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Asymptotic safety is a theoretical proposal for the ultraviolet completion of quantum

field theories, in particular for quantum gravity. Significant progress on this program

has led to a first characterization of the Reuter fixed point. Further advancement in our

understanding of the nature of quantum spacetime requires addressing a number of open

questions and challenges. Here, we aim at providing a critical reflection on the state of

the art in the asymptotic safety program, specifying and elaborating on open questions of

both technical and conceptual nature. We also point out systematic pathways, in various

stages of practical implementation, toward answering them. Finally, we also take the

opportunity to clarify some common misunderstandings regarding the program.

Keywords: quantum gravitation, asymptotic safety, renormalization group, running couplings, observables,

effective field theory, unitarity

1. INTRODUCTION AND CONCLUSIONS

Asymptotic Safety [1–3] is a candidate for a quantum theory of the gravitational interactions.
It does not require physics beyond the framework of relativistic Quantum Field Theory (QFT)
nor does it require fields beyond the metric to describe the quantum geometry of spacetime.
Moreover, the inclusion of matter degrees of freedom, like the standard model or its extensions,
is conceptually straightforward. Thus, ultimately, Asymptotic Safety may develop into a quantum
theory comprising all fundamental fields and their interactions.

The core idea of Asymptotic Safety was formulated by Weinberg [4, 5] in the late seventies. It
builds on the insight ofWilson [6], linking the renormalizability and predictive power of a quantum
field theory to fixed points of its Renormalization Group (RG) flow: a theory whose ultraviolet
(UV) behavior is controlled by an RG fixed point does not suffer from unphysical UV divergences
in physical processes like scattering events. The prototypical example for such a behavior is
Quantum Chromodynamics (QCD) where the UV completion is provided by the free theory. In
technical terms QCD is asymptotically free with the UV completion provided by a Gaussian fixed
point1. It was then stressed in [5] that a valid UV completion could also be obtained from fixed
points corresponding to actions with non-vanishing interactions, so-called non-Gaussian fixed
points. In order to contrast this situation to asymptotic freedom, this non-trivial generalization

1The terminology Gaussian fixed point reflects that the action associated with the fixed point does not contain interactions

and is thus quadratic in the fields.
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has been termed “asymptotic safety.” Remarkably, the space
of diffeomorphism invariant actions constructed from a four-
dimensional (Euclidean) spacetime metric indeed seems to
contain a non-Gaussian fixed point suitable for Asymptotic
Safety, the so-called Reuter fixed point [7, 8].

As in other approaches to quantum gravity, substantial
progress has brought the program to a point where a fair-
minded assessment of its achievements and shortcomings
will be useful. Therefore, the purpose of this article is to
provide a critical review of the current status of the field,
of the key open questions and challenges, and to point out
directions for future research. By necessity, the discussion
also covers questions of a more technical nature which is
reflected in the character of some of the sections. This also
entails that the article does not serve as an introduction to
the asymptotic safety program, for which we refer the reader
to the textbooks [2, 3] and reviews [9–15]. A list of key
references related to the open questions is provided within each
section, pointing the reader toward the broader discussion in
the literature.

The rest of the paper is organized as follows. In section 2
we start with a concise introduction to asymptotic safety, also
giving examples of non-Gaussian fixed points providing
a UV completion in non-gravitational settings. The
subsequent sections critically review open questions along
the following lines:

1. Issues related to the use of the functional RG (FRG)
(“uncontrollable approximations,” use of the background field
method) are discussed in section 3.

2. Because of these theoretical uncertainties, it is important
to cross-check the results with different methods. This is
discussed in section 4.

3. The difficulty of computing observables, and comparing with
observations, is discussed in section 6.

4. Closely related to this is the, partly semantic, issue of the
physical meaning of running couplings (can 3 and G run?
If so, what are the physical implications of this running?)
and other aspects where the literature on asymptotic safety
deviates from standard particle physics procedures (power vs.
log running, use of dimensional regularization). These points
are discussed in section 5.

5. In section 7, we discuss whether and in what way asymptotic
safety could be matched to effective field theory (EFT) at low
energy. Here we also discuss the limitations of the procedure
of “RG improvement.”

6. In section 8 we address the relation between scale symmetry
and conformal symmetry and the FRG. (How can one have
scale invariance in the presence ofG?)We also critically review
the argument that the entropy of black holes is incompatible
with gravity being described by Asymptotic Safety (“Gravity
cannot be Wilsonian” or “Gravity cannot be a conformal
field theory”).

