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Modeling heat transport in crystals and glasses
from a unified lattice-dynamical approach
Leyla Isaeva1, Giuseppe Barbalinardo2, Davide Donadio2 & Stefano Baroni 1,3

We introduce a novel approach to model heat transport in solids, based on the Green-Kubo

theory of linear response. It naturally bridges the Boltzmann kinetic approach in crystals and

the Allen-Feldman model in glasses, leveraging interatomic force constants and normal-mode

linewidths computed at mechanical equilibrium. At variance with molecular dynamics, our

approach naturally and easily accounts for quantum mechanical effects in energy transport.

Our methodology is carefully validated against results for crystalline and amorphous silicon

from equilibrium molecular dynamics and, in the former case, from the Boltzmann transport

equation.

https://doi.org/10.1038/s41467-019-11572-4 OPEN

1 SISSA – Scuola Internazionale Superiore di Studi Avanzati, Trieste 34136, Italy. 2 Department of Chemistry, University of California at Davis, Davis, CA 95616,
USA. 3 CNR-IOM DEMOCRITOS, SISSA, Trieste 34136, Italy. Correspondence and requests for materials should be addressed to S.B. (email: baroni@sissa.it)

NATURE COMMUNICATIONS | ��������(2019)�10:3853� | https://doi.org/10.1038/s41467-019-11572-4 | www.nature.com/naturecommunications 1

12
34

56
78

9
0
()
:,;

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Sissa Digital Library

https://core.ac.uk/display/475266057?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Heat transport in solid insulators, either crystalline or dis-
ordered, is dominated by the dynamics of lattice vibra-
tions. Far from melting, atomic displacements from

equilibrium are much smaller than interatomic distances and they
can thus be treated in the (quasi-) harmonic approximation. In
crystals, this observation enables a kinetic description of heat
transport in terms of phonons, that can be embodied in the
Peierls–Boltzmann transport equation (BTE)1,2. In disordered
systems the typical phonon mean free paths may be so short that
the quasi-particle picture of heat carriers breaks down and BTE is
no longer applicable, making it necessary to resort to molecular
dynamics (MD), in either its nonequilibrium or equilibrium
(EMD) flavors2,3. MD is of general applicability to solids, either
periodic or disordered, and liquids. Yet, it may require long
simulation times and it is subject to statistical errors, which are at
times cumbersome to evaluate especially for systems at low
temperatures, where lack of ergodicity may be an issue. Most
importantly, MD cannot account for quantum-mechanical
effects4, which are instead easily treated in BTE, thus making
the treatment of heat transport for glasses in the quantum regime,
i.e. below the Debye temperature, a methodological challenge.

In this paper, we present a novel approach to heat transport in
insulating solids, which combines the Green–Kubo (GK) theory of
linear response3,5–8 and a quasi-harmonic description of lattice
vibrations, thus resulting in a compact expression for the thermal
conductivity, that unifies the BTE approach in the single-mode
relaxation-time approximation (RTA) for crystals2 and a general-
ization of the Allen-Feldman (AF) model for disordered system9,10

that explicitly and naturally accounts for normal-mode lifetimes.
The main ingredients of our approach are the matrix of the inter-
atomic force constants (IFC) computed at mechanical equilibrium
and the anharmonic lifetimes of the vibrational modes, as com-
puted from the cubic corrections to the harmonic IFCs using the
Fermi’s golden rule11. Our theory is thoroughly validated in
crystalline and amorphous silicon by comparing its predictions
with those of EMD simulations and BTE computations.

Results
Theory. The basis of our work is the GK theory of linear
response3,5–8, which relates the heat conductivity to the ensemble
average of the heat-flux auto-correlation function:

καβ ¼
1

VkBT2

Z1

0

hJαðtÞJβð0Þidt; ð1Þ

where V and T are the system volume and temperature, kB is the
Boltzmann constant, Jα(t) the α-th Cartesian component of the
macroscopic heat flux, which in solids coincides with the energy
flux, and 〈⋅〉 indicates a canonical average over initial conditions3.
Far from melting, the energy flux and the lattice Hamiltonian of a
solid, both crystalline and amorphous, can be expressed as power
series in the atomic displacements, and Eq. (1) can be evaluated in
terms of Gaussian integrals using standard field-theoretical
techniques.

