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We analyze multi-orbital Hubbard models describing Hund’s metals, focusing on the ubiquitous
occurrence of a charge instability, signalled by a divergent/negative electronic compressibility, in a
range of doping from the half-filled Mott insulator corresponding to the frontier between Hund’s
and normal metals. We show that the breaking of rotational invariance favors this instability: both
spin-anisotropy in the interaction and crystal-field splitting among the orbitals make the instability
zone extend to larger dopings, making it relevant for real materials like iron-based superconductors.

These observations help us build a coherent picture of the occurrence and extent of this instability.
We trace it back to the partial freezing of the local degrees of freedom in the Hund’s metal, which
reduces the allowed local configurations and thus the quasiparticle itinerancy. The abruptness of
the unfreezing happening at the Hund’s metal frontier can be directly connected to a rapid change
in the electronic kinetic energy and thus to the enhancement and divergence of the compressibility.

I. INTRODUCTION

Materials with strong correlations between the valence
electrons display very rich phase diagrams in which a
variety of conventional and novel phases of matter com-
pete and can be switched on and off via small changes
of control parameters, as doping, temperature, pressure,
strain.

A possible unifying principle behind the richness of
correlated phase diagrams emphasizes the intrinsic weak-
ness of the metallic state which makes it unstable in dif-
ferent channels. While the specific form of the broken-
symmetry states can depend on material specifics such
as Fermi-surface nesting or other properties of the low-
energy electronic states, identifying an intrinsic and gen-
eral mechanism of instability which descends directly
from strong electronic correlations would be a precious
tool to explore the landscape of correlated materials.

These concepts have a long history which is strongly
intertwined with high-temperature superconductivity. In
particular, studies of the two-dimensional single-band
Hubbard and t − J models motivated by superconduc-
tivity in copper oxides have shown a tendency towards a
divergence of the charge compressibility1–3, which leads
to phase separation. Such instability can be the driving
force behind the observations of charge-density waves and
it has been proposed even as the trigger or a booster of
the superconducting state4. In this frameworks phase
separation has been indeed found in various decorations
of the Hubbard model5.

More recently, a new page has been written after the
discovery of iron-based superconductors (FeSC). These
materials have indeed triggered the introduction of the
new concept of ”Hund’s metal”. This name first appears
in Ref. 6 and highlights the fundamental role played by
the intra-atomic exchange energy in shaping the metallic

properties of these compounds and their degree of corre-
lations.

The properties of the Hund’s metal and of the crossover
which separates it from a more conventional metal have
been discussed in a number of papers (Refs. contex-
tually discussed in section II). Among the distinctive
features of these systems we find it worth to mention
interaction-resilient metallic phases, orbital-selective cor-
relations and anomalous magnetic properties.

Furthermore, Ref. 7 reports the existence of a charge
instability zone in the phase diagram of Hubbard-Hund
models with different number of orbitals, which was later
confirmed in realistic DFT-based simulations of several
iron-based superconductors (FeSC), like BaFe2As2, FeSe
(both bulk and monolayer)8 or their Chromium analogs9.
Remarkably, phase separation has been directly found by
experiments in this family of compounds10.

In this work we extend the picture of the charge in-
stabilities of multi-orbital Hubbard models considering
different interaction Hamiltonians and including pertur-
bations such as crystal-field splitting and we find that
Hamiltonians with a lower symmetry between orbitals
display an enhanced tendency towards phase separation.
More precisely the phase separation region is wider in
doping for density-density interactions than for the rota-
tional invariant Kanamori and it increases as a function
of the crystal-field splitting.

These new results help us identify the cause of the in-
stability in multi-orbital models in terms of the quench-
ing of the kinetic energy in the Mott insulating solution at
half-filling, and in its sudden release at a doping, along
the Hund’s metal frontier. The extremal value of this
frontier grows with the value of this quenched kinetic en-
ergy.

This paper is organized as follows. Sec. II introduces
the main theoretical ideas, emphasizing the connection
between the Hund’s driven correlation and charge insta-

ar
X

iv
:2

00
9.

04
30

4v
1 

 [
co

nd
-m

at
.s

tr
-e

l]
  9

 S
ep

 2
02

0



2

bilities. In Sec. III we introduce the models and the
methodology. Secs. IV and V present respectively results
on the role of the symmetry of the interaction term and
on the effect of a crystal-field splitting. Sec. VI discusses
our interpretation of the results in terms of the kinetic
energy of the system and in Sec. VII we show that the
larger instability zone found in the simulation for FeSe
monolayer compared to the one for the bulk compound
can be explained in terms of the enhanced crystal-field
splitting found in the bi-dimensional case. Conclusions
and general remarks are in Sec. VIII while the Appen-
dices A and B report details on the slave-spin calculations
illustrating the way the kinetic energy can be quenched
and released depending on the degeneracy of the local
many-body configurations, which is the mechanism at
work highlighted in this paper. Appendix C shows how
the width of the Hubbard bands is affected by this same
mechanism.

II. HUND’S METALS AND CHARGE
INSTABILITIES

In this section we briefly review the main concepts
defining a Hund’s metal which are essential to build an
understanding of the phase separation instability.

When the description of a solid requires to use open-
shell multi-orbital systems the theoretical modeling needs
to include the atomic exchange coupling. The latter is
often called Hund’s coupling because it is responsible of
the so-called Hund’s rules, i.e., of the fact that the ground
state configuration of a degenerate atom is the one where
the total spin is maximal and, as a second condition,
the orbital angular momentum is maximized. This ef-
fect has now been taken into account in the treatment
of magnetism and orbital order in insulating solids for
many years, while the paramount influence on the con-
duction electrons in strongly correlated metals has been
highlighted only recently11.

In the standard band theory description the electronic
many-body wave function is a simple (anti-symmetrized)
product of individual Bloch functions, implying absence
of correlations between the electron positions: in partic-
ular, no reduction of the probability for two or more elec-
trons being close to one another is accounted for, besides
the one implied by the Pauli principle. Expanding the
wave function on a basis of local spin-orbitals this means
that all possible local configurations (in which any num-
ber of electrons occupies any subset of the spin-orbitals
at a given site) are realized, with a probability which is
simply the product of the probability of each spin-orbital
to be occupied in the single-particle Bloch functions. For
instance, for a set of degenerate spin-orbitals (this degen-
eracy being set by the point-group symmetry in the solid
considered) at half-filling all possible configurations are
realized with the same probability. Any splitting of this
degeneracy, due to a reduction of the local crystal-field
symmetry, will result in a different probability of occu-

pation of the orbitals. This will indeed cause a different
combined probability for the presence of electrons in dif-
ferent spin-orbitals, but always in an uncorrelated way,
i.e., 〈nαnβ〉 = 〈nα〉〈nβ〉 (where α and β are any two local
spin-orbitals, and nα, nβ are the corresponding number
operators).

Interactions change this situation. Indeed the onsite
Coulomb repulsion U penalizes the local configurations
with total occupancy far from the average density, com-
pared to those closer to it, i.e., it reduces the onsite
charge fluctuations. This blocking effect directly com-
petes with the metallic behavior which is directly con-
nected with free charge fluctuations. In the following we
will discuss the outcome of this paradigmatic competition
in the paramagnetic state, assuming that no symmetry
breaking takes place, i.e., that any ordering tendency is
frustrated.

Indeed metals are not immediately destroyed by small
interactions as they can be described as Fermi-liquids
even for fairly large interaction strength. In a Fermi-
liquid, the metallic character is maintained asymptoti-
cally at zero temperature for the excitations of lowermost
energy, the quasiparticles. Their itinerancy is however
reduced by the availability of configurations allowing the
electrons to hop without an extra cost in energy. This
depends both on the value of U/t (where t is the electron
hopping amplitude in the system in absence of interac-
tions) and on the filling of the system. When U/t is
large enough and the filling is commensurate (i.e., there
is an integer number of electrons per site on average) the
quasiparticles vanish and metallicity is lost, obtaining a
Mott insulating state12–14. Irrespectively of the interac-
tion strength, doping the system away from a commensu-
rate filling necessarily induces extra sites with number of
particles different from the average, which restores metal-
licity.

