q) = (27)

which is shown as a diagram in Fig. 5. Again, to form the
second bosonic end-point of the polarization, we attached
the vertex A, this time from the left.

So far, we have discussed the particle-hole channels
a = ch,sp. However, the bare Hubbard interaction also
couples to a singlet particle-particle channel, o = s.
In this channel the fermion-boson coupling takes the
form [92],

Z App7 kk’ Gk/Gq—k’)\i/w, (29)

where F® is the singlet vertex function [93]. The reducible
vertex APP® for this channel is defined in Eq. (17b), where
the corresponding screened interaction reads,

w*(w)
W3(q) = ; (30)
1 — 5wt (w)I(q)
and the polarization is given as (see also Fig. 5),
=3 X, GrGy i}y, (31)
k
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FIG. 4. Multi-boson exchange generated by the ladder
Egs. (23) and (24). Two-boson (Aslamazov-Larkin) exchange
in particle-hole (a) and particle-particle (b) channels arises
from contribution of SBE vertex A to the ladder kernel S
in Egs. (25a)-(25d). (c) Higher multi-boson exchange due to
mixing of vertical and horizontal particle-hole channels, ori-
gin is the feedback of MBE vertex M on S. In this figure
appropriate flavor labels and prefactors are omitted.

FIG. 5. Top: Polarization for particle-hole (left, o = ch, sp)
and singlet particle-particle channel (right). Small triangles
denote the fermion-boson coupling A of the AIM. Bottom:
Dyson equation for the screened interaction W (thick wiggly),
thin lines denote the screened interaction w of the AIM.

All quantities in this section are defined for dual fermions.
The prescription for the renormalization of the fermion-
boson coupling in Egs. (26) and (29) is the dual fermion
analog to the method introduced in Ref. [76] for lattice
fermions.

G. Truncated unity approximation

The parquet expressions for the residual vertex &Y™
in Sec. ITE improve the feasibility of the parquet approxi-
mation for dual fermions. Nonetheless, similarly as in the
standard parquet implementations, the vertices quickly
become very large with increasing lattice size [41]. To
mitigate this problem, Ref. [45] introduced a truncated
unity parquet solver (TUPS), using a form-factor expan-
sion of the various vertex functions. In the same spirit,
we can further improve the feasibility by transforming
the ladder equations (23) and (24) into the form-factor
basis as in Eq. (18), for example,

ph a0 ph,a
E : l1q Xflqungﬁ’q’ (32)
L1lo

ph,« ph «
TM’ U’

where X ?é/ o 18 a dual particle-hole bubble in the form-
factor basis. The expansion is then truncated at a num-
ber Ny of form factors (see Sec. IID). In the (trun-
cated) form-factor basis it is feasible to solve the lad-
der equation (32) by inversion, which may improve the
convergence of the parquet solver compared to previous
implementations which build the ladder diagrams itera-
tively [36, 41].

On the other hand, we keep the full momentum-
dependence of the fermion-boson coupling A(k,q).
Therefore, to evaluate Eqs. (26) and (29), we obtain the
vertex M from the back-transformation,

M(k,K,q) = 1(&,k)M

el

M, q)y(€ ). (33)

In the implementation only M (¢, ¢ q) is stored and
Eq. (33) is used when M(k, k', q) is needed. The cal-
culation of the ladder kernel S in Egs. (25a)-(25d) re-
quires momentum shifts, Ref. [45] describes in detail how
they can be handled in the form-factor basis, see also
Appendix D. Of course, the momentum shifts imply a
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FIG. 6.  (Color online) Self-consistent cycle of the BEPS
method. Highlighted (in red) are the input and output as
well as the external self-consistency cycle to update the AIM.

(truncated-unity) cutoff with respect to all three mo-
menta [45]. In our scheme, however, this problem is alle-
viated because the truncation does not affect the single-
boson exchange A.

H. Calculation cycle

Fig. 6 shows the calculation cycle of the BEPS method.
Step 0: Initial guess. The calculation begins with the
solution of the AIM (3) to obtain the impurity correla-
tion functions. For an agnostic guess we set X = 0, A =
A, @V = QU AT — () the corresponding polarization
IT is given via Eqs. (28), (31). To start closer to the so-
lution, or near an instability, we can use the output of a
previous BEPS calculation.

Step 1: Update propagators. The fermionic and bosonic
propagators G and W are updated using the Dyson equa-
tions (13), (27), and (30).

Step 2: Construct ladder kernel. The kernel S is built
from Egs. (25a)-(25d) [where the vertices A are given by
Egs. (17a) and (17b)] and transformed to the form-factor
basis (see Appendix D).