The energy flux can be expressed in terms of atomic positions,
Ri, and local energies, ϵi, as J ¼

P
i
ðR
:

i
ϵi þ Ri _ϵiÞ (ref. 3), where in

the harmonic approximation ϵi can be defined as:
ϵi ¼

Mi
2

P
α

_uiαð Þ2 þ 1
2

P
jαβ

uiαΦ
jβ
iαujβ, Mi being the mass of i-th atom,

ui ¼ Ri % R&
i its displacement from its equilibrium position, R&

i , α

and β label Cartesian components, and Φjβ
iα ¼ ∂2E

∂uiα∂ujβ

!!!
u¼0

is the

IFC matrix. By expressing the energy flux in terms of the u’s, one
obtains: J ¼ J& þ d

dt

P
i
uiϵi, where J

& ¼
P
i
R&
i _ϵi. The second term

on the right-hand side of this expression is the total time
derivative of a process that, in the absence of atomic diffusion, is
stationary and of finite variance. A recently established gauge
invariance principle for heat transport12,13 states that such a total
time derivative does not contribute to the thermal conductivity. We
will therefore dispose of it and express the energy flux as: J← J°.
Note that it is essential to use equilibrium atomic positions in the
definition of J°, i.e. the positions describing the (metastable)
mechanical equilibrium of any given model of an ordered or
disordered system, rather than instantaneous ones. Otherwise, the
difference J− J° would not be a total time derivative of a stationary
process and the value of the transport coefficient resulting from J°
would be biased. By making use of Newton’s equation of motion,
the final expression for the harmonic heat flux reads9,10:

Jα ¼
1
2

X

ijβγ

ðR&
iα % R&

jαÞΦ
jγ
iβuiβ _ujγ; ð2Þ

where the minimum-image convention is adopted for computing
inter-atomic distances in periodic boundary conditions.

By inserting Eq. (2) into Eq. (1), the integrand is cast into the
canonical average of a quartic polynomial in the atomic positions
and velocities. In the harmonic approximation, this average
reduces to a Gaussian integral, which can be evaluated by way of
the Wick’s theorem14. By doing so, the resulting time integral
would diverge, thus yielding an infinite conductivity, as expected
for a harmonic crystal15. In order to regularize this integral, we
introduce anharmonic effects by renormalizing the single-mode
correlation functions using the normal-mode lifetimes, as
explained below. Our final result for the heat conductivity tensor
reads:

καβ ¼
kB
V

X

nm

vαnmv
β
nmτ

&
nm; ð3Þ

vαnm ¼ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffi
ωnωm

p
X

ijβγ

R&
iα % R&

jαffiffiffiffiffiffiffiffiffiffiffi
MiMj

p Φjγ
iβe

iβ
n e

jγ
m; ð4Þ

τ&nm ¼ γn þ γm
ðγn þ γmÞ

2 þ ðωn % ωmÞ
2 þOðϵ2Þ; ð5Þ

where ωn and γn are the harmonic frequency and decay rate of the
n-th normal mode, and eαni is the corresponding eigenvector of the
dynamical matrix,

P
jβ

1ffiffiffiffiffiffiffiffi
MiMj

p Φiα
jβe

β
nj ¼ ω2

ne
α
ni, and ϵ indicates the

ratio γ/ω, which vanishes in the harmonic limit. Equations (3–5)
will be dubbed as the quasi-harmonic Green-Kubo (QHGK)
approximation for the heat conductivity.