Turning to the role of multi-orbital effects, it has been
shown that for models with M local orbitals the crit-
ical interaction strength necessary for the Mott tran-
sition Uc(M) increases linearly with the number of
orbitals15–18.

This is due to a subtle quantum effect: as we increase
the number of orbitals, we have an increasing number of
local configurations with the same number of electrons,
which remain degenerate if the model only features a
Hubbard-U repulsion which only measures the number
of electrons per site.

On very general grounds, these configurations can com-
bine in particular linear superpositions that have an
increased hopping amplitude with respect to the bare
atomic states. This implies that quasiparticles states
containing these configurations have an enhanced kinetic
energy allowing them to survive at larger U compared to
the single-orbital case.

In the Appendices of this paper we illustrate explicitly
these effects at half-filling (i.e., with a density of electrons
per site n = M), a particular case in which analytic
calculations are possible in the framework of one of the
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approaches used in this work, the Slave-Spin Mean-Field
(SSMF). Indeed in Appendix B we show that thanks to
this mechanism nearby the half-filled Mott insulator the
kinetic energy per orbital increases proportionally to a
factor M + 1.

A similar argument holds also for the atomic-like
charge excitations of energy U from the ground state,
which disperse more than in the one-band case , forming
thus wider ”Hubbard bands”19. In Appendix C we show
that in our description this effect is caused by the same
factor increasing the kinetic energy.

This brings us to the crucial role of the Hund’s ex-
change in this picture which turns out to be a reduction
of this ”extra” multi-orbital kinetic energy20. Hund’s
coupling J splits the local states in energy, in particu-
lar favoring the high-spin over the low-spin ones and for
each total spin the high-angular momentum ones. This
causes a reduction of the atomic degeneracy, reducing
the allowed hopping processes and thus the gain in ki-
netic energy associated with coherent superpositions of
the atomic states21. In Appendix B we estimate this re-
duction factor at half-filling as Ekin(J = 0)/Ekin(J) &
M + 1. Again, in Appendix C we show that the same
reduction applies to the width of the Hubbard bands in
presence of a finite J .

These effects, together with the fact that the J also
contributes to the distance in energy with the config-
urations of filling different from average, tune the Uc

for the Mott transition (Appendix B). In particular at
half-filling, since J widens this gap in addition to U22

(so that one can define an effective Coulomb repulsion
Ueff = U + (M − 1)J), these effects collaborate to re-
duce the critical coupling compared to the J=0 case for
every value of M, Uc(M,J) < Uc(M,J = 0).17,23–25

In this work we show that this quenching of the
multi-orbital ”extra” kinetic energy at half-filling causes
the charge instability zone of the Hund’s metal phase
diagram reported in Ref. 7 where the homogeneous
metal is unstable towards phase separation or charge-
ordered states. This zone - that could be of importance
for high-Tc superconductivity - was shown7 to exist in
Hubbard-Hund models with two, three and five orbitals
and in realistic first-principle-based simulations of several
iron-based superconductors (FeSC), like BaFe2As2, FeSe
(both bulk and monolayer)8 and also Chromium-based
counterparts9.

These realistic descriptions feature all the important
aspects of model calculations. In particular a non-zero
Hund’s coupling determines two main zones in a phase di-
agram defined by U and the filling: at small U and filling
far from half a moderately correlated metal; at large U
and filling closer to half a much more correlated ”Hund’s”
metal26–28. Upon crossing the frontier and entering
the Hund’s metal zone correlations increase and high-
spin configurations dominate this paramagnetic metallic
phase. Moreover for inequivalent orbitals the correla-
tion strength becomes orbital selective6,27,29,30 and even
orbital-selective Mott phases can happen, depending on

the filling and hopping structure25,29,31.

In general terms, the frontier between the Hund’s and
the standard metal is the place where a charge instabil-
ity is found. However its extension in the U -doping plane
turns out to be strongly dependent on the specific system
at hand. Orbitally symmetric models with featureless
semi-circular densities of states (DOS) were investigated
first7. There, it was found that the shape and extension
of the instability zone - marked by diverging and negative
electronic compressibility - is different depending on the
number of orbitals in the model. Indeed, for increasing
M it spans smaller U -ranges but larger doping ranges.
Moreover, in realistic simulations of 5-orbital materials
the instability zone can extend even as far as 1 electron
(or 1 hole) of doping away from half-filling, i.e., into the
region relevant for the stoichiometric Fe-based supercon-
ductors, and actually correlates positively with the ex-
perimental superconducting Tc in the cases investigated
thus far7–9 .

As a matter of fact, however, the instability zone still
varies from compound to compound, and one of the goals
of this paper is to clarify some of the trends found in ma-
terial simulations through a model study, at the same
time identifying the physical mechanism behind these
trends.

In particular, we here show that the diverging/negative
compressibility zone in the phase diagram:

• is wider in doping for density-density interac-
tions than for the rotational invariant standard
Kanamori form. In both cases however we find that
the maximum doping reached grows with the num-
ber of orbitals M ,

• is wider in doping when the orbitals are not de-
generate, the larger the crystal-field splitting, the
larger the doping range.

III. MODEL AND METHODS

We analyze a general multi-band Hubbard model with
M = 2, 3 and 5 orbitals, of which the Hamiltonian reads
Ĥ − µN̂ = Ĥ0 + Ĥint − µN̂ with:

Ĥ0 =
∑

i 6=jmm′σ

tmm
′

ij d†imσdjm′σ +
∑
imσ

εmnimσ, (1)

where d†imσ creates an electron with spin σ in orbital m =

1, . . . ,M on site i of the lattice, and nimσ = d†imσdimσ is

the number operator, N̂ =
∑
imσ nimσ, is the total num-

ber of electrons. Any band structure can be written this
way, but here we only consider the particular case of di-
agonal hopping in orbital space, equal for all orbitals i.e.,
tmm

′

ij = tijδmm′ . The chemical potential µ sets the aver-

age density of electrons per lattice site n = 〈N̂〉/Nsites.
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The interacting part of the Hamiltonian reads:

Ĥint = U
∑
im

ñim↑ñim↓ + U ′
∑

im6=m′

ñim↑ñim′↓ (2)

+(U ′ − J)
∑

im<m′,σ

ñimσñim′σ +

−αJ
∑

im6=m′

d+im↑dim↓ d
+
im′↓dim′↑

+αJ
∑

im6=m′

d+im↑d
+
im↓ dim′↓dim′↑,

where ñimσ = nimσ − 1/2 is a particle-hole symmetric
form of the density operators and customarily11 we set
U ′ = U − 2J . We will consider two cases for the interac-
tion: the Kanamori form Hint(α = 1) and its simplified
density-density term-only version Hint(α = 0).

We treat the α = 1 model using the Rotationally-
Invariant Slave-Boson mean-field (RISB) which can cor-
rectly treat the off-diagonal interaction terms and the
α = 0 model both with RISB and the Slave-Spin Mean-
Field approximation (SSMF). The technical details of
these methods are given respectively in Refs. 32 and
21. The two methods are known to coincide exactly in
specific cases (e.g., at particle-hole symmetry) but show
some very small differences in general. In all we will ex-
pose here these small differences are irrelevant, yet we will
underline which method was used for generating the data
shown in each figure. We will explore the typical physical
range of Hund’s coupling 0 < J/U < 1/3. When focusing
on specific values we have chosen J/U = 0.12 ÷ 0.15 for
the α = 1 case, which is typically found in correlated ma-
terials with 3d and 4d transition-metals, and J/U = 0.25,
a customary value which for the α = 0 also reproduces
well the physics of several materials (like FeSC) when
described with the α = 0 model within SSMF21.

We focus on the normal, non-magnetic, metallic phase
at zero temperature.

Both methods treat the model in a framework in which
the aforementioned local configurations are handled by
the auxiliary ”slave” variables (respectively bosons or
spin-1/2). The effect of the interaction on the local
configuration and on their relative weight is embodied
in a renormalization of the original hopping amplitudes
for the low-energy states of the system, so to describe
Fermi-liquid quasiparticle excitations through the effec-
tive Hamiltonian:

Hf − µN =
∑
kmσ

(Zmεk + εm − λm − µ)f†kmσfkmσ (3)

where f†kmσ is the creation operator of a quasiparticle
with momentum k, orbital (band) character m and spin
σ and εk is the bare electronic dispersion relation which
is the same for all the bands. We can characterize it
by its density of states, and we customarily choose a
semi-circular DOS D(ε) ≡ 2

πD

√
1− ( εD )2 of bandwidth

W = 2D for all bands. For this particle-hole symmetric
DOS and for the particle-hole symmetric form of Hint

obtained when expressed in term of the ñimσ, µ = 0
guarantees half-filling of the bands (in absence of crystal-
field splitting, or when the splitting is itself particle-hole
symmetric).