Step 8: Solve ladder equations. MBE vertices M are
obtained via inversion of Egs. (23) and (24).

Step 4: Update fermion-boson coupling. A is updated
via Egs. (26) and (29). In these equations, the full ver-
tex F' is given by the SBE decomposition in Eq. (16).
The residual vertex ®Y is obtained from the MBE ver-
tices M via the parquet equations (22a)-(22c¢) and back-
transformation to the momentum-basis as in Eq. (33)
[momentum-shifts are treated as in Appendix D].

Step 5: Update self-energies. The self-energy ¥ and the
polarization II are calculated from Egs. (14), (28), and
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FIG. 7. Self-energy at the anti-nodal point at U/t = 2 and
T/t = 0.2. Top: BEPS self-energy and TUPS-DI'A using 8 X 8
lattice and N, = 9 form-factors, respectively, compared to the
dQMC data of Ref. [95]. Circles represent the untruncated
(Ne = 64) parquet DT'A result. Bottom: Convergence of
BEPS and TUPS-DT'A with the form-factors.

(31), respectively. In Eq. (14) the full vertex is given as
described in Step 4 [94].

Steps from 1 to 5 are iterated until convergence. Option-
ally, the hybridization function h, of the AIM (3) is up-
dated (outer self-consistency) and the cycle is restarted
from Step 0 (this work: h = RPMFT),

I. Implementation notes

Our implementation of the BEPS method is a work-
ing prototype based on the C++ libraries of the lad-
der dual fermion/boson implementation of H. Hafermann
and E.G.C.P. van Loon [28, 90], but the alterations to the
code are substantial. For the truncated unity approxima-
tion we use an implementation of the form-factors for the
square lattice by C. Eckhardt [96, 97].

The numerical effort of Eqs. (26) and (29) is discussed
in Ref. [76], corresponding to o« N2ZNZN,N, floating
point operations. The most expensive step at each it-
eration is the transformation of the ladder kernel S in
Egs. (25a)-(25d) to the form-factor basis [cf. Egs. (18)
and (33)], which requires oc N?N2N,, NN, floating point
operations. We use a parallel code where each process
performs the transformation and solves the ladder equa-
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FIG. 8. Self-energy at the nodal (left) and anti-nodal (right)
points for U/t = 4 and T/t = 0.5. Triangles show the BEPS
result for various cutoffs N, of the truncated unity (top pan-
els: Ny, = 13). Full (dashed) black lines show DiagMC@DF
(DDMC), crosses indicate the ladder dual fermion approxi-
mation. Bottom panels show a closeup of v = 7T

tions (23) and (24) for one momentum energy ¢ = (q,w),
but the numerical effort still scales o« N7 N2ZN? for each
process. In the applications we set the lattice size to
8 x 8 and 16 x 16 sites, but a 32 x 32 lattice is feasi-
ble [98]. To further increase the lattice size it is appealing
to port the implementation to GPUs [43]. The method is
memory-efficient, indeed, the largest object stored dur-
ing calculations is the fermion-boson vertex A(k,q) of
size N, NN, Ny, which is in turn split into Ny N, pieces,
hence, each process handles only a vector of length N, IV,,.
Further, the numbers N, and N, of Matsubara frequen-
cies and the number N, of form-factors can be kept small
compared to other schemes, as discussed in Sec. II E.

Several symmetries are used to improve the perfor-
mance: The point-group symmetry [87] implies that
A(k,q) is invariant when we project the momentum k
into the irreducible Brillouin zone and apply the same
symmetry operation to q [99]. Time-reversal and SU(2)
symmetry [37, 76] imply S(¢,¢',q) = S(¢',¢,q) for the
expensive ladder kernel and we evaluate only a triangle
of this matrix.

III. BENCHMARKS AT HALF-FILLING

We apply the BEPS method to the half-filled Hub-
bard model (2) with nearest-neighbor hopping, inter-
action U/t = 2,4,8 and temperatures T/t = 0.5 and
T/t = 0.2. The lattice size corresponds to 8 x 8 sites at
T/t = 0.5 and 16 x 16 sites at T/t = 0.2. The Matsubara
cutoff for Egs. (26) and (29) is N, = N, = 14. The lad-
der equations (23) and (24) are evaluated using N, = 8
fermionic frequencies. Appendix E shows an example for
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FIG. 9. U/t = 4,T/t = 0.5. Real and imaginary part of
the self-energy in the Brillouin zone at the first Matsubara
frequency v = nT. BEPS self-energy shown for N, = 13.

the frequency convergence of BEPS. We use 1 < N, < 13
form-factors.