7. The unsolved issue of unitarity is discussed in section 9 (in
particular: do higher derivatives imply ghosts?).

8. Finally, we stress the need of calculations in Lorentzian
signature in section 10.

The goal of this paper is three-fold:

(i) Reinforcing progress in the research field by clearly spelling
out key open questions,

(ii) Strengthening a critical and constructive dialogue on
asymptotically safe gravity within a larger community,

(iii) Contributing to a broad and critical assessment of the
current status and future prospects of research avenues in
quantum gravity.

2. ASYMPTOTIC SAFETY

2.1. The Main Idea

...where we recall the notion of quantum scale invariance and the

predictive power of RG fixed points.

Asymptotic Safety [2, 3] builds on Wilson’s modern view of
renormalization, which links the renormalizability and predictive
power of a quantum field theory to fixed points of its RG flow2.
It is equivalent to the notions of “quantum scale invariance in the
UV” and also to “non-perturbative renormalizability,” resulting
in a theory that is fully specified by only a finite number of
free parameters.

In practice, asymptotic safety is studied in the following way.
One has a functional of the fields, that could be either aWilsonian
action S3 depending on a UV cutoff3 or a generating functional
Ŵk for the one-particle irreducible (1PI) correlation functions
depending on an IR cutoff k. We shall focus on the latter for
definiteness, but at this stage the discussion is more general.
For the present purposes, let us assume that this functional can
be expanded in a suitable basis of operators {Oi}, integrals of
monomials in the field and its derivatives

Ŵk =
∑

i

ūi(k)Oi. (1)

The beta functions of the, generally dimensionful, couplings
ūi(k) are given by the derivatives of ūi(k) with respect to t =
log k. Then, one converts the dimensionful couplings3 ūi(k)
into dimensionless ones by a suitable rescaling with the coarse-
graining scale k,

ui ≡ ūik
−di , (2)

where di is the canonical mass dimension of ūi(k). In this way one
obtains a coupled set of autonomous differential equations

k∂kui(k) = βui ({uj}) . (3)

2Generically, a fixed point will be neither UV nor IR, since it typically has both

IR attractive (irrelevant) and IR repulsive (relevant) directions. Depending on the

choice of RG trajectory, the fixed point can therefore induce a UV or an IR scaling

regime. Given two fixed points connected by an RG trajectory, the direction of the

flow between them is fixed and the designation of UV and IR fixed point becomes

unambiguous.
3The notation ui for dimensionful quantities and ũi for dimensionless quantities

can also sometimes be found in the literature.

Frontiers in Physics | www.frontiersin.org 2 August 2020 | Volume 8 | Article 269

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Bonanno et al. Critical Reflections on Asymptotically Safe Gravity

The solutions of this system are the RG trajectories and each
trajectory corresponds to a single physical theory. In general, it
may happen that physical observables diverge along a trajectory
as k → ∞ (e.g., at a Landau pole). One simple way to avoid
this is to require that the trajectory describing the physical world
emanates from a fixed point as k is lowered from the UV to the
IR. At a fixed point {uj∗} all beta functions vanish simultaneously,
βui ({uj∗}) = 0, ∀i and, as we shall discuss in more detail in
section 8, scale invariance is realized4. Such RG trajectories
are said to be either asymptotically free or asymptotically safe
theories. This should be contrasted to the case where physical
observables blow up at a finite value of k which indicates that one
deals with an effective field theory.

The predictive power of asymptotic safety originates from
the properties of the fixed point. Linearizing the beta functions
(Equation 3) about the fixed point, and diagonalizing the stability
matrix Bij ≡ ∂ujβui |u=u∗ , one can determine which directions
are attractive and which ones are repulsive. Eigenvalues with
positive (negative) real parts correspond to eigenvectors along
which the flow (from UV to IR) is dragged toward (repelled by)
the fixed point. One typically works with the scaling exponents5

θI = −eigB. Every irrelevant (IR attractive/UV repulsive/θI < 0)
direction fixes one parameter in the initial conditions6 for Ŵk,
whereas relevant (IR repulsive/UV attractive/θI > 0) directions
correspond to free parameters. Marginal directions (θI = 0)
typically only occur at Gaussian fixed points. Thus, the number
of independent free parameters of an asymptotically safe theory is
equal to the number of relevant directions of the fixed point that
it originates from in the UV. At a free (Gaussian) fixed point, the
relevant directions correspond to couplings with positive mass
dimension. In a local theory, there is only a finite number of
such parameters. In principle, an interacting fixed point could
have even fewer relevant directions, and hence greater predictive
power. If one could integrate the RG flow to the IR, one could test
if the low-energy relations implied by these properties of the UV
fixed point are verified or not, cf. section 6 for further discussion.