In the following section we study the evolution of the
zones of enhanced/divergent compressibility of the elec-
tronic fluid

κel =
dn

dµ
(4)

induced by Hund’s coupling, as a function of the type of
interaction, the crystal-field splitting and the number of
orbitals in the model.

IV. KANAMORI VS DENSITY-DENSITY
INTERACTION

In this section we compare the different extension of
the instability zone between the models with Kanamori
(α = 1) and density-density (α = 0) interactions. This
can help comparing two different interaction Hamiltoni-
ans which are both used in studies of models and mate-
rials and to highlight the role of rotational invariance in
the interaction.

We start with the results for a 2-orbital model, which
have already been shown in the supplementary material
of Ref. 7 and here are featured in Fig. 1. Here we report
the boundary of the zone of negative compressibility in
the plane of density and interaction for a number of dif-
ferent values of J/U . The compressibility, as visible from
the typical µ(n) curves reported in the figure, is found to
be positive and well behaved outside this zone; it diverges
on the frontier, and is negative between the frontier and
the n = 2 axis. The lowest border of the frontier de-
parts from the Uc where a Mott transition is realized at
half-filling.

Even if the evolution with J/U shows differences
among the two cases, a clear trend is obviously visible: at
each value of J/U the model with density-density inter-
action has a more extended instability zone. In particular
the instability extends in a larger range of densities.

This trend is confirmed both in the 3-orbital and in
the 5-orbital models studied in this work, for which we
study the α = 1 case for the first time, and compare it
to the α = 0 case. In Fig. 2 and 3 the curves µ(n)
are reported for selected values of U and J/U , and the
density-density model always shows a noticeably more
extended instability zone.

Interestingly the range of doping from half-filling, δ =
n −M , for which the instability is found increases with
the number of orbitals M .

We can conclude that, as in the case of density-density
interaction (α = 0) studied in Ref. 7 the zone of insta-
bility spans a larger and larger doping range the larger is
the number M of orbitals in the model. We also confirm
that in all cases the α = 0 model has a larger instabil-
ity zone than the corresponding α = 1 model, thus the
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Figure 1. 2-orbital Hubbard model. The two leftmost panels show, for the model with density-density interaction (α = 0 in
eq. 2) density vs chemical potential curves (left) for a typical value of the Hund’s coupling relative strength J/U = 0.25 and the
evolution of the instability zone in the interaction-density plane, for different values of J/U . The unstable zone is delimited by
the colored curves and the y-axis. Calculations performed within the Slave-Spin Mean-Field scheme (SSMF). Rightmost panels:
same for the model with Kanamori interaction (α = 1), calculated within the Rotationally-Invariant Slave-Bosons mean-field
scheme (RISB). Adapted from Ref. 7.

Figure 2. Same as in Fig. 1, but for the 3-orbital Hubbard model. Calculations performed within RISB mean-field. The color
code for J/U is the same in both phase diagrams.

Figure 3. Same as in Fig. 1, but for the 5-orbital Hubbard model. Calculations performed within RISB mean-field.The color
code for J/U is the same in both phase diagrams.
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breaking of the rotationally invariance of the interaction
enhances the instability region as a function of doping.

V. EXTENSION OF THE INSTABILITY ZONE
WITH CRYSTAL-FIELD SPLITTING

We now focus on the dependence of the phase sep-
aration instability on the crystal-field splitting between
different orbitals. This term obviously reduces the sym-
metry of the model by breaking the orbital degeneracy
at the single-particle level.

We start from the 2-band model, where the only pos-
sible splitting is given by the energy difference between
the two orbitals ∆ = ε1 − ε2. In our model where all
bands have identical bandwidth and DOS a finite ∆ > 0
implies a difference in band/orbital populations n2 > n1.
However, at half-filling this does not break particle-hole
symmetry, i.e., holes in one of the bands behave like elec-
trons in the other one and the two bands still show identi-
cal physics. In particular, they undergo a common Mott
transition as a function of U .

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.5  1  1.5  2  2.5  3

Z

U/D

εcf=(0,0)   
(0.1,0)
(0.2,0)
(0.3,0)
(0.4,0)

*
** * *

Figure 4. Quasiparticle renormalization factor Z (inverse
mass enhancement) as a function U/D in the 2-orbital Hub-
bard model with density-density interaction and Hund’s cou-
pling relative strength J/U = 0.25. The stars mark the value
of Z for U → Uc. Calculated within SSMF.

The net effect of the crystal-field splitting on the Mott
transition is to raise the critical interaction strength Uc

needed to get the Mott insulator. This is easily under-
stood in terms of the Mott gap EG = E(3)+E(1)−2E(2),
where E(N) is the energy of the atomic ground state
with N particles. Indeed in the 2-orbital model the en-
ergy of the local high-spin configurations with 2 particles
E(2) is untouched by a symmetric crystal-field splitting,
while half of the configurations with 3 or 1 particles are
lowered in energy, thus diminishing the Mott gap with
respect to the case with ∆ = 0. In the slave-spin for-
malism this is easily shown21 to tune also the low-energy
renormalization and one can analytically solve for the
Uc = 4ε̄0/(1 + j)(1 +

√
1 + (∆/4ε0)2), for a chosen value

of the fixed ratio j = J/U . This is an approximation to
the trend seen in Fig. 4 because it is calculated in pertur-
bation theory for a vanishing Z, which holds if a second
order Mott transition is realized. Here instead, as visible
in the figure, Z has a jump at the transition meaning
that it is actually of the first order. Nevertheless, the an-
alytic result can be taken as a guidance for the trend of
the 1st order transition. This result is also confirmed by
computationally heavier and more accurate Dynamical
Mean-Field Theory (DMFT)33.

For U > Uc, for every finite doping the breaking of the
orbital symmetry due to a finite ∆ introduces a difference
in the orbital behaviour. In particular the population is
different among the orbitals, and the degree of electronic
correlation associated to each orbital follows this differ-
ence, due to the emergent ”orbital decoupling”25,29,31,34.
This mechanism triggered by Hund’s coupling in prox-
imity to a half-filled Mott insulator decouples the charge
excitations in the different orbitals, rendering the Mott
physics and the degree of correlation of the orbitals al-
most independent of each other. In this situation we
can find orbital-selective Mott transitions (OSMT) where
some orbitals become Mott localized while others remain
metallic. In our model indeed, for any finite ∆ positive
doping populates first the band lower in energy, which
then becomes metallic, while the other remains half-filled
and Mott insulating33. This is the orbital-selective Mott
phase (OSMP) of which the frontier is marked in Fig. 5
and 6 by dot-dashed lines.

1

2

3

4

5

6

7

8

2 2.05 2.1 2.15 2.2 2.25 2.3

U
/D

ntot

εcf=(0,0)
(0.1,0)
(0.2,0)
OSMT

Figure 5. Phase diagram of the 2-band Hubbard model with
density-density interaction (α = 0, J/U = 0.25) and crystal-
field splitting ∆/D = 0, 0.1, 0.2 calculated within Slave-Spin
Mean-Field (SSMF). For doping below each dash-dotted line
the system is in an orbitally-selective Mott phase (OSMP)
with the band higher in energy insulating and the other metal-
lic. The zones limited by the colored lines and the dash-
dotted lines are unstable towards phase separation (negative
compressibility, diverging at the border with the correlated
multi-band metal at large doping).

In the two figures we see that the orbital-selective tran-
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sition line seems to ”chop” the zone of negative com-
pressibility which in this model occupies a large zone
for U > Uc and a range of doping around half-filling.
However if the doping is further increased, both orbitals
turn metallic and the OSMP turns into a two-band metal
which is still unstable towards phase separation in the
vicinity of the transition. In this sense, we can conclude
that the OSMT ”chops and pushes” the instability zone,
so that for large ∆ it takes rather the shape of a slice of
the original zone, moved towards somewhat higher dop-
ing.