A. Lattice self-energy at weak coupling

We begin with a quantitative comparison of the lat-
tice self-energy (15) with results from the literature for
weak coupling U/t = 2 and temperature T/t = 0.2.
Here, Ref. [45] recently reported results from the par-
quet dynamical vertex approximation (parquet DI'A)
and compared them to the truncated unity approxima-
tion (TUPS-DT'A). As a numerically exact reference we
use a determinant quantum Monte Carlo (dQMC, [100])
result of Ref. [95]. The top panel of Fig. 7 shows a good
agreement of BEPS with both dQMC and DI'A.

The bottom panel of Fig. 7 shows the convergence of
BEPS and TUPS-DT'A with the number of form factors
Ny. As explained in the previous sections, the working
hypothesis of the BEPS method is that it is beneficial to
use the truncated unity approximation only for the resid-
ual vertex @V of the SBE decomposition (16) because
it should lead —per construction— to a fast convergence
with the number of form factors. Indeed, in this regime
BEPS essentially converges with only one form factor,
Ny = 1. The slower convergence of TUPS-DI'A com-
pared to BEPS is a consequence of the different use of
the truncated unity approximation in these methods (see
Sec. IID).

B. Lattice self-energy at strong coupling

Ref. [101] presented a stochastic sampling of dual
fermion diagrams (DiagMC@DF), with the usual trun-
cation of the effective three-particle interaction. Supple-
mental material of the reference contains a comprehen-
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FIG. 10. Self-energy at the nodal and anti-nodal points for

U/t =8 and T/t = 0.5. Labels as in Fig. 8.

sive dataset, also in comparison with numerically exact
diagrammatic determinant Monte Carlo (DDMC, [102]).
This gives us the opportunity to compare the BEPS
method over a wide parameter range, in fact, one of the
techniques used in Ref. [101] is numerically exact for lat-
tice fermions (DDMC), the other for dual fermions with a
quartic interaction potential (DiagMC@DF). Therefore,
the DiagMC@DF data correspond to the target result,
provided it is converged with respect to the perturbation
order. We show the results of Ref. [101] corresponding
to order O(6).

Fig. 8 shows the imaginary part of the self-energy
at the antinodal and nodal points for U/t = 4 and
T/t = 0.5. The bottom panels show that the BEPS
self-energy is again almost independent of the number
of form factors 1 < N, < 13. As expected, the BEPS
results lie closer to DiagMC@DF than the self-energy of
the ladder dual fermion approach (LDFA, [28]). Fig. 9
shows real and imaginary part of the self-energy at the
first Matsubara frequency along the I' — X — M —I" path
in the Brillouin zone. In case of the real part, there
is a good agreement between DDMC, DiagMC@DF and
BEPS, whereas for the imaginary part the dual fermion
methods are consistent with each other but show a small
low-frequency offset compared to DDMC. This can be
reasonably ascribed to the truncation of the dual fermion
interaction after the quartic term [101].

We turn to the delicate regime U/t = 8, see Figs. 10
and 11, where for T/t = 0.5 we find a slightly stronger
dependence of the BEPS result on the number of form
factors. At the node and antinode the results for different
N, extrapolate accurately to DiagMC@QDF, see bottom
panels of Fig. 10. Fig. 11 shows that in some parts of
the Brillouin zone the BEPS result lies closer to DDMC
than to DiagMCQDF, however, the latter is not fully
converged with respect to the perturbation order [101].
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FIG. 11. U/t =38,T/t = 0.5, labels as in Fig. 9. Notice that

the DiagMC@DF result of Ref. [101] (dashed blue) is not fully
converged in the expansion order.

C. Fermion-boson coupling

We analyze a key quantity of BEPS, the fermion-boson
coupling A(k, q) defined in Eq. (26),

Ak, q) = A(v,w) + A" (k, g). (34)
The hybridization of the AIM (3) corresponds to the
DMFT solution, which provides the local vertex A in
Eq. (8), and the BEPS method adds nonlocal corrections.
At half-filling \ is real, A™™°¢ is in general complex. We
set U/t = 2, T/t = 0.2 and examine the coupling AP of
fermions to spin fluctuations, this vertex plays a role in
the spin-fermion model [70, 72].