2.2. Non-gravitational Examples

... where we provide a list of non-gravitational, asymptotically safe

theories together with the corresponding mechanism for asymptotic

safety and we discuss how several techniques are used to study

these examples.

Whereas the existence of UV-complete quantum field theories
based on the mechanism of asymptotic safety has been
anticipated already in the early days of the RG [16, 17], concrete
examples have been identified only much later, as a parametric
control beyond perturbation theory is typically required. A
paradigmatic class of examples is given by fermionic models in

4In most cases this also implies conformal invariance.
5Note that the opposite sign convention, where the θ are defined without the

additional negative sign, is also sometimes used in the literature.
6More precisely, the “memory” of the initial condition for an irrelevant direction

is washed out by the RG flow and plays no role for the physics at k = 0.

d = 3 dimensional spacetime including, for instance, the Gross-
Neveu model: though interactions of the type ∼ (ψ̄mψ)2 (with
m carrying some internal spin and/or flavor structure) belong to
the class of perturbatively non-renormalizable models, there is
by now convincing evidence that a large class of such models
are in fact asymptotically safe in 2 < d < 4 dimensional
spacetime. Initially, the existence of the underlying non-Gaussian
fixed points has been demonstrated by means of 1/N expansions
[18, 19]; indeed, non-perturbative renormalizability has been
proved for specific models to all orders in the 1/N expansion [20]
with explicit results for higher orders being worked out, e.g., in
[21–24]. Further quantitative evidence subsequently came from
2 + ǫ or 4 − ǫ expansions [25–30]; the FRG for the first time
facilitated analytic computations directly in d = 3 [31–38]. For
the asymptotic safety program, these models are instructive for
several reasons:

(i) The fermionic non-Gaussian fixed point is typically connected
to a quantum phase transition. The latter is characterized by
universal critical exponents which can also be studied using
simulational methods [39–49] or the conformal bootstrap
[22, 50]. In this way, the variety of available approaches have
led to a confirmation of asymptotic safety of these models to a
substantial degree of quantitative precision, summarized, e.g.,
in [51].

(ii) While analytical as well as path integral Monte Carlo
computations are typically performed in Euclidean spacetime,
these models are relevant for layered condensed-matter
“Dirac materials” [52, 53], corresponding to a d = 2 +
1 dimensional spacetime with Lorentzian signature. The
quantitative agreement also with Quantum Monte Carlo
methods (based on a Hamiltonian formulation) [44–46],
demonstrates that asymptotic safety of these systems is visible
in Euclidean as well as Lorentzian formulations.

(iii) As a generic mechanism of asymptotic safety in these
models, an irrelevant (i.e., perturbatively non-renormalizable)
operator such as the fermionic interaction ∼ (ψ̄mψ)2

becomes relevant as a consequence of strong fluctuations.
Correspondingly, the anomalous dimension of this and
subsequent operators is shifted by an amount of O(1);
see, e.g., [33, 54] for a determination of an infinite set of
scaling dimensions for large N. As a consequence, strongly
power-counting irrelevant operators remain irrelevant and do
not introduce an unlimited set of new physical parameters.
The same pattern is also observed in many studies of
asymptotically safe gravity [55–60].

(iv) The comparative simplicity of these models has enabled a first
study of the momentum dependence of 4-point correlation
functions at the non-Gaussian fixed point [61]. For instance,
the Gross-Neveu model (m = 1) in d = 2 + 1 at the non-
Gaussian fixed point can be analyzed in terms of an s-channel-
dependent Gross-Neveu coupling g∗(s) which depends non-
trivially and non-analytically on the dimensionless s variable
at the UV fixed point. In fact, the s channel dependence can be
shown to dominate over possible t and u channel dependences
in a quantifiable manner at largeN, resulting in a simpler form
factor-like structure of the 1PI 4-vertex at the UV fixed point.
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This illustrates that scattering properties in the scaling regime
can develop non-trivial features beyond the scaling suggested
by naive power-counting.