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

2 2.02 2.04 2.06 2.08 2.1

U
/D

ntot

εcf=(0,0)
(0.2,0)
(0.4,0)
OSMT

Figure 6. Same as Fig. 5 (2-band Hubbard model) but with
Kanamori interaction (α = 1, J/U = 0.12) and crystal-field
splitting ∆/D = 0, 0.2, 0.4, calculated within Rotationally-
Invariant Slave-Bosons mean-field (RISB).

The same effect can be seen both in the α = 0 (Fig. 5
and in the α = 1 (Fig. 6) cases. The main difference is
that in the former the crystal field seems more effective
in chopping than pushing the instability towards higher
dopings, and the inverse happens in the latter instead.
For all values of ∆ however it can be observed that the
instability zone extends to larger dopings in the α = 0
case compared to the rotationally-invariant α = 1 case,
as it was already observed for the models without crystal-
field splitting in the above Sec. IV and in Ref. 7.

The same trends are seen for models with a larger
number of orbitals. For M > 2 one could consider differ-
ent crystal-field splittings separating the various orbitals.
In Fig. 7 the case M = 3 for a symmetric splitting
∆ = ε1 − ε2 = ε2 − ε3 is reported. It is found rather
similar to the 2-orbital case, however it is clear that, al-
beit narrowed in the U direction, the instability zone ex-
tends to a much higher doping than in the ∆ = 0 case,
the maximum doping reached being nearly doubled for
∆ = 0.2.

In Fig. 8 we report a typical result for the M = 5 case.
Since the 5-orbital model is relevant for the FeSC, here
we display the result for the case of a tetragonal sym-
metry, among the many possible crystal-field splitting

Figure 7. Same as Fig. 5 but for the 3-band model with
symmetric crystal-field splitting among the bands ∆ = ε1 −
ε2 = ε2 − ε3 for density-density interaction (α = 0, J/U =
0.25) within Slave-Spin Mean-Field.

Figure 8. Same as Fig. 5 but for the 5-band model with
crystal-field splitting among the bands typical of a tetragonal
environment like that of iron-based superconductors, i.e., ε1 >
ε2 = ε3 > ε4 > ε5 with ∆ = ε1 − ε2 = ε2 − ε4 = ε4 − ε5, here
calculated for density-density interaction (α = 0, J/U = 0.25)
within Slave-Spin Mean-Field.

cases, in which the two eg orbitals are split in energy
and well below the t2g ones. Among these, two orbitals
corresponding to the out-of-plane t2g remain degenerate,
whereas one orbital is lifted in energy. Strikingly, in this
5-orbital case the extension in doping of the instability
zone to phase separation is very strongly enhanced, and
even comparatively less ”chopped” by the OSMT.

We stress the importance of this result for real materi-
als: the instability zone cuts a wider range of dopings the
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Figure 9. Quasiparticle weight Z (black line) and atomic multiplet populations (atomic-state amplitudes in the ground state
times multiplet degeneracy - color lines) vs density for a degenerate 2-orbital Hubbard model for density-density interaction
α = 0 (upper panels) and Kanamori α = 1 interaction (lower panels) for J/U = 0.25 and U values near the Mott transition
(Uc). Left panels for U < Uc (Z is finite at half-filling), right panels for U > Uc (Z vanishes at half-filling).

larger the number M of orbitals involved in the formation
of the conduction bands, and the larger the crystal-field
splitting between these orbitals.

We have verified that similar results are obtained with
various crystal-field splitting configurations, which we do
not show not to overweight the presentation.

VI. INTERPRETATION IN TERMS OF LOCAL
FLUCTUATIONS AND MANY BODY ”EXTRA”

KINETIC ENERGY

In this section we discuss a unifying principle to un-
derstand all the results we have discussed in the previous
sections and the general tendency towards the charge in-
stabilities of multi-orbital Hubbard models. In order to
have a more physical insight into these trends it is useful
to look at the probability of occurrence of the possible
local configurations.

As mentioned in Sec. II , in the non-interacting half-
filled system, in absence of crystal-field splitting, all con-
figurations are realized with the same probability, and
e.g. they appear with the same weight in the ground
state wave function. The increase of the interaction U

reduces the weight of the configurations with filling dif-
ferent from half, until the Mott transition happens. In
slave-particle mean-field approximations this weight is
represented by the ground state amplitudes of the slave-
particle variables corresponding to local configurations.
In the same approximations the weight of the configura-
tions with filling different from half actually vanishes at
the Mott transition and in the Mott state.

If we include a finite Hund’s coupling keeping a fixed
J/U ratio, also the low-spin configurations are gradually
eliminated and only those with the maximum possible
spin survive in the Mott insulator. This is illustrated in
Fig. 9 for the M = 2 case: for both the density-density
α = 0 and the Kanamori α = 1 interaction, at half-filling
(n = 2) the low-spin configurations are considerably sup-
pressed with increasing U and when U > Uc the only
configurations having a finite weight are the high-spin
ones, i.e., those with total spin S = 1 for the Kanamori
case α = 1 and those with |Sz|=1 for the density-density
case α = 0.32,35–37

When we dope the system a metallic behavior is re-
stored, and this is associated to a recovery of the lower-
spin configurations at the expenses of the high-spin ones
and an increase of charge fluctuations, i.e., an increased
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weight of configurations with a filling different from the
average38. In Fig. 9 we compare the evolution of the
weights as a function of doping for an interaction strength
just below Uc (left panels) and one just above Uc (right
panels). It is apparent that the solutions for U < Uc and
for U > Uc differ significantly only below some specific
doping and they become very similar in the large-doping
region.

This doping value marks the crossover between a
Hund’s metal, which we identify with a doped high-spin
Mott insulator, and a normal metal. This crossover hap-
pens at lower and lower doping and is more and more
abrupt the closer U is to Uc. A direct consequence of
the quick revival of the fluctuations frozen by U and J
is a correspondingly quick increase of the quasiparticle
weight Z at the crossover, as visible in Fig. 9.

At the lowest dopings the boundary of the Hund’s
metal coincides with the frontier of the instability zone
towards phase separation reported in all the previous
phase diagrams7,39. The insight that we are getting from
this analysis is that the onset of the instability at a given
interaction strength U is related to the rapidity of the
crossover between the normal and the Hund’s metal.

We can strengthen this connection by observing that
the quick revival of the fluctuations frozen by U and
J leads to recover the ”extra” multi-orbital kinetic en-
ergy that we discussed in Sec. II. This is explicitly
illustrated within SSMF and for the half-filled system
in Appendix B. The arguments used there are how-
ever general, and hold also for the doped case of in-
terest here, albeit the analytic treatment becomes then
more involved. The computed kinetic energy (per site)
Ekin = 〈H0〉/Nsites, where 〈〉 indicates the quantum av-
erage over the ground state - is zero in the Mott insulator
within the slave-particle mean-fields. Doping leads to a
negative value which increases in absolute value with the
progressive delocalization of the carriers. Remarkably,
it acquires a negative curvature as a function of doping
∂2Ekin/∂n

2 < 0. This has an important consequence,
because the curvature of Etot is the inverse compressibil-
ity of the electronic system:

κ−1el =
∂2Etot
∂n2

=
∂2Ekin
∂n2

+
∂2Epot
∂n2

. (5)

and, obviously, Etot = Ekin + Epot, where Epot =
〈Hint〉/Nsites.