In order to establish Eq. (3), we first express the energy flux in
Eq. (2) in terms of normal-mode coordinates and momenta,
defined as: ξn ¼

P
iα

ffiffiffiffiffiffi
Mi

p
uiαe

α
ni and πn ¼

P
iα

_uαi e
α
ni=

ffiffiffiffiffiffi
Mi

p
, reading:

Jα ¼
P
nm

vαnm
ffiffiffiffiffiffiffiffiffiffiffiffi
ωnωm

p
ξnπm. It is then convenient to express these

normal-mode coordinates and momenta in terms of classical
complex amplitudes, reminiscent of the quantum boson ladder

operators and defined as: αn ¼
ffiffiffiffi
ωn
2

q
ξn þ iffiffiffiffiffiffi

2ωn

p πn, whose time

evolution is αnðtÞ ¼ αnð0Þe%iωnt . By doing so, the energy flux can
be expressed in terms of the α amplitudes as

Jβ ¼ i
2

X

nm

vβnmωmðα'n þ αnÞðα'm % αmÞ: ð6Þ

By using this expression, the integrand in Eq. (1) becomes a
Gaussian integral of a fourth-order polynomial in the α’s and α*’s
that, by means of the Wick’s theorem14, can be cast into a sum of
products of pairs of single-mode (classical) Green’s functions,
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hα'nðtÞαmð0Þi ¼ δnmgnðtÞ and hαnðtÞαmð0Þi ¼ 0. In the purely
harmonic approximation, one would have g&nðtÞ ¼

kBT
ωn

eiωnt .
Anharmonic effects broaden the vibrational lines by a finite
line-width, γn, which results in a finite imaginary part of the
frequency and in a decay of the single-mode Green’s function,
reading: gnðtÞ ¼

kBT
ωn

eiðωnþiγnÞt . By plugging this expressions into
the lengthy formula that results from applying Wick’s theorem to
the integrand of Eq. (1) and performing the time integral, after
some cumbersome but straightforward algebra we get Eq. (3). A
full derivation of Eqs. (3–5) is presented in the Supplementary
Note 1.

To lowest order in the anharmonic interactions, vibrational
linewidths can be computed from the classical limit of the Fermi

golden rule, γn =
π!h2
8ωn

P
ml

jV ′′′nml j
2

ωmωl

1
2 ð1þ nm þ nlÞδðωn % ωm % ωlÞ
#

+

ðnm % nlÞδðωn þ ωm % ωlÞ(, where nl is the Bose-Einstein occu-
pation number of the l-th normal mode and V′′′nlm ¼ ∂3V

∂ξn∂ξl∂ξm
is

the third derivative of the potential energy with respect to the
amplitude of the lattice distortion along the lattice normal
modes11.

In order to show that our QHGK expression for the thermal
conductivity, Eq. (3), reduces to the predictions of the BTE-RTA
in crystals, we first notice that the vα matrices of Eq. (4) can be
expressed in terms of the matrix elements of the matrices

ðVαÞjδiγ ¼
R&
iα%R&

jα

2
ffiffiffiffiffiffiffiffi
MiMj

p Φjδ
iγ between normal-mode eigenvectors:

vαnm ¼ ðen;Vα ) emÞ=
ffiffiffiffiffiffiffiffiffiffiffiffi
ωnωm

p
, where the notations “(e, e′)” and

“V ⋅ e” indicate scalar and matrix-vector products in the space of
atomic displacements. In crystals, equilibrium atomic positions
are characterized by a discrete lattice position, ai, and by an
integer label, si, indicating different atomic sites within a unit cell,
ds: R&

i ¼ ai þ dsi . Likewise, in the Bloch representation,
normal modes can be labeled by a quasi-discrete wavevector,
q, belonging to the first Brillouin zone (BZ), and by a band index,
ν: n→ (qn, νn). In particular, the IFC matrix and its eigenvectors
can be expressed as 1ffiffiffiffiffiffiffiffi

MiMj

p Φiα
jβ ¼

P
q
eiq)ðR

&
i %R&

j ÞDsα
tβðqÞ, where

Dsα
tβðqÞ is the dynamical matrix of the system and ηsανq its

eigenvectors:
eαν ¼ eiqn)R

&
i ηsiανnqn and

P
tβ
Dsα

tβðqÞηtβνq ¼ ω2
νqη

sα
νq. When normal-

mode eigenvectors are chosen to be real, the vα matrices of Eq.
(4) are real and anti-symmetric. In particular, vαnn ¼ 0 and a non-
vanishing thermal conductivity results from the matrix elements
of vα connecting (quasi-) degenerate normal modes, i.e. modes
whose frequencies coincide within the sum of their line widths. In
the Bloch representation, vα is anti-Hermitian and block-diagonal
with respect to the wave-vector, q. Its diagonal elements are
imaginary, though not necessarily vanishing. In this representa-
tion one has: vανq;μp ¼ i