Further examples for asymptotic safety include Yang-Mills theory
in d = 4+ ǫ [62–65], and non-linear sigma models in d = 2+ ǫ
[66–71]; for the latter, there is clear evidence for asymptotic safety
even in d = 3 from lattice simulations [72]. The limit of large
number of fermions Nf in gauge theories has recently seen a
resurgence of interest, e.g., [73–76], with early work in [77, 78],
see also [79].

Another recently discovered set of asymptotically safe models
is given by gauged Yukawa models in the Veneziano limit of a
suitably arranged large number of vector fermions Nf adjusted
to the number of colors Nc of the gauge group [80–86] in
d = 3 + 1 dimensional spacetime. Contrary to the lower-
dimensional fermionic models, these gauged Yukawa models
are power-counting renormalizable to all orders in perturbation
theory. Because of the large number of fermions, fermionic
screening dominates the running of the gauge coupling, such
that asymptotic freedom is lost. The RG flow at high energies
nevertheless remains bounded, as it is controlled by a UV
fixed point appearing in all RG marginal couplings. Whereas
perturbative renormalizability of these models supports the use
of perturbative RG beta functions in the first place, the existence
of non-Gaussian UV fixed points is parametrically controlled

by a suitably small Veneziano parameter, e.g., ǫ = Nf
Nc

−
11
2 as in [80]. Despite this technical vicinity to perturbative
computations, the behavior of the theory near the fixed point
is very different from the perturbative behavior near the
Gaussian fixed point. For instance, the perturbatively marginal
operators turn into (ir-)relevant operators with anomalous
dimensions reaching up to O(1) for ǫ . O(0.1). The
couplings therefore scale with a power of the RG scale rather
than logarithmically. Also, higher-order operators—though
remaining RG irrelevant—generically acquire non-trivial fixed-
point values and can thus exert an influence on scattering
properties at highest energies.

3. FUNCTIONAL RENORMALIZATION

GROUP

In section 2, we have discussed the asymptotic-safety mechanism
without referring to any specific calculation method. Now we
introduce the Functional Renormalization Group (FRG), which
has been the main tool enabling progress in Asymptotic Safety
in the last 20 years. It has been successfully applied to a
large number of other theories and physical phenomena, in
particular non-perturbative ones. Applications range from the
phase structure of condensed matter systems, to confinement
and chiral symmetry breaking in QCD, to the electroweak
phase transition in the early universe and beyond Standard
Model physics. In cases, where results from other non-
perturbative methods (lattice simulations, Dyson-Schwinger
equations, Resurgence etc.) exist, the FRG results compare
well to those obtained by other methods. It is also worth

emphasizing that, while the combination of conceptual and
technical challenges in quantum gravity is certainly unique,
many of the technical challenges and physical effects encountered
here have counterparts in other theories, most notably in non-
Abelian gauge theories, where they can also be tested against
other non-perturbative methods.

3.1. Brief Introduction to the FRG

...where we briefly introduce the FRG as a tool to calculate the

effective action.

Currently, the primary tool to investigate Asymptotic Safety is
the Functional Renormalization Group (FRG) equation for the
effective average action Ŵk introduced in [87–89] (Wetterich
equation), and in [7] for gravity. Ŵk depends on the content of
the theory at hand, in quantum gravity it contains the metric
degrees of freedom, Faddeev-Popov ghosts and possibly also
matter fields. In the FRG approach the scale k is an infrared cutoff
scale below which quantum fluctuations are suppressed. Thus,
Ŵk encodes the physics of quantum fluctuations above the cutoff
scale. For k → 0, all quantum fluctuations have been taken into
account and Ŵk=0 is the full quantum effective action,

Ŵ = lim
k→0

Ŵk (4)

whose minimum is the vacuum state of the QFT. The flow
equation for Ŵk encodes the response of the effective average
action Ŵk to the process of integrating out quantum fluctuations
within a momentum shell,

k∂kŴk[8; 8̄] =
1

2
Tr

[
1

Ŵ
(2)
k
[8; 8̄]+ Rk

k∂kRk

]
. (5)