The total energy Etot and the two contributions Ekin
and Epot are all plotted as a function of the total den-
sity in Fig. 10 for the density-density α = 0 model, for
the same cases U < Uc and for U > Uc of Fig. 9 (the
arbitrary zero of energy is chosen such that the poten-
tial energy of the half-filled Mott insulator is zero). It
is clear that despite the total energies are quite close in
value, owing to the proximity in the phase diagram, the
behavior of Ekin and Epot highlights a substantial differ-
ence between the two metals found below and above the
critical interaction strength. Indeed for the doped Mott
insulator for U = 2.05D > Uc the crossover between the
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Figure 10. Total, kinetic and potential energies per site for
the 2-orbital degenerate Hubbard model with J/U = 0.25,
α = 0, for U = 1.95 < Uc(n = 2) and U = 2.05 > Uc(n = 2)
as a function of the total density. The gray zone indicates
the zone of phase separation for U = 2.05. Inset: blow-up
of the total energies highlighting the negative curvature of
Etot for U = 2.05 at low doping, corresponding to a negative
compressibility.

normal and the Hund’s metal is signalled by the sharp
change of behaviour in Ekin and Epot around n = 2.08.
The crucial observation is that the negative curvature
of Ekin is not completely compensated by the positive
curvature of Epot, and results in an overall negative cur-
vature of Etot, and thus of a zone of negative compress-
ibility (highlighted by the grey area, and zoomed in, in
the inset). On the other hand the metal below Uc does
not show this behavior.

Similar results are found for any form of interaction,
crystal-field splitting and number of orbitals, shedding
light on the nature of the phase separation instability
highlighted by the calculated diverging/negative com-
pressibility, and its universal presence for Hund’s cor-
related systems.

Moreover, this interpretation also explains the various
trends reported in this article. Our first main result is
that the instability is more pronounced and more ex-
tended in the case of density-density interaction, com-
pared to the case of rotational-invariant Kanamori in-
teraction. Indeed the quenching of multi-orbital fluctu-
ations is more radical in the density-density case: only
the doublet with |Sz| = Smax(n) is left degenerate at
low energy among the local configurations in the former,
whereas rotational invariance preserves the degeneracy of
the whole low-energy multiplet with S2 = Smax(Smax +
1) in the latter. Therefore in the α = 0 case the quench-
ing of the extra multi-orbital kinetic energy is stronger,
and its doping-driven release is more abrupt, causing a
stronger inversion of curvature, and in turn a larger in-
stability zone.
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A similar interpretation can be given to the fact that
a crystal-field splitting can push the instability zone to
larger doping. Indeed we have shown that doping a high-
spin Mott insulator results in an OSMP at low doping,
because only a subset of orbitals is actually doped and
contributes to the metallic behavior, while the rest of the
system remains insulating. In the 2-orbital case, as long
as we are in the OSMP, only the orbital lowered in energy
by the crystal field is doped. This implies that the multi-
orbital ”extra” kinetic energy due to a quantum coher-
ent superposition of configurations with different orbital
populations cannot be activated, since one orbital is still
quenched in its singly occupied state. It is only after both
orbitals are doped and charge fluctuates in both of them
that the multi-orbital fluctuations among all configura-
tions are restored, and hence the extra kinetic energy as
well.

Therefore, in a multi-orbital system in general, the
phase separation instability due to the presented mech-
anism can happen as soon as at least two orbitals are
doped, and thus in cases where multiple OSMP zones
(with an increasing number of metallic orbitals) are
present in the phase diagram an unstable zone can be
found nearby each OSMT (on the more metallic side of
it). In particular, as we highlight in Figs. 7 and 8, the in-
stability zone is still found in the fully metallic phase, in
the vicinity of the outermost OSMT, the one that hap-
pens at the largest doping and at which the orbital(s)
at highest energy become localized. This is the ulti-
mate reason why the instability region in the presence
of crystal-field splitting shifts to larger dopings40.

VII. APPLICATION TO FESE BULK VS
MONOLAYER

We now discuss the relevance of the present analysis in
iron-based superconductors as an example for the inter-
est of our results in the theoretical analysis of material-
specific properties of actual strongly-correlated solids.

In particular we interpret some of the results on bulk
FeSe and its monolayer form reported by two of the
authors in Ref. 8. There, a realistic simulation of
these two materials was performed based on a density-
functional theory band structure calculation, parameter-
ized with maximally-localized Wannier functions, yield-
ing a material-specific H0 for each one of the two cases,
namely bulk and monolayer. These 5-orbital tight-
binding bare Hamiltonians were supplemented by Hint

of the form (2) (and α = 0) and solved within SSMF.
The compressibility was calculated and shown to be

enhanced around, diverging at the border, and negative
inside, of a moustache-shaped zone departing from half-
filling at Uc and extending into the U -doping plane, fol-
lowing the general trends found in Hund’s metals and in
SSMF simulations of FeSC7,39.

Interestingly, the instability zone was found more pro-
nounced and extended in FeSe monolayer than in the
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Figure 11. Values of the orbital energies in the tight-binding
parametrizations of the DFT band structure for bulk and
monolayer FeSe calculated in Ref. 8. The overall crystal-field
splitting between the lowermost in energy eg orbital and the
uppermost t2g one is larger (∼0.7eV) in the monolayer case
compared to the bulk (∼0.5eV), motivating a larger exten-
sion of the instability zone found in the realistic simulations8,
along the insight given by the models analyzed in the present
work.

case of bulk FeSe, which can be seen as an indication
that the enhancement of compressibility plays a role in
obtaining the record high-Tc superconductivity reported
for monolayer FeSe41.

Following our analysis of the effect of a crystal-field
splitting on the doping extension of the instability zone
in Sec. V it is natural to conclude that the larger
instability zone of the monolayer simulations is due to
the enhanced crystal-field splitting of the correspond-
ing H0. The values of orbital energies obtained in the
tight-binding parametrization are reported in the figure
Fig. 11. It is worth mentioning that, in these simu-
lations, no actual OSMT happens at zero-temperature
that would allow to use slavishly the arguments given
here for the simplified models. But in the realistic mod-
els, even if the inter-orbital hopping prevents a strict
OSMT from happening, there is still a clear frontier be-
tween a non-selective metal and an orbital-selective one,
where some orbital(s) (for the FeSC, the dxy orbital)
become extremely correlated, and in some cases almost
localized29,42,43. The extremely reduced charge fluctua-
tions in these almost localized orbitals, bring about the
reduced weight in the configurations responsible for the
enhanced kinetic energy, and thus allow our analysis to
apply.

VIII. CONCLUSIONS

We have analyzed several multi-orbital Hubbard mod-
els (with M = 2, 3, 5 orbitals) in presence of a finite
Hund’s coupling, focusing in particular on the occur-
rence and extension of a charge-instability zone of the
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Hund’s metal phase, previously found both in models7

and realistic simulations of Fe-based superconductors8

and related materials9. This instability occurs univer-
sally in Hund’s metal simulations and is signaled by a
divergent/negative electronic compressibility for a zone
of the U-density phase diagram, where the normal para-
magnetic homogeneous metal cannot exist and is thus
unstable towards phase separation. The unstable zone
is surrounded by an area where the compressibility is
enhanced, which can favour other instabilities including
superconductivity.

We have identified two general trends which are use-
ful to understand and motivate realistic calculations for
specific correlated materials: The phase separation re-
gion always originates from the Mott transition at half
filling and

• the doping range spanned by the instability zone
increases with the number of orbitals M and gener-
ically with the crystal-field splitting of the local en-
ergies of the orbitals,

• the spin-anisotropy (density-density form) of the
local interaction enhances the instability com-
pared to a perfectly symmetric rotational-invariant
Kanamori interaction

These trends are interpreted in terms of the extra ki-
netic energy associated with the multi-orbital fluctua-
tions, which are suppressed by Hund’s coupling around
the half-filled Mott insulator, and suddenly restored by
the doping at the Hund metal to normal metal frontier,
thereby driving the instability. Both the breaking of the
spin-rotational (by the density-desnsity form of the in-
teraction) and of the orbital-rotational invariance accen-
tuate this quenching, and the corresponding release with
doping, thus accentuating the ensuing charge instability.

The first one of the above points in particular helps
explaining the considerable prominence of the instability
in the monolayer FeSe/STO simulation, compared to the
one of bulk orthorhombic FeSe, which had already been
put in correlation with the striking difference of the ex-
perimentally reported Tc (8K in the bulk, & 65K in the
monolayer)8.

Appendix A: Slave-spin mean-field method

Here we briefly derive the slave-spin mean-field equa-
tions, specialized to the case explored in this work of iden-
tical bands without inter-orbital hopping and in presence
of a crystal field.

A multi-orbital Hubbard model with Hamiltonian Ĥ
eqs. (1)+(2) can be rigorously expressed on an enlarged
Hilbert space, provided averages are restricted by a con-
straint.