We begin with the local component AP(v,w = 0)
drawn in the top panel of Fig. 12, which is suppressed for
small |v| compared to its non-interacting value 1. This
effect is the result of particle-particle (Kanamori) screen-
ing [72, 103], which can be seen explicitly by calculat-
ing the contribution of singlet fluctuations to AP [104],
see green curve in the top panel of Fig. 12. The singlet
fluctuations are given by the impurity SBE vertex VPP
in Eq. (10). The next largest vertex correction corre-
sponds to an enhancement of A due to (vertical) spin
and charge boson exchange (red), V", whereas the con-
tribution of the (local) residual vertex V" is small in the
considered regime (blue) [105]. As a result, DMFT pro-
vides a local Kanamori screening of fermions from spin
fluctuations as a starting point for the BEPS calculation.
One may note that our analysis of AP corresponds, quite
literally, to a fluctuation diagnostic [30] of the fermion-
boson coupling.

Next, we examine the nonlocal corrections, the bottom
panel of Fig. 12 shows AP°"ee®(k v = 7T, q,w = 0)
where k corresponds to the antinode or node and the
bosonic momentum q runs along the high-symmetry path
of the Brillouin zone. Around q = (7w, n) the nonlocal
component is negative, corresponding to the screening
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0) (gray) for a DMFT calculation at half-filling, U/t = 2
and T/t = 0.2, corresponding to the BEPS self-energy in
Fig. 7. Colored lines show the vertex corrections which yield
the frequency dependence of A°P (see text). Bottom: Nonlocal
component at node and antinode as a function of q.

of fermions from bosons with this momentum, which
is added to the Kanamori screening from the impu-
rity model discussed above. In the considered regime
Arorloesp does not exhibit appreciable differentiation
with respect to the fermionic momentum k, this occurs
only at low temperature, in the pseudogap regime [98].

IV. BENCHMARKS AWAY FROM
HALF-FILLING

We depart from half-filling and show in Figs. 13 and 14
two benchmarks of BEPS against DiagMC@DF at inter-
action U/t = 4 and temperatures T/t = 0.5 and 0.2,
respectively. The density is set to n &~ 0.76. The Matsub-
ara cutoff corresponds to the half-filled case (see Sec. III).
In both calculations the lattice size is 16 x 16 sites, re-
sults are shown for Ny = 5 form factors. Differences to
calculations using Ny = 1 or Ny = 9 form factors are in-
discernible (not shown), underlining once again the rapid
convergence of BEPS with the form factors and the short-
ranged property of the residual vertex ®U' also away
from half-filling. At T/t = 0.5 the agreement of BEPS
and DiagMC@DF is excellent. It is also reasonable at the
lower temperature T/t = 0.2, but the statistical error of

11

—~ -0.2 ; ;
E BEPS
-0.24  DiagMCG@DF - .

i -0.28 | ]

032 | oY R

ReX™ (k, v

-0.36 : :

-0.36 . o

-0.44 -

Im¥"® (k, v = 7T

-0.48 : :
r X M r

FIG. 13. U/t = 4,T/t = 0.5,n ~ 0.76. Real and imagi-
nary part of the self-energy in the Brillouin zone at the first
Matsubara frequency v = #n'T.

— -0.15 T T
E oz BEPS
I ¢ | DiagMC@DF ----- D

N 025 |

S
w
SESESEcEc R

ReX'™ (k,

-0.35 o Ll

0.4 . .
015 = ; .

0.2 b o= e 1

(k,v=nT

3
N
E 025 ' '

T X M r

FIG. 14. U/t =4,T/t =0.2,n = 0.76. Labels as in Fig. 13,
various expansion orders of DiagMC@DF' are shown in blue.

DiagMC@DF, its variation with the perturbation order,
and a difference in the densities [106] preclude a state-
ment about the accuracy of BEPS for these parameters.

Finally, we note a peculiarity of the BEPS method that
may somewhat impede its practicality in the short-term.
The method requires the complete two-, three-, and four-
point information of the AIM (3), including the particle-
particle three-leg vertex A of the singlet channel and
the corresponding susceptibility x®, defined in Eqs. (9)
and (6), respectively. At half-filling we use a segment
code [79, 81] and obtain the particle-particle quantities
from the charge channel via particle-hole symmetry [59],
however, the doped case requires their measurement in
a suitable CTQMC implementation. We are unaware of
a segment code [78] that could handle the pair operator
crcy and we instead rely on the worm-sampling of the



W2DYNAMICS solver [80, 107, 108], which has however
a larger statistical error than the segment code. A better
treatment of the particle-particle quantities is desirable,
for example, by using improved estimators [109], exact
diagonalization [27, 108, 110], or the numerical renor-
malization group (NRG, [111, 112]).