δqpffiffiffiffiffiffiffiffiffiffi
ωνqωμp

p ðηνq;DαðqÞ ) ημqÞ, where

DαðqÞ ¼ ∂DðqÞ
∂qα . At fixed q, the vibrational spectrum is strictly

discrete i.e. it remains so even in the thermodynamic limit. The
number of q points for which there exists a pair of distinct modes,
(q, ν) and (q, μ) with ν ≠ μ, that are degenerate within the sum of
their line-widths ðjωqν % ωqμj≲ γqν þ γqμÞ is vanishingly small,
because, in practice, this quasi-degeneracy can only occur close to
high-symmetry lines. Furthemore, for such few pairs, one can
prove that vνq,μq∝ ωνq− ωμq. Hence in the periodic case the τ°
matrix in Eq. (5) is strictly diagonal, τ&qν;pμ ¼ δqpδνμτ

&
qν , where

τ&qν ¼ 1
2γqν

is the anharmonic lifetime of the (q, ν) normal mode.

We conclude that, for periodic systems in the Bloch representa-
tion, the double sum in Eq. (3) can be cast into a single sum over

diagonal terms, reading: καβ ¼
P
qν

vανqv
β
νqτνq, where vανq ¼

1
2ωνq

ðηνq;DαðqÞ ) ηνqÞ ¼
∂ωνq

∂qα is the group velocity of the ν-th

phonon branch. This is the final expression for the thermal
conductivity of a crystal in QHGK, which remarkably coincides
with the solution of BTE-RTA1. We tested the QHGK approach
against BTE-RTA for a crystalline silicon supercell of 1728 atoms,
with a lattice parameter of 5.431 Å. The two calculations,
performed with different codes, give the same results, as expected
by the proven equivalence of the two methods for crystalline
systems (see Supplementary Fig. 1).

Moving to the quantum regime is straightforward in
our approach. To this end, we start from the quantum GK
formula3,5–8, reading:

καβ ¼
1
VT

Z1=kBT

0

dλ
Zþ1

0

dthĴαðt þ i!hλÞĴβð0Þi; ð7Þ

where Ĵα are quantum heat-flux operators and 〈⋅〉 indicates
quantum canonical averages. A quantum expression for the heat
flux is obtained from its classical counterpart, Eq. (6), by making
the substitutions: α !

ffiffiffi
!h

p
â and α' !

ffiffiffi
!h

p
ây, ây and â being

normal-mode creation/annihilation operators, satisfying the
standard commutation relations for bosons: â; ây

# $
¼ 1. Note

that no ordering ambiguities arise when quantizing Eq. (6)
because the vαnm matrices are antisymmetric, and they therefore
vanish for n=m. The resulting expression for the quantum heat
flux is:

Ĵβ ¼
i!h
2

X

nm

vβnmωmðâyn þ ânÞðâym % âmÞ: ð8Þ

The computation of the heat conductivity proceeds exactly as in
the classical case, except for the expressions for the single-mode
Green’s functions. In the quantum case they read: hâynðtÞânð0Þi ¼
nne

iðωnþiγnÞt and hânðtÞâynð0Þi ¼ ðnn þ 1Þe%iðωn%iγnÞt , nn ¼

1= e
!hωn
kBT % 1

% &
being the Bose-Einstein distribution function. The

final quantum-mechanical expression for the heat conductivity in
the QHGK is:

καβ ¼
1
V

X

nm

cnmv
α
nmv

β
nmτ

&
nm; ð9Þ

with cnm ¼ !hωnωm
T

nn%nm
ωm%ωn

. For n=m this term reduces to the modal

heat capacity cn ¼ kB
!hωn
kBT

% &2
e!hωn=kBT

ðe!hωn=kBT%1Þ2. The other symbols are the

same as in Eqs. (4) and (5) for the classical case. τ&nm, in particular,
is only different from zero for jωn % ωmj≲ γn þ γm. Following the
same derivation as for the classical case, one can prove that for
periodic crystals Eq. (9) reduces to BTE-RTA. Furthermore, in
the classical limit, one has limT→∞ cnn= kB and the quantum
formula, Eq. (9), reduces to Eq. (3). Further details are given in
Supplementary Note 2.