Indeed at each site i each one of the original fermions

(created by the operator d†imσ - labeled by orbital and
spin indices mσ) has two states, |0〉 and |1〉. An auxiliary

system can be considered, that has at each site and for
each orbital/spin flavor mσ both a pseudofermion (cre-

ated by f†imσ) and a spin-1/2 (flipped by S±imσ and of
which the z component is measured by Szimσ). The aux-
iliary system will have a local Hilbert space for each m,σ
spanned by the four states |0〉f |0〉s, |1〉f |1〉s, |0〉f |1〉s ,
|1〉f |0〉s (where the subscripts f and s indicate the pseud-
ofermion and the spin respectively, and for the spins we
use the notation ”0” for the ”down” state and ”1” for the
”up” state), which is the direct product of the respec-
tive local Hilbert spaces of the two auxiliary variables.
The first two of these four states (dubbed the ”physical”
states of the auxiliary space, for which the condition

nfimσ = Szimσ + 1/2, (A1)

holds, with nfimσ ≡ f
+
imσfimσ) are associated to the states

|0〉d and |1〉d, respectively, of the original fermion.
An exact mapping of the original problem is obtained

if one can define a Hamiltonian operator, acting on the
auxiliary Hilbert space, which has the same matrix ele-
ments among the physical states as the original Hamil-
tonian, and a constraint excluding from all quantum or
ensemble averages all states other than the ”physical”
ones.

In practice, this is not a simplification of the original
problem. However, one can make approximations on the
auxiliary problem which in the end are less drastic than
those performed on the original one. Here we follow the
original formulations of a mean-field approximation in-
troduced in Refs. 44 and 45, and extensively discussed
in Ref. 21.

The interaction part of the Hamiltonian eq. (2), for the
density-density-only case (α = 0) can easily be expressed
in terms of the spin variables only:

Hs
int= U

∑
im

Szim↑S
z
im↓ + U ′

∑
im6=m′

Szim↑S
z
im′↓

+(U ′ − J)
∑

im<m′σ

SzimσS
z
im′σ (A2)

The one-body part instead involves both slave-spins and
pseudofermions:

H0 =
∑

i 6=jmm′σ

tmm
′

ij f†imσfjm′σO
†
imσOjm′σ+

∑
imσ

εmf
†
imσfimσ

(A3)

where O†imσ ≡ S†imσ + c∗imσS
−
imσ is an adapted form of

the raising spin operator. If the constraint eq. (A1)

is enforced exactly, then the operator f†imσO
†
imσ is an

exact mapping of d†imσ in the enlarged Hilbert space, and
the value of the parameter cimσ is immaterial. In any
approximation scheme in which the constraint cannot be
exactly enforced, the choice for cimσ matters in the action

of f†imσO
†
imσ on the unphysical states. But this gauge can

be used at our advantage as shown later in this section.
In our scheme three approximations are performed.

First, we mean-field decouple slave-spin and pseud-
ofermion operators in the hopping term thus leaving us



12

with a free-fermion Hamiltonian (since the interaction is
entirely treated by the slave-spin variables), and a lat-
tice spin model where several slave-spins interact on site
and are also coupled to the slave-spins of neighboring
sites. Second, we perform a mean-field decoupling of the
latter lattice system in the spirit of Weiss mean-field,
and thus we are left with a single-site Hamiltonian in an
effective field. Third, we treat the constraint with site-
independent (and spin-independent, since we address the
paramagnetic phase here) Lagrange multipliers λm. De-
tails of this procedure can be found e.g. in Ref. 21.

The resulting mean-field Hamiltonian (specialized to
the case treated in this work, with intra-orbital hopping
only, equal for all bands, i.e., tmm

′

ij = tijδmm′) is H −
µN = Hs + Hf − µN , with Hf − µN in eq. (3) and
Hs =

∑
iH

i
s with:

Hi
s =

∑
mσ

(hmO
†
mσ +H.c.) + λm(Szmσ +

1

2
) +Hs

int[i],

(A4)

〈nfmσ〉 = 〈Szmσ〉+
1

2
, ∀m,σ, (A5)

where the self-consistent parameters are:

Zm = |〈Omσ〉|2, (A6)

hm = 〈Omσ〉
∑
j 6=i

tij〈f†imσfjmσ〉 = 〈Omσ〉ε0(nmσ), (A7)

and

ε0(nmσ) ≡
∑
k

εk〈f†kmσfkmσ〉 =

∫ µ

−∞
dε (ε− εm)D(ε),

(A8)
is the bare band kinetic energy at T = 0 (εk and D(ε) are
the band dispersion and the density of states respectively,
as defined in Section III of the main text).The nmσ =
〈f†mσfmσ〉 = 〈d†mσdmσ〉 are the orbital populations, which
can still differ, along with hm, λm, etc. because of the
possible different values of εm.

Here the gauge freedom represented by the choice of
the cimσ can be used for this mean-field approximation
to reproduce known limits of the model. In particular,
we choose here the value - real and independent of the
site - that correctly yields Zm = 1 in the non-interacting
limit U = J = 0. This is

cimσ =
1√

nmσ(1− nmσ)
− 1 ≡ cm. (A9)

This expression is extended to finite values of the in-
teraction and evaluated self-consistently (i.e., using the
interacting orbital populations). The real value chosen
for the cimσ entails the reality of the Hamiltonian, which
implies that 〈S+

mσ〉 = 〈S−mσ〉 = 〈Sxmσ〉 and thus eqs. (A6)
and (A7) acquire the more insightful form:

Zm = (1 + cm)2〈Sxmσ〉2, (A10)

hm =
√
Zmε0(nmσ). (A11)

This illustrates that the metallic state Zm 6= 0 is sig-
nalled by a non-zero magnetization of the slave-spin lat-
tice in the x direction induced by the self-consistent field
hmO

+
mσ+h∗mOmσ = (1+cm)hmS

x
mσ which also points in

the x direction (hm is real and negative), while the Mott
insulating state is the corresponding disordered phase in
the same direction.

In the same non-interacting limit one should also get
λm = 0, so that the quasiparticle dispersion coincides
with the original dispersion of the non-interacting elec-
trons. However the present mean-field formulation yields

finite λm(U = J = 0) = (2nmσ−1)
nmσ(1−nmσ)hmσ. We correct

this unwanted feature by altering the bare orbital en-
ergies so to compensate exactly for this artificial shift
and reproduce the correct orbital populations in the non-
interacting limit. In other words, we evaluate the above
expression at U = J = 0 defining λ0m ≡ λm(U = J =

0) = (2nmσ−1)
nmσ(1−nmσ)hmσ and add a term +λ0mf

†
imσfimσ to

the quasiparticle hamiltonian eq. (3).
For a slightly different formulation leading to very sim-

ilar mean-field results see Ref. 46. The final mean-field
equations of the two formulations are identical, except
for the formula used for the shift λ0m, which for this al-

ternative formulation reads λ0m =
√
Zm

(2nmσ−1)
nmσ(1−nmσ)hmσ.

It indeed coincides with ours in the non-interacting
limit (where Zm = 1), but importantly it is evaluated
self-consistently at any U and J which gives improved
results47.

Appendix B: Expansion of the slave-spin equations:
enhancement of the kinetic energy with the ground
state degeneracy in proximity of a Mott insulator

In the slave-spin mean-field approximation a Mott in-
sulator is a solution in which Zm = 0. By the self-
consistency equation eq. (A11), this implies hm = 0.
Thus in proximity of a Mott insulator a perturbative
treatment in hm of the slave-spin problem can be per-
formed.

Indeed, the actual value of hm for a given interaction
strength and filling is determined by the self-consistency
equation eq. (A11) for which (in absence of inter-orbital
hopping) hm is a linear function of 〈Sxmσ〉. The latter
is calculated from the spin Hamiltonian and is instead a
more complicated function of the hm’s, that we can calcu-
late explicitly using perturbation theory. At linear order
in hm the only solution of these equations is trivially in
hm = 0, so that higher orders are needed to determine
a non-trivial solution yielding a finite hm. However, for
small enough hm (i.e. close enough to a Mott insula-
tor) the linear term will anyway dominate (and also ul-
timately determine the critical parameters for the Mott
transition21).