V. CONCLUSIONS

We have introduced and applied to the two-
dimensional Hubbard model a method for the summation
of parquet diagrams for dual fermions [44] which sub-
stantially reduces the computational cost and increases
the feasibility with respect to previous approaches. The
method makes use of the fact that the partial bosoniza-
tion [52] of the dual vertex function, formalized in terms
of the recently introduced single-boson exchange (SBE)
decomposition [59], can be combined in a fruitful way
with the traditional parquet formalism [32, 33]. Namely,
as shown in the Appendices of this manuscript, the par-
quet approximation for dual fermions can be cast exactly
into a set of parquet expressions for the residual ver-
tex defined after the SBE decomposition explicitly treats
single-boson-exchange diagrams.

This is a significant improvement because of useful
properties of the residual vertex. In particular, it decays
fast both in terms of Matsubara frequencies ([37, 59, 60],
cf.  Appendix E) and in terms of distances in the
real space. The latter property invites a truncated
unity approximation [45] at the level of the residual
vertex, whereas the full momentum-dependence of the
single-boson exchange is retained. As a result, we find
across different parameter regimes that the electronic
self-energy converges rapidly with the number of form
factors taken into account, and significantly faster than
in the TUPS method introduced in Ref. [45]. As for
the frequency domain, we follow a similar philosophy of
Ref. [43] by evaluating the corresponding parquet expres-
sions only for a small number of Matsubara frequencies.
Our approach, however, preserves the essential spectral
information of the underlying physical systems.

In this work we have mostly focused on the description
of the approach and to a preliminary application for the
Hubbard model on up to 16 x 16 lattice sites. In fact, we
can currently reach a 32 x 32 lattice [98] and numerical
aspects of the implementation can be further improved.

To highlight that our method corresponds to a merger
of the SBE decomposition with TUPS, we coin it boson
exchange parquet solver (BEPS). As it has been recently
shown [113], the versatility of the BEPS formalism allows
for its application also to parquet-based approaches, such
as the parquet approximation [34], the DT'A [27] and/or
the QUADRILEX [114] formulated in terms of the origi-
nal (i.e., non dual) fermionic variables. In this way, most
of the numerical advantages described in this paper be-
come available to all the abovementioned schemes. In
this respect, let us note that while the physical content
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of a given parquet-based approach will not be excessively
affected by the choice of formulating it in terms of the
original or of the dual degrees of freedom, the latter pro-
cedure offers specific technical advantages, especially in
the intermediate-to-strong-coupling regime.

In fact, the dual-fermion formulation of parquet-based
schemes allows -per construction- to fully bypass the mul-
tiple divergences of the (local) two-particle irreducible
vertex, whose occurrence is rather ubiquitous in the
phase diagrams of many-electron problems [31, 61—
66, 115, 116]. As a result, the corresponding parquet de-
composition [31, 117] of the electronic self-energy as well
as of physical response functions remains well-behaved at
strong coupling, alleviating convergence problems of the
parquet solver in regimes relevant for the experiment [43].

We also notice how the developments that we pro-
posed are intertwined with the functional renormal-
ization group methods (fRG). Two techniques often
employed in the fRG framework, namely the partial
bosonization [52, 118] and the truncated unity approx-
imation [45, 46, 87, 95, 119] are indeed instrumental
to construct BEPS. Vice versa, elements of our method
could be useful for the fRG, in particular, we find it plau-
sible that a multi-loop fRG for dual fermions in com-
bination with partial bosonization could be cast into a
calculation scheme with properties similar to BEPS. In-
deed, for lattice fermions the multi-loop fRG corresponds
exactly to the summation of the parquet diagrams [120-
123]. The groundwork for a combination of the fRG with
strong-coupling theories like DMFT or dual fermions was
laid in Refs. [124-126].

The methodological advancement provided by BEPS
appears promising for extending the applicability of
state-of-the-art parquet and fRG schemes to the most
interesting regime of intermediate-to-strong local and
nonlocal correlations. In particular, we note that the
BEPS implementations might considerably improve our
non-perturbative description of the interplay between
competing fluctuations, such as those originating from
commensurate as well as incommensurate magnetic and
charge instabilities, or diverse pairing instabilities. In
fact, while some of the these transitions have been in-
vestigated in the past within the ladder approxima-
tion [3, 9, 127, 128], only a parquet treatment with suffi-
cient momentum resolution might yield an equal-footing
description of all competing fluctuations at play. Rather
straightforward generalization of the procedure should
also allow for the description of more complex magnetic
instabilities, such as those towards a spin-spiral order.
On a longer-term perspective, BEPS might also pro-
vide a favorable framework to include non-local correla-
tions on top of DMFT in magnetically/excitonic ordered
phases [129-133], as well as to treat multi-orbital sys-
tems [134] beyond the ladder approximation [135-137].