Simulations. We validate our QHGK approach by testing the
results of Eqs. (3) and (9) against MD simulations for amorphous
silicon. Interatomic interactions are modeled using the empirical
bond-order Tersoff potential16, which describes well the thermal
conductivity of bulk and nanostructured silicon, including a-
Si9,10,17–19. We consider a 1728-atom model of a-Si, generated by
MD by quenching from the melt. Several EMD simulations where
then run at different temperatures, as described in SM20,21. The

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-11572-4 ARTICLE

NATURE COMMUNICATIONS | ��������(2019)�10:3853� | https://doi.org/10.1038/s41467-019-11572-4 | www.nature.com/naturecommunications 3



integral of the heat flux autocorrelation function in Eq. (1) can
then be efficiently evaluated via cepstral analysis, as described in
refs. 3,22, which can be enhanced by averaging over multiple
trajectories at low temperature (T ≤ 300 K). Details on the data
analysis procedure followed here and on the estimate of the
statistical errors is given in the Supplementary Note 3. The results
of these calculations are reported in Fig. 1 and exhibit a weak
non-monotonic dependence on T. Performing similar MD
simulations on models of increasing size (4096 and 13,824 atoms)
generated with the same protocol, we have verified that size
effects on κ at 300 K amount to less than 15%, which is of the
same order as the variation κ among different models with
the same size. The computation of the IFC matrix, normal-mode
frequencies and lifetimes is described in detail in SM, where we
also display the resulting dependence of lifetimes on temperature
(Supplementary Fig. 2). The resulting strongly diagonally domi-
nant form of the τ° matrices in Eq. (5) is also displayed in Sup-
plementary Fig. 2.

The thermal conductivity obtained by QHGK is in excellent
agreement with that computed by EMD for T ≤ 600 K (Fig. 1). At
higher temperatures QHGK overestimates κ, as it neglects higher-
order anharmonic effects. We point out that, in spite of the
formal analogies with the AF model9,10,23 and recent refinements
thereof24,25, Eq. (3) entails no empirical parameters. It thus allows
one to predict temperature trends dictated by anharmonic effects
in good agreement with MD, without making any a priori
distinction among propagating, diffusive, or localized vibrational
modes. Conversely, in the AF model the temperature dependence
lies only in the heat capacity term, therefore in the classical limit κ
is temperature independent.

Similarly to the GK modal analysis approach26, based on
classical MD, the transport character of the modes is dictated by
the relative contribution from the diagonal and slightly off-
diagonal terms of the vαnm matrix, weighted by τ&nm (Supplemen-
tary Fig. 2). The generality of QHGK is expected to have a major
impact for the study of weakly disordered systems, which are
beyond the scope of applicability of approaches based on the BTE
and the AF model.

QHGK is a general theory that allows one to accurately
calculate thermal transport in both crystals and glasses at a full
quantum mechanical level. In Fig. 2 we report our results from
quantum QHGK calculation for an amorphous Si model of 13824

atoms along with three sets of experimental data27,28. QHGK
results are in excellent agreement with the measurements in Ref. 27
above 100 K. At lower temperature the estimate of κ is affected by
finite size effects, related to insufficient sampling of low-frequency
acoustic modes: at 25 K these effects are so important, as to make
the estimated conductivity almost vanish (see below). Specifically,
we see a significant improvement in the estimate of κ at 50 K from
the 1728-atom model (κ= 0.027Wm−1 K−1) to the 13824 model
(κ= 0.25Wm−1 K−1 see Fig. 3). However, at 50 K and lower
temperatures the latter is not converged yet. In fact, in order to
eliminate finite-size effects, in our approach it would be necessary
that in any relevant frequency range the density of vibrational
states is larger than the normal-mode lifetimes, so that as many
quasi-discrete normal modes as possible fall withing a line-width.
In the low-frequency region, which is the most populated one in
the quantum regime, this condition is hindered by the vanishing
of both the density of states per unit volume and normal-mode
line-widths. This effect is showcased in Fig. 3, where we compare
for different temperatures and model sizes the frequency-resolved
differential conductivity,