The term (Ŵ
(2)
k

+ Rk)
−1 on the right hand side of Equation

(5) is the propagator in the regularized theory. Here, we have

introduced Ŵ
(2)
k

= Ŵ(88), the second derivative of Ŵk w.r.t.
the fields 8. In Equation (5), we have also introduced a generic
background 8̄ which typically is chosen as the solution to the
quantum equations of motion. Then, the fluctuation field 8
encodes the fluctuations about this background, and the 1PI
correlation functions of the fluctuation fields 〈8i1 · · ·8in〉1PI
(proper vertices) in a given background 8̄ are given by

Ŵ
(8i1 ···8in )

k
[8̄] ≡ δ

δ8i1

· · · δ

δ8in

Ŵk[8; 8̄]
∣∣∣∣
8=0

. (6)

The term Rk is a cutoff scale k- and momentum-dependent
infrared regulator which suppresses fluctuations with momenta
p2 . k2, decays rapidly for momenta p2 & k2, and vanishes
at k2 = 0. The second property renders the flow Equation
(5) finite due to the decay of k∂kRk for large momenta. The
regulator Rk is independent of the fluctuation field, but may
carry a dependence on the background field. In a quantum
field theory in flat space typically p2 is the plain momentum
squared, while in gravity and gauge theories p2 may be associated
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with a background-covariant Laplacian. Finally, Tr comprises a
sum over all fluctuation fields and an integral over (covariant)
loop momenta. The corresponding loop integration is peaked
about momenta p2 ≈ k2, leading to the momentum-shell
integration. In summary, the flow Equation (5) transforms the
task of performing the path integral into the task of solving a
functional differential equation.

Conceptually, the Wetterich equation implements the idea of
the Wilsonian Renormalization Group: lowering k corresponds
to integrating out quantum fluctuations shell by shell in
momentum space. For k → ∞, the theory approaches the bare
or renormalized ultraviolet action, depending on the underlying
renormalization procedure, for a detailed analysis see, e.g., [90–
94]. The fact that Equation (5) does not require specifying a bare
action a priori makes it a powerful tool to scan for (interacting)
RG fixed points and study their properties. The bare action can
then be reconstructed from the RG fixed point along the lines of
[91, 93]. Essentially, the Wetterich equation can be viewed as a
tool to systematically test which choice of bare action gives rise to
a well-defined and predictive path integral for quantum gravity.

Notably, if one approximates Ŵ
(2)
k

by the k-independent

second functional derivative of a given bare action S(2),
one obtains

Ŵk ≈ S+ 1

2
Tr log

(
S(2) + Rk

)
, (7)

which reduces to the standard one-loop effective action for k = 0.
Accordingly, approximations to the FRG always contain one-
loop results in a natural way.

3.2. FRG Approach to Quantum Gravity

...where we review the Functional Renormalization Group

approach to quantum gravity, with a particular focus on

background-field techniques.

In the gravitational context, the construction of Equation (5)
makes use of the background field method, decomposing the
physical metric gµν into a fixed, but arbitrary background metric
ḡµν and fluctuations hµν , see [9] for technical details

7. The typical
example is the linear split,

gµν = ḡµν + hµν . (8)

In the literature, the fluctuation field hµν is commonly multiplied
with the square root of the Newton constant which makes
it a standard dimension-one tensor field in four spacetime
dimensions. The linear split (Equation 8) is the common choice
not only in quantum gravity but also in applications of the
background field method to gauge theories or non-linear sigma
models. In gravity it comes at the price that the fluctuation field
hµν is not a metric field, indeed it has no geometrical meaning.

7Notably, the asymptotic-safety mechanism is not tied to the spacetime metric

carrying the gravitational degrees of freedom. While explored in far less detail,

the vielbein and the Palatini formalisms may also lead to a theory which is

asymptotically safe [95–101].

While this is not necessary, alternative parameterizations have
been used. These have the general form

gµν = f (h, ḡ)µ
κ ḡκν . (9)

Of these alternative cases, the exponential split with f (h, ḡ) =
exp[ḡ −1h] has been explored, e.g., in [59, 102–105]. Further,
the geometrical split in the Vilkovisky-deWitt approach with a
diffeomorphism invariant flow has been studied in [90, 106–109],
for applications to non-linear sigma models see [110, 111].