At the same time, it is questionable whether parquet
resummations of nonlocal correlations can at all cap-
ture the resonating valence bond state or the spin-liquid
phase. These applications may require a cluster exten-



sion of BEPS to recover the short-ranged singlet physics
nonperturbatively, in the spirit of the so-called multi-
scale approaches [138]. Further, we expect that the con-
vergence of the truncated-unity approximation applied
to the residual vertex ®U™ may be slowed down when
this vertex develops a strong momentum dependence. In
the applications of the BEPS method it is therefore still
important to carefully verify the convergence of key ob-
servables with the number of form factors.
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Appendix A: SBE decomposition for dual fermions

We explain how the SBE decomposition derived in
Ref. [59] can be formulated for dual fermions.

1. Irreducible generalized susceptibility

First, we define a dual generalized susceptibility as

a _ 0 2 0 [} 0
ka/q —ka/q+ kaquklkqukzk/q’ (Al)
k1ko

where F is the full vertex and X2, = NBGy G40k is
the bubble of dual fermions, respectively. We denote as
I'Ph the two-particle self-energy, i.e., the vertex which is
irreducible with respect to horizontal particle-hole pairs.
The generalized susceptibility satisfies the ladder equa-
tion

X = X0 4 XOTPh X, (A2)

where we adopted a matrix notation with respect to the
indices k, k’. Labels «, ¢ are dropped.

The goal is to separate from X and F' the diagrams
that are reducible with respect to the Hubbard inter-
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action U, where we begin with the horizontal particle-
hole channel. For lattice fermions these reducible con-
tributions arise from the leading term U of the two-
particle self-energy [74]. However, the dual two-particle
self-energy I'?" has many more U-reducible contribu-
tions, since its leading term is the full vertex f of the
AIM (3). The U-reducible contributions V?”* of the hor-
izontal particle-hole channel can be separated off,

S = Ui+ VUG (A3)
Hence, we subtract the U-reducible diagrams from the
two-particle self-energy, S,’:Z/ = Fiz, —VP",  and define

vv'w?

the following V-irreducible generahzed susceptibility,
I =X°+ XSP 1L (A4)

The reducible and irreducible generalized susceptibilities
are related as follows,

X =M+ 9%,

& Xiwrg =g + Y Mk gV Xbaigy (D)
kiko

where the summation over matrix elements was made
explicit in the second line. We can now make use of the
fact that VP" depends on v and v/ separately, V’;Z,w =
ASL WA, where A is defined in Eq. (8),

rw (JJ v'w?

ka/q :Hkk’q + (Z Hkqu)\ulu.J) Wy, <Z )\ngXk,Qk/q> .
kl k'2

(A6)

This relation shows that if we take a trace ), over two-
particle correlation functions for dual fermions, it is nat-
ural to attach the impurity Hedin vertex A first. We do
this when we take the trace over k, &k’ in Eq. (A6),

qu = Mo Xiwghvw = O Mwllierg A (A7)
kk’/ kk’
+ (Z AuwHkquAV1w> Wy (Z Aqungk’un’w> .
kkq kak’
We further define,
Hq = Z )\VwHk:k’q)\V’wa (AS)

Kk
and hence arrive at the algebraic relation,

21T«
Xo—-_ "9 A
g 1 —wgIly (A9)

The quantities X and IT naturally define the susceptibil-
ity and polarization of the dual fermions.



2. SBE vertex

Now we separate the U-reducible contributions from
the full vertex F'. To this end, we define a vertex part

for the irreducible generalized susceptibility, similar to
Eq. (A1),

Y h,
(lgk’q = ng’q + Z Xlgk1quflkSle(c)2k’q‘ (AlO)

kiko

We insert this relation and Eq. (Al) into Eq. (A6) and
cancel all bubbles X°, leading to the relation,

h,« a,red
Fflog = TINS + AZwl AL,

kk’q kq®w (All)

where we defined the three-leg vertices A and A™9 as,

XPyA kg = > kg Ao, (A12)
k1

AESXR0 =Y N Xkahrg- (A13)
k2

We like to eliminate A*™¢ in favor of A in Eq. (A11) and
from Eq. (A6) it follows indeed that Affqd = Ape/(1 —

w11, ), hence

(% h,O( [0 « (o9
Fk‘k/q = T/fk/q + Aquq Ak/q, (A14)

where we defined the dual screened interaction as,
«

w
We = _—¥ A15
g 1 — wglly ( )

