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Abstract

We prove the first bifurcation result of time quasi-periodic traveling wave so-

lutions for space periodic water waves with vorticity. In particular, we prove the
existence of small amplitude time quasi-periodic solutions of the gravity-capillary
water waves equations with constant vorticity, for a bidimensional fluid over a flat
bottom delimited by a space-periodic free interface. These quasi-periodic solutions
exist for all the values of depth, gravity and vorticity, and restrict the surface tension
to a Borel set of asymptotically full Lebesgue measure.
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1. Introduction and Main Result

The search for traveling surface waves in inviscid fluids is a very important
problem in fluid mechanics, widely studied since the pioneering work of STOKES
[38] in 1847. The existence of steady traveling waves, namely solutions which look
stationary in a moving frame, either periodic or localized in space, is nowadays
well understood in many different situations, mainly for bidimensional fluids.

On the other hand, the natural question regarding the existence of time quasi-
periodic traveling waves — which cannot be reduced to steady solutions in a moving
frame — has been not answered so far. This is the goal of the present paper. We con-
sider space periodic waves. Major difficulties in this project concern the presence
of “small divisors” and the quasi-linear nature of the equations. Related difficulties
appear in the search of time periodic standing waves which have been constructed in
the last few years in a series of papers by [00ss, PLOTNIKOV, TOLAND [22,23,25,34]
for pure gravity waves, by ALAZARD-BALDI [1] in presence of surface tension and
subsequently extended to time quasi-periodic standing waves solutions by BERTI-
MonTALTO [6] and BALDI-BERTI-HAUS-MONTALTO [2]. Standing waves are not
traveling as they are even in the space variable. We also mention that all these
recent results concern irrotational fluids.

In this paper we prove the first existence result of time quasi-periodic travel-
ing wave solutions for the gravity-capillary water waves equations with constant
vorticity for bidimensional fluids. The small amplitude solutions that we construct
exist for any value of the vorticity (so also for irrotational fluids), any value of the
gravity and depth of the fluid, and provided the surface tension is restricted to a
Borel set of asymptotically full measure, see Theorem 1.5. For irrotational fluids
the traveling wave solutions that we construct do not clearly reduce to the standing
wave solutions in [6]. We remark that, in case of non zero vorticity, one cannot
expect the bifurcation of standing waves since they are not allowed by the linear
theory.

Before presenting in detail our main result, we introduce the water waves equa-
tions.

The water waves equations. We consider the Euler equations of hydrodynamics
for a 2-dimensional perfect, incompressible, inviscid fluid with constant vorticity
y, under the action of gravity and capillary forces at the free surface. The fluid fills
an ocean with depth h > 0 (eventually infinite) and with space periodic boundary
conditions, namely it occupies the region

Dyn = {(x,y) eTxR: -h<y< n(t,x)}, T: =T, :=R/2xZ). (1.1)
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The unknowns of the problem are the divergence free velocity field <

u(t,x,y)
v(t, x, y))’
which solves the Euler equation and the free surface y = n(z, x) of the time
dependent domain D, 1,. In case of a fluid with constant vorticity

Uy — Uy =Y,

vy
0
vorticity y of the fluid, and an irrotational field, expressed as the gradient of a
harmonic function ®, called the generalized velocity potential.
Denoting by v (¢, x) the evaluation of the generalized velocity potential at the
free interface ¥ (¢, x) := ®(z, x, n(¢, x)), one recovers ® by solving the elliptic
problem

the velocity field is the sum of the Couette flow ( ), which carries all the

AP =0 inDyn, P=v¢ aty=n(,x), &, >0 asy— —h. (1.2)
The third condition in (1.2) means the impermeability property of the bottom

®y(t,x,~h) =0, ifh<oo,  lim ®,(,x,y) =0, if h =400,
y——00

Imposing that the fluid particles at the free surface remain on it along the evolution
(kinematic boundary condition), and that the pressure of the fluid plus the capillary
forces at the free surface is equal to the constant atmospheric pressure (dynamic
boundary condition), the time evolution of the fluid is determined by the following
system of equations (see [8,42]):

=Gy + ynnx

U (e + GY)? M .
B T e ) RS S L O
(1.3)

Here g is the gravity, « is the surface tension coefficient, which we assume to belong
to an interval [«1, k2] with k1 > 0, and G () is the Dirichlet-Neumann operator

Yr=—gn

Gy =G, hy =,/1+ 71)26 (aﬂq>)|y=77(x) =(—Dyn + q)y)|y=7](x)‘ (1.4)

The water waves equations (1.3) are a Hamiltonian system that we describe in
Section 2.1, and enjoy two important symmetries. First, they are time reversible:
we say that a solution of (1.3) is reversible if

ﬂ(—t, —)C) = n(ts )C), 1#(—11 _-x) = _w(ts )C). (15)

Second, since the bottom of the fluid domain is flat, the equations (1.3) are invariant
by space translations. We refer to Section 2.1 for more details.

Let us comment shortly about the phase space of (1.3). As G (1) is a function
with zero average, the quantity fT n(x) dx is a prime integral of (1.3). Thus, with no
loss of generality, we restrict to interfaces with zero spatial average fT n(x)dx = 0.
Moreover, since G (n)[1] = 0, the vector field on the right hand side of (1.4) depends
only on n and ¥ — % fT Y dx. As a consequence, the variables (1, ¥) of system
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(1.3) belong to some Sobolev space Hj(T) x H* (T) for some s large. Here H(T),
s € R, denotes the Sobolev space of functions with zero average

HE(T) = {u € H*(T) : /u(x)dx :0},
T

and H*(T), s € R, the corresponding homogeneous Sobolev space, namely the
quotient space obtained by identifying all the H*(T) functions which differ only
by a constant. For simplicity of notation we shall denote the equivalent class [] =
{¥ +c,c € R}, justby ¢.

Linear water waves. When looking to small amplitude solutions of (1.3), a fun-
damental role is played by the system obtained linearizing (1.3) at the equilibrium
(n, ¥) = (0, 0), namely

{a,n =GOy

1.6
Wy =—(g—«kdHn+ya 'GO)y. o

The Dirichlet-Neumann operator at the flat surface n = 0 is the Fourier multiplier

D tanh(hD) if h < o0

G0):=G(0,h) = { where D := %8)(, (L.7)

|D| if h=+o00,
with the symbol
jtanh(hj) ifh < oo
G;(0):=G,;0.n) =] J) (1.8)
|7l if h = 4+o00.

As we will show in Section 2.2, all reversible solutions (see (1.5)) of (1.6) are
n,x)\ _ Z My pn cos(nx — Qp(k)1)
vt,x)) =\ Pupn sin(nx — 2, (1)
ne

q (1.9)
+Z< nP—n COS(nx + —n(/()t))

P_pp_psin(nx + Q_,(x)t)

where p, = 0 are arbitrary amplitudes and M,, and Py, are the real coefficients

1

q
. G;(0) . M
Mj.= 2G(0) 5]€Z\{0}3Pﬁ:ﬂ'_2
KJ +g+y

n:l:M , neN.

(1.10)
Note that the map j — M; is even. The frequencies Q2+, («) in (1.9) are

G;(0 G,
Q) ;:\/(KJ +g+’:1 ())G (0)+Z—(), jeZ\o). (.11
J j

Note that the map j — (k) is not even due to the vorticity term yG;(0)/7,
whichis oddin j. Note that 2 («) actually depends also on the depth h, the gravity
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g and the vorticity y, but we highlight in (1.11) only its dependence with respect
to the surface tension coefficient «, since in this paper we shall move just x as a
parameter to impose suitable non-resonance conditions; see Theorem 1.5. Other
choices are possible.

All the linear solutions (1.9), depending on the irrationality properties of the
frequencies 24, (k) and the number of non zero amplitudes p+, > 0, are either
time periodic, quasi-periodic or almost-periodic. Note that the functions (1.9) are
the linear superposition of plane waves traveling either to the right or to the left.

Remark 1.1. Actually, (1.9) contains also standing waves, for example when the
vorticity y = 0 (which implies Q2_, (k) = 2,(x), P—, = —P,) and p_, = pu,
giving solutions even in x. This is the well known superposition effect of waves with
the same amplitude, frequency and wavelength traveling in opposite directions.

Main result. We first provide the notion of quasi-periodic traveling wave.

Definition 1.2. (Quasi-periodic traveling wave) We say that (n(z, x), ¥ (t, x)) isa
time quasi-periodic traveling wave with irrational frequency vector o =

(wi,...,wy) € R", v e N, thatis w - £ # 0, V€ € Z"\{0}, and “wave vectors”
(jis ..., ju) € Z", if there exist functions (7, ¥) : TV — R? such that
n(t,x)\ _ (@it = jix, ..., opf = jux) (1.12)
I/f(tax) w(a)lt_jlxa"'awvt_j\)x) ’ '

Remark 1.3. If v = 1, such functions are time periodic and indeed stationary in a
moving frame with speed w;/j;. On the other hand, if the number of frequencies
v is = 2, the waves (1.12) cannot be reduced to steady waves by any appropriate
choice of the moving frame.

In this paper we shall construct traveling quasi-periodic solutions of (1.3) with
a diophantine frequency vector @ belonging to an open bounded subset €2 in R",
namely, for some v € (0, 1), 7 > v — 1, with Q C R",

DC(v, 1) = {w € Q : o €] 2 v(0) ™7, Ve e Z'\[0), () := max(1, |¢]}].
(1.13)
Regarding regularity, we will prove the existence of quasi-periodic traveling waves
(1, ¥) belonging to some Sobolev space

BT R = [ (@) = Y fee™, fe R IF12 = Y0 1AR0> < oo,

ez Lezy
(1.14)
Fixed finitely many arbitrary distinct natural numbers
Sti={ny,....my}CN, 1< <...<ny, (1.15)

and signs
¥:={o1,....,00}, o,e{-1,1}, a=1,...,v, (1.16)
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consider the reversible quasi-periodic traveling wave solutions of the linear system
(1.6) given by

n, x)\ _ Z M, /&, cos(fax — Qu, (k)1)
vit,x)) Pi,\/En, sin(figx — Qq, (k)1)

aefl,...,v: o,=+1}

_ (1.17)
Mz, /&7, cos(Max + Q_7,(Kk)1)
+ X Py JE o sin(ax + Qn ()0))
ae{l,...,v: og=—1} a ~ha @ ~Ma
where £47, > 0,a =1, ..., v. The frequency vector of (1.17) is
Qi) = (i, (K))a=1,..v € RV, (1.18)

Remark 14. If 0, = +1, we select in (1.17) a right traveling wave, whereas, if
o, = —1, aleft traveling one. By (1.15), the linear solutions (1.17) are genuinely
traveling waves: superposition of identical waves traveling in opposite direction,
generating standing waves, does not happen.

The main result of this paper proves that the linear solutions (1.17) can be
continued to quasi-periodic traveling wave solutions of the nonlinear water waves
equations (1.3), for most values of the surface tensionx € [k1, k2], w1thafrequency
vector § = (Qaana )a=1,...,v, close to Q(K) = (Qo,7, K))a=1,..., . Here is the
precise statement:

Theorem 1.5. (KAM for traveling gravity-capillary water waves with constant vor-
ticity) Consider finitely many tangential sites St C N as in (1.15) and signs %
as in (1.16). Then there exist s > 0, g9 € (0, 1) such that, for every |&| < 5(2),
&= (&5,7,)a=1....v € RY, the following hold:

1. there exists a Cantor-like set Ge C [k1, k2] with asymptotically full measure as
& — 0, that is limg 0 |Gg| = k2 — K1}

2. for any k € Gg, the gravity-capillary water waves equations (1.3) have a
reversible quasi-periodic traveling wave solution (according to Definition 1.2)
of the form

n(t,x)\ _ M, /&, cos(iigx Qnat)
v, x)) Z Pﬁa\/ism(nax— Q1)

Mz, /67, cos(ngx + Q_z,1)
+ Z (Pn,,« /€ 5, sin(ngx + ant)> +r(t, x)

where, for some ¥ € H*(T", R?),

(1.19)

ae{l,...,v}: o,=—1

L~ _ ~ _ . IFlls
r(t,x) =7 (Qemt —o1n1X, ..., Qo7 b — OVILX), g.ll_% ﬁ =0,
with a Diophantine frequency vector Q = (Qoana)a 1....v € RY, depending
on k, &, and satisfying limg_,q Q = Q(K) In addition these quasi-periodic
solutions are linearly stable.
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Let us make some comments.

Theorem 1.5 holds for any value of the vorticity y, so in particular it guarantees
existence of quasi-periodic traveling waves also for irrotational fluids, that is
y = 0. In this case the solutions (1.19) do not reduce to those in [6], which
are standing, that is even in x. If the vorticity y # 0, one does not expect the
existence of standing wave solutions since the water waves vector field (1.3)
does not leave invariant the subspace of functions even in x.

Theorem 1.5 produces time quasi-periodic solutions of the Euler equation with
a velocity field which is a small perturbation of the Couette flow _())/ 7). In-

deed, from the solution (1 (¢, x), ¥ (¢, x)) in (1.19), one recovers the generalized
velocity potential @ (¢, x, y) by solving the elliptic problem (1.2) and finally
constructs the velocity field <Z E? ;C’ i;) = (—gy) + V®(t, x, y). The time
quasi-periodic potential ® (¢, x, y) has size O (4/[€]), as (¢, x) and ¥ (¢, x).
In the case v = 1 the solutions constructed in Theorem 1.5 reduce to steady pe-
riodic traveling waves, which can be obtained by an application of the Crandall-
Rabinowitz theorem, see for example [30,41,43].

Theorem 1.5 selects initial data giving raise to global in time solutions (1.19)
of the water waves equations (1.3). So far, no results about global existence
for (1.3) with periodic boundary conditions are known. The available results
concern local well posedness with a general vorticity, see for example [10], and
a &2 existence for initial data of size ¢ in the case of constant vorticit_y [21].
With the choice (1.15)—(1.16) the unperturbed frequency vector Q(k) =
(20,7, (k))a=1,...,v 1s diophantine for most values of the surface tension « and
for all values of vorticity, gravity and depth. It follows by the more general
results of Sections 4 and 5.2. This may not be true for an arbitrary choice of the
linear frequencies 2;(«), j € Z\{0}. For example, in the case h = +o0, the
vector

Q) = (2 (). Qg (k). Qo (), iy (), iy (6), Dy ()

is resonant, for all the values of «, also taking into account the restrictions
on the indexes for the search of traveling waves, see Section 3.4. Indeed, re-
calling (1.11) and that, for h = +o00, G;(0,h) = |j|, we have, for £ =
(= €ny. —Cny, —Lny, Lny,s Lny. Lny) that the system

Q) €=y (lny +Luy +ny) =0, 11y, +naln, +n3b,, =0,

has integer solutions. In this case the possible existence of quasi-periodic so-
lutions of the water waves system (1.3) depends on the frequency modulation
induced by the nonlinear terms.

CoMPARISON WITH [6]. There are significant differences with respect to [6],
which proves the existence of quasi-periodic standing waves for irrotational
fluids, not only in the result — the solutions of Theorem 1.5 are traveling waves
of fluids with constant vorticity — but also in the techniques.
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The first difference —which is a novelty of this paper—is a new formulation of
degenerate KAM theory exploiting the “momentum conservation”, namely
the space invariance of the Hamilton equations. The degenerate KAM theory
approach for PDEs has been developed in [3], and then [2,6], in order to prove
the non-trivial dependence of the linear frequencies with respect to a param-
eter —in our case the surface tension «—, see the “Transversality” Proposition
4.5. A key assumption used in [2,3,6] is that the linear frequencies are sim-
ple (because of Dirichlet boundary conditions in [3] and Neumann boundary
conditions in [2,6]). This is not true for traveling waves (for example in case
of zero vorticity one has Q2 (k) = £_;(x) identically in «). In order to deal
with these resonances we strongly exploit the invariance of the equations
(1.3) under space translations, which ultimately imply the restrictions to the
indexes (4.8)—(4.10). In this way, assuming that the moduli of the tangential
sites are all different as in (1.15), cfr. with item 5), we can remove some other-
wise possibly degenerate case. This requires us to keep track along all of the
proof of the “momentum conservation property” that we characterize in dif-
ferent ways in Section 3.4. The momentum conservation law has been used in
several KAM results for semilinear PDEs since the works [16,17,28,35]; see
also [15,20,31] and references therein. The present paper gives a new appli-
cation in the context of degenerate KAM theory (with additional difficulties
arising by the quasi-linear nature of the water waves equations).

Other significant differences with respect to [6] arise in the reduction in
orders (Section 7) of the quasi-periodic linear operators obtained along the
Nash—Moser iteration. In particular, we mention that we have to preserve the
Hamiltonian nature of these operators (at least until Section 7.4). Otherwise
it would appear a time dependent operator at the order |D|'/2, of the form

ia(p)H|D| 3 ,witha(¢) € Rindependent of x, compatible with the reversible

structure, which can not be eliminated. Note that the operator ia(¢)H| D|%
is not Hamiltonian (unless a(¢) = 0). Note also that the above difficulty was
not present in [6] dealing with standing waves, because an operator of the
form ia(@)H|D |% does not map even functions into even functions. In order
to overcome this difficulty we have to perform always symplectic changes of
variables (at least until Section 7.4), and not just reversible ones as in [2,6].
We finally mention that we perform as a first step in Section 7.1 a quasi-
periodic time reparametrization to avoid otherwise a technical difficulty in
the conjugation of the remainders obtained by the Egorov theorem in Section
7.3. This difficulty was not present in [6], since it arises conjugating the
additional pseudodifferential term due to vorticity, see Remark 7.5.

7) Another novelty of our result is to exploit the momentum conservation also
to prove that the obtained quasi-periodic solutions are indeed quasi-periodic
traveling waves, according to Definition 1.2. This requires checking that the
approximate solutions constructed along the Nash—Moser iteration of Section
9 (and Section 6) are indeed traveling waves. Actually this approach shows
that the preservation of the momentum condition along the Nash—-Moser-KAM
iteration is equivalent to the construction of embedded invariant tori which sup-
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port quasi-periodic traveling waves, namely of the form u (¢, x) = U (¢ — Jx)
(see Definition 3.1), or equivalently, in action-angle-normal variables, which
satisfy (3.52). We expect that this method can be used to obtain quasi-periodic
traveling waves for other PDE’s which are translation invariant.

Literature. We now shortly describe the literature regarding the existence of time
periodic or quasi-periodic solutions of the water waves equations, focusing on the
results more related to Theorem 1.5. We describes only results concerning space
periodic waves, that we divide in three distinct groups:

(i) steady traveling solutions,
(ii) time periodic standing waves,
(iii) time quasi-periodic standing waves.

This distinction takes into account not only the different shapes of the waves, but
also the techniques for their construction.

(i) Time and space periodic traveling waves which are steady in a moving frame.
The literature concerning steady traveling wave solutions is huge, and we refer to [ 7]
for an extended presentation. Here we only mention that, after the pioneering work
of STOKES [38], the first rigorous construction of small amplitude space periodic
steady traveling waves goes back to the 1920s with the papers of NEKRASOV [33],
LEvI-CiviTa [27] and STRUIK [39], in case of irrotational bidimensional flows under
the action of pure gravity. Later ZEIDLER [47] considered the effect of capillarity.
In the presence of vorticity, the first result is due to GERSTNER [18] in 1802, who
gave an explicit example of periodic traveling wave, in infinite depth, and with a
particular non-zero vorticity. One has to await the work of DUBREIL-JACOTIN [14]
in 1934 for the first existence results of small amplitude, periodic traveling waves
with general (Holder continuous, small) vorticity, and, later, the works of GoyoN
[19] and ZEIDLER [48] in the case of large vorticity. More recently we point out
the works of WAHLEN [41] for capillary-gravity waves and non-constant vorticity,
and of MARTIN [30] and WALHEN [42] for constant vorticity. All these results deal
with 2d water waves and can ultimately be deduced by the Crandall-Rabinowitz
bifurcation theorem from a simple eigenvalue.

We also mention that these local bifurcation results can be extended to global
branches of steady traveling waves by applying the methods of global bifurcation
theory. We refer to KEADY-NORBURY [29], TOLAND [40], McLEoD [32] for irrota-
tional flows and CONSTANTIN-STRAUSS [9] for fluids with non-constant vorticity.

In the case of three dimensional irrotational fluids, bifurcation of small ampli-
tude traveling waves periodic in space has been proved in REEDER-SHINBROT [36],
CraIG-NIcHOLLS [11,12] for both gravity-capillary waves (by variational bifurca-
tion arguments a la Weinstein-Moser) and by looss-PLOTNIKOV [23,24] for gravity
waves (this is a small divisor problem). These solutions, in a moving frame, look
steady bi-periodic waves.

(ii) Time periodic standing waves. Bifurcation of time periodic standing water
waves were obtained in a series of pioneering papers by looss, PLoTNIKOV and
ToLAND [22,23,25,34] for pure gravity waves, and by ALAZARD-BALDI [1] for
gravity-capillary fluids. Standing waves are even in the space variable and so they
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do not travel in space. There is a huge difference with the results of the first group:
the construction of time periodic standing waves involves small divisors. Thus the
proof is based on Nash—-Moser implicit function techniques and not only on the
classical implicit function theorem.

(iii) Time quasi-periodic standing waves. The first results in this direction were
obtained very recently by BERTI-MONTALTO [6] for the gravity-capillary system
and by BALDI-BERTI-HAUS-MONTALTO [2] for the gravity water waves. Both papers
deal with irrotational fluids.

We finally mention the very recent numerical works of WILKENING-ZHAO [44,
45] about spatially quasi-periodic gravity-capillary 1d-water waves. In particular,
the analysis in [45] is complementary to Theorem 1.5; the solutions (1.19) are
time-quasi-periodic traveling waves on a spatially periodic domain, whereas [45]
concerns pure traveling waves with multiple spatial periods.

2. Hamiltonian Structure and Linearization at the Origin

In this section we describe the Hamiltonian structure of the water waves equa-
tions (1.3), their symmetries and the solutions of the linearized system (1.6) at the
equilibrium.

2.1. Hamiltonian Structure

The Hamiltonian formulation of the water waves equations (1.3) with non-
zero constant vorticity was obtained by CONSTANTIN-IVANOV-PrRODANOV [8] and
WAHLEN [42] in the case of finite depth. For irrotational flows it reduces to the
classical CRAIG-SULEM-ZAKHAROV formulation in [13,46].

On the phase space HO1 (T) x H'(T), endowed with the non canonical Poisson
tensor

Ju(y) = (_(id ng_l), 2.1

we consider the Hamiltonian

Hoon =5 [ (v + o) axre [ Vi e L [ (<ur+2o) ar

2.2)
Such Hamiltonian is well defined on HO1 (T) x HY(T) since G(n)[1] = 0 and

Jr Gy dx = 0.
It turns out [8,42] that equations (1.3) are the Hamiltonian system generated
by H(n, ¥) with respect to the Poisson tensor Jy;(y ), namely

0 (f;) = Iu() (3;’;’,) , 23)

where (V,H, Vy H) € L*(T) x L3(T) denote the L>-gradients.
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Remark 2.1. The non canonical Poisson tensor J, M (y) in (2.1) has to be regarded
as an operator from (subspaces of) (L% x L2)* = [? x L(2) to L(Z) x L2, that is

0 IdL%aL%) )
—ldja o v

July) = <

The operator 9 ! maps a dense subspace of L(z) in L. For sake of simplicity,
throughout the paper we may omit this detail. Above the dual space (L(z) x L?)*
with respect to the scalar product in L? is identified with L? x Lj.

The Hamiltonian (2.2) enjoys several symmetries which we now describe.

Reversible structure. Defining on the phase space HOl (T) x H'(T) the involution

S (Z) = (_"wv>, 7" (@) = n(-x), 2.4)

the Hamiltonian (2.2) is invariant under S; that is
HoS=H,

or, equivalently, the water waves vector field X defined in the right hand side on
(1.3) satisfies

XoS=-50X. (2.5)
This property follows, noting that the Dirichlet-Neumann operator satisfies
GOy 1= (GmlyD”. (2.6)
Translation invariance. Since the bottom of the fluid domain (1.1) is flat (or in case
of infinite depth there is no bottom), the water waves equations (1.3) are invariant
under space translations. Specifically, defining the translation operator

Teiux) = ulx +¢), ceR, 2.7

the Hamiltonian (2.2) satisfies H o 7. = H for any ¢ € R, or, equivalently, the
water waves vector field X defined in the right hand side on (1.3) satisfies

Xot.=1.0X, VgeR (2.8)
In order to verify this property, note that the Dirichlet-Neumann operator satisfies

. 0G() =G(ten)ote, Vg eR. 2.9)
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Wahlén coordinates. The variables (n, 1) are not Darboux coordinates, in the sense
that the Poisson tensor (2.1) is not the canonical one for values of the vorticity y # 0.
WAHLEN [42] noted that in the variables (1, ¢), where ¢ is defined by

C:=1/f—§8;1n, (2.10)

the symplectic form induced by Jj;(y) becomes thq canonical one. Indeed, under
the linear transformation of the phase space HO1 x H'! into itself defined by

ny\ _ n L Id 0 ) -1 ( Id O )
=W , W= _ , W= _ , (211
(0)=2 () = (s

the Poisson tensor Jjs(y) is transformed into the canonical one,

wlivpwhr=1u, J:= (_(;d 1(;1) : (2.12)

Here W* and (W~ 1)* are the adjoints maps from (a dense su.bspace of) L2 x L(2)
into itself, and the Poisson tensor J acts from (subspaces of) L2 x L% to L% x L2
Then the Hamiltonian (2.2) becomes

H:=HoW, thatis H(, ) ::H(n,§+%3;117), (2.13)

and the Hamiltonian equations (2.3) (that is (1.3)) are transformed into

\Y%
z (Z) = Xn(. 0. Xn(n.0) =1 (vﬂ) o). @14

By (2.12), the symplectic form of (2.14) is the standard one,
my (my)_(,;-1(m mn o
w (&) (2))= (7 () (), = coumus - oncso
(2.15)

where J~! is the symplectic operator

(0 -1
J _<Id o) (2.16)

regarded as a map from L% x L% into L? x L(z). Note that JJ ! = IdL(Z)xi} and

JlJ=1d i2xL2: The Hamiltonian vector field X7/(n, ¢) in (2.14) is characterized
by the identity

dHm, Olu]l = W(Xn (1, ¢),0), Vi := (g) _

The transformation W defined in (2.11) is reversibility preserving, namely it com-
mutes with the involution S in (2.4) (see Definition 3.17 below), and thus also
the Hamiltonian H in (2.13) is invariant under the involution S, as well as H in
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(2.2). For this reason we look for solutions (n(t, x), ¢(¢, x)) of (2.14) which are

reversible, that is see (1.5),
n _ n
<§)(—t)_8<§)(t). (2.17)

The corresponding solutions (n(¢, x), ¥ (¢, x)) of (1.3) induced by (2.11) are re-
versible as well.

We finally note that the transformation W defined in (2.11) commutes with the
translation operator 7., therefore the Hamiltonian # in (2.13) is invariant under .,
as well as H in (2.2). By Noether theorem, the horizontal momentum fT Zny dx is
a prime integral of (2.14).

2.2. Linearization at the Equilibrium

In this section we study the linear system (1.6) and prove that its reversible
solutions have the form (1.9).

In view of the Hamiltonian (2.2) of the water waves equations (1.3), also the
linear system (1.6) is Hamiltonian and it is generated by the quadratic Hamiltonian

1 I
Hi(p, 0 1= E/T(l/fc(ow g+ ) dx =5 (szL <Z> , <Z>) .
L2

Thus, recalling (2.3), the linear system (1.6) is

n\ _ n _[(—xdi+g 0
at(w>_JM(y)SZL<w), szL._< ; G(0)>. (2.18)

The linear operator §2; acts from (a dense subspace) of L% x L2 to L? x L%. In
the Wahlén coordinates (2.11), the linear Hamiltonian system (1.6), that is (2.18),
transforms into the linear Hamiltonian system

(1) =sar (0).

02+ g — (£) 0716037 30716 (0)
LG (0)a;! G(0)

(2.19)
Qy =WQ W= (

generated by the quadratic Hamiltonian

1
Hr(n,¢) == (Hy o W)(1, §)=§(9W(2>,<2)) - (2.20)
L

The linear operator 2y acts from (a dense subspace) of L(% x L2 to L? x L%. The
linear system (2.19) is the Hamiltonian system obtained by linearizing (2.14) at the
equilibrium (7, ¢) = (0, 0). We want to transform (2.19) in diagonal form by using
a symmetrizer and then introducing complex coordinates. We first conjugate (2.19)
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under the symplectic transformation (with respect to the standard symplectic form
W in (2.15)) of the phase space

(2) = ().

where M is the diagonal matrix of self-adjoint Fourier multipliers

1/4
_(M(D) 0 _ G(0)

(2.21)
with the real valued symbol M; defined in (1.10). The map M is reversibility
preserving.