Here we show that the kinetic energy at leading order
in hm is indeed enhanced by the ground state degener-
acy. The actual kinetic energy of the system should be
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evaluated at the self-consistent value of hm, but the pref-
actor to the h2m term that we calculate here is enough to
illustrate this dependence when hm is small enough.

Let’s restrict ourselves to the half-filled, particle-hole
symmetric case with no crystal-field splitting (i.e., εm =
0), for which µ = λm = 0 and cm = 1. Then the unper-
turbed Hamiltonian is simply Hs

int[i] eq. (A2). At T = 0
we only need the ground state of this Hamiltonian, which
will have a different degeneracy d0 depending on the value
of J , so later on we will distinguish the J = 0 from the
finite J case.

The perturbing Hamiltonian is V ≡ Hi
s − Hs

int[i] =
2h
∑
mσ 2Sxmσ = 2h

∑
mσ(S+

mσ + S−mσ), where h ≡ hm is
here equal for all orbitals.

It simply flips any of the slave-spins. It removes the
ground state degeneracy at the second order in h (the
perturbation has no matrix elements within the degener-
ate subspace), and in order to obtain the ”correct” un-

perturbed ground state |φ(0)0 〉 (the one to which the per-
turbed ground state tends for h→ 0) one has to diagonal-
ize the matrix H ′ ≡ V (E0 −Hs

int)
−1V in the degenerate

subspace, where E0 is the unperturbed ground state en-
ergy. The ground state ket will have a correction at the
linear order instead, which according to standard pertur-

bation theory reads: |φ(1)0 〉 = |φ(0)0 〉 +
∑
|s〉6=|φ0〉〈s|(E0 −

Hs
int)
−1V |φ(0)0 〉|s〉.

The kinetic energy of the system per site in this mean-
field approximation also happens to be the average value
of the perturbation Ekin ≡ 〈H0〉/Nsites = 〈V 〉 (where H0

is given in eq. (A3)). To leading order in perturbation
theory it reads:

Ekin = 〈φ(1)0 |V |φ
(1)
0 〉 = 2〈φ(0)0 |V (E0 −Hs

int)
−1V |φ(0)0 〉,

(B1)

(where we used explicitly the fact that 〈φ(0)0 |V |φ
(0)
0 〉 = 0)

which is also twice the ground state energy correction to
leading order.

Eq. (B1) illustrates that the kinetic energy is the num-
ber of ways in which flipping any two slave-spins brings
the ground state into itself, weighed by 2/(E0−ES), twice
the inverse of the (negative) energy difference between
the ground state and the intermediate excited state.

In physical terms this tracks the number of processes
by which a particle can hop onto a neighboring site and
back to any of the spin-orbitals still turning the ground
state into itself. This is in strict analogy with the per-
turbative arguments determining Kondo coupling of an
impurity in a bath48,49, which through Dynamical Mean-
Field Theory describe the itinerancy of particles in a lat-
tice model50.

Now these processes are enhanced when the ground
state has a greater degeneracy. We illustrate this in the
following by comparing the case at J = 0 with that for
finite J .

• J=0, SU(2M) symmetry

At J = 0, up to a constant shift, Hs
int[i] =

U/2(
∑
mσ S

z
mσ)2 = U/2(Sztot)

2. The system has an even
number 2M of slave-spins on each site, hence any state
with Sztot = 0 is a ground state. Owing to the SU(2M)

symmetry of the J = 0 problem, there are d0 =
(
2M
M

)
such states (|Sz = 0 ; l 〉, for l = 1 . . . d0) , corresponding
to the number of ways to take half of the 2M spins up
and half down. Physically this corresponds to the ways
of putting M particles in 2M spin-orbitals, owing to the
half-filling of the system.

All the states with one flipped spin are U/2 higher in
energy from the ground state and hence one can diagonal-
ize H ′ = −2V 2/U . The lowest-energy eigenstate of the
restriction of H ′ to the unperturbed degenerate manifold
is

|φ(0)0 〉 =
1√
d0

d0∑
l=1

|Sz=0 ; l 〉 (B2)

i.e., the linear combination of all the degenerate basis
states in the ground state manifold with all plus signs.
This can be easily checked by inspection. Indeed H ′ flips
down any of the M spins pointing up, and then flips up
any of the now M + 1 spins pointing down. The anal-
ogous process takes place starting with a flip up. This
makes 2M(M + 1) possible processes. The fact that all
of the d0 degenerate basis states with M spins up and
M spins down are included in the linear combination en-
sures that all these ”exchange” processes are active. The
plus signs in the linear combination also ensures that all
the corresponding −U/2 contributions add up, generat-

ing the lowest possible energy. This, by inserting |φ(0)0 〉
into eq. (B1) results in:

Ekin = −32h2

U
M(M + 1) (B3)

• J 6=0, Density-Density interaction, Z2 symmetry

For J 6= 0 and M = 2, the excitation energy is Ueff/2
with Ueff = U + (M − 1)J , so the matrix to be diag-
onalized to find the ”correct” unperturbed ground state
is the restriction of H ′ = −2V 2/Ueff . For higher M the
excited multiplets are split by J , and using −2V 2/Ueff is
an approximation, not qualitatively altering the present
line of thoughts, however.
Hs
int[i] now splits the manifold with Sz = 0 and for

the case of density-density only interaction (α = 0) the
ground state is only two times degenerate. The two de-
generate states are |1, . . . , 1, 0, . . . , 0〉, with all M slave
spins corresponding to spin-orbitals m ↑ - in our ket
notation the first M of all the 2M slave-spin - point-
ing ”up” (1, in our notation) and the remaining ones
pointing ”down” (0 in our notation), or the inverse
|0, . . . , 0, 1, . . . , 1〉.

This degeneracy is split at order h2M , but the ”correct”
unperturbed ground state is still the linear comibnation
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of these two basis states with the plus sign:

|φ(0)0 〉 =
1√
2

(|1, . . . , 1, 0, . . . , 0〉+ |0, . . . , 0, 1, . . . , 1〉)

(B4)
However to the leading order h2 only 2M processes

are active: those flipping twice a given slave spin. Thus

inserting |φ(0)0 〉 into eq. (B1) gives:

Ekin = −32h2

Ueff
M = − 32h2

U + (M − 1)J
M (B5)

which for any M ≥ 2 is much smaller than in the J = 0
case. This illustrates our point that the degeneracy of
the ground state enhances the kinetic energy through the
activation of extra hopping channels.

The treatment of the Kanamori Hamiltonian (α = 1)
cannot be done to the same level of accuracy in the
present slave-spin formulation but the degeneracy being
M + 1 thus still much smaller than in the J = 0 case,
the reduction of the Kinetic energy due to J holds in
that case too. Again this parallels known results on the
Kondo temperature of high-spin impurities11,51.

It is worth mentioning that the dependence of the crit-
ical interaction strength for the Mott transition is a di-
rect concretization of the kinetic energy dependence just
shown. Indeed the value of

√
Zm = 〈2Sxmσ〉 = Ekin/(4hM) =

{
− 8h
U (M + 1)

− 8h
U+(M−1)J

(B6)
respectively for J = 0 and finite J , can be inserted in the
self-consistency equation eq.(A11) to extract the value
of the interaction for which the non-trivial solution too
reaches hm = 0. This yields

Uc = −8(M + 1)ε̄, (B7)

for J = 0 and any value ofM (where we used the notation
ε̄ ≡ ε0(nmσ = 1/2) ≤ 0), and

Uc = −8ε̄− (M − 1)J, (B8)

for finite J and M = 2 (exact) or larger (approximate).

Appendix C: Mott gap edge and width of the
Hubbard bands

Here we show that the same mechanism leading to the
enhancement of the quasiparticle kinetic energy detailed
in the previous section leads to the enhancement of the
distance of the Mott gap edge from the (lowest, if J is
finite) atomic excitation obtained adding or subtracting
one particle, which can be interpreted as half the width
of the Hubbard band. As mentioned in section II, this
converges with similar arguments used in Ref. 19.