κ′ðωÞ ¼ 1
3V

X

α

X

nm

Δðω% ωnÞcnmðvαnmÞ
2τ&nm; ð10Þ

where Δ(ω) is a broadened approximation of the δ function and
the other symbols have the same meaning as in Eq. (9), and the
conductivity accumulation function defined as:

κðωÞ ¼
Z ω

0
κ′ðω′Þdω′: ð11Þ

The AF model can also reproduce κ for a-Si, but it is extremely
sensitive to the empirical choice of the line broadening parameter
(η). The impact of η on the resulting κ(T) is also shown in Fig. 2,
which shows that the value of κAF varies by a factor two by
varying η between 0.01 and 0.5 meV in the temperature range
considered. Whatever value is chosen for η, the AF model cannot
reproduce the correct κQM(T) of a-Si over the whole temperature
range, in which we deem QHGK accurate (T ≤ 600 K), and it
cannot give the correct decreasing trend at high temperature by
construction. The predictions of the QHGK for the thermal
conductivity of a-Si in the classical and fully quantum-mechanical
regimes are compared in Supplementary Fig. 3.

2

1K
 [W

m
–1

K
–1

]

200 600 1000

QHGK

MD

T [K]

Fig. 1 Classical thermal conductivity. Comparison between the thermal
conductivity of a-Si computed for a 1728-atom supercell by the classical
Green–Kubo theory of linear response using either our QHGK approach
(Eq. (3), green) or equilibrium molecular dynamics (purple). The vertical
bars indicate statistical errors obtained by means of cepstral analysis, as
explained in Ref. 22. The kxx, kyy and kzz components of thermal conductivity
tensor κ are averaged to obtain a value corresponding to an isotropic
amorphous media
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1

100 200

T [K]

300 400 500

QHGK

! = 0.01 meV
! = 0.1 meV
! = 0.5 meV

K
 [W

m
–1

K
–1

]

Fig. 2 Quantum thermal conductivity. Thermal conductivity computed for a
13824-atom supercell of a-Si using the quantum QHGK approach in the
quantum regime (Eq. (9)), compared with the Allen-Feldman
approach9,10,23 and experimental data (yellow triangles and orange
diamonds ref. 27), (green triangles ref. 28). The broadening η used in Allen-
Feldman calculations is set equal for every normal mode
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Conclusions. In conclusion, we have introduced a unified
approach to compute the lattice thermal conductivity of both
amorphous and crystalline systems. This quasi harmonic
approach connects in a seamless fashion the AF model for dis-
ordered systems and the BTE-RTA for crystals. QHGK provides a
significant improvement in generality over the Allen-Feldman
model for disordered systems and is analytically proven to be
equivalent to BTE for periodic systems. Classical QHGK calcu-
lations were validated against MD simulations for a-Si, and yield
satisfactory agreement over a wide temperature range. Quantum
QHGK can be deemed predictive at low temperature, not only for
glasses and crystals but also for partially disordered systems, for
which parameter-free models were up to now unavailable.
Although the numerical results of this work were obtained by
evaluating Eqs. (3)–(5) using equilibrium positions R&

iα, second
order force constants Φjγ

iβ, and line-widths γn, computed at
mechanical equilibrium (T= 0), it is possible to evaluate these
same quantities through temperature-dependent statistical sam-
pling approaches29–31, thus extending the reach of QHGK to
systems with strong anharmonicity and high-temperature phases.
The technique proposed in this work paves the way to robust
calculations of heat transport in systems with any kind of
structural order, including materials with point defects, extended
defects and nanostructuring, without relying on any implicit
knowledge of either their underlying symmetry, or the character
of the vibrational modes, and without empirical para-
meters. While this paper was being written we learnt that con-
clusions similar to ours were reached by Simoncelli et al.,
following a different approach based on a generalization of the
BTE32.

Data availability
The data that support the plots within this paper are available from the corresponding
author upon reasonable request.

Code availability
Computer codes are available from the corresponding author upon reasonable request.