Remark 2.2. In (2.21) the Fourier multiplier M (D) acts in H(}. On the other hand,
with a slight abuse of notation, M (D)~! denotes the Fourier multiplier operator in
H' defined as

M(D)_l[é‘] = [ZMJ_—lgjeijx]’ E(X) — Z;jeijx.

j#0 Jez
where [¢] is the element in H'! with representant £ (x).

By a direct computation, the Hamiltonian system (2.19) assumes the symmetric
form

_Y -1
3, (Z):Jﬂg (Z) Qs:zM*ﬂwM=<%wG(?d)§)] ioa(xkg()o)), (2.22)

where

2 Y 4—1 2
w(k, D) = \/ICD G(0) + g G(0) — <§8" G(O)) . (2.23)

Remark 2.3. To be precise, the Fourier multiplier operator w (k, D) in the top left
position in (2.22) maps H into H' and the one in the bottom right position maps
H'! into Hol. The operator 8;1G(0) acts on H'! and G(0) 8;1 on Hol.

Now we introduce complex coordinates by the transformation

w\ _ A (z 1 (1d1d o1 (1di
(e e 5(8)- (1) e

In these variables, the Hamiltonian system (2.22) becomes the diagonal system

z —i0 Z o _(Q&,D) 0
0(2)=(5%) 20 (2). wrmcmen (25200 ). 2

where
Qk, D) := w(k, D) +i ga;lG(O) (2.26)
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is the Fourier multiplier with symbol €2 («) defined in (1.11) and Q(k, D) isdefined
by

Q. D)z := Q(x, D)z, Qk, D) = w(k, D) — i %8;1G(0).

Note that Q(x, D) is the Fourier multiplier with symbol {€2_; («k)}jcz\ (0}
Remark 2.4. We regard the system (2.25)in H' x H'.
The diagonal system (2.25) amounts to the scalar equation
dz=—iQk. D)z, z(x)= Y zjel", (2.27)
JEZ\{0}

and, writing (2.27) in the exponential Fourier basis, to the infinitely many decoupled
harmonic oscillators
zj =—iQj(k)zj, J € Z\{0}. (2.28)

Note that, in these complex coordinates, the involution S defined in (2.4) reads as

the map
z(x) z(—x)
bt , 2.29
<z(x>> - (z(—x)) 229
which we may read just as the scalar map z(x) — z(—x). Moreover, in the Fourier
coordinates introduced in (2.27), it amounts to

zj — zj, VjeZ\{0} (2.30)

In view of (2.28) and (2.30) every reversible solution (which is characterized as in
(2.17)) of (2.27) has the form

1 . .
NG 7 pje @I with p; e R. 2.31)
JEZ\(0)

Let us see the form of these solutions back in the original variables (7, ). First,
by (2.21), (2.24),

N N_ L[ M) MWD (z
(5) =Me <Z> V2 (—iM(D)‘1 iM(D)‘l) <Z>

_ L MD)+2)
L2 \-iMD) ' -)

and the solutions (2.31) assume the form
n, x)\ _ Z M, pn cos(nx — €2, (k)1)
ct,x)) < M, oy sin(nx — Q,(k)1)
ne

M, p—, cos(nx + Q2_,(k)t)
+ % (—Mn]p_n sin(nx + Q_n(K)l)) ’
ne

z(t, x) =

(2.32)

Back to the variables (1, ) with the change of coordinates (2.11) one obtains
formula (1.9).
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Decomposition of the phase space in Lagrangian subspaces invariant under (2.19).
We express the Fourier coefficients z; € Cin (2.27) as

aj +1ip; .
zj = % (aj. Bj) e R?, j € Z\{0}.
In the new coordinates (o, B;) jez\ (o0}, we write (2.32) as (recall that M; = M_;)
7(x) Mj(ajcos(jx) — B sin(jx)) )
= = . L 2.33
(;(x)) je%\:{o} (Mj 1(,Bj cos(jx) + a;sin(jx)) ( )

with

1
o) = E(Mj_l("’ cos(jx))2 + M (¢, sinjx))2) st

1 . - o
B = 5 (M;(¢.cos(jx),2 = My . sin(), 2 ).
The symplectic form (2.15) then becomes

2 Y daj AdB;.

JE€Z\{0}

Each 2-dimensional subspace in the sum (2.33), spanned by («;, 8;) € R? is
therefore a symplectic subspace. The quadratic Hamiltonian H, in (2.20) reads as

§2 (k)
2 'Z —5— @+ ). (2.35)
JEZ\O)

In view of (2.33), the involution S defined in (2.4) reads as

(@j, Bj) = (@j, =Bj), Vj e Z\{0}, (230
and the translation operator 7. defined in (2.7) as
<aj> = (cos(js‘) - sin(jg)) <Olj> Vj e 7\{0} (2.37)
B; sin(jg) cos(js) J\Bj)’ . .

We may also enumerate the independent variables («, B;) jez\(0} as (a,n, B—n,
oy, ,Bn), n € N. Thus the phase space §) := L% x L2 of (2.14) decomposes as the
direct sum

H=> Vs ®Va-

neN

of 2-dimensional Lagrangian symplectic subspaces

L n\ _ [ Mu(ay,cos(nx) — B, sin(nx)) )
Vig = {({) - <Mn_1(,3,, cos(nx) + ay sin(nx))) (@ Br) € R } » (238)
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_ I(n\ _ [ Ma(a—pncos(nx) + By sin(nx)) 2
Vi— = {(g) - (M,,l(ﬂ_n cos(nx) —a_, sin(nx))) (@ Bn) € R }
(2.39)

which are invariant for the linear Hamiltonian system (2.19), namely JQw :
Vi,o = Vuo (for a proof see for example remark 2.10). The symplectic pro-
jectors Iy, , o € {£}, on the symplectic subspaces V,, , are explicitly provided
by (2.33) and (2.34) with j = no.

Note that the involution S defined in (2.4) and the translation operator 7 in
(2.7) leave the subspaces V,, 5, o € {£}, invariant.

2.3. Tangential and Normal Subspaces of the Phase Space

We decompose the phase space Sﬁ of (2.14) into a direct sum of rangential
and normal Lagrangian subspaces ). S+3 and H% &z Note that the main part of
the solutions (1.19) that we shall obtaln in Theorem 1.5 is the component in the
tangential subspace “6S+, 5» Whereas the component in the normal subspace 5s+,z
is much smaller.

Recalling the definition of the sets ST and ¥ defined in (1.15) respectively
(1.16), we split

H=9L ;@95 5 (2.40)

where ﬁéJr 5, is the finite dimensional tangential subspace

9 5 Z Viia.o0 (2.41)

and f)gﬂz is the normal subspace defined as its symplectic orthogonal

5S+ E - Z Vnu —0q @ Z n =+ @ V —) (242)
neN\S+
Both the subspaces .‘6S+ 5, and fJS+ 5. are Lagrangian. We denote by mnl

s
St.=
Since ﬁS+ 5 and Sﬁs+ 5, are symplectic orthogonal, the symplectic form W in (2.15)

and
stz @
the symplectic projections on the subspaces fJS+ 5 and ﬁS+ 5. respectively.
decomposes, for any vy, vy € ﬁé 5 and wi, wy € ﬁgﬁ 5> as

Wi + wi, v2 + w2) = W(vi, v2) + W(wi, wa).
The symplectic projections I'IS+ 5, and Hé 5, satisfy
Lemma 2.5. We have that
T T * T * T

M,/ =J(0 ) (M) =s7 e

g /=7 5)" . (M5g) 7 '=77"ng . (2.44)
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Proof. Since the subspaces HT := S’jS+ 5 and 9% = ﬁs+ 5 are symplectic or-
thogonal, we have, recalling (2.15), that

v, wyp =0 w)=0, YuenT, Vuw e H”Z.

M4 .= 1<

&roxowe have that

Thus, using the projectors 1T := 1'I§+ 5

(J 7T, M4w)2 = (J 'MW, M) ,2 =0, Yo, weH,

and, taking adjoints, ((IT4)*J T T, w2 = (MIM)*J -4 w, v);2 = Oforany
v, w € 9, so that
(M5*J~'MT = 0= MM)*s~'n%. (2.45)
Now inserting the identity [T< = Id — I1T in (2.45), we get
JTIOT = @M aT = (my*g !

proving the second identity of (2.43). The first identity of (2.43) follows applying
J to the left and to the right of the second identity. The identity (2.44) follows in
the same way. O

Note that the restricted symplectic form W)| #Z, is represented by the sym-
ST.%

plectic structure

V98 s o 95y, I = nt’ J—1 , (2.46)

S+ )
where HQZ is the L2-projector on the subspace ﬁsﬁ,z' Indeed
Wiz, () = (7 w, )2 = (J 7w, D)2, Yw, b € HE 5.
We also denote the associated (restricted) Poisson tensor

Joi95 s > Oy Jo=T5 s Tgs (2.47)

In the next lemma we prove that JZI and J, are each other inverses.

Lemma26.J/,'J, =J,J;' =1d )
/ Z Vi fJSA‘*',Z

Proof. Letv € .‘?)Sﬁ 5 By (2.46) and (2.47), for any h € Sﬁé 5, one has

7 I vy =07 NE 5 T, l'ILzh)Lz = —(Hg+ s Jv, T )

=—(Jv, (l'IS+ )T —(Jv, J~ HS+ sh2 =, h)pe.
The proof that J4J2 =Idﬁé is similar. O
+.2
Z L2 _ <
Lemma 2.7. I'ISJr I =Tg 5 J.

Proof. For any u, h € ) we have, using Lemma 2.5,

2 2 2
(Mg oINS u by = =5 u, JME ) )2 = —(M5 w, TG, o Jh) g
=~ NG g Jh)p2 = (J(TG o) u b2 = (G g Ju, h)p2,

implying the lemma. O
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Action-angle coordinates. Finally we introduce action-angle coordinates on the
tangential subspace 6S+ defined in (2.41). Given the sets St and X defined
respectively in (1.15) and (1 16), we define the set

={J1,-- . W CTZ\{O}, J,:=04n4, a=1,...,v, (2.48)
and the action-angle coordinates (6;, /) jes, by the relations, for any j € S,

/1 /1
Olj: ;(Ij+fj)COS(9j), ﬂjZ— ;(Ij+$j)sin(0j), Ej >0, |Ij|<§j.

(2.49)
In view of (2.40)—(2.42), we represent any function of the phase space 9 as

A@. 1, w> =070, D) +w,
I + &j cos(6;) M;\/I; +&;sin(6;) \ . .
f Z [( I; + & sin(9; )) os(jx) + ( \/WCOS(G_/)) sm(]x):| +w
=— Mjy/1j +§;jcos®; = jx)

where 0 := (0j)jes € T, I :=(Ij)jes € R" and w € 5’)§+ 5

Remark 2.8. In these‘coordinates the §olutions (1.17) of the linear system (1.6)
simply read as WuT(Q(k)t, 0), where Q(k) := (2 («)) jes is given in (1.18).

In view of (2.50), the involution S in (2.4) reads as
S:0,1,w) > (=6, 1,Sw) , 2.51)

the translation operator . in (2.7) reads as

Tc: (0,1, w)— (0 —Jg, I, tcw), Vs €R, (2.52)
where
Ji=jes=(T1.---. 7)) € Z\{0}, (2.53)
and the symplectic 2-form (2.15) becomes
W= (do; Adlj) & W|54 . (2.54)
jes

We also note that }V is exact, namely

W=dA, where A w0, 1.0]:=-Y L5 +} (J;lw, m)L2 (2.55)
jeS

is the associated Liouville 1-form (the operator J ~1is defined in (2.46)).
Finally, given a Hamiltonian K : T" x RY x .‘?) — R, the associated Hamil-
tonian vector field (with respect to the symplectlc form (2.54)) is

Xk = (0/K, - K, J,VyK) = (0;K, —0K, HS+ </ VuK), (2.56)
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where V,, K denotes the L? gradient of K with respect to w € f)S+ 5~ Indeed, the
only nontrivial component of the vector field Xk is the last one, which we denote
by [Xk]w € .‘r’)S+ 5 It fulfills

(I XKl D)2 = dy K[@D] = (VK. D)2, YD €HS 5. (257

and (2.56) follows by Lemma 2.6. We remark that along the paper we only consider
Hamiltonians such that the L2- -gradient V,,K defined by (2.57), as well as the
Hamiltonian vector field Hgﬂ +J Vi K, maps spaces of Sobolev functions into
Sobolev functions (not just distributions), with possible loss of derivatives.

Tangential and normal subspaces in complex variables. Each 2-dimensional sym-
plectic subspace V,, 5, n € N, 0 = %1, defined in (2.39)—(2.39) is isomorphic,
through the linear map MC defined in (2.32), to the complex subspace

zjel . .
Hj:[(Z]e—ux)ijeC} with  j =no € Z.

Denoting by IT; the L2-projection on H;, we have that Iy, , = MCTI; (MC)~.
Thus MC is an isomorphism between the tangential subspace ﬁS+ 5 deﬁned in
(2.41) and

z .
Hs:=1(2): = et~ }
S { (Z) z(x) Zz,e
j€es
and between the normal subspace Sﬁgﬂ 5, defined in (2.42) and
1 . Z . _ ijx 2 Cc .
B = (z) L= Y et e 2] sji=mEuion. @58
J€S§
Denoting by ITJ, Hé‘o , the L2-orthogonal projections on the subspaces Hg and Hé‘o
we have that

HT

Ly=Mcalwmo)™, Mg o= MChg (MO)™, (2.59)

The following lemma, used in Section 5, is an easy corollary of the previous analysis.

Lemma 2.9. We have that (vT, Qww);2 =0, foranyvT € f)ng sandw € f)Sﬂ ot

Proof. Write vT = MCzT and MCz!t with zT € Hg and z+ € HSL0 Then, by
(2.22) and (2.25),

(o7, @ww),2 = (MeT, @wMezt) | = (7. @p2t) | =0,

since 2 p preserves the subspace Héo. O

Remark 2.10. The same proof of Lemma 2.9 actually shows that (v, s,
Qwvn o)z =0 forany v, +6 € Vi 46, forany n € N, 0 = £1. Thus W(v, —¢,
Jwvno) = Vo, J ' JRwvy0) 2 = 0 which shows that JQyw maps V, , in
itself.

Notation. The notation a <; b means that ¢ < C(s)b for some positive constant
C(s). We denote N := {1, 2, ...} and Ny := {0} UN.
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3. Functional Setting

Along the paper we consider functions u (¢, x) € L? (']I‘”+1, C) depending on
the space variable x € T = Ty and the angles ¢ € T" = T, (so that ™+ =
T(‘/’) x Ty) which we expand in Fourier series as

(. x) =Y uj(@)e =Y uy e, (3.1)

JjeZ LeZV,jel

We also consider real valued functions u(¢, x) € R, as well as vector valued
functions u (¢, x) € C? (or u(p, x) € R?). When no confusion appears, we denote
simply by L2, L2(T"*1), L% = L%(T,), Lé := L?(T") either the spaces of
real/complex valued, scalar/vector valued, L2-functions.

In this paper a crucial role is played by the following subspace of functions of
(@, x).
Definition 3.1. (Quasi-periodic traveling waves) Let j := (J,,...,7,) € Z" be
the vector defined in (2.53). A function u (¢, x) is called a quasi-periodic traveling
wave if it has the form u(¢, x) = U(¢p — jx) where U : T" — CK K eN,isa
(27)"-periodic function.

Comparing with Definition 1.2, we find convenient to call quasi-periodic trav-
eling wave both the function u(p,x) = U(p — jx) and the function of time
u(wt, x) = U(wt — Jx).

Quasi-periodic traveling waves are characterized by the relation

ulp —js,-) =teu Vg €R, (3.2)

where 1. is the translation operator in (2.7). Product and composition of quasi-
periodic traveling waves is a quasi-periodic traveling wave. Expanded in Fourier
series as in (3.1), a quasi-periodic traveling wave has the form

u(g, x) = Z ug,jei(['(p+jX), (3.3)
LeTV,jel, j+] =0
namely, comparing with Definition 3.1,
u(g.x)=Ulp—jx)., UW) =Y UV, Ur=uy_j,. (34
Lezy

The traveling waves u(¢, x) = U(p — jx) where U(-) belongs to the Sobolev
space H*(T", CXY in (1.14) (with values in CX, K € N), form a subspace of the
Sobolev space

Hs(Tv+l) — [u — Z U, j ei([lerjX) . ”u”% = Z |M{{,j|2<z, j>2s < OO]
(€, j)ezv+! (¢, ))ezv+!
(3.5)
where (¢, j) := max{l, |£|, | j|}. Note the equivalence of the norms (use (3.4))

el es (T xT2) =5 Ul Es o).
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Fors = so := [“!]+ 1 € None has H*(T"*!) c C(T"+!), and H*(T"*!) is an
algebra. Along the paper we denote by || ||s both the Sobolev norms in (1.14) and
(3.5).

For K 2 1 we define the smoothing operator ITg on the traveling waves

Mg iu= Y ue j @O > Mgu = Y ug, j€ O,
LeZV, jES§, j+]£=0 (0)SK, jeS§, j+7-£=0
(3.6)
and HJIE := Id — 1. Note that, writing a traveling wave as in (3.4), the projector
[Tk in (3.6) is equal to

(Mgw)(p.x) =Ug(p —jx), Ux@):= > Upe?.
ez, (()SK

Whitney-Sobolev functions. Along the paper we consider families of Sobolev
functions A +— u(A) € H(T"*!) and A — U(A) € H*(T") which are ko-times
differentiable in the sense of Whitney with respect to the parameter A := (w, k) €
F C RY x [k, k2] where F C RYt! is a closed set. The case that we encounter
is when w belongs to the closed set of Diophantine vectors DC(v, ) defined in
(1.13). We refer to Definition 2.1 in [2], for the definition of a Whitney-Sobolev
function u : F — H°® where H® may be either the Hilbert space H*(T" x T)
or H%(T"). Here we mention that, given v € (0, 1), we can identify a Whitney-
Sobolev function u : F — H* with ko derivatives with the equivalence class of
functions f € WKV RVt H%)/ ~ with respect to the equivalence relation
f~ g whend f(A) = 3] g(r) forall A € F, |j| < ko — 1, with equivalence of
the norms

ko, .
||M|S?FU ~v,ko ”u”WkOvOC-U(]R“‘H,HS) = Z U‘a|||a)ofu”Loo(Rv+l’Hs).
lor| Sko

The key result is the Whitney extension theorem, which associates to a Whitney-
Sobolev function u : F — H* with ko-derivatives a function u : RVl 5 g,
i in Wk-%°(RV*1 H*) (independently of the target Sobolev space H*) with an
equivalent norm. For sake of simplicity in the notation we often denote || ||ff)1’,U =
115

Thanks to this equivalence, all the tame estimates which hold for Sobolev spaces
carry over for Whitney-Sobolev functions. For example the following classical
tame estimate for the product holds: (see for example Lemma 2.4 in [2]): for all
s 250> (w+1)/2,

ko, ko, ko, ko, ko,
luvl"" = C(s, ko) lull" vl ™ + C(so, ko) llulls vl - 3.7

Moreover the following estimates hold for the smoothing operators defined in (3.6):
for any traveling wave u

IMgulfo” < Ky, 0<a <5,

s—a =

IMgulfor < K= u)fy, « > 0.

s+a

(3.8)
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We also state a standard Moser tame estimate for the nonlinear composition oper-
ator, see for example Lemma 2.6 in [2],

u(p, x) = £u)(p, x) = flp, x, u(p, x)).

Since the variables (¢, x) =: y have the same role, we state it for a generic Sobolev
space H*® (T9).

Lemma 3.2. (Composition operator) Let f € C* (T? x R, R). If u(r) € HS(T9)
is a family of Sobolev functions satisfying ||u||‘]§(())’U < 1, then, for all s 2 sy :=
d+1)/2,

£ @)%Y < C(s, ko, £)(1+ llul*o?).

If £(9,x,0) =0 then | £w) 5" < C(s, ko, £)lulls.

Diophantine equation. If @ is a Diophantine vector in DC(v, 1), see (1.13), then
the equation w - 9,v = u, where u(¢p, x) has zero average with respect to ¢, has the
periodic solution

(@-3,)  u = Z b itptin)
-
LeZV\{0},j€Z

For all w € RY, we define its extension

3 x(w- v 1))

ug e EPio 3.9
iw - £ b (3:9)

(w - 8¢);$u(<p, Xx) =
(Z,j)eZ”‘H

where x € C*°(R, R) is an even positive C* cut-off function such that

0 if g =

XEO=11 i g2

. %x(E) >0 VEE(]. 3 (3.10)

WD W —

Note that (w - 8¢);({u =(w- a(p)"u for all € DC(v, t). Moreover, if u(¢p, x) is
a quasi-periodic traveling wave with zero average with respect to ¢, then, by (3.3),
we see that (w - 9y) ;(ltu(go, X) is a quasi-periodic traveling wave. It holds that

_ k — ko,
@ - 3 el S Ckoyo Nl s mi=ko+t(ko+ 1, (B.1D)

and, for F € DC(v, 7) x Ry, one has [[(w - 8) " u |\ < Clho)v™" ull 1
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Linear operators. Along the paper we consider ¢-dependent families of linear
operators A : TV L(L*(T,)), ¢ — A(g), acting on subspaces of L%(T,), either
real or complex valued. We also regard A as an operator (which for simplicity we
denote by A as well) that acts on functions u (¢, x) of space and time; that is

(Au) (@, x) = (Al@u(p, -)) (x). (3.12)

The action of an operator A as in (3.12) on a scalar function u (¢, x) € L? expanded
asin (3.1)is

Aug.x) = Y AL @uy(p)e

J.J'€L
y o (3.13)
— Z Z A; (E _ e,)uf’,j’el( '§0+]X)_
J.J €T L €LY
We identify an operator A with its matrix (Aj - ))j jrez.0.0ezve Whichis Toplitz

with respect to the index £. In this paper we always consider Toplitz operators as
in (3.12), (3.13).

Real operators. A linear operator A is real if A = A, where A is defined by
A(u) := A(). Equivalently A is real if it maps real valued functions into real
valued functions. We represent a real operator acting on (1, ¢) belonging to (a
subspace of) L%(T,,R?) by a matrix

AB
R = <C D), (3.14)

where A, B, C, D are real operators acting on the scalar valued components 7, { €
L%*(T,, R).

The change of coordinates (2.24) transforms the real operator R into a complex
one acting on the variables (z, 7), given by the matrix

RiRo
RaRi )

R:=C'RC= <

R = %{(A +D)—-i(B—-0C)}, Ra:= % {(A-D)+i(B+C)}. (3.15)

A matrix operator acting on the complex variables (z, z) of the form (3.15), we
call it real. We shall also consider real operators R of the form (3.15) acting on
subspaces of L.

Lie expansion. Let X (¢) be a linear operator with associated flow @7 (¢) defined
by

9: P () = X () @" (¢)

qno((p) 1, T €0, 1].

Let ®(¢) := ®*(¢)|r=1 denote the time-1 flow. Given a linear operator A(g), the
conjugated operator

AT (@) = @(p) ' Alp)D(p)
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admits the Lie expansion; that is for any M € Ny,

A = 3 O ad ) (AGD + Rur(e)
m=0 (3.16)

(_1)M+1 ! M T M+1 T
Ry (p) = T/o (1—)M (@ (p)~! ady ) (A(p)@"(p) dr,

where adx () (A(9) = [X (¢), A(@)] = X (9)A(p) — A(9)X (¢) and ad} ) =
Id.

In particular, for A = - 9y, since [X (¢), w - 9,] = — (@ - Iy X)(¢), we obtain

X(9)
m=1 (3.17)

f (1 =M@ (p) "ad¥ ) (@ 3,X (9)) D" (¢) dr.

—1 m+1
D) ow-dy0d(p) =w-d, + Z %ad'"—l (@ - 39,X (¢))

(— )M

For matrices of operators X(¢) and A(¢) as in (3.15), the same formula (3.16)
holds.

3.1. Pseudodifferential Calculus

In this section we report fundamental notions of pseudodifferential calculus,
following [6].

Definition 3.3. (W DO) A pseudodifferential symbol a(x, j) of order m is the re-
striction to R x Z of a function a(x, &) which is C*°-smooth on R x R, 277 -periodic
in x, and satisfies

0200 a(x. §)|  Cupl§)" P, Vo p € No.

We denote by S the class of symbols of order m and S~ := N,,>,8". To a
symbol a(x, £) in S we associate its quantization acting on a 2 -periodic function

u(x) =Y jepujel as

[Op(@)ul(x) := Y alx, ju; ",

JEZ

We denote by OPS™ the set of pseudodifferential operators of order m and OPS~>°
= [),ner OPS™. For a matrix of pseudodifferential operators

. Al Ay ' m -
A_<A3A4)’ A; e OPS™, i=1,...,4, (3.18)

we say that A € OPS™.
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When the symbol a(x) is independent of &, the operator Op(a) is the multipli-
cation operator by the function a(x), thatis Op(a) : u(x) — a(x)u(x). In such a
case we also denote Op(a) = a(x).

We shall use the following notation, used also in [1,2,6]. For any m € R\{0},
we set

ID|" := Op(x §)I£I")

where x is an even, positive C*° cut-off satisfying (3.10). We also identify the
Hilbert transform H, acting on the 2 -periodic functions, defined by

H(e'V¥) := —isign (j)e'* Vj#£0, H(l):=0, (3.19)
with the Fourier multiplier Op(—isign (£) x (§)). Similarly we regard the operator
57! [eijx] = —ij 7l V20, 87'[1]:=0, (3.20)

as the Fourier multiplier 9, I = Op (—i X (S)E’l) and the projector ¢, defined on
the 2 -periodic functions as

1
ToU = —/ u(x)dx, (3.21)
2 T

with the Fourier multiplier Op(l —x(¢ )). Finally we define, for any m € R\{0},
(D)™ := 7o + |D|" := Op((1 — x (&) + x &) I£]").

Along the paper we consider families of pseudodifferential operators with a symbol
a(X; ¢, x, &) which is ko-times differentiable with respect to a parameter A :=
(w, k) in an open subset Ag C RY x [k, x2]. Note that afA = Op (Bfa) for any
ke Nyt

We recall the pseudodifferential norm introduced in Definition 2.11 in [6].

Definition 3.4. (Weighted ¥ D O norm) Let A(A) := a(X; ¢, x, D) € OPS™ be a
family of pseudodifferential operators with symbol a(A; ¢, x, &) € S™, m € R,
which are ko-times differentiable with respect to A € Ag € R'*!. For v € (0, 1),
a € Ny, s 2 0, we define

ko, . k
AIRY, = > vl sup
IR

A AG) H :
m,s,o

where | Al s o = Maxg< p<y SUPeeg 18FaGh. -, - )¢ (6)7"F. For a ma-

trix of pseudodifferential operators A € OPS™ as in (3.18), we define Ak .=

m,s,o
ko,v

max;=1,..4 [|Aill; e -

Given a function a(A; ¢, x) € C* which is ko-times differentiable with respect
to A, the weighted norm of the corresponding multiplication operator is

IOp@IIE%:Y, = [lal’v, Va e No. (3.22)

0,s,«
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Composition of pseudodifferential operators. If Op(a), Op(b) are pseudodiffer-
ential operators with symbols a € S, b € Sm/, m,m’ € R, then the composi-
tion operator Op(a)Op(b) is a pseudodifferential operator Op(a#b) with symbol
a#b € St It admits the asymptotic expansion: for any N = 1

N-1

1 g
#b )\., y Xy = N a )“1 s Ay a'Bb )‘47 s Ay
(a#b)(A; @, x, &) ;:0 7Bl ca(d; ¢, x,8)0:b(A; @, x,8) (323)

+(n(a, b)) 0, x,8),
where ry(a, b) € gm+m'=N The following result is proved in Lemma 2.13 in [6]:

Lemma 3.5. (Composition) Let A = a(x; ¢, x, D), B = b(%; ¢, x, D) be pseu-
dodifferential operators with symbols a(\; ¢, x, &) € S, b(A; ¢, x,&) € S™,
m,m’ € R. Then A o B € OPS™™™ satisfies, for any o € No, s = s0,

ko, ko, ko,
IABIY | Smako CO) AT, IBIEY o
ko, ko,
+CG0) ALY B e (3.24)

Moreover, for any integer N 2 1, the remainder Ry := Op(ry) in (3.23) satisfies

ko,v ko,v ko,v
10p(rx (@, DI s o SnN ok CO) NIy 1B L ion e N e

ko,v ko,v
+ C(SO) ||A||m,.§‘(),N+Ol ”B||m’,s+|m|+2N+ot,N+a .

(3.25)

Both (3.24)—(3.25) hold with the constant C (sq) interchanged with C(s).
Analogous estimates hold if A and B are matrix operators of the form (3.18).