Finally, in Eq. (A14) we identify the SBE vertex of the
horizontal particle-hole channel, i.e., Eq. (17a),

h,a _ A« apAQ
Apre = AW AL . (A16)
Combining Egs. (A12) and (A10) leads to
b= N+ D Thy GrGieadle,  (A1T)
k;/

and using Egs. (A14) and (A16) we arrive at Eq. (26) in
the main text. o

The remaining task is to find the vertices AP* and APP
of the vertical particle-hole and particle-particle chan-
nels, respectively. The first follows from the crossing re-
lation in Eq. (19), the derivation of the latter proceeds
along similar steps as in the Appendix of Ref. [59], lead-
ing to Eq. (17b) [and Eq. (20) in particle-hole notation].
Removing AP" AP and APP from the full dual vertex
function F', and taking care of their double counting of
the bare interaction [59], we call the remainder ®Y'* and
arrive at the SBE decomposition in Eq. (16).
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Appendix B: Relation to parquet formalism

We relate the SBE decomposition to the parquet for-
malism. The traditional parquet equation for the full
vertex reads in particle-hole notation,

« _ Afirr,o T ph,a
Fig =N + ®he (B1)
_1 Fph,ch o 3 - 45047513 i)ph,sp
2 k.k+q,k'—k 92 k,k+q,k'—k
+1 - 25a,8p PPPs + 3— 25a,8p Prpt
2 kk' k+k'+q 2 kK’ k+k"+q"

Here, A is the fully irreducible vertex in the sense of
the traditional parquet formalism [37], which implies it
is irreducible with respect to insertions of particle-hole
and particle-particle pairs. The vertices ®P"(P) are re-
ducible in this sense (either in a particle-hole or particle-
particle channel). All quantities which are reducible or
irreducible in the sense of the traditional parquet formal-
ism are marked with a tilde. In particular, Af™, & should
not be confused with the vertexr ®Y™ which is (fully) ir-
reducible with respect to the bare interaction U [59, 76].
A closed set of equations is obtained in combination with
the Bethe-Salpeter equations,

(B2)
(B3)

o  _1wpha | Epha _
Fiq —Fkk,q —|—<I>kk,q, «a = ch, sp,
5 _1wppd | Fpp,d _
Fkk’q _Pkk’q—i_@kk'q’ 5—S,t.
where I is irreducible with respect to particle-hole or

particle-particle pairs. In the SBE decomposition the
vertex is split according to Eq. (A14),

h, h,

Fkak,/q :T]fk,qa + AZ}C/Z" (B4)
5 8 )6

Fk‘k/q :T]f]f/q + Aizk):/q' (B5)

The vertices T are irreducible with respect to the bare
interaction in a particular channel (and therefore APPt =
0 for the triplet channel), they obey the following Bethe-
Salpeter-like equations [cf. Eq. (A4)],

h,a _ ¢ph, h,
Tir'q =Skwq + Mg (B6)
S _app,d 8
Tipia =Spie + Mipie, (B7)
where the vertices S and M are defined as [139],
h,a _1ph, h,
Siwiq =Lrwg — Vivies (B8)
0 __Tpp,0 ,6
Szk):z/q _le;z/q - Vgﬁ’oﬁ (Bg)
h, h, h,
Mpye =" S Grn G g TENS (B10)
k//
1
6 )8 )0
MIIC)]Z;’(] - $ 5 Z S]Z{)Z//qu”Gqfk//T]f/l/)k/q- (B].l)
k)//

We now express the reducible vertices ® of the tradi-
tional parquet formalism in terms of the new vertices M.



Combining the previous equations we arrive at,

QUL =ADLS — VP 4+ MEY, (B12)
QY = AR — P+ MDY (B13)

which leads to MPP-* = PP for the triplet channel.