Different parameterizations (Equation 9) only constitute the
same quantization if they (i) cover the same configuration space
and (ii) the Jacobian that arises in the path integral is taken
into account (see [104] for a related discussion). Condition (i)
does not hold, e.g., for linear parameterization and exponential
parameterization, see, e.g., [102, 104], while the linear split and
the geometrical one with the Vilkovisky connection at least agree
locally. However, it is well-known from two-dimensional gauge
theories, that quantizations on the algebra and on the group can
differ, see, e.g., [112]. Moreover, studies of the parameterization
dependence of results in truncations, e.g., [113–116], so far do
not account for (ii).

The presence of the background allows to discriminate
“high-” and “low-momentum” modes by, e.g., comparing their
eigenvalues with respect to the background Laplacian to the
coarse-graining scale k. Moreover, it also necessarily enters
gauge-fixing terms for the fluctuation field. As a consequence, the
effective action Ŵk inherits two arguments, the set of fluctuation
fields8 and the corresponding background fields 8̄ for all cutoff
scales k. We emphasize that this also holds true for vanishing
cutoff scale, k = 0, due to the gauge fixing.

Conceptually, the Wetterich equation lives on the so-
called theory space, the space containing all action functionals
constructable from the field content of the theory and compatible
with its symmetry requirements. The FRG then defines a vector
field generating the RG flow on this space. We proceed by
discussing two systematic expansion schemes commonly used in
quantum gravity (as well as other systems): the vertex expansion
and the (covariant) derivative expansion.

The proper vertices of the effective average action (Equation
6) can be used as coordinates in theory space as the set of

(1PI) correlation functions {Ŵ(8i1 ···8in )

k
[8̄]} defines a given action

and hence a theory. The vertex expansion is the expansion in
the order of the fluctuation correlation functions and hence in
powers of the fluctuation field,

Ŵk[8; 8̄] =
∞∑

n=1

1

n!

∫ n∏

i=1

[
ddxi8ji (xi)

]
×

× Ŵ
(8j1 ···8jn )

k
[8̄](x1, · · · , xn) , (10)

whereŴ
(8j1 ···8jn )

k
[8̄], for n > 2, are the proper vertices (Equation

6), that carry the measure factors
∏

i

√
ḡ(xi).

The derivative expansion is best explained in the case of the
diffeomorphism invariant background effective action Ŵ̄k[8̄] =
Ŵk[8 = 0; 8̄]. This object can be expanded in diffeomorphism
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invariant operators such as powers of the curvature scalar and
other invariants. Then, in the derivative expansion the sum in
Equation (1) contains all diffeomorphism invariant terms with
less than a certain number of derivatives. The leading order of
this expansion is

Ŵ̄k[gµν] ≃
1

16πGk

∫
ddx

√
g [23k − R] . (11)

At the next order one has to add four-derivative terms including
R2, RµνR

µν , and RµνρσR
µνρσ , and so on. In this light, it should

be understood that the Einstein-Hilbert action just provides the
leading terms in the derivative expansion of Ŵ̄k[gµν] and does not
constitute the bare action underlying Asymptotic Safety. It has
to be supplemented by gauge-fixing and ghost terms, and, if the
approximation is extended, additional terms Ŵ̂k[h; ḡ] depending
on two arguments separately. “Bimetric” studies distinguishing
gµν and ḡµν for the Einstein-Hilbert truncation can be found in
[117–119].

3.3. Results for Asymptotically Safe Gravity

...where we give a brief overview of the results obtained with the

truncated FRG and provide a sketch of the full flow from the UV

fixed point down to the IR.

Most work has been done in the background-field
approximation, that is Ŵk[8; 8̄] = Ŵ̄k[8 + 8̄]+gauge fixing +
ghosts. If one evaluates the FRG in a one-loop approximation,
including terms quadratic in curvature, the known universal
beta functions of the four-derivative couplings are reproduced,
but additionally the cosmological and Newton constant have a
non-trivial fixed point [120–122]. Going beyond one loop, the
following classes of operators have been studied in pure gravity:
The Einstein-Hilbert truncation has been explored extensively
[7, 8, 113, 123–131]. Einstein-Hilbert action plus R2 [132, 133];
Einstein-Hilbert action plus R2 and RµνρσR

µνρσ [56, 134–137];
Einstein-Hilbert action plus R2, RµνR

µν , and RµνρσR
µνρσ [138];