The commutator between two pseudodifferential operators Op(a) € OPS™
and Op(b) € OPS™ isa pseudodifferential operator in OPS™+m' =1 with symbol
axb e S™tM' =1 namely [Op(a), Op(b)] = Op (a * b), that admits, by (3.23), the
expansion

axb=—ila,b}+7/(a,b), Fa,b):=rya,b)—ryb,a)e "2,
where {a, b} := 0zadb — 0,adeb,
(3.26)
is the Poisson bracket between a(x, &) and b(x, £). As a corollary of Lemma 3.5
we have

Lemma 3.6. (Commutator) Let A = Op(a) and B = Op(b) be pseudodifferential
operators with symbols a(A; ¢, x, &) € ", b(A; ¢, x,&) € S, m, m’ € R. Then
the commutator [A, B] := AB — BA € OPS" "~ satisfies

ko,v

ko, ko,
A, Bk S Cs) I1AJ5Y IBISY a2t

m+m’'—1,s,a ~m.m'.a.ko m,s+|m'|+a+2,a+1

ko,v ko,v
+ C60) 1Al sorpm+as2.041 1B st imiat2.041 -

(3.27)
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Finally we consider the exponential of a pseudodifferential operator of order 0.
The following lemma follows as in Lemma 2.12 of [5] (or Lemma 2.17 in [6]).

Lemma 3.7. (Exponential map) If A := Op(a(}; ¢, x,&)) is in 0PSO, then e is
in OPSO and for any s 2 sg, a € Ny, there is a constant C (s, o) > 0 so that

le? —1d[I§%:, < NANY, ., exp(Cls, ) AN, )-

0,5, = 0,s+o,ax 0,s50+a,a

The same holds for a matrix A of the form (3.18) in OPS°.

Egorov Theorem. Consider the family of ¢-dependent diffeomorphisms of T, de-
fined by

y=x+pBx) < x=y+p ), (3.28)

where B(¢, x) is a small smooth function, and the induced operators

Bu)(g, x) = u(p, x + (¢, x)), (B~'uw)(@,y) :=ul@,y+ @, ). (3.29)

Lemma 3.8. (Composition) Let ||/3||§‘;(’)ik0 ) < 8(so, ko) small enough. Then the

composition operator B satisfies the tame estimates, for any s 2 s,

ko, ko,v ko, ko, v
IBulls®" Sk NullsS gy + 181 loellgy ey 115

and the function ﬁ defined in (3.28) by the inverse diffeomorphism satisfies
3 1ko,v < 0,V
IBIS™ Ssoko 1BIs k-

The following result is a small variation of Proposition 2.28 of [5]:

Proposition 3.9. (Egorov) Let N € N, qg € Ny, S > so and assume that Bi‘ Bk -, )
areC™ forall |k| < ko. There exist constants oy, on(do) > 0,8 = 8(S, N, o, ko) €

(0, 1) such that, if ||ﬂ||];§fUN (@) < 8, then the conjugated operator B~ o 0y o B,

m € Z, is a pseudodifferential operator of order m with an expansion of the form

N

B o3l oB=2 pui(;e, )" +Rn(e),
i=0

with the following properties:

1. The principal symbol of py, is
PG 9,9) = (114 Be G 0. 01" )L,y g

where ,é(k; @, y) has been introduced in (3.28). For any s 2 sy and i =
1,...,N, .
1Pm = TV s 1 pm—i 5 Ss.n 181155y - (3.30)

2. Foranyq € Nywith |a| < qo, n1,n2 € Nowithni+ny+qg < N+1—ko—m,
the operator (D)™ BgRN (@) (D)" is D*-tame with a tame constant satisfying,
forany so <5 <8,

ko,
M pymag Ry (D2 () S5.N.a0 1B oy g0 (3.31)
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3. Let so < s1 and assume that || B |ls,+oy(qp) = 8, J = 1,2. Then | A2 pm—ills,
Ssi.N 1A12Bs 140y, § = 0,..., N, and, for any |g| < qo, ni, ny € Ny with

~

n+ny+ao <N —m,
(D) 85 AR (@)(D) 2 Basty SsiNoniona 1812815140y (o)

Finally, if B(@, x) is a quasi-periodic traveling wave, then B is momentum
preserving (we refer to Definition 3.24 and Lemma 3.30), as well as the con-
jugated operator B! o 07" o B, and each function p;,—;, i = 0,...,N, isa
quasi-periodic traveling wave.

Dirichlet-Neumann operator. We finally remind the following decomposition of
the Dirichlet-Neumann operator proved in [6], in the case of infinite depth, and in
[2], for finite depth.

Lemma 3.10. (Dirichlet-Neumann) Assume that 8§f n(A, -, ) is C°(TY x Ty) for

all |k| < kg. There exists §(so, ko) > O such that, if||17||§2(’)ﬁ_2ko+l < 8(s0, ko), then

the Dirichlet-Neumann operator G (n) = G (n, h) may be written as
G(n,h) =G(0,h) +Ra(n) (3.32)
where Rg (1) := Rg(n, h) € OPS™ satisfies, for all m, s, o € Ny, the estimate

IRGI%Y, , < Cls,m, a, ko)In|)¥

0,V
—m,s,o = s+so+2ko+m—+a+3° (333)

3.2. D*-Tame and Modulo-Tame Operators

We present the notion of tame and modulo tame operators introduced in [6]. Let
A := A()) be a linear operator as in (3.12), ko-times differentiable with respect to
the parameter A in the open set Ag C RVT.

Definition 3.11. (DX0-¢-tame) Let o > 0. A linear operator A := A(}) is Dko_g -
tame if there exists a non-decreasing function [sg, S] — [0, +00), s > M4 (s),
with possibly S = +o0, such that, forall sp < s < Sandu € H*'°,

sup  sup vl | GEAG)U| = Mas0) Nl yo + M) Nl (B34
kI ko +€Ao s

We say that 914 (s) is a tame constant of the operator A. The constant 974 (s) =
M4 (ko, o, s) may also depend on kg, o but we shall often omit to write them.
When the "loss of derivatives" o is zero, we simply write DX0-tame instead of D0-
0-tame. For a matrix operator as in (3.15), we denote the tame constant R (s) :=
max {Ele (8), Mg, (s) }

Note that the tame constants 914 (s) are not uniquely determined. An imme-
diate consequence of (3.34) is that || A|| L(HO+? 1) < 2MA(so). Also note that,
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representing the operator A by its matrix elements (Aj:/(ﬁ — ez, j.j’ez asin
(3.13), we have for all |k| < ko, j' € Z, ¢ € 7",

VKIS e )2 kAT =0 £ 2(Mats0) (€ H2EFD 1204 ()L 20T,
L.j
(3.35)
The class of DX0-g-tame operators is closed under composition.

Lemma 3.12. (Composition, Lemma 2.20 in [6]) Let A, B be respectively Dko_
o A-tame and DX -og-tame operators with tame constants respectively M4 (s) and
M p(s). Then the composed operator A o B is ’Dko-(aA + op)-tame with tame
constant

Map(s) < Cko) Ma()Mp(so+04) + Ma(s0)Mp(s +04)) .

It is proved in Lemma 2.22 in [6] that the action of a DX0-¢ -tame operator A (1)
on a Sobolev function # = u(1) € H**° is bounded by

ko, ko,
TR ko MaCso) lullsSy + Mals) ulloy, - (3.36)

Pseudodifferential operators are tame operators. We use, in particular, the fol-
lowing lemma:

Lemma 3.13. (Lemma 2.21 in [6]) Let A = a(A; ¢, x, D) € OPSY pe a family
of pseudodifferential operators satisfying ||A||](§?;f)0 < oo fors 2 so. Then A is

DX-tame with a tame constant M 4 (s) satisfying, for any s = so,
ko,
Ma(s) = CO)IAlS - (3.37)
The same statement holds for a matrix operator R as in (3.15).

In view of the KAM reducibility scheme of Section 8 we also consider the
stronger notion of D*-modulo-tame operator, that we need only for operators with
loss of derivative o = 0. We first recall the notion of majorant operator: given
a linear operator A acting as in (3.13), we define the majorant operator |A| by its

matrix elements (|A'J’. € —)\evem jjen

Definition 3.14. (D*-modulo-tame) A linear operator A = A(}L) is D -modulo-
tame if there exists a non-decreasing function [sg, S] — [0, +o0], 5 mi\ (s),

such that for all k € NSH, |k| < ko, the majorant operator }8fA| satisfies, for all
so Ss< Sandu € H®,

u

sup sup vl H’BfA

< 9, (s0) llulls + 0%, (s) lluly, - (3.38)
[k|<ko A€o §

The constant smi (s) is called a modulo-tame constant for the operator A. For a
matrix of operators as in (3.15), we denote the modulo-tame constant imf{(s) =
max {97 (s). My (5)}.
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If A, B are DX0-modulo-tame operators with |A§/(£)| < |B; /(£)|, then Dﬁi (s) <

i)ﬁ% (). A D*o-modulo-tame operator is also D*o_tame and M4 (s) < Emi (s).
In view of the next lemma, given a linear operator A acting as in (3.13), we

define the operator (Bw)bA, b € R, whose matrix elements are (£ — K’)bAj:/ —1).

Lemma 3.15. (Sumand composition, Lemma2.25in [6]) Let A, B, (3,)P A, (3,)°B
be D*-modulo-tame operators. Then A+B, AoB and (0 Y°(AB) are DX -modulo-
tame with

My p(5) < DV, (5) + M (s)

I, 5 (5) < C ko) (T, () (s0) + M (50) My ()

M, 1oiamy ) S COICHhO) M, 1, ()M (50) + M, 1, (50) D (5)
+ I (DM, 1 (50) + D (50)M, 1 (5)).

The same statement holds for matrix operators A, B as in (3.15).
By Lemma 3.15 we deduce the following result, cfr. Lemma 2.20 in [5].

Lemma 3.16. (Exponential) Let A and (8¢)bA be DX -modulo-tame and assume

that i)ﬁi (50) < 1. Then the operators e** —1d and (9 YeetA _1d are DX -modulo-
tame with modulo-tame constants satisfying
MEon g (5) Sho ML) MY, s 1) Shoo My 1oy () + MGV, . (s0).

Given a linear operator A acting as in (3.13), we define the smoothed operator
[Ty A, N € N whose matrix elements are

_fale—0) itw—eysN

(MyA)Y. (€ —¢): (3.39)
/ otherwise.
‘We also denote Hﬁ :=1Id — Iy. It is proved in Lemma 2.27 in [6] that
m L A®) S NP, (). RO M, (). (3.40)

The same estimate holds with a matrix operator R as in (3.15).

3.3. Hamiltonian and Reversible Operators

In this paper we shall exploit both the Hamiltonian and reversible structure
along the reduction of the linearized operators, that we now present.
Hamiltonian operators. A matrix operator R as in (3.14) is Hamiltonian if the

matrix
15 _ (0 -Id\ (A B\ (-C-D
I R_<Id 0)<CD>_<A B)
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is self-adjoint, namely B* = B, C* = C, A* = —D and A, B, C, D are real.
Correspondingly, a matrix operator as in (3.15) is Hamiltonian if

Ri=-Ri, R5=TR,. (3.41)

Symplectic operators. A ¢-dependent family of linear operators R(¢), ¢ € T",
as in (3.14) is symplectic if

WR(@)u, R(@)v) = W(u,v) Yu,v e L3(Ty, R?), (3.42)

where the symplectic 2-form W is defined in (2.15).

Reversible and reversibility preserving operators. LetS be an involution as in (2.4)
acting on the real variables (1, ¢) € R?, or as in (2.51) acting on the action-angle-
normal variables (6, I, w), or as in (2.29) acting in the (z,Z) complex variables
introduced in (2.24).

Definition 3.17. (Reversibility) A p-dependent family of operators R(¢), ¢ € T",
is

o reversible if R(—¢p) oS = —S o R(g) forall p € T";
o reversibility preserving if R(—¢) oS =S o R(¢p) forall ¢ € T".

Since in the complex coordinates (z, 7) the involution S defined in (2.4) reads
asin (2.29), an operator R(p) asin (3.15) is reversible, respectively anti-reversible,
if, forany i = 1, 2,

Ri(—p) oS = =S o Ri(p), resp. Ri(—p)oS =S oRi(p), (3.43)

where, with a small abuse of notation, we still denote (Su)(x) = u(—x). Moreover,
recalling that in the Fourier coordinates such involution reads as in (2.30), we obtain
the following lemma.

Lemma 3.18. A ¢-dependent family of operators R(¢p), ¢ € T", as in (3.15) is

e reversible if, forany i =1, 2,

R} (—9) = —(R)] (9) Yo e T, thatis (R} (0 = R} (©) veer’;
(3.44)
o reversibility preserving if, forany i = 1, 2,

(R)] (=p) = (R)] (9) Vo € T, thatis (Rp)] (&) = (R)Y () V¢ € 2",
(3.45)

Note that the composition of a reversible operator with a reversibility preserving
operator is reversible. The flow generated by a reversibility preserving operator is
reversibility preserving. If R(¢) is reversibility preserving, then (w - 9,R) (@) is
reversible.
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We shall say that a linear operator of the form w - 9, + A(g) is reversible if
A(p) is reversible. Conjugating the linear operator w - d, + A(g) by a family of
invertible linear maps @ (¢), we get the transformed operator

O~ (@) o (w- 3y + Ap)) 0 P(9) = - By + As(9),
Ap(@) =07 (9) (- 3,2(9) + D7 (@AW P(9).

The conjugation of a reversible operator with a reversibility preserving operator is
reversible.

(3.46)

Lemma 3.19. A pseudodifferential operator Op(a(g, x, &)) is reversible, respec-
tively reversibility preserving, if and only if its symbol satisfies

a(_¢9 —X, ‘i:) = —a(gﬁ,x, é)v resp. a(_¢7 —X, E) = a((pv X, S) (34’7)

Proof. If the symbols a satisfies (3.47), then, recalling the complex form of the
involution S in (2.29)—(2.30), we deduce that Op(a(gp, x, £)) is reversible, re-
spectively anti-reversible. The vice versa follows using that a(g, x, j) = e "*

Op(a(g, x, §))[e/*]. O

Remark 3.20. Let A(¢) = R(¢) + T (¢) be a reversible operator. Then A(p) =
Ry (¢) + T4 (¢) where both operators

Ri(9) i= 2(R(p) — SR(=9)S), Ti(p) = 2(T(p) — ST(—)S),
are reversible. If R(¢) = Op(r (¢, x, £)) is pseudodifferential, then

Ri(9) = Op(ri(p,x,8)), ri(p,x,&) = 3(r(p,x, &) —r(—¢p, —x,&))

and the pseudodifferential norms of Op(r) and Op(r ) are equivalent. If 7' (p) is a
tame operator with a tame constant 917 (s), then T4 (¢) is a tame operator as well
with an equivalent tame constant.

Definition 3.21. (Reversible and anti-reversible function) A function u(gp, -) is
called reversible if Su(y,-) = u(—g, -) (cfr. (2.17)), or is called anti-reversible
if —Su(g, ) = u(—g, ). The same definition holds in the action-angle-normal
variables (0, I, w) with the involution S defined in (2.51) and in the (z, 7) complex
variables with the involution in (2.29).

Areversibility preserving operator maps reversible, respectively anti-reversible,
functions into reversible, respectively anti-reversible, functions.

Lemma 3.22. Let X be a reversible vector field, according to (2.5), and u(¢, x) be
a reversible quasi-periodic function. Then the linearized operator d, X (u(gp, -)) is
reversible, according to Definition 3.17.

Proof. Differentiating (2.5) we get (d,X)(Su) o § = —5(d,X)(u) and use
Su(p, ) =u(—¢,-). m

Finally we note the following lemma:
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Lemma 3.23. The projections H;+ 5 H§+ 5, defined in Section 2.3 commute with

the involution S defined in (2.4), that is are reversibility preserving. The orthogonal
projectors Is and Hé_o commute with the involution in (2.29), that is are reversibility
preserving.

Proof. The involution S defined in (2.4) maps V,, + into itself, acting as in (2.36).
Then, by the decomposition (2.33), each projector ITy, , commutes with S. O

3.4. Momentum Preserving Operators
The following definition is crucial in the construction of traveling waves.

Definition 3.24. (Momentum preserving) A ¢-dependent family of linear operators
A(p), ¢ € TV, is momentum preserving if

Alp—Js)otc =1.0A(p), YeeT', ¢ €eR, (3.48)

where the translation operator 7. is defined in (2.7). A linear matrix operator A (¢)
of the form (3.14) or (3.15) is momentum preserving if each of its components is
momentum preserving.

Momentum preserving operators are closed under several operations.

Lemma 3.25. Let A(p), B(p) be momentum preserving operators. Then

(i) (Composition): A(¢) o B(p) is a momentum preserving operator.

(ii) (Adjoint): the adjoint (A(p))* is momentum preserving.
(iii) (Inversion): If A(y) is invertible then A((p)f1 is momentum preserving.
(iv) (Flow): Assume that

%' (p) = A(p)P' (p), D(p) =1d, (3.49)

has a unique propagator ®' () for any t € [0, 1]. Then ®'(¢) is momentum
preserving.

Proof. Item (i) follows directly by (3.48). Item (ii), respectively (iii), follows by
taking the adjoint, respectively the inverse, of (3.48) and using that 77 = 7_¢ =
To L Finally, item (iv) holds because To Lt (o — fg)tg solves the same Cauchy
problem in (3.49). m|

We shall say that a linear operator of the form w - dy, + A(g) is momentum
preserving if A(¢) is momentum preserving. In particular, conjugating a momentum
preserving operator @ - d, + A(p) by a family of invertible linear momentum
preserving maps ®(¢), we obtain the transformed operator w - d, + A4 (@) in
(3.46) which is momentum preserving.

Lemma 3.26. Let A(¢) be a momentum preserving linear operator and u a quasi-
periodic traveling wave, according to Definition 3.1. Then A(p)u is a quasi-
periodic traveling wave.
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Proof. It follows by Definition 3.24 and by the characterization of traveling waves
in (3.2). O

Lemma 3.27. Let X be a vector field translation invariant, according to (2.8). Let
u be a quasi-periodic traveling wave. Then the linearized operator d,, X (u(e, -)) is
momentum preserving.

Proof. Differentiating (2.8) we get (d, X)(tcu) o tc = t(d, X) (1), ¢ € R. Then,
apply (3.2). O

We now provide a characterization of the momentum preserving property in
Fourier space.

Lemma 3.28. Let ¢-dependent family of operators A(p), ¢ € T, is momentum
preserving if and only if the matrix elements of A(p), defined by (3.13), fulfill

AL #0 = Jt+j—j =0, Yeer, jj el (3.50)

Proof. By (3.13) we have, for any function u(x),

A = Y Y AT el uyel et

J,j'€L Ler”
and
A —Jolreul = Y Y AL (0)e TS Sy el oo,
J.j'€L tery
Therefore (3.48) is equivalent to (3.50). o

We characterize the symbol of a pseudodifferential operator which is momen-
tum preserving.

Lemma 3.29. A pseudodifferential operator A(g, x, D) = Op(a(p, x, §)) is mo-
mentum preserving if and only if its symbol satisfies

alp —js,x,§) =alp,x +¢,&), VsekR (3.51)
Proof. If the symbol a satisfies (3.51), then, for all ¢ € R,
7c 0 Op(a(p, x,&)) = Op(a(p, x + ¢, &) ot = Op(a(y — jg,x, &) o1c,

proving that 7. o A((p, x,D)=A(p - j¢,x, D)o 7. The vice versa follows using
that a(g, x, §) = e 5% A(p, x, D)[¢!5*]. O

Note that, if a symbol a (@, x, &) satisfies (3.51), then (w- dya) (¢, x, &) satisfies
(3.51) as well.

Lemma 3.30. If B(¢, x) is a quasi-periodic traveling wave, then the operator B(¢)
defined in (3.29) is momentum preserving.
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Proof. We have B(¢ — j¢)[tcul = u(x+B(p—Jjs,x)+¢) =u(x+s+pB(p, x+
) = 1o (B(p)u). O

We also note the following lemma:

T Z
sty gt o
and Tlg, Hé‘ defined in Section 2.3 commute with the translation operators t.
defined in (2.7), that is are momentum preserving.

Lemma 3.31. The symplectic projections T1 the L2-projections Héz

Proof. Recall that the translation 7. maps V), + into itself, acting as in (2.37).
Consider the Lz—orthogonal decomposition ) = H, & 9L, setting ), 1= Sﬁsﬁ 5
for brevity, to get

L? L? L? L? 1
U= Hﬁéu—i—l'[gtu, Hﬁéu €N, Hﬁﬁu €N,

Applying 7. we get tcu = rgl'lgzéu + tgl'lf;tu. As shown above, 7. maps
into itself for all ¢. Thus also the L2-orthogonal subspace ﬁj is invariant under the
action of 7. and we conclude, by the uniqueness of the orthogonal decomposition,

L? _ mL? L? . _ mL?
thatrgﬂﬁéu—ﬂﬁérgu, tgl'lﬁiu—l'lﬁérgu. O
The next lemma concerns the Dirichlet-Neumann operator.

Lemma 3.32. The Dirichlet-Neumann operator G(1j,h), evaluated at a quasi-
periodic traveling wave 7(¢, Xx), is momentum preserving.

Proof. It follows by (2.9) and the characterization in (3.2) of the quasi-periodic
traveling wave 77(¢, x). |

Quasi-periodic traveling waves in action-angle-normal coordinates. We now dis-
cuss how the momentum preserving condition reads in the coordinates (6, I, w)
introduced in (2.50). Recalling (2.52), if u (¢, x) is a quasi-periodic traveling wave
with action-angle-normal components (6 (@), I (¢), w(g, x)), the condition T.u =
u(p — jc¢,-) becomes

0(p) —Js 0@ —1J95)
1(p) =| I(p —j;) , YoeR (3.52)
Tew(@, *) w(p —Jjg,+)

As we look for 6 (¢) of the form 6 (p) = ¢ + O (), with a (277)"-periodic function
O : R~ RY, ¢ > O(¢), the traveling wave condition becomes

O () O(p —Jjo)
I(p) =| I¢—Js) |. VseR (3.53)
Tew(e, ) w(e —Js, )
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Definition 3.33. (Traveling wave variation) We call a traveling wave variation

gh<<p) = (21(9), £2(9), g3(¢, ) € RY x R” x HE, ;. afunction satisfying (3.53),
that 1s

g1(@) =810 — 7o), &(@) =g@—7J5), t83(p) =g3(¢—Js), Vs eR,

or, equivalently, DT g(¢) = g(¢—Jjs) forany ¢ € R, where D7, is the differential
of 7., namely

® )
pic|1]|=| 1], YceRr
w Tcw

According to Definition 3.24, a linear operator acting in R” x R" x f_)é 5 I8
momentum preserving if

A(p — J5) o DTc = DT. 0 A(p), Vs €eR. (3.54)
In a fashion similar to Lemma 3.26, one proves the following result:

Lemma 3.34. Let A(p) be a momentum preservmg linear operator acting on R’ x
RY x ﬁS+ s and g € R” x R" x Y)S+ s be a traveling wave variation. Then
A(p)g(p) is a traveling wave variation.

4. Transversality of Linear Frequencies

In this section we extend the KAM theory approach of [3,6] in order to deal
with the linear frequencies €2 («) defined in (1.11). The main novelty is the use of
the momentum condition in the proof of Proposition 4.5. We shall also exploit that
the tangential sites S := {7, ...,7,} C Z\{0} defined in (2.48), have all distinct
modulus |7, | = ng, see assumption (1.15).

We first introduce the following definition:

Definition 4.1. A function f = (fi, ..., fn) : [k1, k2] — RY is non-degenerate
if, forany ¢ € RN \{0}, the scalar function f - ¢ is not identically zero on the whole
interval [k1, k2].

From a geometric point of view, if f is non-degenerate it means that the image
of the curve f([k1, k2]) C R¥ is not contained in any hyperplane of RN,

We shall use in the sequel that the maps x — £2;(«) are analytic in [k, k2].
We decompose

G, G0
Qj(K):Q)j(K)J,_% /J( )’ a)j(K) — \/KG (0)] +gG (0)+<J; ]( )) ‘

(4 1)

Note that the dependence on « of 2 («) enters only through w; («), because GO
is independent of «. Note also that j > ;(«) isevenin j, whereas the component
due to the vorticity j — y ’]( ) is odd. Moreover this term is, in view of (1.8),

uniformly bounded in j.
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Lemma 4.2. (Non-degeneracy-I) The following frequency vectors are non-degenerate:
1. Q) = (2 () jes € R;
2. (Qk), V&) e RVTL;
3. (52(/(), Q; (K)) e Rt forany j € Z\ ({0} US U (=S));
4. (52(/(), Qj(K), Qj/(l()) e RYt2 forany j, j' € Z\ ({0} US U (=S)) and | j| #

1]
Proof. Let
~ Qi(k) forj#0 ~ wj(k) forj#0
Qi) :=1" . k) =17 _ (4.2)
VK for j =0, VK for j = 0.
Recalling (4.1), we have that, for any j € Z,
G(0))2 .
N N - S oo for j 20
0 @j(k) = Aj(K)@Dj(K), rjlk) = q2|xGCiO/ +s Gj(0)+<7 7
% for j = 0.
4.3)
Moreover 0, A j (k) = —2A; (k)2, for any j € Z, and therefore, for any n € N,
0 wj(k) =Cpdj(k)"Dj(Kk), Chpi=c1-...-Cp, Cn:=3—2n. 4.4)

We now prove items 2 and 3, that is the non-degeneracy of the vector (52 (x), £~2./ (K)) €
RY*! for any j € Z\(S U (—S)), where ; (k) is defined in (4.2). Items 1 and 4
follow similarly. For this purpose, by analyticity, it is sufficient to find one value of
Kk € [k1, k2] so that the determinant of the (v + 1) x (v 4+ 1) matrix
0cQ7, () - 3Ry, () B (0)
Ak) = : . : :
0TQs, () -+ BT Qg () BT ()
is not zero. We actually show that det A(x) # Oforany « € [k, k2]. By (4.2)-(4.4)
and the multilinearity of the determinant function, we get

1 . 1 1

A (k) - Ay, (k) Aj(x)

det A(k) = C(r) det =: C(k) det B(k)

A7 ()" g, ()" A (k)Y
where

v+1
C(x) :=HEq- ]_[ Ap()@p(k) #£0, Vi € [k, k2l.

g=1 PE 170}
Since B(k) is a Vandermorde matrix, we conclude that

det A(k) = C(k) ]_[ (p (k) = A (i0)).

PP €T, T i} p<D’
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Now, the fact that det A(k) # O for any « € [«1, k2] is a consequence from the
following

Claim: For any p, p' € {J1,..., 7y, j}, p # p', one has X ,(k) # X (k) for
any k € [ky, k2].

PrOOF OF THE CLAIM: If p’ = 0 and p # 0, the claim follows because, by
(4.3),

1 1
et &4 2 00) "

Apli) = = Ao(k).

Consider now the case p, p” # 0. We now prove that the map p +— A, (k) is strictly
monotone on (0, +-00). In case of finite depth, G, (0) = p tanh(hp), and

php (k) =

2 (anh(ap) P p*

1 {Zg ]ﬁ 3tanh(hp) — (1 — tanhz(hp))hp}
p* 4 '
)’

2(/<+ + 4

The function f(y) := 3tanh(y) — (1 — tanh?(y))y is positive for any y > 0.
Indeed f(y) — Oasy — 0, and it is strictly monotone increasing for y > 0, since
) =2(1- tanhz(y))(l + y tanh(y)) > 0. We deduce that 9,1, (k) > 0, also if
the depth h = +00. Since the function p > A, («) is even we have proved that that
it is strictly monotone decreasing on (—oo, 0) and increasing in (0, +00). Thus, if
Ap(K) = Ay (k) then p = —p’. But this case is excluded by the assumption (1.15)
and the condition j € S U (—S), which together imply |p| # |p/|. O

Note that in items 3 and 4 of Lemma 4.2 we require that j and j” do not belong
to {0} USU (—S). In order to deal in Proposition 4.5 when j and j’ are in SU (—S),
we need also the following lemma. It is actually a direct consequence of the proof
of Lemma 4.2, noting that 2 (k) — w; (k) is independent of «.

Lemma 4.3. (Non-degeneracy-I1) Let & (k) := (arj1 (RN S (/c)). The follow-
ing vectors are non-degenerate:

1. (&(k), 1) e RVFL;

2. (o), 0j(k), 1) € RV, for any j € Z\ ({0} US U (=S)).

For later use, we provide the following asymptotic estimate of the linear frequencies:

Lemma 4.4. (Asymptotics) For any j € Z\{0}, we have

0,00 = Vi |13 + ) 4.5)
K|J|2

where, for any n € Ny, there exists a constant C,, y, > 0 such that

cj(x)
sup J ‘ < Con. (4.6)
JEZ\ {0} K
K€lKy k7]

9
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Proof. By (4.1) we deduce (4.5) with

K1J1(GO = 1l) + £H2 (14 (5)* 23)

cj(k) = il glil” .
i SR (14 )
Then (4.6) follows exploiting that (both for finite and infinite depth) the quantities
[j1(G;(0) —|j]) and G;(0)/]j| are uniformly bounded in j, see (1.8). O
The next proposition is the key of the argument. We remind that j = (74, ..., 7,)

denotes the vector in Z" of tangential sites introduced in (2.53).