Indeed if the chemical potential is moved inside the gap
of the half-filled Mott insulator studied in appendix B
(in absence of crystal-field splitting, εm = 0) the particle
symmetry is lost and λm will be nonzero. However half-
filling imposes λ0m = 0 and through eq. (3) also that
λm = −µ. Eq. (A9)) still gives cm = 1.

For finite λm eq. (B6) becomes:

√
Zm = 〈2Sxmσ〉 =

{
− 8hU
U2−4λ2

m
(M + 1)

− 8hUeff
U2
eff−4λ2

m

(C1)

respectively for J = 0 and finite J . Again inserting this
relation in the self-consistency equation eq.(A11) one ex-
tracts the condition for which the non-trivial solution too
reaches hm = 0. For each U > Uc this gives a critical
value for the chemical potential for which the density-
driven Mott transition happens:

µc = −λm = ±1

2

{ √
U2 + ε̄ 8U(M + 1) (J = 0),√
U2
eff + ε̄ 8Ueff (J 6= 0).

(C2)
The distance ∆EHub between µc and the atomic ex-

citation energy (U/2 and Ueff/2 respectively for J = 0
and finite J) around which the Hubbard band disperses
can be interpreted as half the width if the Hubbard band.
Expanding at large U one gets a value for this distance
which is independent of U and reads

∆EHub =

{
2|ε̄|(M + 1) (J = 0),

2|ε̄| (J 6= 0).
(C3)

thus illustrating the common origin of the enhancement
of the width of the Hubbard bands with the number of
orbitals M and of the quasiparticle kinetic energy leading
to an enhanced Uc.

18

In ref. 21 it was shown numerically within DMFT that
a finite Hund’s coupling J causes the Hubbard bands to
shrink back to values comparable with the single-band
case. Here we have analytically shown that the underly-
ing cause coincides with that of the concomitant reduc-
tion of quasiparticle kinetic energy, and that this whole
phenomenology is due to the number of available hopping
channels which in turn is determined by the degeneracy
of the ground state and thus ultimately by the degree of
symmetry in the model.
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43 F. Hardy, A. E. Böhmer, D. Aoki, P. Burger, T. Wolf,
P. Schweiss, R. Heid, P. Adelmann, Y. X. Yao, G. Kotliar,
J. Schmalian, and C. Meingast, Phys. Rev. Lett. 111,
027002 (2013).

44 L. de’Medici, A. Georges, and S. Biermann, Phys. Rev. B
72, 205124 (2005).

45 S. R. Hassan and L. de’ Medici, Phys. Rev. B 81, 035106
(2010).

46 R. Yu and Q. Si, Phys. Rev. B 86, 085104 (2012).
47 J. M. P. Blanco, Electronic correlations in multiorbital

systems, Ph.D. thesis, UNIVERSIDAD AUTONOMA DE
MADRID (2019).

48 J. R. Schrieffer and P. A. Wolff, Phys. Rev. 149, 491
(1966).

49 B. Coqblin and J. R. Schrieffer, Phys. Rev. 185, 847
(1969).

50 A. Georges, G. Kotliar, W. Krauth, and M. J. Rozenberg,
Rev. Mod. Phys. 68, 13 (1996).

http://dx.doi.org/10.1103/PhysRevLett.64.475
http://dx.doi.org/10.1103/PhysRevLett.64.475
http://dx.doi.org/10.1103/PhysRevB.90.115137
http://dx.doi.org/10.1103/PhysRevB.91.241116
http://dx.doi.org/10.1103/PhysRevLett.75.4650
http://dx.doi.org/10.1103/PhysRevLett.75.4650
http://dx.doi.org/ 10.1142/S0217979291000195
http://dx.doi.org/ 10.1142/S0217979291000195
http://dx.doi.org/10.1103/PhysRevB.43.8000
http://dx.doi.org/10.1103/PhysRevB.50.16880
http://dx.doi.org/ 10.1103/PhysRevLett.67.259
http://dx.doi.org/ 10.1103/PhysRevLett.67.259
http://dx.doi.org/ 10.1103/PhysRevLett.92.106401
http://dx.doi.org/ 10.1103/PhysRevLett.92.106401
http://dx.doi.org/10.1038/nmat3120
http://dx.doi.org/10.1038/nmat3120
http://dx.doi.org/10.1103/PhysRevLett.118.167003
http://dx.doi.org/10.1103/PhysRevLett.121.197001
http://dx.doi.org/10.1103/PhysRevLett.121.197001
http://dx.doi.org/10.1103/PhysRevB.95.205118
http://dx.doi.org/ 10.1103/PhysRevLett.117.217001
http://dx.doi.org/10.1146/annurev-conmatphys-020911-125045
http://dx.doi.org/10.1146/annurev-conmatphys-020911-125045
http://dx.doi.org/10.1103/PhysRevLett.69.1240
http://dx.doi.org/10.1103/PhysRevLett.69.1240
http://dx.doi.org/10.1103/PhysRevB.56.1146
http://dx.doi.org/10.1103/PhysRevB.56.1146
http://arxiv.org/abs/1607.08468
http://dx.doi.org/10.1103/PhysRevB.37.10674
http://dx.doi.org/10.1103/PhysRevB.37.10674
http://dx.doi.org/10.1140/epjb/e2005-00117-4
http://dx.doi.org/10.1103/PhysRevB.83.205112
http://dx.doi.org/ 10.1103/PhysRevLett.101.166405
http://dx.doi.org/ 10.1103/PhysRevLett.101.166405
http://dx.doi.org/10.1103/PhysRevB.81.054513
http://dx.doi.org/10.1103/PhysRevLett.107.256401
http://dx.doi.org/10.1103/PhysRevLett.107.256401
http://dx.doi.org/10.1103/PhysRevLett.112.177001
http://dx.doi.org/10.1103/PhysRevLett.112.177001
http://dx.doi.org/10.1134/S1063776109010154
http://dx.doi.org/10.1134/S1063776109010154
http://dx.doi.org/ 10.1103/PhysRevB.82.064504
http://dx.doi.org/10.1038/nphys2250
http://dx.doi.org/10.1103/PhysRevLett.108.177007
http://dx.doi.org/10.1103/PhysRevB.92.195128
http://dx.doi.org/10.1103/PhysRevB.92.195128
http://dx.doi.org/ http://dx.doi.org/10.1016/j.crhy.2015.05.004
http://dx.doi.org/10.1038/natrevmats.2016.17
http://dx.doi.org/10.1038/natrevmats.2016.17
http://dx.doi.org/ 10.1103/PhysRevLett.102.126401
http://dx.doi.org/ 10.1103/PhysRevLett.102.126401
http://dx.doi.org/10.1103/PhysRevB.76.155102
http://dx.doi.org/10.1103/PhysRevLett.99.126405
http://dx.doi.org/10.1103/PhysRevLett.99.126405
http://link.springer.com/chapter/10.1007/978-3-319-11254-1_11
http://dx.doi.org/10.1103/PhysRevB.95.085119
http://dx.doi.org/10.1103/PhysRevB.92.075136
http://dx.doi.org/10.1103/PhysRevB.92.075136
http://stacks.iop.org/1367-2630/11/i=2/a=025021
http://stacks.iop.org/1367-2630/11/i=2/a=025021
http://dx.doi.org/10.1038/nmat4153
http://dx.doi.org/10.1038/ncomms8777
http://dx.doi.org/ 10.1103/PhysRevLett.111.027002
http://dx.doi.org/ 10.1103/PhysRevLett.111.027002
http://dx.doi.org/10.1103/PhysRevB.72.205124
http://dx.doi.org/10.1103/PhysRevB.72.205124
http://dx.doi.org/10.1103/PhysRevB.81.035106
http://dx.doi.org/10.1103/PhysRevB.81.035106
http://dx.doi.org/10.1103/PhysRevB.86.085104
http://dx.doi.org/10.1103/PhysRev.149.491
http://dx.doi.org/10.1103/PhysRev.149.491
http://dx.doi.org/10.1103/PhysRev.185.847
http://dx.doi.org/10.1103/PhysRev.185.847
http://dx.doi.org/ 10.1103/RevModPhys.68.13


16

51 J. R. Schrieffer, J. Appl. Phys. 38, 1143 (1967). 52 A. Isidori, M. Berović, L. Fanfarillo, L. de’ Medici, M. Fab-
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