Received: 2 April 2019 Accepted: 8 July 2019

References
1. Ziman, J. Electrons and Phonons: The Theory of Transport Phenomena in

Solids (Clarendon Press, 1960).
2. Fugallo, G. & Colombo, L. Calculating lattice thermal conductivity: a synopsis.

Phys. Scr. 93, 043002 (2018).
3. Baroni, S, Bertossa, R, Ercole, L, Grasselli, F. & Marcolongo, A. Heat Transport

in Insulators from Ab Initio Green-Kubo Theory. 2edn, 1–36 (Springer
International Publishing, Cham, 2018). .

4. Bedoya-Martinez, O. N., Barrat, J. L. & Rodney, D. Computation of the
thermal conductivity using methods based on classical and quantum
molecular dynamics. Phys. Rev. B 89, 014303 (2014).

5. Green, M. S. Markoff random processes and the statistical mechanics of time-
dependent phenomena. J. Chem. Phys. 20, 1281–1295 (1952).

6. Green, M. Markoff random processes and the statistical mechanics of time-
dependent phenomena. ii. irreversible processes in fluids. J. Chem. Phys. 22,
398–413 (1954).

7. Kubo, R. Statistical-mechanical theory of irreversible processes. I. General
theory and simple applications to magnetic and conduction problems. J. Phys.
Soc. Jpn. 12, 570–586 (1957).

8. Kubo, R., Yokota, M. & Nakajima, S. Statistical-mechanical theory of
irreversible processes. ii. response to thermal disturbance. J. Phys. Soc. Jpn. 12,
1203–1211 (1957).

9. Allen, P. & Feldman, J. Thermal conductivity of glasses: theory and
application to amorphous si. Phys. Rev. Lett. 62, 645 (1989).

10. Allen, P. & Feldman, J. Thermal conductivity of disordered harmonic solids.
Phys. Rev. B. 48, 12581 (1993).

11. Fabian, J. & Allen, P. B. Anharmonic decay of vibrational states in amorphous
silicon. Phys. Rev. Lett. 77, 3839 (1996).

12. Marcolongo, A., Umari, P. & Baroni, S. Microscopic theory and ab initio
simulation of atomic heat transport. Nat. Phys. 12, 80–84 (2016).

13. Ercole, L., Marcolongo, A., Umari, P. & Baroni, S. Gauge invariance of thermal
transport coefficients. J. Low. Temp. Phys. 185, 79 (2016).

14. Negele, J. W. & Orland, H. Quantum Many-particle Systems (Perseus Books,
1988).

15. Rieder, Z., Lebowitz, J. L. & Lieb, E. Properties of a harmonic crystal in a
stationary nonequilibrium state. J. Math. Phys. 8, 1073–1078 (1967).

16. Tersoff, J. Modeling solid-state chemistry: interatomic potentials for
multicomponent systems. Phys. Rev. B 39, 5566–5568 (1989).

17. He, Y., Donadio, D. & Galli, G. Heat transport in amorphous silicon: Interplay
between morphology and disorder. Appl. Phys. Lett. 98, 144101 (2011).

18. He, Y., Savic, I., Donadio, D. & Galli, G. Lattice thermal conductivity of
semiconducting bulk materials: atomistic simulations. Phys. Chem. Chem.
Phys. 14, 16209–16222 (2012).

19. Larkin, J. & McGaughey, A. Thermal conductivity accumulation in
amorphous silica and amorphous silicon. Phys. Rev. B 89, 144303 (2014).

20. Fan, Z. et al. Force and heat current formulas for many-body potentials in
molecular dynamics simulations with applications to thermal conductivity
calculations. Phys. Rev. B 92, 094301 (2015).

21. Fan, Z., Chen, W., Vierimaa, V. & Harju, A. Efficient molecular dynamics
simulations with many-body potentials on graphics processing units. Comp.
Phys. Commun. 218, 10 (2017).

22. Ercole, L., Marcolongo, A. & Baroni, S. Accurate thermal conductivities from
optically short molecular dynamics simulations. Sci. Rep. 7, 15835 (2017).