Proposition 4.5. (Transversality) There exist mo € N and py > 0 such that, for
any k € [k1, k2], the following hold:

max  [9"Q(k) - €] = po(€), Y€ e Z'\{0}; @.7)
0<n<mg
(k) - . >
Ognr:zgno |07 (S2(k) - £+ Q2 (k)| Z po(€) “8)

Jl+j=0, £eZ', jeS§;

max |0y Qi) - €+ Q) — Qi (k)] = po(l)

0=n=<mo 4.9)
.7£+]_.]/:O9 EGZV’j’j/ESC’(f’j’j/)#(o’j’j);

max [ (k) - £+ Q) + Q1)) = pole)

0=n=mo (4.10)
Jl+j+j =0, ¢€Z, j ) €S;.

We call pg the amount of non-degeneracy and my the index of non-degeneracy.

Proof. We prove separately (4.7)—(4.10). In this proof we set for brevity R :=
[k1, k2]
Proof of (4.7). By contradiction, assume that for any m € N there existk,, € &
and ¢, € Z"\{0} such that
na Cm 1
Q) ——| < —, Y0O<n<m. 4.11)
Em) 1 (m)

The sequences (k)men C K and (€, /(€ ))men C RV\{0} are both bounded. By
compactness, up to subsequences k,, — k¥ € K and £,,/(€,,) — ¢ # 0. Therefore,
in the limit for m — 400, by (4.11) we get 8,’?52(?) -¢ = O forany n € Ny. By the
analyticity of Q(K), we deduce that the function « +> 52(/() - ¢ is identically zero
on K, which contradicts Lemma 4.2-1.

Proof of (4.8). We divide the proof in 4 steps.

STEP 1. Recalling (4.1) and Lemma 4.4, we have that, for any k € &,

Q) - €+ Q0] = 12,(0)] — 1Q0c) - £] = JRTLiIE —cie) 2 (©
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whenever |j|% = Co{L), for some Cyp > 0. In this cases (4.8) is already fulfilled
with n = 0. Hence we restrict in the sequel to indexes £ € Z" and j € Sj satisfying

112 < Colt). (4.12)

STEP 2. By contradiction, we assume that, for any m € N, there exist «;,, € R,
b € Z' and jm € SC, with [jm|? < Co(€m), such that, for any n € No with
n<m,

1
< L

(m) (4.13)

|an (Q(K) 5_ (l+ Jm (K))ll(:/fm

Up to subsequences «,, — k¥ € Kand £,,,/{,,) — ¢ € R".

STEP 3. We consider first the case when the sequence (€,,,)nen C Z” is bounded.
Up to subsequences, we have definitively that £,, = £ € Z". Moreover, since j,, and
£, satisfy (4.12), also the sequence (j,)meN 1S bounded and, up to subsequences,
definitively j, = J € Sj. Therefore, in the limit m — oo, from (4.13) we obtain

08 (Q0) - €+ Q5(0)) e =0, ¥neNy, j-C+7=0.
By analyticity, this implies
Q)L+ Q(k)=0,VeeRk, J-L+7=0. (4.14)

We distinguish two cases:

e Let] ¢ —S. By (4.14) the vector (52(/(), Qy(fc)) is degenerate according to

Definition 4.1 with ¢ := (¢, 1) # 0. This contradicts Lemma 4.2-3.
e Let 7 € —S. With no loss of generality suppose 7 = —7;. Then, denoting
€= (l,...,10,), system (4.14) reads, for any k € &,

G“(O)

(€ + Dy, (k) + Yo lawy, () + 5 (@ D
1= D71+ Y00 laTa=0.

A

(4.15)
By Lemma4.3-1 the vector (&(k ), 1) ) is non-degenerate, which is a contradiction
fory #0.1f y = 0weonlydeduce {; = —land ¢, = ... = ¢, = 0. Inserting

these values in the momentum condition in (4.15), we get 27; = 0. This is a
contradiction with 7; # 0.

STEP 4. We consider now the case when the sequence (£,,),eN is unbounded. Up
to subsequences |€,,| — oo as m — oo and limy, 00 €/ {(€m) =: ¢ # 0. By (4.1)
and (4.5), for any n € Np,

1 .3 Cjiy (K) G, (0)
2 ) = (5 VR Ll o+ —— s 2 )
€m) <£m>\/z|]m|7 20lm)  jm e =tm

O (0" i) je—zs for m — o0,

oL
“ ()
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withd = lim,,— o0 | jm |% /(€m) € R.Note that d is finite because Jjm and £, satisfy
(4.12). Therefore (4.13) becomes, in the limit m — o0,

08 (Q) - e+dyi),_. =0, YneN.

By analyticity, this implies that Q(k) .¢+d/k = 0forany k € £. This contradicts
the non-degeneracy of the vector (EZ(K), J/¥) in Lemma 4.2-2, since (c, d) # 0.
Proof of (4.9). We split again the proof into 4 steps.
STEP 1. By Lemma 4.4, for any « € R,

1Q0) - £+ Q) — (k)] 2 1R (k) — (k)] — 1K0k) - €]
> Jer| 112 = 1712 ] = Cie) = (@)

whenever | |j|% - |j’|%| > C{£) for some C; > 0. In this case (4.10) is already
fulfilled with n = 0. Thus we restrict to indexes ¢ € Z" and j, j' € S, such that

712 = 1717] < C1e). (4.16)

Furthermore we may assume j,, # j,, because the case j, = j,, is included in
4.7).

STEP 2. By contradiction, we assume that, for any m € N, there exist «;, € R,
by € 2V and jy, j,, € S, satisfying (4.16), such that, for any 0 < n < m,

1

00 (200 - 75 + 77 (24, 00 = 24, 0)), -y, | < 7 17

j'gm +jm_jr/n =0.
Up to subsequences «,, — k¥ € Kand £,,/{¢,,) — ¢ € R".
STEP 3. We start with the case when _(Zm)meN C Z" is bounded. Up to subse-

quences, we have definitively that ¢, = ¢ € Z". Moreover, if | j,,| # |j,, |, there is
¢ > 0 such that

1 et .3 o3
c(ljmlZ + 1in)2) £ |ljml2 = ljm|2| < C1ltm) £C.  VmeN,
If j,, = —j,, we deduce by the momentum relation that | ji,,| = |j,,| < C{€y) < C,
and we conclude that in any case the sequences (ji;)meN and (j;,)men are bounded.
Up to subsequences, we have definitively that j,, = 7 and j,, =7, with 7, 7" € S
and such that
N (4.18)
Therefore (4.17) becomes, in the limit m — o0,
O (Qke) - € + Q) — Q;(), =0, VneNy, J-T+7-7 =0.

By analyticity, we obtain that

Q) - €+ Q7(k) — Qi(k)=0,VkeR J-L+7-7 =0. (4.19)

We distinguish several cases:



Traveling Quasi-periodic Water Waves with Constant Vorticity 141

e Let7,7 ¢ —Sand |J| # |7'|. By (4.19) the vector (Qk), Qy(k), Q7 (k) is
degenerate with ¢ := (Z, 1, —1) # 0, contradicting Lemma 4.2-4.
o Let7,7 ¢ —Sand 7' = —7. In view of (4.1), system (4.19) becomes

5)(K)~Z+%(Z; T
J-f+27=0.

el

G(O)) 0. Vkef,
(4.20)

By Lemma 4.3-1, the vector (&(x), 1) is non-degenerate, which is a contradic-
tion for y # 0. If y = 0 the first equation in (4.20) implies £ = 0. Then the
momentum condition implies 27 = 0, which is a contradiction with 7 # 0.

e Let7 ¢ —Sandj € —S. With no loss of generality suppose 7 = —7. In view
of (4.1), the first equation in (4.19) implies that, for any k € &,

(@ + Doy, () + Y Cawy, (k) — w5 (k)
a=2

— ]() Ga(O) G5(0)
+%<(51 : Zz : —Jj/ )ZO'

By Lemma 4.3-2, the vector (J)(K), Wy (x), 1) is non-degenerate, which is a
contradiction.

e Last,let 7,7’ € —Sand 7 # 7/, by (4.18). With no loss of generality suppose
7=—7,and 7' = —7,. Then (4.19) reads, for any « € R,

(€1 + Doy, (o) + (&2 = 1) wy, + Y45 lawy, (i)

— G+, (0) — G+, (0) —G7,(0)
+% ((el — D=+ G+ DT Y sl )) =0, (42D
@G = D7+ @G+ DT+ Y03l T, =0.

By Lemma 4.3-1, the vector (o(x), , 1) is non-degenerate, therefore the first
equation in (4.21) can hold only if b=-106=106=...=1¢ =0.
Inserting these values in the momentum condition we obtain 2 J1+27,=0.
This contradicts 7 # 7.

STEP 4. We finally consider the case when (¢,,),cN is unbounded. Up to subse-
quences |£,,| = oo as m — oo and lim,;,— o0 €, /(€,) =: ¢ # 0. In addition, by
(4.16), up to subsequences

L — L]
lim 7

m— 00 <Em>

=d; eR. (4.22)

By (4.1) and (4.5) we have, for any n,

a:ﬁ(szjm(x) - Qj,;l(x))‘mm = 8”(<£(|Jm|2 = 1inl?)

Cn) N Jm Jm

1 e, () cjp ()
+ - +
wmw(umﬁ |j;n|%) el
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— 318,’(1(\/E)|,(=f for m — oo,
using (4.22) and (€,,) — oo. Therefore (4.17) becomes, in the limit m — oo,
37 (k) T4 diVie) =0, VneN.

By analyticity this implies (k) - ¢+ d1/k = 0, for all « € & Thus (2(k), v/&)
is degenerate with ¢ = (¢, d1) # 0, contradicting Lemma 4.2-2.
Proof of (4.10). The proof is similar to that for (4.9) and we omit it. O

5. Nash—-Moser Theorem and Measure Estimates

Under the rescaling (1, ¢) +— (en, €¢), the Hamiltonian system (2.14) trans-
forms into the Hamiltonian system generated by

He(n, &) i= e *H(en, e¢) = Hr(n, &) +ePe(n, ¢), (5.1)

where H is the water waves Hamiltonian (2.13) expressed in the Wahlén coordinates
(2.11), Hp, is defined in (2.20) and

1
Pun, ©) = Z/T(Hga;ln) (G(em) = G(O) (5 + Zo7 ") dx

2.2
x© / 2,2 _1_ &M Y _ Va1 2, V.3
+83/1r( I+e s —1 > dx—i—2 ; (;+23x n)xn —|—317 dx.

We now study the Hamiltonian system generated by the Hamiltonian H,(n, ¢), in
the action-angle and normal coordinates (6, I, w) defined in Section 2.3. Thus we
consider the Hamiltonian H, (6, I, w) defined by

H.i=H,0A=¢ *HosA (5.2)

where A is the map defined in (2.50). The associated symplectic form is given in
(2.54).

By Lemma 2.9 (see also (2.35), (2.49)), in the variables (0, I, w) the quadratic
Hamiltonian H, defined in (2.20) simply reads, up to a constant, as

Ni=HpoA=Q) I+ @yw, w2,

where ﬁ(/{) € RY is defined in (1.18) and Ry in (2.19). Thus the Hamiltonian H,
in (5.2) is
H,=N+¢eP with P:=P. 0A. (5.3)

‘We look for an embedded invariant torus
T —> R xR x 95 5. ¢ i(p) = 0(p). [(¢), we)).

of the Hamiltonian vector field Xy, := (97 Hg, —0g H, H§+ EJVw H,) filled by
quasi-periodic solutions with Diophantine frequency vector @ € R (which satisfies

also first and second order Melnikov non-resonance conditions, see (5.14)—(5.17)).
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5.1. Nash—Moser Theorem of Hypothetical Conjugation
For @ € R”, we consider the family of modified Hamiltonians
Hy =Ny +eP, Ny=a-I+1w Qyw), (5.4)
and the nonlinear operator

Fli,a) :=F(w, Kk, &1,a) =w- i) — Xn,((p))

w - 3,0(p) —a — €3 P(i(p))
= | w-3,1(p) +e0g P(i(¢)) : (5.5)
- Jpw(p) — Mg, o J(@ww(p) +&Vy P ()

If 7(i, ®) = 0, then the embedding ¢ — i(¢p) is an invariant torus for the Hamil-
tonian vector field X y_, filled with quasi-periodic solutions with frequency w.

Each Hamiltonian H,, in (5.4) is invariant under the involution S and the trans-
lations 7., ¢ € R, defined in (2.51) and (2.52), respectively, as

HyoS=H,, Hyof.=H,, V¢cecR. (5.6)

We look for areversible traveling torus embedding ¢ — i(¢) = (0(p), I (@), w(p));
namely one satisfying

Si(p) =i(—¢), Zilp)=ilp—Js), Vs eR. (5.7)

Lemma 5.1. The operator F (-, «) maps a reversible, respectively traveling, wave
into an anti-reversible, respectively traveling, wave variation, according to Defini-
tion 3.33.

Proof. It follows directly by (5.5) and (5.6). |
The norm of the periodic components of the embedded torus
(@) =i(p) = (9,0,0) == (O(p), [(9), w(p)) , Op):=0(p) —¢, (5.8)
is 13140 i= O35 + 1715 + iV, where
ko :=mg+2 (5.9)

and mo € N is the index of non-degeneracy provided by Proposition 4.5, which
only depends on the linear unperturbed frequencies. Thus, k¢ is considered as an
absolute constant and we will often omit to write the dependence of the various
constants with respect to kyg. We look for quasi-periodic solutions of frequency w
belonging to a §-neighbourhood (independent of ¢)

Q:={weR’ : dist (o, Q[/q,/cz]) <8}, 8>0,

of the curve ﬁ[iq , k2] defined by (1.18).
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Theorem 5.2. (Nash—Moser) There exist positive constants ag, &g, C depending on
S, ko and T 2 1 such that, for all v = &?, a € (0, ag) and for all ¢ € (0, &), there
exist

1. a ko-times differentiable function

oo : 2 X [K1, k2] — R,

Uoo(w, k) = w+re(w, k) with |rg|k°’“ < Cev™!; (5.10)

2. a family of embedded reversible traveling tori i~ () (cfr. (5.7)), defined for all
(w, k) € Q X [k1, k2], satisfying

lico(9) — (9, 0,015V < Cev™"; (5.11)

3. a sequence of ko-times differentiable functions /L‘]?O : RY x [k1,62] — R,
Jj€S§ =27\ (SU{0}), of the form

1
Wi (@, 1) =3 (@, )R (0) + 17 (@, 1) ]+ (@, €) |12 + 15 (@, ),
(5.12)
with Q (k) defined in (1.11), satisfying

3 — 110V, e, mPFr < Ce, sup ¢V < Cev!, (5.13)
2 2 Jjes§

such that, for all (w, k) in the Cantor-like set

Cy ::{(a),/c) € Qx [k, k2] @ |lw-£] = 8u{l)™ ", VL e Z"'\[0}; (5.14)

w~£+,u?°(a),ic)‘ > 4o |j13 ()77, (5.15)
VeeZ' jeSywithj £+ j=0;

L+ p @) = uF .0 Z 4 (11707, (5.16)

veeZ', j,j e€S; (&, j,j)#Q,j, jywithj-L+j—j =0,

3 3
© L+ S, + 1w, 0| 2 40 (113 +1717)07

vzeZ”,j,j/eSC,withj-e+j+j/=o}, (5.17)

the function i (@) := ico(w, K, €; @) is a solution of F(w, k, €; ixo, Uoo (W, K)) =
0. As a consequence, the embedded torus ¢ +— i (@) is invariant for the Hamilto-
nian vector field Xy, ,, ., as it is filled by quasi-periodic reversible traveling wave
solutions with frequency .

We remind that the conditions on the indexes in (5.15)—(5.17) (where J € Z"
is the vector in (2.53)) are due to the fact that we look for traveling wave solutions.
These restrictions are essential to prove the measure estimates of the next section.
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5.2. Measure Estimates

By (5.10), the function oo (-, k) from €2 into its image oo (€2, k) is invertible
and
B =ax(®, k) =w+r(w ) &

~1 y 2 ko,v -1 (5.18)
w=dg (B.k)=B+7:(B.x), |7 < Cev

Then, for any B € axo(CY), Theorem 5.2 proves the existence of an embedded
invariant torus filled by quasi-periodic solutions with Diophantine frequency w =
agol (B, k) for the Hamiltonian

Hg =B -1+ 5(w, Quw),2 + &P.

Consider the curve of the unperturbed tangential frequency vector Q(K) in (1.18).
In Theorem 5.3 below we prove that for “most” values of k¥ € [«1, k2] the vector
(. 1(Q(lc) k), k) is in CY,, obtaining an embedded torus for the Hamiltonian
H, in (5.2), filled by quasi- perlodlc solutions with Diophantine frequency vector
w = Ol_l(Q(K) k), denoted Q in Theorem 1.5. Thus &‘A(loo(Qt)) where A is
defined in (2.50), is a quasi-periodic traveling wave solution of the water waves
equations (2.14) written in the Wahlén variables. Finally, going back to the original
Zakharov variables via (2.10) we obtain solutions of (1.3). This proves Theorem
1.5 together with the following measure estimate.

Theorem 5.3. (Measure estimates) Let
v=2¢, 0<a<minfag, 1/(1+ky)}, T>mo(v+4), (5.19)

where my is the index of non-degeneracy given in Proposition 4.5 and ko := my+2.
Then, for ¢ € (0, g9) small enough, the measure of the set

Ge = {K € [k1, k2] : (agol(fz(/c), K), /c) € Cgo} (5.20)
satisfies |G| = ko — k1 as e — 0.
The rest of this section is devoted to prove Theorem 5.3. By (5.18) we have
Qe (k) := o (), k) = Qic) + Fe (5.21)

where 7, (i) 1= 7' (Q(i), k) satisfies

kfg(x)’ < Cev U0 v k| < ko, uniformly on [k, k2] (5.22)
We also denote, with a small abuse of notation, for all j € S,

= . 1
1) 1= 5o (Relio), k) = m3 ()2, (1) +mi° (1) +1 () |12 +15° (), (5.23)

Wherem (k) _m (Q (k), k),m{° (k) 1= m] (Q (K), k), mOO(K) _m (Q (k), k)
and t;"’(fc) = t;’O(Q (), k).
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By (5.13) and (5.22) we have

|a{§(m3°(;<) —1)|, 185m$° ()1, 18fmS(0)| £ Cev7F, (5.24)
2

sup aktm(/c)( <Cev "k, VO<k <k (5.25)

Jj€Sg

Recalling (5.14)—(5.17), the Cantor set in (5.20) becomes
G i={x € i, al ¢ [+ €] Z 80(0) 7, Ve € Z\(0);
> 3
1926 (k) - £+ ()] = dvlj12(6)7T,
VeeZ’, jeSy, withj-£+ j=0;
R
|2 (k) - 4+ p5o ) — G Z 4u (112 = 171207,
VeeZ, j,j €Sg, (€, ], j) # (0, j, jywithj-£+j—j =0;
12 (k) - C4 uF ) + (0] = 4v (IJI2 +1J'12 )( 7T
veez', j,j egowithj.e+j+j’=o}.

We estimate the measure of the complementary set

= [k1, k21\Ge
©0) () 1) (11)
:(UR[)U U v U Ry U U o
L#0 AN (€., JNH#0.). ). j#] LV j,j €S
Fol4j=0 Jl+j—j'=0 Jl+j+i'=0
(5.26)
where the “nearly-resonant sets”
RY = [k € [k1. k2] : [Qs06) - €] < 8u(6) T}, (5.27)
> 3
R = i e L1, k] ¢ [Qe() - £+ 0] < 4012077}, (5.28)
- 3 3 _
RID = (e e lierial = 186000 - £+ 100 — u )] < 4w (11 — 171307},
(5.29)
o 3 3 _
QE{;’)j, = {k € k1. k2] 1 |Qe(k) - €+ () + T (O] < 4v(lj12 + 1 12)(07 T}

(5.30)

Note that in the third union in (5.26) we may require j # j’ because Ré]jl)j C Réo).
In the sequel we shall always suppose the momentum conditions on the indexes
£, j, j’ written in (5.26). Some of the above sets are empty.

Lemma 5.4. Consider the sets in (5.26)—(5.30). For ¢ € (0, go) small enough, we
have that

LIFR) # B then | |3 < C(e);
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11
zy@jl%@mmmp—u|l<c

3
3.FQYY., # Bihen |13 +1j13 £ CLO).

Proof. We provide the proof for REI]I)] If REIJI)] # () then there exists k € [«1, k2]
such that

33
4v (12 — 1))

P 3 3
o +1Q600) - €] S 4v 112 =117+ C(e)

(5.31)

W) = u3 ()| <

By (5.23) we have
13 (k) = pf7 () = m?(K)(Qj(K) —Q/(k) +m) (G — j)
F P17 = 1512+ 1560 = o),
Then, by (5.24)—(5.25) with k = 0, (4.5)-(4.6), the momentum condition j — j" =

—J - £, and the elementary inequality ||j|% — |j’|%| = ||j|% — |j’|%|, we deduce
the lower bound

3 g3
1) — n )] = (1= Ce)vie (|12 = 112 = C)
— Cel]- 0] — Cé|lj1? —1j1?| — Cev™! (5.32)
> SE|j12 117 | — Celt] — €' = Cav!

Combining (5.31) and (5.32), we deduce || j |% - |j/|% | £ C(¢), for & small enough.
O

In order to estimate the measure of the sets (5.27)—(5.30) that are nonempty,
the key point is to prove that the perturbed frequencies satisfy estimates similar to
4.7)—(4.10).

Lemma 5.5. (Perturbed transversality) For ¢ € (0, &9) small enough and for all
Kk € [Kk1, k2],

meQMZPmH,WGWWM (5.33)
0<n<my 2

MaxXg<, <, 108 (Qe (k) - £+ u3()) = 3(0) 534
Jl+j=0, £eZ', jeSg; ’
MaXo <<, 107 (Qe () - €+ () = ()| Z B(6) 535)
Foedi— =0, €€, ) J eSs. (b)) # O ) '
MaXg<, <y 19 (R () - €+ pF0) + pF ()| = 3(0) 5:36)
Je+j+j =0, teZ, jj €S '

We recall that pg is the amount of non-degeneracy that has been defined in Propo-
sition 4.5.
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Proof. We prove (5.36). The proofs of (5.33), (5.34) and (5.36) are similar. By
(5.23) we have

Qe ) - €+ 1) — uF () = Qi) - £+ Felie) - £+ Q) — Qo)
@300 = 1) (2700) = Q560) + 15260 — ) (537)
F P (12 = 17'1) + 1560 = P ).
By Lemma 4.4 we get that, for any n € {0, ..., mo},

012 () — 2 )| £ C|IJIE = 1F | +C W), (538)

because, by Lemma 5.4-2, we can restrict to indexes ¢, j, j' such that || j|% —
3
|j/12] £ C(£). Furthermore

1712 = 1312 £ (1712 = 1713] £ C o). (5.39)

Therefore, by (5.37), (5.24), (5.25), (5.22), (5.38), (5.39), and the momentum con-
dition j — j/ = —J - €, we have that, for any n € {0, ..., mg},

107 (e () - £+ 15 (6) = uF ()| Z 197 (Qk) - £+ 25() — Q1))
_ CSU_(I'H"O)(E).

Since EZ(K) b+ Qj (k) — Qi (i) satisfies (4.10), we deduce that

max (9] (Qe (k) - £+ p () — uF (k))] Z po(€) — Cev™ T (g) > L0.(4)
0<n<my I

for ¢ > 0 small enough. O

As an application of Riissmann Theorem 17.1 in [37], we deduce the following
result:

Lemma 5.6. (Estimates of the resonant sets) The measure of the sets (5.26)- (5.30)
satisfy

0 - L I L3 L
IR S @)=y RIS (vl 20"

11 .3 3 _ L
RS (w117 = 1120 =)

3 3 1
1001 < (v (113 +1713) )~ +D) as

and, recalling Lemma 5.4,

(N un (1) i
|Rl,j|’ |R[,j’j/|7 |Q£,j,j',| ,S(U(K) T) 0,
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Proof. We estimate Réljl)j, defined in (5.29). The other cases follow similarly.
Defining fp j j/ (k) := (ﬁs(lc) 4+ /L‘j?o(/c) oo(/c))( y~1, we write

L3 g3 o
RID. = {ic e lirwal « | fojr @] < 4v (1j13 = 1713071,

By Lemma 5.4-2 we restrict to indexes satisfying ||j| 2 —1j |2 | < C{¢).By (5.36),

9" ’ 2, Yk e , .
oéﬂi"ﬂ " fe g O] = po/ K € [k1, k2]

In addition, by (5.21)—(5.25), Lemma 4.4, the momentum condition | j — j'| = |]-£],
and (5.39), we deduce that max<, <4, |08 fo. ;.7 (0)| < C forall k € [k, k2],
provided sv~U+k0) is small enough, namely, by (5.19) and ¢ small enough. In
particular, f; ; i is of class Cko—1 = ¢mo+1 Thus Theorem 17.1 in [37] applies. O

Proof of Theorem 5.3 completed. We estimate the measure of all the setsin (5.26).
By Lemma 5.4 and Lemma 5.6 we have that

‘ U R(O)‘ < Z |R(0)| < Z( >T+1>mo i (5.40)

(#£0 (0

1
€L my

U R(I) < Z |R(I)| S Z (<£;r>m0 S Z Uio_% ’ (5.41)

0, jess 2 2 ez (€)™
AR JIscw’s lj1£C()3 “
J+j=0

U offls T ez ¥ (g) s
3

¢, j,j'es§ - 2 - ey (£)™o
Pyt LiLISC@3 LI ISC) )
(5.42)
We are left with estimating the measure of
an _ an arn
U RE B’ U Ry, T U RZ it (5.43)
(€.j. JN#0..). j# ) £.jesg 4j.J’ \J\#l] I
Jj=j'=0 J+2j=0 J+j=j'=0

By the momentum condition j - £ +2j = 0 we get |j| < C (¢), and, by Lemma
5.6,

v o\ "0 vmo
U ®fs ¥ mls ¥ () s X

¢,jeS§, j4+2j=0 ljiISce) jISCie)
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Finally we estimate the measure of the second union in (5.43). By Lemma 5.4-2 we

can restrict to indexes satisfying || j|>/% — | j'|*/?| < C (£) . Now, for any | j| # |j’|,
we have

3 .3 oL gL . . L1

112 =112 =112 =2 (4 T+ 1712112)

. . L1 1 gL

> |J|+|JI/|+|J|2]|J’|2 > 1j12 +1j'12

1712 + 15712 2

b

implying the upper bounds |j|, | j’| < C (£)?. Hence

1 1

U il ¥ omiie ¥ () sE s

€’ il LIS C ()2 L1 IEC(0)?
JUHj—j'=0 =

(5.45)
As mio — 4 > v by (5.19), all the series in (5.40), (5.41), (5.42), (5.44), (5.45) are
convergent, and we deduce

6] < com.

For v = £2 as in (5.19), we get |G| = k2 — k1 — C&®/™0_ The proof of Theorem
5.3 is concluded. |

6. Approximate Inverse

In order to implement a convergent Nash—-Moser scheme that leads to a solu-
tion of F (i, «) = 0, where F (i, @) is the nonlinear operator defined in (5.5), we
construct an almost approximate right inverse of the linearized operator

di o F (io, 0)[7, @] = @ - 31 — d; X py,, (i0(9)) [1] — (@, 0,0).

Note that d; o F (io, o) = di o F (ip) is independent of «p. We assume that the torus
io(@) = (Bo(p), In(e), wo(e)) is reversible and traveling, according to (5.7).

In the sequel we shall assume the smallness condition, for some k := k(t, v) >
O’

su R« 1.

We closely follow the strategy presented in [4] and implemented for the water waves
equations in [2,6]. The main novelty is to check that this construction preserves
the momentum preserving properties needed for the search of traveling waves.
Therefore, along this section we shall focus on this verification. The estimates are
very similar to those in [2,6].

First of all, we state tame estimates for the composition operator induced by

the Hamiltonian vector field Xp = (0; P, —0g P, l'IgJr 5 JVy, P)in (5.5).
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Lemma 6.1. (Estimates of the perturbation P ) Let J(¢) in (5.8) satisfy || J ||3 so-+2ko+5

< 1. Then, for any s = s, ||Xp(l)||]§° V< 14 ||J||fi§v0+2k0+3, and, for all
Ti=(0,1,w),

. ko, ko, ~ ko,
14 X p DI S 715 4+ 1108, g IF1E1

. ko.v k k ik k
X pME T " S TG I + 131555, i (T2,

Proof. The proof goes as in Lemma 5.1 of [6], using also the estimates of the
Dirichlet-Neumann operator in Lemma 3.10. O

Throughout this section, we assume the following hypothesis, which is verified
by the approximate solutions obtained at each step of the Nash—Moser Theorem
9.2:

e ANSATZ. The map (w, k) — Jo(w, k) = ig(p; ®, k) — (¢, 0, 0) is ko-times
differentiable with respect to the parameters (w, k) € R” x [k, k2] and, for
some = u(r,v) > 0,v e (0, 1),

~ ko, ko, —1
130l + leto — @]V < Cev™. (6.1)

As in [2,4,6], we first modify the approximate torus igp(¢) to obtain a nearby
isotropic torus i5(¢), namely such that the pull-back 1-form i§ A is closed, where
A is the Liouville 1-form defined in (2.55). We first consider the pull-back 1-form

%
igA = ar(p)dey .

k=1
ar(@) == —([800(@)] " 10(@)), + 3(J7 " wo(@). dp, w0 (), 2 (6.2)

and its exterior differential

W =digh =Y Ade Adgj, Aki(9) = dgaj () — dp,ax(@).
1Sk<j<v

By the formula given in Lemma 5 in [4], we deduce, if w belongs to DC(v, 7), the
estimate

ko,v ko,v ko,v

| Ak (||Z”v+r(ko+l)+ko+l F U ZIg 5 130 g 1y k041 ) -

where Z () is the “error function”
Z(g) = F(io, o) (¢) = w - dpio (@) — X p, (io(9)) .