Appendix C: Parquet approximation

We reformulate the parquet approximation for dual
fermions in terms of parquet expressions for the resid-
ual vertex ®Y"". The parquet approximation for dual
fermions corresponds to,

Agll;l;q ~ fVV'uM (C].)
that is, the fully irreducible vertex of the traditional par-
quet formalism is given by the full vertex of the impurity
model. We insert this approximation and Egs. (B12)

and (B13) into the parquet equation (B1) and compare
with the SBE decomposition (16),

o Uirr,« h,a
Fkk’ _q)kk’ + AZk’q (02)
3—46
h,ch h,
Ai kiq k—k 2 - Ai k?q,k’
1 Vs .
+%A£€i’sk+k'+q 2U = Eq (Bl)

Using also the corresponding SBE decomposition for the
impurity vertex f in Eq. (10) all vertices V, A and the
bare interaction U cancel out, and we arrive at the fol-

J

Z ¢(£17 k)Mph(k7 k + q, k/
kk’
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lowing parquet expression,

Uirr,a __ Uirr,« ph,o
(I)kk’ =Puviw + Mkk/q (03)
1 ph,ch 3— 450’ »SP Mph Sp
- kk+q,k'—k k,k+q,k"—k
2 2
1= 20p s 3= e )
2 kk' k+k'+q 2 kk! k+k'+q"

This corresponds to an exact reformulation of the parquet
approximation for dual fermions. For the evaluation we
further need the ladder kernel S. We use Eqs. (B4)-(B7)
and Eq. (C2) to express the particle-hole kernel SP" in
Eq. (B8) as

ph,o Uirr,« ph,o
Skk:’ (I’klc’ Mkk’q
3 — 46

h,ch a,sp h,
A = T A
1— 26
+%Az§g hwq — 207 (C4)

Similar steps lead to Egs. (25¢) and (25d) for the particle-
particle channels.
Appendix D: Ladder kernel in form-factor basis

We show in an exemplary way the calculation of the
different components of the ladder kernel in Egs. (25a)-
(25d) in the form-factor basis. For the particle-hole ker-
nel (we drop frequency and flavor labels),

=Y Wtk

kk’

SPh (01,85, q) k)SP" (k, K/,

Q) (£2,X'). (D1)

We use the truncated unity to avoid the full momentum-
dependence of four-point vertices. For example, following
Ref. [45], the contribution of the MBE vertex MP" on the
right-hand-side of Eq. (25a) can be brought into the form,

— k)Y (£a, k')

= Zw £, X)M?"(S[k],S[k + q, Slq']) v (€2, k + )

—ZZML

kq' €3£4

= Z Z \I’S(£1a£27£37’£47 qlaq)Mph(’e3a£478[q/])

q’ L3£y

From the first to the second line we performed a shift
q’ = k' —k and introduced a symmetry operation S of the
point-group, which is chosen to project the momentum
q’ into the irreducible Brillouin zone (the same operation

(s, S[k]) MP" (€3, €4, S[q'])9(ba, Slk + a])v (€2, k + d)

(D2)

(

therefore needs to be applied to the other two momentum
arguments of MP", see Ref. [87]). In the third line MP"
was transformed into the form-factor basis. In the fourth
line the four form factors were collected in the quantity,



Us(ly, 2,05, 85,9, q) =Y _ (L1, K)(La, k + o' )ib(Ls, SK])(Ls, Sk + ).

k

In practice this quantity is calculated once at the begin-
ning of the calculation, keeping only a number N, of form
factors. The symmetry operation S allows to perform
the summation over q’ in Eq. (D2) only over the irre-
ducible Brillouin zone rather than the full one. The other
components M of the ladder kernel S are handled analo-
gously. In this way, we avoid the storage of the MBE ver-
tex M(k, k', q) of size NZN™ and store only M (£, £, q)
which has the size NEN;”, where N;” ~ Ng/8 is the size
of the irreducible Brillouin zone, see Ref. [87] for further
information. On the other hand, the full momentum-
dependence of the SBE vertex A(k,k’, q) can be stored
efficiently, since it is parameterized by the fermion-boson
coupling A(k,q) and the screened interaction W(q) [cf.
Sec. IID]. Hence, at each iteration we calculate the con-
tribution of A to S explicitly, performing the k, k’ sum-
mations in Eq. (D1) [140].
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(D3)

Appendix E: Frequency convergence

Fig. 15 shows the convergence of the BEPS self-energy
with the Matsubara cutoff N,, = N, for a calculation at
half-filling, U/t = 2,T/t = 0.2. The lattice size is set
to only 8 x 8, leading to a finite-size effect, and we use
only one form factor , which is however not relevant for
the frequency convergence. In the case that a Matsubara
label exceeds the cutoff the respective quantity is set to
a default value, namely, G - G°, ¥ =0, A = 1, W* =
U, &Y — 0. M — 0 (fermionic Matsubara indices of
four-point vertices like @V and M run from —N,, /2 to
N, /2—1). Only the quantities YPMFT and g, are defined
on a larger Matsubara grid (64 frequencies in practice).
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