23. Feldman, J. L., Kluge, M. D., Allen, P. B. & Wooten, F. Thermal conductivity
and localization in glasses: numerical study of a model of amorphous silicon.
Phys. Rev. B 48, 12589–12602 (1993).

24. Donadio, D. & Galli, G. Temperature dependence of the thermal conductivity
of thin silicon nanowires. Nano Lett. 10, 847–851 (2010).

25. Zhu, T. & Ertekin, E. Generalized Debye-Peierls/Allen-Feldman model for the
lattice thermal conductivity of low-dimensional and disordered materials.
Phys. Rev. B 93, 155414–11 (2016).

26. Lv, W. & Henry, A. Direct calculation of modal contributions to thermal
conductivity via Green–Kubo modal analysis. New J. Phys. 18, 013028–12
(2016).

2

1

8

4

2

1

2

1

2 4 6

Frequency [THz]

T = 600 K

T = 100 K

N = 1728
N = 13,824

N = 1728
N = 13,824

K
 [W

m
–1

K
–1

]
K

′ ×
 1

00
0

K
′ ×

 1
00

K
 [W

m
–1

K
–1

]

Fig. 3 Thermal conductivity accumulation function. Conductivity
accumulation function, κ(ω), and frequency-resolved differential
conductivity, κ′(ω) (Eqs. (10) and (11)), computed for two different model
sizes (N= 1,728 and N= 13,824 atoms) at temperatures T= 100 K and
T= 600 K. Horizontal arrows in the upper panels indicate cumulative
values of κ. κ′ is in units of WK−1 m−1 ps

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-11572-4 ARTICLE

NATURE COMMUNICATIONS | ��������(2019)�10:3853� | https://doi.org/10.1038/s41467-019-11572-4 | www.nature.com/naturecommunications 5



27. Zink, B., Pietri, R. & Hellman, F. Thermal conductivity and specific heat of
thin-film amorphous silicon. Phys. Rev. Lett. 96, 55902 (2006).

28. Cahill, D. G., Katiyar, M. & Abelson, J. R. Thermal conductivity of a-Si:H thin
films. Phys. Rev. B 50, 6077 (1994).

29. Hellman, O., Steneteg, P., Abrikosov, I. A. & Simak, S. I. Temperature
dependent effective potential method for accurate free energy calculations of
solids. Phys. Rev. B 87, 1–8 (2013).

30. Errea, I., Calandra, M. & Mauri, F. Anharmonic free energies and phonon
dispersions from the stochastic self-consistent harmonic approximation:
Application to platinum and palladium hydrides. Phys. Rev. B 89, 422–16 (2014).

31. Bianco, R., Errea, I., Paulatto, L., Calandra, M. & Mauri, F. Second-order
structural phase transitions, free energy curvature, and temperature-
dependent anharmonic phonons in the self-consistent harmonic
approximation: Theory and stochastic implementation. Phys. Rev. B 96,
014111–014126 (2017).

32. Simoncelli, M., Marzari, N. & Mauri, F. Unified theory of thermal transport in
crystals and disordered solids. Nature Phys. https://www.nature.com/articles/
s41567-019-0520-x (2019).

Acknowledgements
We thank Zheyong Fan for providing the GPUMD code and helping to set up the MD
simulations. This work was partially funded by the EU through the MaX Centre of
Excellence for supercomputing applications (Projects No. 676598 and 824143).

Author contributions
This work was started by S.B. and jointly supervised by S.B. and D.D. Analytical work
was performed mostly by L.I. Computer codes were partly developed by L.I. and partly
provided by D.D. Computer simulations were run and analyzed by L.I. and G.B. The
paper was jointly written by all the authors.

Additional information
Supplementary Information accompanies this paper at https://doi.org/10.1038/s41467-
019-11572-4.

Competing interests: The authors declare no competing interests.

Reprints and permission information is available online at http://npg.nature.com/
reprintsandpermissions/

Peer review information: Nature Communications thanks Rodolphe Vuilleumier and
other anonymous reviewer(s) for their contribution to the peer review of this work.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2019

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-11572-4

6 NATURE COMMUNICATIONS | ��������(2019)�10:3853� | https://doi.org/10.1038/s41467-019-11572-4 | www.nature.com/naturecommunications