Note that if Z(p) = 0, the torus ig(¢) is invariant for X Ha and the 1-form i A is
closed, namely the torus io(¢) is isotropic. We denote below the Laplacian A, :=

ZZ:I a(%k
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Lemma 6.2. (Isotropic torus) The torus is(¢) := (0o(¢), Is(¢), wo(p)), defined by
I5(9) := Io(p) + [0,00(@)1 " p(g),
p=(p))j=tvs Pi(@) = A1 0, AL (9), (6.3)
k=1

is isotropic. Moreover, there is o := o (v, T) such that, for all s = s,

s — Tl <, 1301127 (6.4)
15 — IoI%o <, v (IZISY + 121K 130015%Y) (6.5)
I1F s, ao) 10V Sy 1ZIEGE + 12180, 1301182 (6.6)
Idi G Mg, Sy 1Ml 41 5 (6.7)

for sy < so + u (cfr. (6.1)). Furthermore is(p) is a reversible and traveling torus,
cfr. (5.7).

Proof. Since ig(¢) is a traveling torus (see (3.52)), in order to prove that is(¢) is
a traveling torus it is sufficient to prove that Is(¢p — j¢) = I5(¢), for any ¢ € R.
In view of (6.3), this follows by checking that d,6¢(¢ — jc) = d,00(¢) and
(@ — <) = p(e) for any ¢ € R. The first identity is a trivial consequence of the
fact that Bg(¢ — J¢) = (@) — j¢ for any ¢ € R, whereas the second one follows
once we prove that the functions ax(¢) defined in (6.2) satisfy

ar(p —jo)=ar(p) YceR, Vk=1,...,v. (6.8)

Using that ig(¢) is a traveling torus, we get, for any ¢ € R,
(BW wo(p — 7). I woly — f;))Lz = (awkr;wo(w), let;wo«p))L2

= (B wo(). I wo(e) ) |

and, recalling (6.2), we deduce (6.8). Moreover, since ig(¢) is reversible, in order
to prove that i5(¢p) is reversible as well, it is sufficient to show that I5(¢) is even.
This follows by (6.2), Lemma 3.23 and SJ~! = —J~1S. Finally, the estimates
(6.4)—(6.7) follow for example as in Lemma 5.3 in [2]. O

In the sequel we denote by 0 = o (v, T) constants, which may increase from
lemma to lemma, which represent “loss of derivatives”.

In order to find an approximate inverse of the linearized operator d; o F (is), we
introduce the symplectic diffeomorphism Gs : (¢, y, w) — (0, I, w) of the phase
space T” x RV x ‘6§+,2’

0 ¢ . o ()
I :=Gs |y ]| =I5+ [300@)] v+ [@i0)@o@)N]" I |
w w wo(@) +w

(6.9)
where Wy (0) := wo(8, ! (0)). Itis proved in Lemma 2 of [4] that G is symplectic,
because the torus i is isotropic (Lemma 6.2). In the new coordinates, i; is the trivial
embedded torus (¢, y, w) = (¢, 0, 0).
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Lemma 6.3. The diffeomorphism G in (6.9) is reversibility and momentum pre-
serving, in the sense that

S0Gs=G508, T.0Gs=Gs07., VgeR, (6.10)
where S and i"g are defined respectively in (2.51), (2.52).

Proof. We prove the second identity in (6.10), which, in view of (6.9), (2.52)
amounts to

0(d) — s = o(¢p — J5), Vs € R, (6.11)

I5(@) + [0500)] " v + [@0i0) Go(@)] T I w (6.12)
=I5 — JS) + [p00(d — )] v + [@si0) Bo(p — TN I tew,

Tewo (@) + Tew = wo(d — J5) + Tow. (6.13)

Identities (6.11) and (6.13) follow because i5(¢) is a traveling torus (Lemma 6.2).
For the same reason I5(¢) = Is(¢ — J¢) and 94560(¢) = 3400(¢ — Js) for any
¢ € R. Hence, for verifying (6.12) it is sufficient to check that [(dy o) (O (¢))] " =
[(By o) (Bp(p — fg))]Trg (we have used that JZI and 7. commute by Lemma
3.31), which in turn follows by

T¢ 0 (3p10) (B0(#)) = (Jwo)(Bo(¢ — J5)), Vs €R, (6.14)

by taking the transpose and using that rgT =T =71 ! We claim that (6.14) is
implied by wy being a traveling wave, that is

Tilo(0, ) = Wo(0 — J5). Vs €R. (6.15)

Indeed, taking the differential of (6.15) with respect to 6, evaluating at 6 = 6y (¢),
and using that 6y(¢) — j¢ = 6o(¢ — J<) one deduces (6.14). It remains to prove
(6.15). By the definition of Wy, and since wy is a traveling wave, we have

WO — J5) = wo(By (6 — J¢)) = wo(0y ' (6) — T¢) = tcwo(8y ' (0)) = by,

using also that 6, (0 — J) = 6, () — J<, which follows by inverting (6.11).
The proof of the first identity in (6.10) follows by (6.9), (2.51), the fact that i; is
reversible, Lemma 3.23 and since J ! and S anti-commute. O

Under the symplectic diffeomorphism Gs, the Hamiltonian vector field X g,
changes into

Xk, = (DGs)"' Xy, 0Gs  where K, := Hy o Gs. (6.16)

By (6.10) and (5.6) we deduce that K, is reversible and momentum preserving, in
the sense that .
KyoS =Ky, KyoTc =Ky, VsceR. (6.17)

The Taylor expansion of K, at the trivial torus (¢, 0, 0) is

Ko(d,y,w) = Koo(¢, @) + K10($, @) - y + (Ko1 (¢, @), w) 2 + 5 K20(¢)y -
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+(K11(@)y, w) 2+ 5 (Koo (@)w, w) 12+ K>3(¢p. y. w), (6.18)

where K >3 collects all terms at least cubic in the variables (y, w). By (5.4) and
(6.9), the only Taylor coefficients that depend on « are Ko € R, K19 € R and
Ko € Sﬁgﬂ 5 whereas the v x v symmetric matrix K>, K11 € L(R", Sﬁgﬂ E) and

the linear self-adjoint operator Ky, acting on $£ S+ x»are independent of it.
Differentiating the identities in (6.17) at (¢, 0 O) we have (recalling (2.51))

Koo(=¢) = Koo(¢), Kio(—¢) = K10(¢), K20(—=¢) = K20(9) ,
SoKoi(—¢) = Koi1(¢), SoKii(—¢)=Ki1(9), (6.19)
Kopp(—¢) oS =S o0 Kpa(9),

and, recalling (2.52) and using that r =T_¢ =T, ! forany ¢ € R,

Koo(¢ — Js) = Koo(®) . Kio(@ — js) = Kio(p), Ka(p —js) = Ka(9),
Koi(¢p — js) = tcKoi1(@), Kii(¢ — o) =1:K11(9), (6.20)
Koa(¢p — j5) o 1c = 1c 0 Koo ().

The Hamilton equations associated to (6.18) are

¢ = Kio(¢, @) + K2o()y + [K11(@)] T w + 3,K>3(6. v, w)
V= —3pKoo(®, @) — [93K10(¢p, )Ty — [85Ko1 (¢, )] "w

—3p (%Kzo(qb)y Y+ (K @)y, w2 + 5 (Koa(@)w, w) 2 + K>3(9. . W))
w=Js (K01(¢7 o) + Ki1(@)y + Ko2(@)w + Vyu K>3(9, y, W))

(6.21)
where 9, K ||, is the v x v transposed matrix and 8¢K01, K| : ﬁsﬂ s — R"are

defined by the duality relation (8¢ Kor [¢] W) = ¢ [0 Ko1]1"w for any a e RY,
w e ﬁs+ 5+ The transpose K 1 (@) is defined similarly.

On an exact solution (that is Z = 0), the terms Koo, Ko in the Taylor expansion
(6.18) vanish and K19 = w. More precisely, arguing as in Lemma 5.4 in [2], we
have

Lemma 6.4. There is 0 := o (v, t) > 0, such that, for all s 2 s,

|99 Koo (- @) | + 11K 10, a0) — wll¥V + [|Ko1 -, ag) K0
S IZIEE + 121500 1301142

196 KooKV + (180 K 10 — 1AIK0Y + (18, Kot 110V < 130115%2

1K20l%0Y < (1 + 1T0lE5Y)

k k k ko,
IK 1yl s eyl + Iyl 13olle)

ki k ko,v
o] ™ < et + s 1301,
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Under the linear change of variables

¢ 9500(¢) 0 0 ¢
DGs(9,0,0) [ T | := | 8515() [3p80()1™ " [Bew0) Go@TI | [T] -
’V? 8¢w0((p) 0 Id ’V?

the linearized operator d; o F (is) is approximately transformed into the one ob-
tained when one linearizes the Hamiltonian system (6.21) at (¢, y, w) = (¢, 0, 0),
differentiating also in « at o9 and changing 0; ~~ @ - d,,, namely

4 ® - 3,9 — 0y K10(@)[}] — 3K 10(@)[@] — K20(@)F — [K11(9)] W
2 @ 05 + 050 Koo (@B + iy Koo (@)[@1 + 85 K10(@)] T3 + [0 Kor (@)1
a - 3,% — J2 (9 Ko1 (@)[@] + da Kot (0)[@] + K11(9)F + Koz ()W)
(6.22)
In order to construct an “almost approximate” inverse of (6.22), we need that
L= 5 (03, — JKn(®)| 54, (6.23)

is “almost invertible” (on traveling waves) up to remainders of size O(Nrffl),
where, for n € Ny

Ny =K, K,=K{, x=3/2 (6.24)

The (K},),,>( is the scale used in the nonlinear Nash—Moser iteration of Section 9
and (Nn)nZ_O is the one in the reducibility scheme of Section 8. Let H (T"*!) :=
H (T N 9%, 5.

(AI) Almost invertibility of L,: There exist positive real numbers o, u(b), a, p,

Ko and a subset A, C DC(v, T) X [k1, k2] such that, for all (w, k) € A,, the
operator L, may be decomposed as

Lo=LS+Ru+RE, (6.25)

where, for every traveling wave function g € H ZJ”’ (T**1, R?) and for every
(w, k) € Ny, thereis atraveling wave solutionh € H°, (Tv+! R2) of Lsh=g
satisfying, forall so < s < S,

1 |kov - K kov i~ ik
fen e ™ Ss v (18I + 1810 1301y ). (6:26)

In addition, if g is anti-reversible, then h is reversible. Moreover; for any sy <
s <8, for any traveling wave h € ﬁgﬁ’z, the operators R, Rj; satisfy the
estimates
ko,v —1ar7—a ko,v ko, v~ 1ko,v
IRANY Ss ev™ N2 (IR 1% e + IAlss 13015% )40 ) »

ko,v

— ko, ko, ~
[ R S5 K (WAIESS oy 4+ VRIS 1300 rtsn) « ¥ > 0

S0

ko,v

ko,v ko, v~ ko, v
Ss Al e + 1715 o 130l

1
HRwh so+o s+ud)+o

N
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This assumption shall be verified by Theorem 8.10 at each n-th step of the Nash—
Moser nonlinear iteration.

In order to find an almost approximate inverse of the linear operator in (6.22)
(and so of d; 4 F(is)), it is sufficient to invert the operator

~ ® - 8y — da K10(9)[@) — K20(0)T — K|, (0)
D[¢. 7. W, &] := @ - 3,y + 949y Koo (@) @] (6.27)
Low —Jz (3 Ko (@)[@] + K11(p))

obtained neglecting in (6.22) the terms 9¢ K 10, 9p¢ K00, 0¢ Koo, 3¢ Ko1 (they vanish
at an exact solution by Lemma 6.4) and the small remainders R, Rj; appearing
in (6.25). We look for an inverse of D by solving the system

- 81
D[¢.y.w.a]= g . (6.28)
g3

where (g1, g2, g3) is an anti-reversible traveling wave variation (cfr. Definition
3.33), that is

g1(@) = g1(—9), g(p) =—g(~9), Sgilp)=—g3(~9), (6.29)
g1(@) =g1(0 —J), &(@) =g@—7Js5), t.83(9) =g3(¢—Jjs), Ys €R.
(6.30)

We first consider the second equation in (6.27)—(6.28), that is w - Bq)'y\ =g —
040 Koo () [@]. By (6.29) and (6.19), the right hand side of this equation is odd in
@. In particular, this has zero average, and so

= (- 3) " (g2 — 3 Koo (@) [@)). 6.31)

Since g2(¢) = g2(¢ — J<) for any ¢ € R by (6.30) and 9,94 Koo(¢)[a] satisfies
the same property by (6.20), we also deduce that

Y —Js) =¥, YseR. (6.32)

Next we consider the third equation £5w = g3 + J (9, Ko1(@)[@] + K11(9)).
The right hand side of this equation is a traveling wave by (6.30), (6.20), (6.32)
and since J, = [

. J'%ﬁz commutes with 7. (by Lemma 3.31). Thus, by
assumption (Al), there is a traveling wave solution
W= (L£5) (83 + J2@uKo1(@)[@] + K11(9)7))- (6.33)

Finally, we solve the first equation in (6.28), which, inserting (6.31) and (6.33),
becomes

w - ,h = g1 + Mi(@)[Q] + Ma(9)g2 + M3(9) g5 , (6.34)
where
M1 (@) = 04 K10(@) — M2(9)3udp Koo () + M3(9)J 20, Ko1 () ,
Ma() := Kap(@)(@ - 3,) ™"+ K[ (0) (£5) ™ T K11 (@) (- 9,) 7",
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Mi(p) = K| (@) (£5)~"

In order to solve (6.34), we choose @ such that the average in ¢ of the right hand
side is zero. By Lemma 6.4 and (6.1), the g-average of the matrix M satisfies
(M1)y = 1d + O(sv™"). Then, for ev™! small enough, (M1), is invertible and
(M1),! =1d + O(sv™"). Thus we define

o= —(M1)51(<g1><p + (M2g2)g + (M383)y) (6.35)

and the solution of equation (6.34)
¢ = (- 3) " (g1 + Mi(@)[@] + Ma(p)g2 + M3(9)g3) - (6.36)

Finally the property a (p—Jo) = a (¢) forany ¢ € R follows by (6.20), (6.32) and
the fact that W in (6.33) is a traveling wave. This proves that (@,7,%W) isa traveling
wave variation, that is (6.30) holds. Moreover, using (6.29), (6.19), Lemma 3.23,
the fact that J and S anti-commutes and (AI), one checks that (a .y, W) isreversible,
that is

b(9) = —d(—9), @) =3(—p), SW(p) =(—p). (6.37)
In conclusion, we have obtained a solution (¢, 3, W, @) of the linear system (6.28),
and, denoting the norm || (¢, y, w, (x)||]§O’ ‘= max {||(¢ v, w)||kO Y |ae|ov }, we

have

Proposition 6.5. Assume (6.1) (with u = (o) + o) and (Al). Then, for all
(w, k) € Ay, for any anti-reversible traveling wave vartatlon g = (g1, 182, g3) (that
lssatlsfymg (6.29)—(6.30)), system (6.28) has a solution D~ g = (¢ Y, W, @), with
(¢, v, W, Q) defined in (6.36),(6.31),(6.33),(6.35), where (qb, Y, W) is a reversible
traveling wave variation, satisfying, for any so < s < S

- - ko, ~ ko, ko,
D15 <s v (Igl%Y + 190185 o I81E0%).  (6.38)

Proof. The estimate (6.38) follows by the explicit expression of the solution in
(6.31), (6.33), (6.35), (6.36), and Lemma 6.4, (6.26), (6.1). ]

Finally we prove that the operator
To := To(io) := (DGs)(¢,0,0) o D' 0 (DGs)(g, 0,0)"" (6.39)

is an almost approximate right inverse for d; o F (ip), where 65 (¢, y,w,a) :=
(Gs(¢, y,w), @) is the identity on the «-component.

Theorem 6.6. (Almost approximate inverse) Assume (Al). Then there is ¢ =
o (T, v, ko) > 0 such that, if (6.1) holds with u = u(b) + o, then, for all (v, k) €
A, and for any anti-reversible traveling wave variation g := (g1, g2, g3) (that is
satisfying (6.29)—(6.30)), the operator T defined in (6.39) satisfies, for all so <
s < S,

ki —1 ko, ~ ko, ko,
IToglly" <s v (g% + 13015 oy o 18 I5s) - (6.40)
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Moreover, the first three components of Tog form a reversible traveling wave vari-
ation (that is satisfy (6.37) and (6.30)). Finally, Ty is an almost approximate right
inverse of d; o F (i), namely

d; o F(io) o To — Id = P(ig) + Pu(io) + P (io) ,

where, for any traveling wave variation g, for all s) < s < S,

ko, -1 . ko,v ko,v
1Pl Ss v (1o, @) 10 18115

. ko,v . ko,v ko,v ko,v
+ (17 (o, o)X + 17 G, a5 30140 o ) 25

(6.41)
1Pugllto? Ss ev 2N, 2 (1% + 1301159 )45 18150 %) - (6.42)
1Pl S5 v Ko (11805 + 130080 oy i8IS ) o VB >0,
(6.43)
P2l s v (Ig1%e + 130158 o) 45 181505 (6.44)

Proof. We claim that the first three components of Tog form a reversible travel-
ing wave variation. Indeed, differentiating (6.10) it follows that DG (g, 0, 0), thus
(DGs(p,0,0)L,is reversibility and momentum preserving (cfr. (3.54)). In partic-
ular these operators map an (anti)-reversible, respectively traveling, waves variation
into a (anti)-reversible traveling waves variation (cfr. Lemma 3.34). Moreover, by
Proposition 6.5, the operator D~! maps an anti-reversible traveling wave into a
vector whose first three components form a reversible traveling wave. This proves
the claim.

We now prove that the operators P, P,, and P;- are defined on traveling waves.
They are computed for example in Theorem 5.6 of [2]. To define them, introduce
first the linear operators

_ _ —0K10(p 0[]
Rz[¢,y,w,d] := | 339 Koo (@, 20)[¢] + [0y K10(g, Olo)]T’ytj- (99 Ko1 (¢, at0)] W
— J,04Ko1 (9, a0)[¢]

and
R 0 R 0
Ro[®, v, W, @] := 0 . R, y.%w.al:= 0 . (6.45)
Rolwl] R[]

Next, we denote by I the projection (7, @) > 17, by us(¢) = (¢, 0, 0) the trivial

torus, and by &, &, Eaf the linear operators

& = di o F(i0) —dj o F(is)+ D*Gs(us)[ DGs(us) ™ Fis, atg), DGs(us) 'TI[ 1]
+ DGs(us)RzDGs(us) ™",

&y = DG5(us)R,DGs(us) ™', &L := DGs(us)REDGs(us)™". (6.46)
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It is then proved in Theorem 5.6 of [2] that P := £ o Ty, Py, := &, o To, Paf =
& i oTy. A direct inspection of these formulas shows that P, P, and Pj are defined
on traveling wave variations. In particular, note that the operators R,,, Ri in (6.45)
are defined only if W is a traveling wave, because the operators R, R defined
in (AI) act only on a traveling wave. However, note that, if g is a traveling wave
variation, the third component of Dé,; (u(;)’l Tog is a traveling wave and therefore
the operators &, Ej in (6.46) are well defined.

The estimates (6.41)—(6.44) are proved as in Theorem 5.6 of [2], using Lemma
6.5. O

7. The Linearized Operator in the Normal Subspace

We now write an explicit expression of the linear operator £, defined in (6.23).

Lemma 7.1. The Hamiltonian operator L, defined in (6.23), acting on the normal
subspace 5’_)84+ o has the form

Z
Lo=TI5 y(L—elBR)gz . (7.1)

where :

1. L is the Hamiltonian operator
L:=w-09y — Jo,ViH(T5(p)), (7.2)

where H is the water waves Hamiltonian in the Wahlén variables defined in
(2.13), evaluated at

Ts(¢) == eAlis(9)) = A (60(@), I5(¢), wo(e))
= v (60(9), Is($)) + ewo(9),
thetorusis(p) := (Bp(@), Is(@), wo(p)) isdefinedin Lemma 6.2and A0, I, w),

vT(0, 1) in (2.50);
2. R(¢) has the finite rank form

(7.3)

Vv

R =Y (hg)p2xi» YheHg 5. (7.4)
j=1

Sor functions g;, x; € Sﬁgﬁ 5, Which satisfy, for some o := o (z, v, ko) > 0, for
all j=1,...,v, foralls 2 s,
ko, ko, ~ ko,
s 1 + 1 e+ 1001225 a5
”dlg][?]”C + ”dl)(j[;]”Y SS |m|s+0 + |m|s0+a ”jzsns-i—o .

The operator L, is reversible and momentum preserving.
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Proof. In view of (6.18), (6.16) and (5.4) we have

Ko () = 0,V Ke (¢, 0,0) = 0,Vy, (Hy 0 Gs) (¢, 0, 0)
=115 Qylgz, +60,Y, (P 0 Gy) 9.0.0), 7.6)

where Qy is defined in (2.19) and Gs in (6.9). Differentiating with respect to w
the Hamiltonian

(P o Gs)(¢,y,w) = P(00(9), I5($) + L1(#)y + La(¢)w, wo(¢) +w)

where Li(¢) := [9500(¢)]" and Ly (¢) := [94il0(Bo(@))]' T (see (6.9)), we
get

0w V(P 0 G5)(¢,0,0) = 3,V P(is(¢)) + R(9), (1.7)
where R(¢) := Ri(¢) + Ra(¢) + R3(¢) and

= Ly(¢) "7 Pis(@)L2(d), Rz := La(#)' 8,01 P(is())
Ry := 31V P(i5(¢)) L2 (9).

Each operator Ry, R2, R3 has the finite rank form (7.4) because it is the composition
of at least one operator with finite rank R" in the space variable (for more details
see for example Lemma 6.1 in [6]) and the estimates (7.5) follow by Lemma 6.1.
By (7.6), (7.7), (5.3), (5.2), (5.1), we obtain

Ko@) = 1 0.V H) (AU @) 52+ eR(@). (1.8)

In conclusion, by (7.8), Lemma 2.7, and since Ts5(¢) = ¢A(is(¢)), we deduce that
the operator L, in (6.23) has the form (7.1)—(7.2). Finally the operator s & J K2 (@)
is reversible and momentum preserving, by (6.19), (6.20), Lemmata 3. 23 3.31, and
the fact that / commutes with 7. and anti-commutes with S. |

We remark that £ in (7.2) is obtained by linearizing the water waves Hamiltonian
system (2.13), (2.14) in the Wahlén variables defined in (2.11) at the torus u =
(1, ¢) = Ts(¢p) defined in (7.3) and changing d; ~» w - 9. This is equal to

L=w-d,— W AX)(WTs(@)W, (7.9)

where X is the water waves vector field on the right hand side of (1.3). The operator
L acts on (a dense subspace) of the phase space L(z) x L2

In order to compute dX we use the "shape derivative" formula, see for example
[26],

G iy = lim ¢ HG+emy — Gy) = =G (BN — 3 (VD) (7.10)

where

GV + Ny

B(’?» W) = 1 +n2

o V) =Y = B, ). (7.11)
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It turns out that (V, B) = (®,, ®y) is the gradient of the generalized velocity
potential defined in (1.2), evaluated at the free surface y = n(x).
Using (7.9), (1.3), (7.10), (7.11), the operator L is

B 9V +GnB ~G(n)
b=t (g — «dycdy + BV, + BG()B Vo, — BG(n))
14 —G(d;! 0
T3\ o-16mB — BG)a—1 — La-1G(n)a=! —a-'G(n))
2 X (77) (77) X 27x (77) X X (77)
(7.12)
where _ ,
Vi=V—yn ci):=0+n)"2, (7.13)

and the functions B := B(n, ¥), V := V(n, ¥), ¢ :== c(n) in (7.12) are evaluated
at the reversible traveling wave (1, ¥) := WTs(p) where Ts(¢) is defined in (7.3).

Remark 7.2. From now on we consider the operator £ in (7.12) acting on (a dense
subspace of) the whole L*(T) x L%(T). In particular we extend the operator 9 L'to
acton the whole L2(T) as in (3.20). In Sections 7.1-7.6 we are going to make several
transformations, whose aim is to conjugate £ to a constant coefficients Fourier
multiplier, up to a pseudodifferential operator of order zero plus a remainder that
satisfies tame estimates, both small in size, see L9 in (7.168). Finally, in Section
7.7 we shall conjugate the restricted operator £, in (7.1).

Notation. In (7.12) and hereafter any function a is identified with the corresponding
multiplication operators & — ah, and, where there is no parenthesis, composition
of operators is understood. For example, d,cd, means: i > 9y (cd,h).

Lemma 7.3. The functions (n,¢) = Ts(¢) and B, V, c defined in (7.11), (7.13)
are quasi-periodic traveling waves. The functions (n, {) = Ts(¢) are (even(g, x),
odd(e, x)), B is odd(¢p, x), Vis even(g, x) and c is even(g, x). The Hamiltonian
operator L is reversible and momentum preserving.

Proof. The function (1, ) = Ts(p) is a quasi-periodic traveling wave and, using
also Lemmata 3.32 and 3.26, we deduce that B, V, ¢ are quasi-periodic travel-
ing waves. Since (1, {) = Ts(p) is reversible, we have that (n, ¢) is (even(g, x),
odd(¢, x)). Therefore, using also (2.6), we deduce that B is odd (¢, x), Vis even(p, x)
and c is even(g, x). By Lemmata 3.22 and 3.27, the operator £ in (7.9) evaluated at
the reversible quasi-periodic traveling wave W Ts(¢) is reversible and momentum
preserving. O

For the sequel we will always assume the following ansatz (satisfied by the ap-
proximate solutions obtained along the nonlinear Nash—Moser iteration of Section
9): for some constants g := uo(r, v) > 0, v € (0, 1), (cfr. Lemma 6.2)

ko, ~ ko,
13010, . 138180, < 1. (7.14)

In order to estimate the variation of the eigenvalues with respect to the approximate
invariant torus, we need also to estimate the variation with respect to the torus i (¢)
in another low norm || ||, for all Sobolev indexes s; such that

s1+o09 < so+pup, forsome op:=op(r,v) > 0. (7.15)
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Thus, by (7.14), we have

ko,v ~ nko,v
19olon,  I3sIoy, <1

The constants (1o and og represent the loss of derivatives accumulated along the
reduction procedure of the next sections. What is important is that they are in-
dependent of the Sobolev index s. In the following sections we shall denote by
o = o(t,v,kg) > 0, ony(qg) := on(qo, T, V, ko), oy := op(ko, T,v) > 0,
R () constants (which possibly increase from lemma to lemma) representing
losses of derivatives along the finitely many steps of the reduction procedure.

Remark 7.4. In the next sections uo := uo(z, v, M, «) > 0 will depend also on
indexes M, «, whose maximal values will be fixed depending only on 7 and v (and
ko which is however considered an absolute constant along the paper). In particular
M is fixed in (8.5), whereas the maximal value of « depends on M, as explained
in Remark 7.14.

As a consequence of Moser composition Lemma 3.2 and (6.4), the Sobolev
norm of the function u = Ts(¢) defined in (7.3) satisfies for all s = s¢

Il 0 = Il + 157 < eCs)(1+ 1Tol20) (7.16)
(the map A defined in (2.50) is smooth). Similarly, using (6.7),
[Apulls, Ss€lliz —itlly, . where Ajpu :=u(iz) — u(iy).

We finally recall that Jg = Jo(w, k) is defined for all (w,«) € RY x [k, k2]
and that the functions B, V and c¢ appearing in £ in (7.12) are C* in (¢, x), as
u=,¢)=Tsp)is.

7.1. Quasi-periodic Reparametrization of Time

We conjugate the operator £ in (7.12) by the change of variables induced by
the quasi-periodic reparametrization of time

Vi=ptoplp) & ¢=9%+wp®), (7.17)

where p(¢) is the real TV-periodic function defined in (7.87). Since n(p, x) is a
quasi-periodic traveling wave, even in (¢, x) (cfr. Lemma 7.3), it results that

plp —J5)=plp), Vs € R, pisodd(ep). (7.18)

Moreover, by (7.87), (3.11), Lemma 3.2, (7.16) and (7.14) and Lemma 2.30 in [6],
both p and p satisfy, for some o := o (7, v, ko) > 0, the tame estimates, for s = s,

o — ~ nko,
IpIov 1 pikov < e*o™ (1 + 1T0l5%Y). (7.19)
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Remark 7.5. We perform as a first step the time reparametrization (7.17) of L, with
a function p(¢) which will be fixed only later in Step 4 of Section 7.3, to avoid
otherwise a technical difficulty in the conjugation of the remainders obtained by
the Egorov theorem in Step 1 of Section 7.3. We need indeed to apply the Egorov
Proposition 3.9 for conjugating the additional pseudodifferential term in (7.12) due
to vorticity.

Denoting by
(Ph) (¢, x) == h(p + wp(@).x), (P~'h)(®,x) :=h(@® + wp®),x),
the induced diffeomorphism of functions (¢, x) € C2, we have
Plow -3, oP=p@aw-dy, p®) =P '1+w-d,p). (7.20)

Therefore, for any w € DC(v, 7), we get

P ! 0V +GmB ~G(n)
Lo := pp LP=w-dy + 0 (g — kdycdy + BVy + BG(n)B Va, — BG()
iy ( A D ) (7.21)

02\ 'GmB —BGmo; ' — Yo 'Gmay! —a7'Gap ) T

where V, B, ¢, V and G(n) are evaluated at (), ¥p) := P, ¥).For simplicity
in the notation we do not report in (7.21) the explicit dependence on p, writing for
example (cfr. (7.13))

_3 _3
2 2

c=(1+@P ') 2 =P (1+1?) (7.22)

Lemma 7.6. The maps P, P~ are Dko -(ko+1)-tame, the maps P—1d and P-l_1d
are Dko-(ko +2)-tame, with tame constants satisfying, for some o := o (t, v, ko) >
0 and for any s) < s < S,

Mpsi(s) Ss 1+ 1Tol%Y, Mpar_iq(s) Ss 207 (1+ 1Tolli%Y).  (7.23)
The function p defined in (7.20) satisfies
piseven(®) and p(¥ — j¢)=p(¥), Yc € R. (7.24)
The operator Lo is Hamiltonian, reversible and momentum preserving.

Proof. Estimates (7.23) follow by (7.19) and Lemma 2.30 in [6], writing (P —
Idh=p fol Pr(w-dyh) dt, where (Prh) (¢, x) := h(p +twp(p), x). We deduce
(7.24) by (7.18) and (7.20). Denoting £ = w - 9, + A(¢) the operator £ in (7.12),
then the operator Lo in (7.21)is Lo = w- 9y + A4 (9) with AL (9) = p~ () AW +
p (%) w). It follows that Ay () is Hamiltonian, reversible and momentum preserving
as A(p) (Lemma 7.3). O

Remark 7.7. The map P is not reversibility and momentum preserving according
to Definitions 3.17 and, respectively, 3.24, but maps (anti)-reversible, respectively
traveling, waves, into (anti)-reversible, respectively traveling, waves. Note that the
multiplication operator for the function p (¢), which satisfies (7.24), is reversibility
and momentum preserving according to Definitions 3.17 and 3.24.
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7.2. Linearized Good Unknown of Alinhac

We conjugate the linear operator L in (7.21), where we rename ¢ with ¢, by
the multiplication matrix operator

_(1d0 (10
z=(5a) ='=(%n)

obtaining (in view of (3.46))

Li:=2"1LyZ
. +1( 9V —gw)_lz( G(mo;! 0 >
7 p\g+a—«kdcd Vi p2 \so'Gmast aylGam )
(7.25)
where a is the function
a:=VB,+p(®-0,B). (7.26)

The matrix Z amounts to introduce, as in [26] and [2,6], a linearized version of the
“good unknown of Alinhac”.

Lemma 7.8. The maps Z*! — 1d are DX0-tame with tame constants satisfying, for
some o = o (t,v, ko) > 0, forall s = s,

Mzt _1q(s), M ze1_1ap () S5 (14 1T0lE%2). (7.27)

The function a is a quasi-periodic traveling wave even(p, x). There is o =
o (t, v, ko) > 0 such that, for all s 2 s,

= ~ ko,
lalfov + [V [kov Bk < e (14 1T0l5%Y)
~ ko,
11— elifov <y e (14 1Tol%) - (7.28)

Moreover, for any si as in (7.15),

IAnally, + 1AV s + 1A1Bly, S e llit — i2llg 40 » (7.29)
IAcls, S e llit —i2llg 4o s (7.30)
IALZED R, 1A12ZEY Rl Soy e llit — i2llg 40 IR, - (7.31)

The operator L1 is Hamiltonian, reversible and momentum preserving.

Proof. The estimates (7.28) follow by the expressions of a, ‘7, B, c in (7.26),
(7.11), (7.13), (reparametrized by P~1asin (7.22)), Lemma 3.2 and (7.23), (3.7),
(3.33), (3.37) and (3.36). The estimate (7.27) follows by (3.37), (3.22), (7.28) and
since the adjoint Z* = <I(§1 Ifl) The estimates (7.29)—(7.31) follow similarly.
Since B is a odd(¢, x) quasi-periodic traveling wave, then the operators Z* are
reversibility and momentum preserving. O
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7.3. Symmetrization and Reduction of the Highest Order

The aim of this long section is to conjugate the Hamiltonian operator £ in
(7.25) to the Hamiltonian operator L5 in (7.89) whose coefficient m3 of the highest
order is constant. This is achieved in several steps. All the transformations of this
section are symplectic.

Recalling the expansion (3.32) of the Dirichlet-Neumann operator, we first write

1 —$G(0)d;! —G(0)
El:w'a‘/’+_< a1 1 _yg-1 >
p \—kdccd +g— (%) 971G —%0,1G(0) )
1 (o, V 0 :
+;( a V8x>+Rl’
where , ]
1 5RaG M)y Rac ()
Ry := __< Y —(1; a1y —1G ! ) (7.33)

p \(5)" 9 "Rama; ! 5oy "Ra ()

is a small remainder in OPS~%°.

Step 1: We first conjugate £ with the symplectic change of variable (cfr. (3.42))

(Eu)(p, x) ==/ 1+ Bx (@, x) (Bu)(p, x), (Bu)(p,x) :=ulp,x + B(p, X)),
(7.34)
induced by a family of ¢-dependent diffeomorphisms of the torus y = x 4+ (¢, x),
where (¢, x) is a small function to be determined, see (7.68). We denote the
inverse diffeomorphism by x = y + Bg.y). By direct computation we have that

ETWaE =B (VA + ) oy + 1B VB (1 + 87"} (7.35)
ETVE= BNV +B0))oy + 1B (Vi + 1VBa(1+ 07D,

(7.36)

ElaE =B ay}, (7.37)

£ E =B (1 +B) BB 9. BB BB 9. BB (14,28
(B (1+ B0} oy B~ (c(1+ B} 0y (B (1 + 817},

(7.38)
e w0, = w0, + [B (0 ,8)} 0y + 1B (@ 8,800 + B0 7))
(7.39)
Then we write the Dirichlet-Neumann operator G (0) in (1.7) as
G(0) =G(0,h) =0,HT(h), (7.40)
where H is the Hilbert transform in (3.19) and
T(h) = tanh(h|D|) = 1d 4+ Op(rn) ifh < 400, ry(§) := —m €S,
Id if h = oo.

(7.41)



166 M. BERTIL L. FRANZOI & A. MASPERO

We have the conjugation formula (see formula (7.42) in [2])
B'GOB={B"'1+B)}GO) + R, (7.42)
where
Ry = B0 + B)}d, (H(B_lop(rh)B — Op(ry))

(7.43)
+(B~YHB — H)(B! T(h)B)) .

The operator R is in OPS~ because both B~!Op(r,) B—Op(ry,) and B~ HB—H
are in OPS~% and there is o > 0 such that, for any m € N, s = 59, and @ € N,
1 ko,v ko,v
||B HB — H”,m s, Nm s,a,ko ”:8”s+m+ot+(r7

— ki ki
1B~ 0p(rn)B — Op(ra) %5 o Somos.vko BN st

The first estimate is given in Lemmata 2.36 and 2.32 in [6], whereas the second one
follows by that fact that r, € S~ (see (7.41)), Lemma 2.18 in [2] and Lemmata
2.34 and 2.32 in [6]. Therefore by (7.42) we obtain

(7.44)

E'GOE = (B (1+ B2} GO) B 1+ B0+ Ry, (7.45)
where ~ ! !
Ri={B'1+ ) 2} R {B (1 + B2} (7.46)
Next we transform G (0)d !. By (7.40) and using the identities 9, 0 ' = and
‘HT (h) = G(0) 0y ! on the periodic functions, we have that
ET'G03;'E = ETOHT ()D€ = G(0)d)" + Ry, (7.47)
where
Ra = (B~ (14 ) I} [HT (M), (B~ (1 + 02} — 1]+ (B~ (1 + B T} o

° ((B—‘HB — H)(B~'T(0)B) + H(B~' Op(rn) B — Op(rh))) BN+ B0t}
(7.48)
The operator R is in OPS™ by (7.44), (7.41) and because the commutator of H
with any smooth function a is in OPS™°, in particular (see Lemma 2.35 of [6])
there is & > 0 such that, forany m € N, s = 59, and a € Ny,

”[HT(h) a]”]ﬁ)mug o Nm §,0, k() ||a||s+m+o[+(7 (749)

Finally we conjugate 9 lG(O)B; ! By the Egorov Proposition 3.9, we have that,
forany N € N,

elale = [B"( )]a U4 P (pox. D) + R (7.50)

1
1+ B
where PEIZ)’N((p, x, D) € OPS—2

POy, x. D) =BT A+ B0~ [p19y ' B (1 + 807
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N
+ Y pomity BT A+ g0t

j=1

with functions p_1_;(A; ¢, y), j = 0,..., N, satisfying (3.30) and Ry is a reg-
ularizing operator satisfying the estimate (3.31). So, using (7.50) and (7.47), we
obtain

£ 1G0)a e = (5—13;15) (5—1G(0)a;15)

=9,'Ga; ' + P, +Raow, (7.51)
where
@ —1 B -1 (1) —1 —1
Pey=(-1{8 (1+ﬂx>}8>’ + P (¢, %, D)) G(0)d; " € OPS
(7.52)

and Ry y is the regularizing operator
Ron = (710, ' E)Ra + Ry G (0)9; . (7.53)

The smoothing order N € N will be chosen in Section 8 during the KAM iteration
(see also Remark 7.11).
In conclusion, by (7.35)—(7.39), (7.45), (7.47) and (7.51) we obtain

el ! ~5G )" ~a,G(0)a
= = w3y + —
fimEhE=e ety (—m2aya3aya2 +g- (570,600 %05 G0)
1 apdy + aq 0 W
- R To N, 7.54
T (as - (5 P£21),N aidy +a6> TR TN (759
where
ay(e.y) =B ((1+ BV + (0 3,8)). (7.55)
ax(.y) =B T+ B0, asp.y) =B cl+By). (7.56)
1 (VB @098y | o
as(p,y) =8B (—2(1 A + Vx) , as(p,y) =B 'a, (7.57)
el Vﬁxx + (@ - 99 Bx)
ag(p, y) =B (—2(1 T ). (7.58)

the operator P£21), N € OPS~! is defined in (7.52) and

1 (YR, R _ 1 /y\2 0 O
v._ L (5Ry Ry 1 ot
Ry = ’ < 0 %R2> +ETRIE, Ton = , (2) (RZ,N 0) , (7.59)

with ﬁl, Ra, Ro,y defined in (7.46), (7.48), (7.53) and Ry in (7.33).
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Step 2: 'We now conjugate the operator £; in (7.54) with the multiplication matrix

Operator
_f(a O . (q7'0

where g (¢, y) is areal function, close to 1, to be determined. The maps Q and o1
are symplectic (cfr. (3.42)). We have that

_ 1 (AB _
L3:=0Q 1£29=a)~3¢+;<c D>+Q 'RY + T2 n)Q, (7.60)
where
A=q""(=5G03;" +aidy +as)g + pg (@ 3yq) . (7.61)
B:=—q 'a2G(0)arg™", (7.62)
2 A — 2

C = q( - kardyasdyar + g — ()" 8, 'G0)d; " +as — (5)° PF y)a.
(7.63)
D:=q(-%03;'G(0) + a1dy +as)g ™' — pg~ (@ 3yq). (7.64)

We choose the function ¢ so that the coefficients of the highest order terms of the
off-diagonal operators B and C satisfy

q~%a3 = q*ayas = my (@), (7.65)

with ms (¢) independent of x. This is achieved by choosing
1\ /4
q = (—) (7.66)
as
and, recalling (7.56), the function 8, so that
(14 Bu(g, ) c(p, x) = m(g) (7.67)

with m(¢) independent of x (the function c is defined in (7.22)). The solution of
(7.67) is

m(g) = (%/ c(p,x)~1/3 dx>_3, By, x) := 8;%(%)1/3 — 1>.
’ . (7.68)

In such a way, by (7.56), we obtain (7.65) with ms (¢) := /m(p). By (7.68) and
(7.22) we have

1 _3
m, :=m%(¢)=P_1(E[E,/l+n%((p,x)dx> 2, (7.69)

1

Note that, since by (7.65) the function ¢ ~" a5 is independent of x, we have

B=—q"'aG0)aq ' =—q%a3G(0). (7.70)
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Moreover we have the expansion

qazdyazdyarq = qzagaﬁf + (q2a%a3)y8y +qgaz(az(qaz)y)y

(7.65) (7.71)

m3y()o; + a7, a7 = qarasqaz)y)y.
In conclusion, the operator £3 in (7.60) is, in view of (7.61)—(7.64) and (7.70),
(7.71),

| 1 -5G6(00;! —m3G(0)
L3=0Q0 LQ=w 0p+ — 2, - Z
o p \ms(—xd2+g—(5)0,1G0)0; ") —%971G(0)

1 <a18y+ag 0

- RY+T 7.72
o \ao + Pg),zv apdy +a1o> TR+, (7.72)

where

ag:=a1q" gy +pq (@ 8,q) +as. av:=asq’ +g(q> —m3y) —xar. (1.73)

aio = —a1g"'qy —p g~ (@ 3y9) +as, (7.74)
2 _ _

PY == (%) (qPE?,Nq +(a* = m)GO)3;” + 4160037 g 1]) , (1.75)

with Pfl), N € OPS —1 and where Rgl’ € OPS™°, T3,y are the smoothing remain-
ders

RY .— | <—£q—1[HT(h),q_ 1] 0
3 =

o 0 —Lq[HT (h), ¢! — 1]
Ty = Q 'Thn Q. (7.77)

) + 97 'RYQ, (7.76)

Step 3: We now conjugate L3 in (7.72), where we rename the space variable y by
x, by the symplectic transformation (cfr. (3.42))

~ (A O ~.._ (a1
M= (o A_1>, M ._< 0 A), (7.78)

where A € OPS™7 is the Fourier multiplier

A = \/Lgno + M (D), withinverse A= Jgmo + M(D)_1 € OPS% ,
(7.79)
with ¢ defined in (3.21) and M (D) in (2.21). We have the identity

A(—kdi+g— (g)za;‘G(O)a;‘)A =A'GO)A "+ 79 = w(k, D) + 70,
(7.80)
where w (k, D) is defined in (2.23). In (7.79) and (7.80) we mean that the symbols
of M(D), M(D)™! and w(x, D) are extended to 0 at Jj = 0, multiplying them by
the cut-off function x defined in (3.10). Thus we obtain

1(—%G(O)BX] —m3 (@) (k. D)) (0 0)

 Aq-1 M o— _
Ly=MT LM =o a‘/”Lp m3(p)o(c, D) ~1G(0)9;! 70 0
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+ 1 (alax 4(:‘3}))&41) 0 (44)) +RY + T4y, (7.81)
0 P_% a0y + Py ’
where
P = A7ay9,, Al + A lagA € OPSY, (7.82)
Pf“f) = AagA + APS) A € OPS™ 2, (7.83)
p<44> = Ala1dy, A~"1+ AaioA~" € OPS?, (7.84)

and RE’, Ty, n are the smoothing remainders

0 0 ~ ~
v, —1lpV¥ —00
R, = <( —1 Do 0)+M Ry M € OPS™,

,oms

(7.85)

2

y 0 0
Ty : I =— :
s = MTTsv M 4p <AqR2,NqA0>

Step 4: We finally move in complex coordinates, conjugating the operator £4 in
(7.81) via the transformation C defined in (2.24). We use the transformation formula
(3.15). We choose the function p(¢) in (7.17) in order to obtain a constant coefficient
at the highest order. More precisely we choose the periodic function p(¢) such that

3 69,020 ((ZN Jo V1t mte. x dx)g>

l+w-0yp

2

(7.86)
,o

is a real constant independent of ¢. Thus, recalling (3.9), we define the periodic
function

p) = - )t (— / J1+ R i) %—1) (7.87)

and the real constant

3
my = (27[)” / 2n/’/1+"x(‘0 x)dx) 2do. (7.88)

Note that (7.86) holds for @ € DC(v, t). Moreover, by Lemmata 3.2,7.3 and (7.16),
p satisfies (7.19) and it is odd in ¢. Let

|
n0:=—ic—1<0 O)c::—(”o ”0).
o 0 2 \—mp —7mo

Lemma 7.9. Let N € N, gg € Ny. For all w € DC(v, 1), we have that
= (eoMc) ' i (eoMc)
= w9 + imy R(c, D) + A1d, +illo + R + R + Ts v,

(7.89)

where:
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1. The operators EX' are D*-(ko + 1)-tame, the operators E¥' —1d, (EF' —Id)*
are D*-(kg + 2)-tame and the operators QF', Q*! —Id, (Q*! — Id)* are

Dko_tame with tame constants satisfying, for some o := o (t,v, ko) > 0 and
forallsy) <s <8,

Mesi(s) S5 L4 1Tol0Y, Mosi(s) Ss 1+ 101502, (7.90)
M1 _1g(8) + Mgs1 g () S5 821+ [1T0l15%5) (7.91)
Mosi_1a(s) + Mgar_1ay () Ss &1+ 1Toli%e) (7.92)

2. the constant m3 € R defined in (7.88) satisfies |m% — 1jkov < e2;
3. Q(x, D) is the Fourier multiplier (see (2.25), (2.26))

Q(x, D) 0

Q(K’D)=< 0 -Qk D)

), Q(k, D) = wl(k, D)—|—1§ “1G(0);

(7.93)
4. the matrix of functions A1 is

(d)
a 0
A= s 7.94
1 ( 0 afd)> ( )

forareal function afd) (¢, x) whichis a quasi-periodic traveling wave, even(¢, x),
satisfying, for some o := o (ko, T, v) > 0 and for all s = s,

a0 <5 e(1 + [1301500) ; (7.95)

5. Rgo’d) and Rgo’o) are pseudodifferential operators in OPS® of the form

@
R D O
RO = (5 @0 P D) copso,
0 rs (¢, x, D)

(0)

0 rs (¢, x, D)

0,0) ,_ 5 0

RS «-— (d)— E OPS N
rs (¢, x, D) 0

(7.96)

reversibility and momentum preserving, satisfying, forsomeoy = o(t,v, N) >
0, forall s = sg, a € Ny,

0,d) ko, 0, k ~ 1k
IR 6%, + IR, Sovea e+ 1T0l4%0 100):  (797)
6. Foranyq € Ny with|al < qo, ni, ny € Nowithni+ny < N—(ko+ao)+3, the
operator (D)™ 83T5, N (@) (D)™ is DX-tame with a tame constant satisfying,
for some oy (qg) := on(qo, ko, T, v) > 0 and for any so < s < S,

ko, .
Iy 535 (D2 () Ss.vq0 €(1+ 1301550 () (7.98)
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A

7. Moreover; for any s1 as in (7.15), « € Ny, g € N(‘;, with |q| £ qo, and
ni,ny € No, withny +ny <N —qg + %,

181Dkl Ss € llit — inlls 1o lhlly 1o » A€ (EXL EEH*, 0F = (QF)*},

(7.99)
1A12a s, Ssq € llit = i2lls, 1o - |Arams | < e it = iall 4o - (7.100)
||A12R ||0 s+ ||A12R o st SsiNa €1 —i2lls oy 420 (7.101)
[<DY" 355N @) (D) | £ ggony SoroNoco € i1 = 25y oy () - (7.102)

The real operator L5 is Hamiltonian, reversible and momentum preserving.

Proof. By the expression of £4 in (7.81), using (3.15), and (7.86), we obtain that
L5 has the form (7.89). The functions 8 and ¢, defined respectively in (7.68) and
(7.66) with a3 defined in (7.56), satisfy, by Lemmata 3.8, 3.2 and (7.28), for some
o :=o(ko, t,v) > 0andforall s = s,

IBIKY < e2(1 + [ Tolli%Y), g™ — 11k <5 e2(1 + |1 Tollt%Y).  (7.103)

The estimates (7.90)—(7.92) follow by Lemmata 3.12, 3.13, 3.8, (7.103) and writing
1
(B —1Id)h = BB:[hy], B:lhl(p,x) = /0 hx(p, x + B(p,x))dr, (7.104)

B*h(p, y) = (1 +/§(¢, y)h(e, y+,4§(<p, y)), and similar expressions for B~! —
(B~1)*. The estimate for m3 follows by (7.88), Lemma 3.2 and (7.16). The real

function afd) in (7.94) is

a'? (g, x) = p(@)'ar(g. x) .

where p and a; are defined respectively in (7.20) and (7.55). Recalling Lemmata

7.3 and 7.6, the function a;d) is a quasi-periodic traveling wave, even in (g, x).
Moreover, (7.95) follows by Lemma 3.2 and (7.16), (7.19), (7.28), (7.103). By
direct computations, we have

1
d
rs( )((p,x, D) .= —

41) (44) - 5 (43) —1
2 (Po + P +1P_%’N+)/(pm% —1)G(0)o, ) ,

|
r (@, x, D) = 3 <P0(41) P 4 P(43)N> , (7.105)

where P(4]) P(43) P(44) are defined in (7.82), (7.83), (7.84) and p m3 =m3 (o)
with m 3 (p) deﬁned in (7.69) (cfr. (7.86)). Therefore, the estimate (7. 97) follows by

(7.73), (7 71), (7.55), (7.56), (7.57), (7.58), (7.75), (7.52), (7.79), (2.21), applying
Lemmata 3.5, 3.6, 3.8, 3.2, Proposition 3.9 and estimates (7.16), (7.19), (7.28),
(7.103). The estimate (7.98), where

Tsy :=C'(RY +Tan)C,
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follows by (7.85), (7.77), (7.76), (7.59), (7.53), (7.50), (7.48), (7.46), (7.43), Lem-
mata 3.12,3.13, estimates (7.44), (7.49), Proposition 3.9 and (7.90), (7.103), Lemma
3.10 and Lemmata 2.34, 2.32 in [6]. The estimates (7.99), (7.100), (7.101), (7.102)
are proved in the same fashion. Since the transformations £, Q, M are symplectic,
the operator £4 is Hamiltonian. Hence the operator £5 obtained conjugating with
C is Hamiltonian according to (3.41). By Lemma 7.3, the functions B(¢, x) and
q (¢, x), defined in (7.68), (7.66) (with a3 defined in (7.56)), are both quasi-periodic
traveling waves, respectively odd(¢, x) and even(gp, x). Therefore, the transfgrma-
tions £ and Q are momentum and reversibility preserving. Moreover, also M and
C are momentum and reversibility preserving (writing the involution in complex
variables as in (2.29)). Hence, since £ is momentum preserving and reversible
(Lemma 7.8), the operator L5 is momentum preserving and reversible as well, in
particular the operators Rgo’d) and Rgo’") in (7.96) (for example check the definition
in (7.105), see also Remark 3.20). |

7.4. Symmetrization up to Smoothing Remainders

The goal of this section is to transform the operator L5 in (7.89) into the operator
Le in (7.108) which is block diagonal up to a regularizing remainder. From this step
we do not preserve any further the Hamiltonian structure, but only the reversible
and momentum preserving one (it is now sufficient for proving Theorem 5.2).

Lemma 7.10. Fix M, N € N, qg € Ny. There exist real, reversibility and momen-

tum preserving operator matrices {X, }Z’:l of the form

Xm — < 0 Xm((pax5D)

1
Xm (@, x, D) 0 ) (@, x, &) € ST (7.106)
m ’ ’

such that, conjugating the operator Ls in (7.89) via the map

X

Dy =Xl o 0eXM, (7.107)

we obtain the real, reversible and momentum preserving operator

Le = EgM) = ‘I’;/[l Ls Py
= w9y +imyQc, D) + Ardy +iMlo + ROD 4 REMO 4Ty,

(7.108)
with a block-diagonal operator
(d)
r ,x,D 0
ROV = RO = (70 5 ) @ ——— | e opPs°,
’ 0 re (¢,x,D)

and a smoothing off diagonal remainder

(0)

_ _ 0 ,x, D _

R, = RN = (0 @ XD Cops™ (7100
’ re (¢, x, D) 0
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both reversibility and momentum preserving, which satisfy for all « € Ny, for some
on :=on(ko, T,v, N) >0, Ry () > 0, forall s = s,

0,d) ko, M, ko, ko,
RSV, + 1RG0 L Semvia e(L+ 1301558 @) - (7-110)
For any g € Ny with |q| < qo, n1,n2 € Nowithny +ny = N — (ko + qo) + %,
the operator (D)™ 8(;1T6,/\/((,0)(D)"2 is DK0_tame with a tame constant satisfying,
for some on (ap) := oy (ko, T, v, o), for any so < s < S,

ko,
M o1 35T (012 ) SN0 £+ 1T01EY0 o) - (11D

The conjugation map ® y; in (7.107) satisfies, for all s 2 s,
ko, k ko
1@ =118+ (@5 —1d) 1% Seanw eHIT0IYY, 0 (T-112)

Furthermore, for any si as in (7.15), « € No, g € Ny, with |a| < qo, and
ny,ny € No, withny +n, SN —qo + %, we have

0,d —-M, . R
IALRY D o5 0 + AR ™ N g v Soomtn € it = i2lls, oyt @) »
(7.113)

(D) 87 A12Te, N (D)l £asty Ssiom Nao € i1 — 82l op o)+ ©0) >
(7.114)

1A 197 110,510 + 1A12(REY 110,510 S m v € it — 21l 4043047 0) -
(7.115)
Proof. The proof is inductive on the index M. The operator E(O) = L5 satisfy
(7.110)—~(7.111) with Ro (o) := 2, by Lemma 7.9. Suppose we have done already
M steps obtaining an operator EgM) as in (7.108) with a remainder d>;41 Ts.nPum,
instead of Tg y. We now show how to perform the (M + 1)-th step. Define the

symbol

K19, %, 8) 1= —(2img (e, £) ' r (. x, Ox(® € ST, (7.116)

where x is the cut-off function defined in (3.10) and w(«k, &) is the symbol (cfr.
(2.23))

2 3
(K, §) 1= \/G(o; &) (k&2 + g+ -G 5)) c st

4 g2
G(0: &) = x ()& tanh(h]&]), h < 400
x &), h = 4o0.

Note that x 741 in (7.116) is well defined because w (k, &) is positive on the support
of x (&£). We conjugate the operator /.ZgM) in (7.108) by the flow generated by X /41
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of the form (7.106) with xp41(@, x, &) defined in (7.116). By (7.110) and Lemma
7.9-2, for any s = so and o € N,

ko,v
e

k
e oo € (L1005 ). (7.117)

IXpr+11 s+oy+ N (@)

Therefore, by Lemmata 3.7, 3.5 and the induction assumption (7.112) for @, the
conjugation map @741 := ®yeX¥+1 is well defined and satisfies estimate (7.112)
with M + 1. By the Lie expansion (3.16) we have

EgMH) — o~ Xut1 ﬁéM) eXut1
= @9, + imy (e, D) + A1d, +illo + Rg7 (7.118)

= [Xarr1,imy R0, D)+ Re " + @3 Ts. v @ary
1
- / e Xy p1, @ By + ANV 0, +iTTg + Ry Je M (7di 9)
0

1
- /0 e [ Xy, R | e dr (7.120)

1
+ / (1 — 1)e~Xu+i [XMH,[XMH,im%SZ(K, D)]]efXMH(dmzl)
0

In view of (7.106), (7.93) and (7.109), we have that

. (—M.0) 0 Zyt
—1X Q(, D R =|=—— =7
[ M+1, im3 Q(k, )]+ Rg (ZM-H 0 ) MA+15

where, denoting for brevity xy+1 := xm+1(¢@, x, £), it results
Zy+1 = img (Op(xm+1)o(k, D) + ok, DYOP(Xm-+1))
+my} [XM+1, a;‘G(O)] +0p(r). (7.122)

By (3.23), Lemma 3.5 and since x /41 (@, x, &) € S_%_M by (7.116), we have that
Op(xm+1)@(k, D) + w(k, DYOP(xp+1) = Op(2w (i, &) xpm41(9, X, &)) + Tyt
where rp1 is in OPS~™~1 By (7.116) and (7.122)
Zusr =imyraen +my % [ 07 GO+ 0pr, (1 = x(€)) € OPS™!,
The remaining pseudodifferential operatorsin (7.119)—(7.121) have order OPS —M=3 .
Therefore the operator /.ZéMH) in (7.118) has the form (7.108) at M + 1 with

RO RO MDD = RO + Zag 1+ (7.119) + (7.120) + (7.121) (7.123)

and a remainder <I>;41+ 1 Ts,n®p 1. By Lemmata 3.5, 3.6, the induction assumption
(7.110), (7.117), (7.95), we conclude that R 5, | and R§ ¢* ) satisfy (7.110)
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at order M + 1 for suitable constants Ry 1(«) > Nys(e). Moreover the opera-
tor <I>;,[1+1T5,N<I>M+] satisfies (7.112) (with M + 1) by Lemmata 3.12, 3.13 and
estimates (7.98), (7.112). Estimates (7.113), (7.114), (7.115) follow similarly. By
(7.116), (3.43), Lemmata 3.19, 3.29, and the induction assumption that R( M.0) i
reversible and momentum preserving, we conclude that X ;41 is revers1b111ty and

momentum preserving, and so are e*X¥+1, By the induction assumption Eé ) is

M+1) . .
ﬁ( +1 s reversible and momentum

preserving as well, in particular the terms RéOM hat Ré AE[A_/IJI) 9 in (7.123). O

reversible and momentum preserving, and so

Remark 7.11. The number of regularizing iterations M € N will be fixed by the
KAM reduction scheme in Section 8, see (8.5). Note that it is independent of the
Sobolev index s.

So far the operator Lg of Lemma 7.10 depends on two indexes M, N which

M
provide respectively the order of the regularizing off-diagonal remainder Ré 29
and of the smoothing tame operator T y. From now on we fix
N=M. (7.124)

7.5. Reduction of the Order 1

The goal of this section is to transform the operator Lg in (7.108), with N = M
(cfr. (7.124)), into the operator Lg in (7.146) whose coefficient in front of 9, is a
constant. We first eliminate the x-dependence and then the ¢-dependence.

Space reduction. First we rewrite the operator Lg in (7.108), with N = M, as

Ps 0 . _
E():(,()~8(p+<6 )+1H0+Ré M’o)-l-T(),M,

0 Ps
having denoted
Ps := Po(¢. x, D) := im3 (k. D) + a\ (@, )x +r (¢, x, D). (7.125)

We conjugate L¢ through the real operator

_(P@ O
®(p) ._( o 6(@) (7.126)

where @ (@) := ®7(¢)|;=] is the time 1-flow of the PDE

0P (p) =i1A(p) D" (9),

PO(p) =1d, A(p) == b(p, x)|D|2, (7.127)

and b(gp, x) is areal, smooth, odd (¢, x), periodic function chosen later, see (7.133),
(7.135), (7.141). Usual energy estimates imply that the ﬂow <I>’(<p) of (7.127) is

a bounded operator in H;. The operator 8"8(,) d loses |D| derlvatlves which
are compensated by (D )_’"' on the left hand side and (D )_’”2 on the right hand
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side, with m, m, € R satisfying m| +my = % (18| + |kl), according to the tame
estimates in the Sobolev spaces H(;, . of Proposition 2.37 in [2]. Moreover, since

b(p, x) is odd(¢, x), then b(¢p, x)|D|% is reversibility preserving as well as ®(¢).
Finally, note that &7y = g = ®~ 7, which implies that

o 'Myd = M®. (7.128)

By the Lie expansion (3.16), we have

2M+2 n
. ) 1 - ) n
O Po® = P —ilA. Pl — S[A. [A. Pell + Z o1 i) (Pe) + T,
n=3
Ty = e / (1= )*M2077 (g) ad} 1 (Pe) @7 (p)dr
Q2M +2)! e
(7.129)
and, by (3.17),
2M+1 ( )n
P low- dpo @ =w-3dy+ilw-dpA)(p) — Z Tl dff‘(;)(w e AW + Ty
n=2 ’
o 1)2’”+2 (l )M+ T () ad?MH (. 9, A(p)) @ (p)dT
v = (2M 1) ) adyy) A S G
(7.130)

Note that adfj;{;3 (P) and ad%jl (w-3,A(p)) are in OPS™M . The number M will

be fixed in (8.5). Note also that in the expansions (7.129), (7.130) the operators have
decreasing order and size. The terms of order 1 come from (7.129), in particular

from Pg — i[A, Pg]. Recalling (7.125), that A(¢) := b(p, x)|D|%, (3.26) and that
(cfr. (4.1), (4.5))

3
Qk, &) = VKIEIZX (&) +rolk. £), 1ok, &) € S°, (7.131)
(the cut-off function y is defined in (3.10)) we deduce that
1
[A, Pg] = 12ﬁm3 bedx + (L@\)xb — a\Vby) D12 + Op(ro),  (7.132)

where rp 0 € SO is small with b. As a consequence, the first order term of Pg —
i[A, Pg] is (a(d) % JK m3 b,)d, and we choose b(gp, x) so that it is independent
of x: we look for a solution

b(p, x) = bi(¢, x) + ba2(p) (7.133)

of the equation

1
a§d>(¢,x)+§m%ﬁbx(¢,x) = (@), (p) = E/Taid)(go,x)dx. (7.134)
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Therefore

bi(p, x) = —3m3fax (a{” (. x) — (a{?)x(9)). (7.135)

We now determine b, (¢) by imposing a condition at the order 1/2. We deduce by
(7.129), (7.130), (7.125), (7.132)—(7.134), that

L7:= @71 (p) (- By + Po) ®(¢) = w8, +im3Q(k, D)

y J y (7.136)
+ (@) (@) by +ial” DI + Op(r\?) + Ty + T},
where a, )(<p, x) is the real function
3 1
ay” == 3(ai")xb1 + @ b1 + TViem ((0DF ~ 5 B1)b)
(7.137)

3
(@ 3,b1) = (3 @)y + Sy (b )bz + (@ - 3gba)
and

Op(ry”) = Op(—irp,0 +r, _1 +rg")

—[b|D|f, (@) b —a@b,)| DI + Op(ry0)]

M

(—i)
+ Z ad'/g(w)(&) — Z ad'j‘(;)(a) - 3,A(p)) € OPS?,
n=2

(7.138)

L, . . . .
wherer, _1 € S72 issmallin b. In view of Section 7.6 we now determine the func-
2

tion by (¢) so that the space average of the function aéd) in (7.137) is independent
of ¢, that is

@")e(@) =m; €R, VpeT (7.139)

Noting that the space average (( (a(d))x + %m% VK (b1)xx)ba(9)), = 0 and that
<a) . 8¢b1>¢ L= 0, we get

my = (=3 @ )xbr + @ b1)e + 5 ﬁ ms (b1 — —(boxxbl))(p x
(7.140)

ba(@) i= =@+ B ({ = 2@ )abr +af i)+
2

3 1
+ Im VR ((6)} = 5G0Daxb1) + @ 3b), —my ). (7.141)

Note that (7.139) holds for any w € DC(v, 7).
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Time reduction. In order to remove the ¢-dependence of the coefficient (aid) Yx (@)
of the first order term of the operator L7 in (7.136), we conjugate L7 with the map

Vu)(p, x) == u(p,x +0(9)) (7.142)

where o(¢) is a real periodic function to be chosen, see (7.145). Note that V' is a
particular case of the transformation £ in (7.34) for a function S(¢, x) = o(p),
independent of x. We have that

Vi w-8,)V=w-8, + (- 8,0)0 ,

whereas the Fourier multipliers are left unchanged and a pseudodifferential operator
of symbol a(gp, x, £) transforms as

V~'0p(a(p. x. £))V = Op(a(p. x — 0(9). ). (7.143)
We choose o(¢) such that

w-3,00) + @) @) =m,  m = @), R, (7.144)

(@)
1

(where a, "’ is fixed in Lemma 7.9), namely we define

- d
0(9) == —(@- It ((ar”)x — ). (7.145)
Note that (7.144) holds for any w € DC(v, 7).
We sum up these two transformations into the following lemma.

Lemma 7.12. Let M € N, gy € No. Letb(p, x) = b1(p, x)+b2(¢) and o(¢) be the
Sfunctions defined respectively in (7.135), (7.141), (7.145). Then, conjugating L¢ in
(7.108) via the invertible, real, reversibility preserving and momentum preserving
maps ®, V defined in (7.126)—(7.127) and (7.142), we obtain, for any w € DC(v, T),
the real, reversible and momentum preserving operator

Ls:=V e Ledy
- A L 0.d)
:a)~8¢+1m%ﬂ(/c,D)+m13x+1A3 [D]2 +illo +Rg ™" + Tg i,

(7.146)
where:

1. the real constant m| defined in (7.144) satisfies |my [Ko-V <eg;
2. Agd) is a diagonal matrix of multiplication

d
(1)
0 ag

for a real function agd) which is a quasi-periodic traveling wave, even(gp, x),
satisfying

@) c(p) =my €R, VpeT’, (7.147)

where my € R is the constant in (7.140), and for some o = o(z, v, kp) > O,
forall s 2 s,

d _
1P kov <g ev™ (1 + 13001400 ; (7.148)
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3. Réo’d) is a block-diagonal operator

(d)
,x, D 0
RO — (78 )—( — € OPs?,
0 (¢, x, D)

that satisfies for all « € Ny, for some oy (o) := oy (ko, T, v, @) > 0 and for
all s = so,

d ~
RS 116", ot 80~ A+ [TolESY ) (7.149)

s+op (o)

4. For any g € Nj with |a| = qo, n1,n2 € No withny +ny = M — 2(ko +
o) + % the operator (D)™ BST&M () (D)2 is DX -tame with a tame constant
satisfying, for some op(qo) := op(ko, T, v, Qo), forany so < s < S,

—1 ~ ko, .
D Dyt 385 41 (@) (Y2 (8) S8.M.qo €V (1 + ||J0||SO+ZM(QO)), (7.150)

5. The operators ®*! —1d, (®*' —1d)* are Dko-%(ko + 1)-tame and the operators
VEL _1d, (WE! —1d)* are DX-(ko + 2)-tame, with tame constants satisfying,
for some o > 0 and forall s) < s <8,

M1 _14(8) + M g1 _1(8) Ss ev™" (1 + 1300%0) (7.151)
Myt _1a(s) + Mt 1)+ () Ss v~ (1 + [ Tolli%2) - (7.152)

Furthermore, for any s; as in (7.15), « € Ng, g € N, with |q| < qo, and
ni,ny € No, withny +n, S M —2qgg + % we have

IA12a5" s, <oy 0™ it = i2llyy 4o 5 18120 S € llit — i2llgys0 - (7.153)
IA LR o510 Sormta €07 it = i2llgy oy (@) 5 (7.154)
(D)™ 92 A 12 Tg w (DY £ty Ssvbdoo €V it = i2lly oy () - (7.155)
[A (DAl Sop ev™ it — i2llgy 4o Ihlls 1o o A€ {®F (@FH)* VEL (VEH*)

(7.156)

Proof. The function b(p, x) = b1 (¢, x)+b2(p), with b| and by, defined in (7.135)
and (7.141) and the function o(¢) in (7.145), satisfy, by Lemma 3.8 and (7.95),

b1 I50Y g e(UHITolEGY) . 1BIE, o2 lfoY, o) <5 ev™! (1+1T0115%0)

(7.157)
for some o > 0 and for all s = 5. The estimate |m; |k0'“ < ¢ follows by (7.144)
and (7.95). The function

@, x) =V =@, x — 0(9)),

where a\”) is defined in (7.137), satisfies (7.147) by (7.139). Moreover, the estimate
(7.148) follows by Lemma 3.8 and (7.95), (7.157). The estimate (7.149) for (cfr.
(7.143))

réd)(gp, x, D)=V Ir d)(gp, x, D)V = r7d)((p, x —o(p), D)
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with r7(d) defined in (7.138), follows by Lemmata 3.5, 3.6, 3.8 and (7.157), (7.110).
The smoothing term Tg »s in (7.146) is, using also (7.128),

Tsar =V~ (@' Tey @ +ilo(® — 1d) + @~ 'R{ @)V

Ty +T. 0
-1 (M M _
+V < 0 E+T,(4)V

with Tj; and TI(,I defined in (7.129), (7.130). The estimate (7.150) follows by
(7.125), Lemmata 3.12, 3.13, the tame estimates of ® in Proposition 2.37 in [2],
and estimates (7.95), (7.157), (7.151), (7.111), noting that operators of the form
8§ a;,}vil lose |k| + |g| derivatives. The estimate (7.151) follows by Lemma 2.38 in
[2] and (7.157), whereas (7.152) follows by the equivalent representation for V' as
in (7.104), Lemmata 3.12, 3.8 and (7.157). The estimates (7.153), (7.154), (7.155),
(7.156) are proved in the same fashion. By Lemma 7.9-3, the function aid) is an
even(p, x) quasi-periodic traveling wave, hence the function b; in (7.135) is an
odd(g, x) quasi-periodic traveling wave, the function b; in (7.141) is odd in ¢ and
satisfies by (¢ — j¢) = ba(e) for all ¢ € R, whereas the function g in (7.145) is
odd in ¢ and satisfies o(¢ — j¢) = o(p) for all ¢ € R. By Lemmata 3.19, 3.29,
and 3.25, the transformations @ and V are reversibility and momentum preserving.
Then the operator Lg is reversible and momentum preserving. The function agd) is
an even(gp, x) quasi-periodic traveling wave. O

7.6. Reduction of the Order 1/2

The goal of this section is to transform the operator L£g in (7.146) into the
operator Lo in (7.168) whose coefficient in front of | D|'/2 is a constant. We elim-
inate the x-dependence and, in view of the property (7.147), we obtain that this
transformation removes also the ¢-dependence.

We first write the operator Lg in (7.146) as

Pg 0 .
CS—U)'a(p"‘(O FS)+1HO+T8,M’
where
1
Py := im3 Q(k, D) +m1ds + ial” D2 + Op(r{?). (7.158)

We conjugate Lg through the real operator

_ (¥( O
W () .—< 0 3(@), (7.159)

where W (@) := W (¢)|;= is the time-1 flow of

0: ¥V (p) = B(p)¥'(9),

WO(p) =1d, B(p) = b3(p. x)H, (7.160)
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the function b3(p, x) is a smooth, real, periodic function to be chosen later (see
(7.165)) and H is the Hilbert transform defined in (3.19). Note that Vg = 79 =
\Il_lno, so that

U W = Myw. (7.161)

By the Lie expansion in (3.16) we have

M+1 (_ )
vl Pw = Py — [B, Pg]+z ——adjy,) (Po) + L,
(7.162)
( l)M+2 ( )M+1\IJ_T( )adM+2(P)\I'T( )df
(M+ 1)’ @ B(p) U8 (Y ,
and, by (3.17),
y! ocw-0dpoW =
%
— n—1 /
-8y + (@ 3, B(9) = Y ——ady, (@ 0, B@)) + Ly, (7.163)

n=2

/ ( l)M T T
Ly = —+— /(1 My~ ((p)adB((p)(w-a(pB(w))‘-Il (p)dr.

The number M will be fixed in (8.5). The contributions at order 1/2 come from
(7.162), in particular from Pg — [B, Pg] (recall (7.158)). Since B = b3'H (see
(7.160)), by (3.26) and (7.131) we have

Py — (B, Ps] =imy Rk, D) +midy +i(a <d>—§m3ﬁ(b3)x)|D|%

+0p(rg” +71,, ) — [B.mdx +ia|D|? + 0p(r{™)1.
(7.164)

where Op(rb 1) € OPS™7 is small with b3. Recalling that, by (7.147), the space
average (a3 ) (go) =m} for all ¢ € TV, we choose the function b3(¢, x) such that
aéd) — 7m%f(b3)x =my, namely

b3, ) = s 0@ (9. 0) = (a")x (@), (@")x(9) =my. (7.165)

We deduce by (7.162)~(7.163) and (7.164), (7.165) that

Lo =9 (p)(w- 3, + P)¥(p)

=y +imyQk, D) +mdy +imy [DIF +O0p§™) + Ly + Ly,
(7.166)
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where

. 1
Op(rs") —0p<r<‘”+r,, 1) — [B@), mdx +ia” DI + Op(rg™)] + (@ - 3, B(p))
(— - o~ (=D 0
+ Z ) (Py) = ) ———ady (@ 9, B(9)) € OPS”.

n=2
(7.167)

! ) . Summing up, we have obtained the following

Define the matrix X := (0 1

lemma.

Lemma 7.13. Let M € N, qg € Ny. Let b3 be the function defined in (7.165).
Then, conjugating the operator Lg in (7.146) via the invertible, real, reversibility
and momentum preserving map V¥ defined in (7.159), (7.160), we obtain, for any
w € DC(v, 1), the real, reversible and momentum preserving operator

1
Lo:= W LgW = w3y +im3 Rk, D) +mdy +im1 E[D|2 +illg + RSP + Ty 1,
2 2

(7.168)
where

1. the constant my defined in (77.140) satisfies |m% |k0'v < &2,
2. Réo’d) is a block-diagonal operator
(d)
T ,x,D 0
ROA = (0 WP 0} ¢ opge,
0 ro (¢, x, D)

that satisfies, for some oy := oy (ko, T, v) > 0, and for all s 2 s,

0,d) 1 k ~ ko,
RS VNI6%Y Soor ev ™" (1 + [1T0l5%8,) : (7.169)

3. For any a € Nj with |a| < qo, ni1,n2 € No withny +ny = M — 2(ko +
o) + % the operator (D)" 35 T9 y (9)(D)"? is DX -tame with a tame constant
satisfying, for some oy (do) = o (ko, T, v, do), for any so < s < S,

— ko,
My 19Ty (g 2 8) Ss.mao 207 L+ 1T0IG, ) (7170)

4. The operators wEL g, (\IljEl — Id)* are DX _tame, with tame constants
satisfying, for some o := o (ko, T, v) > 0 and for all s = s,
_ ko.
Myt _1g(8) + M g1 1+ (8) e ev™ A+ [Toll e - (7.171)
Furthermore, for any s\ as in (7.15), « € Ny, g € Ny, with |q| < qo, and
ny,ny € No, withny +np S M — 2qo + %, we have

1812RG llo.s,.1 Serar 07 it = izl 1o+ 1B12my | S €7 it = 2llgg 4o
(7.172)

(DY 92 A 12Ty (DY | £y Ssrovtaco €U it = i2llsy 4opiae) « (7-173)

AL (FED R, + 1A (FEDY Rl S5 ev™ it — iallgy 4o 1l 1o - (7.174)



184 M. BERTIL L. FRANZOI & A. MASPERO

Proof. The function b3 (¢, x) defined in (7.165), satisfies, by (7.148) and the esti-
mate of m3 given in Lemma 7.9-2, for some o > 0 and for all s = s,

B3 18 <5 20~ (L + 1301550 (7.175)

The estimate for my follows by (7.140), (3.7) and (7.95), (7.157). The estimate

(7.169) follows by (7.167), (7.158), Lemmata 3.5, 3.6, and (7.148), (7.149), (7.175).
By (7.146), (7.158), (7.166), and (7.161), the smoothing term Tog s in (7.168) is

Ly + L 0
To pr := W Tg W + illo(¥ — Id M___ T
9.M g, m¥ + illp( )+( 0 LM+L/M>

with Lj; and L?W introduced in (7.162), (7.163). The estimate (7.170) follows by
Lemmata 3.12, 3.13, 3.7, (7.158), (7.148), (7.150), (7.175), (7.171). The estimate
(7.171) follows by Lemma 3.13 and (7.175). The estimates (7.172), (7.173), (7.174)
are proved in the same fashion. By Lemma 7.12, the function agd) is a even(g, x)
quasi-periodic traveling wave. Hence the function b3 in (7.165) is aodd (¢, x) quasi-
periodic traveling wave. By Lemmata 3.19, 3.29, and 3.25, the transformation ¥
is reversibility and momentum preserving, therefore the operator Lo is reversible
and momentum preserving. O
Remark 7.14. In Proposition 7.18 we shall estimate [[[d,, RS " 1[[50:% using (7.169)
and (3.27). In order to control || Rgo’d) ||](§?A’,f’1 we used the estimates (7.97) for finitely
many @ € Ny, o < a(M), depending on M. Furthermore in Proposition 7.18 we
shall use (7.172)—(7.173) only for 51 = sp.

7.7. Conclusion: Partial Reduction of L,

By Sections 7.1-7.6, the linear operator £ in (7.12) is semi-conjugated, for all
® € DC(v, 1), to the real, reversible and momentum preserving operator Lg defined
in (7.168), namely

Lo=Wy'owy, (7.176)

where
W) = PZEQMC®y®VY, W, = PpZEQMC® VY.  (7.177)

Moreover Ly is defined for all € R”.

Now we deduce a similar conjugation result for the projected operator L, in
(6.23), that is (7.1), which acts in the normal subspace ﬁ§+,z' We first introduce
some notation.

We denote by thz and H§+,z the projections on the subspaces Sﬁéﬂz and
.ﬁ’)ér’ - defined in Section 2.3. In view of Remark 7.2, we denote, with a small abuse

. T — 17 T £ —
of notation, HS{;,E = I'ISJ,’E + 19, so that l'ISar’2 + I'ISJr’E = Id on the whole

L? x L2%. We remind that Sy = S U {0}, where S is the set defined in (2.48). We
denote by Ils, := I'Ié + mp, where l'[g is defined below (2.58) together with the
definition of Hé‘o , so that we have ITg, + I‘[é—o =Id.



Traveling Quasi-periodic Water Waves with Constant Vorticity 185

Lemma 7.15. Let M > 0. There is oy > 0 (depending also on ko, T, v) such that,
assuming (7.14) with pg = oy, the following holds: the maps Wy, W, defined in
(7.177) have the form

W, = MC +Ri(e), (7.178)
where, for anyi = 1,2, forall so < s < S,
IR (ORI <sar v (IRISY, + 1T0ll5% S, RIS, )- (7.179)
Moreover, for sv™" < §(S) small enough, the operators

Wi =g WM . Wi o= TIE, WG, (7.180)

are invertible and, forall s < s < S, i =1,2,

ko, ~ nko, ko,
TOVH= IOV Ssom RIS, + 150l 1211505, - (7.181)
1A LOVHE R Soom g™ i = i2lly, 4oy 17l 40y - (7.182)

The operators WIL, )/\12l map (anti)-reversible, respectively traveling, waves, into
(anti)-reversible, respectively traveling, waves.

Proof. The formulae (7.178) and the estimates (7.179) follow by (7.177), Lem-
mata 3.12, 3.13, and (3.36), (7.23), (7.27), (7.91), (7.92), (7.112), (7.151), (7.152),
(7.171). The invertibility of each VVl and the estimates (7.181) follow as in [2] and
noting that I'ISJr - Mc l'lL = HSﬂ s MC HJ- are invertible on their ranges, with
inverses (I'ISJr s MCTIg ) = 1'[L (MC)~ HS+ 5. Since Z, €, Q, M, @y, @,
V, W are reversibility and momentum preservmg and using Remark 7.7 and Lem-
mata 3.23, 3.31, we deduce that VV1 , )/V2 map (anti)-reversible, respectively trav-
eling, waves, into (anti)-reversible, respectively traveling, waves. O

Remark 7.16. The time reparametrization PP and the multiplication for the function
o (which is independent of the space variable), commute with the projections 1<

and Hé‘o.

S+, %

The operator L, in (6.23) (that is (7.1)) is semi-conjugated to
= W) LoWit =g, Lo Mg, + RS (7.183)

where R/ is, by (7.180), (7.176), (7.178) (recall that M is defined in (7.78)—(7.79)),
and (2.59),

R == W) IS, Ra(e) Mg, Lollg,
- wH g, Zﬁngg‘znl(s)nso W) G, o JRWE. (7.184)
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Lemma 7.17. The operator RS in (7.184) has the finite rank form (7.4), (7.5).
Moreover, let gy € Ng and M = 2(ko + qo) — % There exists (M, qp) > 0
(depending also on ko, T, v) such that, for any ni,ny € Ny, with ny + ny <
M—2(ko+qo)+%, and any g € Ng, with |q| £ qq, the operator (D)’”Z)ng(D)”2
is DX -tame, with a tame constant satisfying

ko,
M pyrrasr sy (8) Ss.mco €07 A+ 130l ar.qp))s VOS5 ES,
(7.185)

||<D>"‘3$A12Rf<D)"2I|L(HS1> Somao €0 it —iallg ixq) - (7.186)
for any sy as in (7.15).
Proof. The first two terms in (7.184) have the finite rank form (7.4) because of the

presence of the finite dimensional projector ITg,, respectively HT . In the last

term, the operator R has the finite rank form (7.4). The estimate (7. 185) follows by
(7.184), (7.177), (7.180), (7.168), (7.4), (3.7) and (7.179), (7.181), (7.169), (7.170),
(7.5). The estimate (7.186) follows similarly. ]

Proposition 7.18. (Reduction of £, up to smoothing operators) For all (w, k) €
DC(v, T) X [k, k2], the operator L, in (6.23) (that is (7.1)) is semi-conjugated via
(7.180) to the real, reversible and momentum preserving operator L in (7.183).
Forall (w, k) € RY X [k1, k2], the extended operator defined by the right hand side
in (7.183) has the form

LI =w-0,1, +iD; +Ry, (7.187)
where 1| denotes the identity map ofHé‘o (cfr. (2.58)) and

1. D} is the diagonal operator

D, O .
DJ_ = < 0 —D_J_> s DJ_ = dlangS(r) Mj, 8 = Z\(SU {0}),

with eigenvalues p; = m%Qj(K) +mj + my |j|% € R, where the real
constants m3,mp, m, defined respectively in (7.88), (7.144), (7.140), satisfy

jmg — 1<V 4 jmy (ko 4 |m%|"°~“ <e; (7.188)
in addition, for some o > 0,
[Apms |+ [Ami |+ [Amg | S e it = i2llgto - (7.189)

2. The operator R is real, reversible and momentum preserving. Moreover, for
anydqo € No, M > 2(k0+q0)—%, thereis a constant X(M, qp) > 0 (depending
also on ko, T, v) such that, assuming (7.14) with oy = X(M, qp), for any

so S5 <8, ge N, with |al < qo, the operators 3;R 1, [95R 1, 0x] are
DX0-tame with tame constants satisfying

- ~ ko,
Maag, (), Mpgsr, 5,1() Ss.mco €0~ A+ 1T0l SR a0 - (7-190)
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Moreover, for any g € Ny, with |q| < qo,

10ZALRLI (o) + 10ZA IR, Bc]ll sy Sar ev™ " Mlin — inllggnemt,ao) -
(7.191)

Proof. By (7.183) and (7.168) we deduce (7.187) with
Ry = E, RS + To ) ITE, + R

The estimates (7.188)—(7.189) follow by Lemmata 7.9, 7.12, 7.13. The estimate
(7.190) follows by Lemmata 3.6, 3.13, (7.169) and (7.170), (7.185), choosing
(n1,n2) = (1,0), (0, 1). The estimate (7.191) follows similarly. The operator L,
in (6.23) is reversible and momentum preserving (Lemma 7.1). By Sections 7.2-7.6,
the maps Z, &, Q, M, ®y7, ®, )V, ¥ are reversibility and momentum preserving.
Therefore, using also (7.18), (7.24) and Lemmata 3.23 and 3.31, we deduce that
the operator £ in (7.183) is reversible and momentum preserving. Since iD is
reversible and momentum preserving, we deduce that R} is reversible and momen-
tum preserving. |

8. Almost-Diagonalization and Invertibility of £,

In Proposition 7.18 we obtained the operator £, in (7.187) which is diagonal
and constant coefficient up to the bounded operator R (¢). In this section we
complete the diagonalization of £ implementing a KAM iterative scheme. As
starting point, we consider the real, reversible and momentum preserving operator,
acting in Hg, ,

Lo:=Lo(i):=L; =w-9,1, +iDy+ R, (8.1)

defined for all (w,x) € RY X [k, k2], with diagonal part (with respect to the
exponential basis)

(Do O R © 0 ._ , 1
Dy = <0 —ZTO> , Do := dlagjeggﬂj -y ._m%Qj(K)+m1] +m% 1jl2,
(8.2)

where S = Z\Sy, So = S U {0}, the real constants my, my, m satisfy (7.188)—
(7.189) and

o) ROV RPN 0w g1 1 p00 . i i
o — — —_ ’ . ,0) |
RY =Ry:= |0 200 - K1 Hey > Hego RU': Hig, > Hy.
1L 1
(8.3)
whichis areal, reversible, momentum preserving operator satisfying (7.190), (7.191).
We denote Hi‘so = (h(x) = X 4ug, hje™/* € L?}. Note that

Do: H'g, — H,. Do =diagje gy, (8.4)
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Proposition 7.18 implies that the operator RSE)) satisfies the tame estimates of
Lemma 8.1 below by fixing the constant M large enough (which means performing
sufficiently many regularizing steps in Section 7.4), namely

M :=[2(ko+so+b)—3]+1eN, (8.5)

where
b:=[a]l+2€N, a:=3u=21, 1=k + (ko+ D7. (8.6)

These conditions imply the convergence of the iterative scheme (8.46)—(8.47), see
Lemma 8.8. We also set
w(b) :=R(M, so+b), 8.7

where the constant X (M, qp) is given in Proposition 7.18.

Lemma 8.1. (Smallness of Rf)) Assume (7.14) with puy = (o). Then the op-
erators R, R, 8,1, and 92, R, [8;2 R, 8,1, 930 "RY, (850 °RY, 8,1,
m=1,...,v, are D -tame and, defining

Mp(s) := max {mef) (s), Em[Rf),ax](s)’

Mo g (), M (), m=1,...,v}, (8.8)

10,0, R\ 0,1

My(s, b) := max {ma;(),,*be) (), zmwégfb (), m=1,....,v}, (8.9

R 5]

we have, forall so < s < S,

2 v
Mo(s. b) = max(Mo(s). Mo(s. b)) < C(S)= (1 + [Tl )

. (8.10)
Mo (so, b) = C(S)E'

Moreover; for all g € N, with |q| < so + b,

0 0 — . .
108 1R 20y 5 1ARIIRY, 8,11 20y € CS)ev™" it = iallgy oy -
(8.11)

Proof. Recalling (8.8), (8.9), the bounds (8.10)—(8.11) follow by (7.190), (8.5),
(8.7), (7.191). O

We perform the almost-reducibility of Lg along the scale
Noi:=1, No:=NI, VneNy, x:=3/2. (8.12)

Theorem 8.2. (Almost-diagonalization of Ly: KAM iteration) There exists t2(t, v) >
71(t,v) + a (with 11, a defined in (8.6)) such that, for all S > sq, there is
No := No(S, b) € N such that, if

NGy (so, )v ' <1, (8.13)

then, forallm € No,n=0,1,...,n:
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(S1)y, There exists a real, reversible and momentum preserving operator

L,:=w- 9,1, +iD, +R™,

D. 0 ) (8.14)
D, = < 0n _D_n> , D, = dlagjegg M;n)’
defined for all (w, k) in R” x [k, k2], where /L;-n) are ko-times differentiable real
functions

1
,u;n)(a), K) = /L;.O)(a), K) + t;.n)(a), K), ME-O) =m3 Qj(k)+m j+ my 1712,

(8.15)
satisfying tj.o) = 0and, forn 2 1,
1 Cla— .
P for < oS, ppev!, I = pPTU Y < 08, p)evT I NS, V) € S5
(8.16)

The remainder

( ) R(nwd) R(nsu) (n.d) (n.0) |
n n,d) ., n,o
RY R HE — HE, R HY

i
R(n ,0) R(n d) s, — Hs, B.17)

is DX-modulo-tame: more precisely, the operators RT"D, Rﬁfl’o), <a¢,)bR$"’),

(8¢)bR$l’0), are DX -modulo-tame with modulo-tame constants

D (5) = M (5) 3= XD ), D (9))

. y " (8.18)
imn(s, b) = Sﬁwwbe) (S) = maX{‘)ﬁww)bem (S)a m o )bR(n ())( )}
which satisfy, for some constant Cy(sg,b) > 0, forall so < s < S,
M (s) < Culs0, L)Mo (s, )N %, ME(s.b) < Cy(s0, D)Mo (s, ) N1
(8.19)

Define the sets A} = AL (i) by Ay := DC(2v, 1) X [k1, k2] and, forn >1,

AY =L =(w,6) € AL_ :
o €+ 17— pB 2 w13 1
VIl = No-1, JjiJ ¢So €, j,j)#,j,j), with] - £+ j—j =0,
o 4+ uP +u GV 20 (1713 +1713) 07

V€l S No1, j,j ¢ Sowith]- €+ j+ j =0}.
(8.20)
Forn 2 1 there exists a real, reversibility and momentum preserving map, defined
for all (a) k) € RY x [k, k2], of the form

(d)1 X(D)1 (d) ©

Xn— o n— n 0) | gl 1

P, 1 =e¢ L Xh_g = ( © X(d) ), X HSO — HSO anl : H—So — HSO’
n—1 “n—1
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such that, for all . € A}, the following conjugation formula holds:
Lo=0_" L, 1%, . (8.21)

The operators Xy 1, (3 YoX, 1, are D% -modulo-tame with modulo tame constants
satisfying, for all so < s < S,

E)inginfl () § C(s0, b)v_lNrrlL]Nr;azEmO(S, b),

g (8.22)
Emw(,)bxn,

(S2)n Let i1 (o, ©), iz(w, ) such that R (i1), R (ia) satisfy (8.10), (8.11). Then,

forall (w, k) € Af!(i1) N AR2(i2) with vy, vy € [V/2,2v],

[(5) £ C(s0, D)U™ NGL Noao (s, b).

AR 20y Ssio ev™ N2 it — i2llsg s o) » (8.23)
1130)° AR 20y S5 807 Nact llit = i2llg o) - (8.24)
Furthermore, forn 2 1, forall j € S,
1A =) < AR @) » (8.25)
1A £ €S p)ev it = inllggi o) - (8.26)
(S3)y, Let iy, iy be like in (S2), and 0 < p < v/2. Then
ev ' CONIH it — iallggapy S o = ARG S ALG2). (827
Theorem 8.2 implies also that the invertible operator
Ug:=®po...ob5;, =1, (8.28)

has almost diagonalized L. We have indeed the following corollary.

Theorem 8.3. (Almost-diagonalization of L) Assume (7.14) with wo = n(b). For
all § > s, there exist No = No(S,b) > 0 and 5o = 80(S) > 0 such that, if the

smallness condition

Nrev™ < & (8.29)
holds, where T2 = 12(7, v) is defined in Theorem 8.2, then, for all m € N and for
all (w, k) € RY x [k1, k2] the operator Ug in (8.28) is well-defined, the operators
U%l — 1, are D*-modulo-tame with modulo-tame constants satisfying, for all
50 =5 =S,

- ~ ko,
ML, (5) Ss v NG (1+ 1015 ) (8.30)

where T is given by (8.6). Moreover Ug, Uz Yare real, reversibility and momentum
preserving. The operator Ly = o - 9,11 + 1Dz + Rf), defined in (8.14) with
n = 1 is real, reversible and momentum preserving. The operator RT) is Dho-

modulo-tame with a modulo-tame constant satisfying, for all s) < s < S,

4 I ko,v
ng(f) () Ss ev™ N5 (L4130l % )-

Moreover, forall (w, k) in AL = AZ(i) = ﬂgzo AY, where the sets A7 are defined
in (8.20), the conjugation formula Lz := Uz "LoUg holds.
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Proof of Theorem 8.2

The proof of Theorem 8.2 is inductive. We first show that (S1),-(S3), hold
whenn = 0.

The step n = 0. PROOF OF (S1)g. Properties (8.14)—(8.15), (8.17) for n = 0 hold
by (8.1), (8.2), (8.3) with tE.O) = 0. We now prove that also (8.19) for n = 0 holds.

Lemma 8.4. We have 5 (s), M5 (s, b) g0 Mo (s, b).

Proof. LetR € {R(lo’d) , Rﬁ?"’)}. We prove that (8¢)bR is DX0-modulo-tame. Using
the inequality

R = R R R [ e VR

it follows, recalling (3.35), (8.10), (the matrix elements of the commutator [dy, A]
are i(j — j)) A} (€ —¢')), that, for any j' € S§, ¢’ € 2,

2|k| Z l, ] 2s _ 2(So+b)( |8ARJ (ﬁ )|

(8.31)
b Mo (s0, L), )2 + Mo(s, L), j/)>.

Let so < s < S. Then, for any |k| < kg, by Cauchy-Schwartz inequality, we have
)z

2
(=)0 (j— j/))

|1(0,)P 35 RIA | Z(M (Z — V@R (€~ )] |y

o5

<Zz nzf(z YR = IR (€ = Ollhe.

e/ i’
S0 Z(&j)zé 3 (e — 20— 2@ RY (€ — € ke o
Zj [/7 i
(8.31)

< bU—Z\ \Z‘he, .

l//

(Mo (50, )2(E', )2 + Mo(s, DXL, j)>0).

Therefore, we obtain Dﬁt 1P z() Sso.b Mo(s, b) and then Dﬁn (5,) Sso.0 Mo(s, b).
The inequality sm (8) Sso Mo (s, b) follows similarly. O

PROOF OF (S2)(. The proof of estimates (8.23), (8.24) at n = 0 follows by (8.11),
arguing similarly to Lemma 8.4.

PrROOF OF (83)¢. It is trivial since, by definition, Aj(i;)) = DC(2v, 1) x
[k1. 121 C Ay ().
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The reducibility step. We now describe the generic inductive step, showing how to
transform L, into L1 by the conjugation with ®,,. For sake of simplicity in the
notation, we drop the index n and we write + instead of n + 1, so that we write
L:=L,, Ly =Ly, R; = Rf), R(f) = R(fH), N := Ny, etc. We conjugate
L in (8.14) by a transformation of the form

X . X x© d . gl 1 () . L 1
® =8 Xi= 1oy ) Xt Hyy > Hey X B > Hy,
(8.32)

where X is a bounded linear operator, chosen below in (8.37), (8.38). By the Lie
expansions (3.16)—(3.17) we have
Ly =& 'L

=w- 9,1, +iD+ (- 8,X) —i[X, D] + [TyRy) + xR,

1 1
_/ e X[X, Ry Je™X dr —/ (1= 0)e ™IX, (@-3,X) —i[X, Dlle™ dr

0 0
(8.33)

where Iy is defined in (3.39) and Hﬁ .= Id — ITy. We want to solve the homo-
logical equation

w-9,X —i[X, D]+ TIyR; =[R]] (8.34)
where
(R 0 @ , )\J
[Ri]:= ( 0 [W]) , [R']:= dlagjeSa(RJ_ )j(O). (8.35)
1

By (8.14), (8.17) and (8.32), the homological equation (8.34) is equivalent to the

two scalar homological equations
®- 9, XD —i(XDD —DXD) + TyRY = [RI] 536
®-9,X +i(XD+DX?) +NyR” =0. '

Recalling (8.14) and since D= diagje_sg (—j), acting in HfSO (see (8.4)) the
solutions of (8.36) are, for all (w, k) € AgH (see (8.20) withn ~»n+ 1)

) RO (€ EO D €S N
XD O =1+ —np | j+i-i=0
0 otherwise,
(8.37)
R © VEeZ’ j—j eSS () SN
ONA ) if -, . N
(X )j(f)-— o-l+pj+pn_j) {e.j+j—/=0
0 otherwise.
(8.38)

v

Note that, since — ;" € S§, we can apply the bounds (8.20) for (w, k) € ALy
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Lemma 8.5. (Homological equations) The real operator X defined in (8.32), (8.37),
(8.38), (which for all (w,x) € AY b solves the homological equation (8.20)))
admits an extension to the whole parameter space R” X [k, k2]. Such extended
operator is DX -modulo-tame with a modulo-tame constant satisfying, for all so <
s < S,

M (s) Spo NP0 (s) zmﬁ xSt N 9t (s,b),  (8.39)

where t1 = t(ko + 1) + ko. If v/2 < vy, v0 < 2u, then, for all (w,k) €
Aglﬂ(il) N Agil(iz),

IARX] 2oy S NTo RG] 2oy it — i2llgy iy + IHTARRL I 2er50)) s
(8.40)
11(36)° A1 X[l 200y S
N2 U7 (1H0p) PR L) 20y it = i2llg s o) + I1{0)° AR LIl 250 -
(8.41)

The operator X is reversibility and momentum preserving.

Proof. We prove that (8.39) holds for X (4. The proof for X holds analogously.
First, we extend the solution in (8.37) to all A in R” x [«1, k2] by setting (without

any further relabeling) (X))’ (0) = i g¢.j. /() (R (£), where

x(fphH
f)

and x is the cut-off function (3.10). By (8.15), (8.16), (7.188), (8.20), Lemma 4.4,
(5.39), together with (3.10), we deduce that, for any k; € Ny, k| < ko,

_ L3 .3
ge.j.j (M) = s f) =l =y, pi=0(@) (12 = 112),

sup |05 80,7 v Sko (T 0TI = T(ko + 1) + ko,
lk11<ko

and we deduce, for all 0 < |k| < ko,

XDV OISt Y 188 g0 IR RDY (0]
k1+ko=k
St (OIS Rl RO o). (8.42)
lka | <]

By (8.37) we have that (X(d))§,(ﬁ) = (Oforall (¢) > N.Therefore, for all |k| < ko,
we have

. 2
|||<aw>ba’;x<d>|h||§gZ(LnZS( > |<e—£’>ba§(X‘d>>§(6—6’)\|hujf|)
6 (e~ SN, )
(842)

2
<k N 2T, 2(1HKD Z L2kl Z 2Y(Z| akz(R(d))] « —5/)|Ihzzj/|)

k2| S k|
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— k d
Ske NP 0720HD S 2Rl )20 R 1A
k2| Skl

(3.38),(8.18)
ke NP T2FED (002 (5, ) )12 + 90 (s0. ) (1112 )

and, by Definition 3.14, we conclude that E)ﬁ 1P X@ (s) Sy NY'u™ M (s, b). The

analogous estimates for (B(p)bX © x@d x (0) and (8.40), (8.41) follow similarly.
By induction, the operator R is reversible and momentum preserving. Therefore,
by (8.32), (8.37), (8.38) and Lemmata 3.18, 3.28, it follows that X is reversibility

and momentum preserving. O
By (8.33), (8.34), forall A € A7 |, we have
Ly =0 'L&=w-9,1, +iD; +R("”, (8.43)

where
D, :=D—i[R,],

1
+) . L o —X X
R, :=TyR_ /(;e [X,R ]e" " dr (8.44)

1
+ / (1 — v)e ™ [X, TyR. — [RL [l dr.
0

The right hand side of (8.43)—(8.44) define an extension of L. to the whole pa-
rameter space R" X [k, k2], since R} and X are defined on R x [«1, «2].

The new operator Ly in (8.43) has the same form of L in (8.14) with the non-
diagonal remainder R(f) which is the sum of a term HiR 1 supported on high
frequencies and a quadratic function of X and R . The new normal form D is

diagonal:

Lemma 8.6. (New diagonal part) For all (w, k) € R" X [«1, k2], the new normal
formis

. . . (D 0 .
iDy =iD+[R] :1( 0+ _D—+> , Dy = dlagjegg M;Jr), M(Jr) =pjtr;ekR,
where each x j satisfies, on R” x [k1, k2],

e oY = 1S = fov < o (so). (8.45)

Moreover, giventoriii(w, k), i2(w, k), we have |r j(i1)—x ;(i2)] S 1A 1R LI 20y

Proof. Recalling (8.35), we have that r; := —i(Rf))j:(O), for all j € Sj. By the
reversibility of ijl) and (3.44) we deduce that r; € R. Recalling the definition
of MA(sp) in (8.18) (with s = sg) and Definition 3.14, we have, for all 0 <
k| < ko. 1195 R' hlly, < 2090t 59) I/, and therefore [95(R(")7(0)] <

v IKIOM? (s0) . Hence (8.45) follows. The last bound for |rj(i1) — xj(i2)] follows
analogously. O



Traveling Quasi-periodic Water Waves with Constant Vorticity 195

The iterative step. Letn € Ny and assume that the statements (S1),,-(S3), are true.
We now prove (S1),41-(S3)n+1. For sake of simplicity in the notation (as in other
parts of the paper) we omit to write the dependence on kg, which is considered as
a fixed constant.

PROOF OF (S1),41. The real operator X, defined in Lemma 8.5 is defined for all
(w, k) € RY x[k1, k2] and, by (8.39), (8.19), satisfies the estimates (8.22) at the step
n + 1. The flow maps ®=! = ¢*X= are well defined by Lemma 3.16. By (8.43),
for all A € Ag_H, the conjugation formula (8.21) holds at the step n + 1. The
operator Xy, is reversibility and momentum preserving, and so are the operators
<I>rjlEl = ¢*™*» By Lemma 8.6, the operator D, is diagonal with eigenvalues
'u(/nH) RY x [k1. k] — R, M(n+1) M(O) i t5n+1) with @D .— (n) n r(n)
satisfying, using also (8.19), (8. 16) at the step n + 1. The next lemma prov1des the

estimates of the remainder RT‘H) = R(f) defined in (8.44).

Lemma 8.7. The operators RTH) and (Sw)beH) are DX -modulo-tame with
modulo-tame constants satisfying

ME,(5) S NTPIE (s, b) + NI v~ 0t ()M (s0) (8.46)
ME | (5,0) Sp ME(s, b) + NI v~ (90, (5, D) (50) + D (s0, DYIE ().
(8.47)

Proof. The estimates (8.46), (8.47) follow by (8.44), Lemmata 3.15, 3.16, the
bounds (3.40) and (8.39), (8.19), (8.6), (8.12), (8.13). O

Lemma 8.8. Estimates (8.19) holds at the step n + 1.

Proof. It follows by (8.46), (8.47), (8.19) at the step n, (8.6), the smallness condi-
tion (8.13) with No = Ny(so, b) > 0 large enough and taking 75 > 71 + a.
O

Finally R(fH) is real, reversible and momentum preserving as R(f), since Xy, is
real, reversibility and momentum preserving. This concludes the proof of (S1),,41.

PROOF OF (S2),,41. It follows by similar arguments and we omit it.

PROOF OF (S3),+1. The proof follows as for (S4),1 of Theorem 7.3 in [6], using
(S2), and the fact that the momentum condition in (8.20) implies |j — j'| < Ny.

Almost invertibility of L,
By (7.183) and Theorem 8.3 (where Lo = £ ) we obtain

Lo=WozLaWil, Wi z:=WiUs, Wiz :=WjUs, (8.48)

l n’
where the operator Lz is defined in (8.14) with n = nn. By (7.181) and (8.30), we

have, for some o := o (7, v, kg) > 0, forany so < s < S,

+1 ko, +1 5 ko, ko,v ~ ko,v ko, v
WAl W5kl Ss I17lsSs + 1T015S im0 1 lsoo- (8.49)
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In order to verify the almost invertibility assumption (Al) of £, in Section 6, we
decompose the operator Lz in (8.14) (with nn instead of n) as
Ly =D: + QY + R (8.50)

where

D5 =g (- 311 +iDx) g, + Mg_.

QP :=Nf (w- 9,1, +iDx)Mx_ — Mg,
and the smoothing operator [Tg on the traveling waves is deﬁrged in (3.6), and
Hi := Id — IIg. The constants Kz in (8.51) are Kz := K())(n, x = 3/2 (cfr.
(6.24)), and Ky will be fixed in (9.5).

(8.51)

Lemma 8.9. (First order Melnikov non-resonance conditions) For all A = (w, k)
in

AV = { A eRY x [k, k2] (8.52)

3
0+ ™ 2200 v <k jess j+j~e=o}
AU o ’
on the subspace of the traveling waves t1.g(¢) = g(¢ — Js), ¢ € R, such that
g(p,-) € Hé‘o , the operator D2 in (8.51) is invertible and there exists an extension
of the inverse operator (that we denote in the same way) to the whole R” X [k, k3]
satisfying the estimate

1D gl S v g%, Ti=ko+to+1.  (853)
Moreover (D;)_1 g is a traveling wave.

Proof. The estimate (8.53) follows arguing as in Lemma 8.5. O

Standard smoothing properties imply that the operator Qﬂ_ﬁ) in (8.51) satisfies,
for any traveling wave & € Hé‘o ,forall b > 0,

— . ko, ol ko,
IQT AN < K IR, o QT RIS IRIY (8:54)

By the decompositions (8.48), (8.50), Theorem 8.3 (note that (6.1) and Lemma
6.2 imply (7.14)), Proposition 7.18, the fact that W1 5, W> 5 map (anti)-reversible,
respectively traveling, waves, into (anti)-reversible, respectively traveling, waves
(Lemma 7.15) and estimates (8.49), (8.53), (8.54), (3.8) we deduce the following
theorem.

Theorem 8.10. (Almost invertibility of L)) Assume (6.1). Let a, b as in (8.6) and
M as in (8.5). Let S > so and assume the smallness condition (8.29). Then the
almost invertibility assumption (Al) in Section 6 holds with Aq replaced by

ALy = AL () = AG DAY, (8.55)

(see (8.20), (8.52)) and, with (b) defined in (8.7),
Ly =WosDiWiL, Ry i=WomRPW L RE = WoQPWiL.

1,n> 1,n°
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9. Proof of Theorem 5.2

Theorem 5.2 is a consequence of Theorem 9.2 below. We consider the finite
dimensional subspaces of traveling wave variations

E, = {j(go) = (0, I, w)(p)such that (3.53) holds : ® =110, I =11/, w = l'[nw}

where [T w := Ilg,_ w are defined as in (3.6) with K, in (6.24), and we denote with
the same symbol ITng(¢) := >y <k, geei®?. Note that the projector IT, maps
(anti)-reversible traveling variations into (anti)-reversible traveling variations.

In view of the Nash—Moser Theorem 9.2 we introduce the constants

ap i= max{6o1 + 13, x(p(r + 1) + u(o) +201) + 1), a2 = x 'aj — u(b) - 201,

©.1)
w1 =3u®) +20)+1, by:=aj+2ubd) +4o1+3+x w1, x=3/2 (9.2)
o1 := max{@, 250 + 2kg + 5}, S=s9+Dby, 9.3)

where ¢ = o (7, v, ko) > 0 1is defined by Theorem 6.6, 2sg + 2ko + 5 is the largest
loss of regularity in the estimates of the Hamiltonian vector field X p in Lemma
6.1, i (b) is defined in (8.7), and b = [a] + 2 is defined in (8.6). The exponent p
in (6.24) is required to satisfy

pa > %al + %al. 9.4)

By (8.6), and the definition of a in (9.1), there exists p = p(z, v, ko) such that
(9.4) holds, for example we fix

o 30) +doy 1)
= i .

Remark 9.1. The constant a; is the exponent in (9.9). The constant a, is the
exponent in the second bound in (9.7). The constant 1| is the exponent in (P3)y.
The conditions on the constants 1, by, aj to allow the convergence of the Nash—
Moser scheme in Theorem 9.2 are

al > 601+ 12, by >a; +2u(b) +4o1 +x w1, pa> %al + %Ul,

aswellas ; > 3(u(b) +2071). In addition, we require a1 = x (p(t +1) +u(b) +
201) 4+ 1 sothat ar > p(r + 1) + x ', which is used in the proof of Lemma 9.3.

Given a function W = (J, B) where J is the periodic component of a torus as
in (5.8) and B € R”, we denote | W[V = 3]V 4 |g]kov,

Theorem 9.2. (Nash—Moser) There exist 5o, Cx > 0 such that, if

K638U_2 < 80, 13 := max{pw, 201 +a; +4}, ©5)
Ko:=v ', vi=e?, 0<a<Q+413)"", ’

where Ty = 15(t, v) is given by Theorem 8.2, then, for alln 2 0:
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(P1)n There exists a ko- tlmes dlﬁerentlable function W RV x [/q K] —
En i xRY, A= (w0, k) > WoA) := (O, Gy — o), fornz 1, and Wy := 0,
satisfying

a7 ko, —
”Wn”sgfﬂ(b)er < Ciev L 9.6)

Let l7n = Uy + Wn, where Uy := (¢, 0,0, w). The difference ﬁn = ﬁn —
Un_1, forn 2 1, satisfies

Yn=2.

~ 9.7
The torus embedding T,, :== (¢, 0, 0) + Ty, is reversible and traveling, that is
(5.7) holds.

(P2), We define

< Ceev™t, | Hallko? < Ciev 'K 2

I Hl ” sot+ud)+or =

So+u(b)+01 n— 1 ’

Go = x [k1,62], Guy1:=GaNAL (n), Yn2=0, 9-8)

where Ag_H(Tn) is defined in (8.55). Then, for all .. € G, , setting K_1 := 1,
we have
IF O < CreK 2 (9.9)

(P3)n (HIGH NORMS) For all A € Gy, we have ||15["/n||l;(‘))fbl < Ceev KM

Proof. The inductive proof follows exactly as in [2,6]. Note that the almost invert-
ibility property proved in Theorem 8.10, as well as in Theorem 6.6, is formulated
exactly as in [2,6]. The only novelty is to check that each approximate torus 7,
is reversible and traveling. Clearly iy := (¢, 0, 0) satisfies (5.7). Supposing in-
ductively that 7;, is reversible and traveling, we now prove that the successive
approximation 7,1 defined by the modified Nash-Moser scheme in [2,6] is a re-
versible and traveling wave as well. By (9.5), the smallness condition (8.29) holds
for ¢ small enough. Moreover (6.1) holds by (9.6). Therefore Theorem 8.10 holds
and the almost invertibility assumption (AI) of Section 6 holds for all A € A7 +
see (8.55). Then Theorem 6.6 implies the existence of an almost approximate in-
verse Ty, := Ty(A, In) of the linearized operator d; o F (i), which satisfies, for any
anti-reversible traveling wave variation g, the tame estimate (6.40). Moreover. the
first three components of Ty, g form a reversible traveling wave variation. For all
A€Gni1 =GnNAL, (1n) (cfr. (9.8)) we define the successive approximation

Uni = ﬁn+Hn+l . Hpyp = (§n+la&n+l) = _HnTnnn]:(ﬁn) € ExxR",

where I, is defined for any (J, «), with J atraveling wave variation, by I, (J, @) :=
(I, 7, o). By Lemma 5.1 and since 7, is a reversible traveling wave, we have that
F(Un) = F@a, @y) is an anti-reversible traveling wave variation, i.e (6.29)—(6.30)
hold. Thus the first three components of Ty [T 7 (Un) form a reversible traveling
wave variation, as well as I, T, [T, F (Uy,). Finally one extends Hy 1, defined for
S Qn+1, to Hn+1 defined for all A € RY X [«1, k2], with an equivalent || ||k° v
norm. Set Un+1 = U + Hn+1

The estimates (9.6)—(9.9) and (P3)n+1 follow exactly as in [2,6]. O
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Proof of Theorem 5.2. Let v = ¢*, with 0 < a < ag := 1/(2 + 13). Then, the
smallness condition in (9.5) holds for 0 < ¢ < g9 small enough and Theorem 9.2
holds. By (9.7), the sequence of functions VT/n = [7n —(¢,0,0,w) = (T, dn — )
converges to a function Weo : RY x [k1, k2] = Hy' x Hp” x H® x RY, and we
define

Uso := (ioo, 0c0) = (¢, 0,0, ) + W

The torus i, is reversible and traveling, that is (5.7) holds. By (9.6), (9.7), we also
deduce

ki _
1Use — Upl" < Coev™ !, ([Uso — Tl

—1 p—as >
so-Fi(d)+o1 SCev” K %2, Vnz2 1.

(9.10)

?0+M(b)+c7 1

In particular (5.10)—(5.11) hold.
By Theorem 9.2-(P2),, we deduce that F(A; Ux (1)) = O for any

re ) 9a=0n N AsG-0 "= 0[N asG-n]n[ ) A% G

neNy n=1 n=1 n>1

where Gg := Q X [«1, k2]. To conclude the proof of Theorem 5.2 it remains only
to define the M;?O in (5.12) and prove that the set C3, in (5.14)—(5.17) is contained
in N, >(Gn. We first define

Goo = G0N [ () A2 (00| N [ () A2 (i) ©O.11)
n>1 n>1
Lemma 9.3. G, C mnzogn, where Gy, are defined in (9.8).

Proof. We shall use the inclusion property (8.27), with S fixed in (9.3). By (9.10)
we have

£QU) ' CONT  live — iollspinm < eQu) ' COKL TV Cev™! < v,
and Vn = 2,
1 _ —
£20) " CONI Nliso—Tn-tllsptuem < eQu) ' COKL TV Cev™ K% < v,

since 3 > p(t+ 1) (by (9.5 and o > 11 =t(kg+ 1) + ko) and ar > p(r + 1)
(see Remark 9.1). Therefore (8.27) implies A2V(ino) C AV(n—1), Vn = 1. By

similar arguments we deduce that Aﬁ”*l(ioo) C Ag’l(fn_l). O
Then we define theu in (5.12), where m§° := mz(zoo) m{® =m(ico), m, =
2

m1 (ico), With m3, mp, M| provided in Proposition 7. 18 By (8.16), the sequence
( j (zoo))neN, W1th t; ) given by Theorem 8.2-(S1),, (evaluated at i = i), is a
Cauchy sequence in | - |0V, Then we define t?o = limp_ 00 t;n) (ix), for any
j € S§, which satisfies |t;.’o — ttE.rl)(l'o<>)|]“)’U < szv_an__al for any n = 0. Then,
recalling ' (ing) = 0 and (7.188), the estimates (5.13) hold (here C = C(S) with
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S fixed in (9.3)). Finally one checks (see for example Lemma 8.7 in [6]) that the
Cantor set C%, in (5.14)—(5.17) satisfies C3, € Goo, With G defined in (9.11), and
Lemma 9.3 implies that C3, € N, >(Gn. This concludes the proof of Theorem 5.2.
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