Einstein-Hilbert action plus the Goroff-Sagnotti counterterm
RµνρσR

ρσ
αβR

αβ
µν [139]; polynomial functions of the scalar

curvature (polynomial “f (R) truncation”) up to orders N = 6
[140, 141], N = 8 [55], N = 35 [57, 58], and lately also N = 71
[142], or effective actions of the form f1(RµνR

µν)+ f2(RµνR
µν)R,

where f1 and f2 are polynomials [143], effective actions of the
form f1(RµνρσR

µνρσ ) + f2(RµνρσR
µνρσ )R where f1 and f2 are

polynomials or finally effective actions consisting of a single trace
of n Ricci tensors (RµνR

ν
ρ . . .R

α
µ) with n up to 35 [144]. The

case of an “infinite number” of couplings has been addressed
in the f (R) truncation by solving [109, 145–159] a non-linear
differential equation for f [58, 109, 116, 140–143, 145–161].
Global solutions for such “infinite” truncations can also be found
for gravity coupled to a scalar field, see, e.g., [162]. For a more
general overview of the situation in gravity-matter systems
we refer to the review [14]. Notably, a fixed point suitable for
Asymptotic Safety has been identified in all these works.

As is clear from this list, the terms included do not reflect
the systematics of a derivative expansion. It has also to be

said that in many of these calculations the beta functions that
one obtains are only unknown linear combinations of the beta
functions that would be obtained if all curvature invariants of the
same order were included. This is because the calculations are
done on spheres, e.g., [55, 57, 58, 116, 132, 133, 140–143, 146–
148, 150–153, 155, 157, 160, 163], a hyperbolic background [161]
or sometimes on Einstein backgrounds, e.g., [56, 134], and this
does not permit to differentiate between functions of Ricci tensor
and of the Ricci scalar, for example.

In terms of the vertex expansion, most work has been
built on an expansion around flat space while keeping part of
the full momentum dependence of propagators and vertices.
For the vertices typically the symmetric point configuration
is considered. For results in pure gravity and gravity-matter
systems see [164–174]. These works have revealed the existence
of a non-trivial fixed point in the two-, three-, and four-
point functions compatible with the findings in the background
approximations. Analogous calculations with compatible results
have also been done for the two-and three-point functions
on a spherical background [156, 159]. The results in [156,
159] for background curvature and background momentum-
dependent two- and three-point function of the fluctuation
field have then been used to compute the full f (R)-potential
in pure gravity and in the gravity-scalar system beyond the
background approximation.

Just like in the derivative expansion in asymptotically safe
gravity, it has also not been possible to fully and systematically
implement the vertex expansion beyond the lowest order:
In particular, the three- and four-point functions have only

been calculated for a special kinematical configuration and

the symmetric background does not allow to fully disentangle
different operators.

To connect the UV fixed point to physics at k = 0, complete
trajectories must be constructed. Currently, this part of the
program is less advanced than the characterization of the fixed

point itself; UV-IR flows have been computed, e.g., in [108, 164,
166, 169, 175]. It is expected that complete solutions are most

likely characterized by several regimes [125, 133, 176, 177], see
also, e.g., [178, 179] for matter-gravity systems:

- The first part of the flow from the Reuter fixed point in the
UV down to some scale M1 is in a linear regime close to
the fixed point. At these extreme UV scales, the system could

a priori either be in a strongly interacting non-perturbative
regime or be characterized by weak interactions. There are
some tentative hints for the latter (see section 3.4), but a
conclusive statement regarding the nature of the fixed point
cannot yet be made.

- Close to the Planck scale, the flow has potentially already
left the linear regime around the fixed point. In simple
approximations, M1 = MPl, i.e., the transition scale at
which fixed-point scaling stops, actually comes out equal to
the Planck scale. The regime around the Planck scale could
again be characterized by either non-perturbative or near-
perturbative physics—irrespective of the nature of the fixed
point. Once one leaves the fixed-point regime, non-localities
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of order 1/k, or dynamically generated scales are expected to
play a role 8.

- Below the Planck scale, the description of the purely
gravitational sector is expected to become much simpler.
Once near the Gaussian fixed point, the flow is dominated by
the canonical scaling terms. For instance, the dimensionful
Newton constant becomes scale independent. One expects
that corrections obtained within the effective-field theory
approach to quantum gravity are recovered in this regime. Of
course there remains the issue of the cosmological constant.
In particular, it is still being debated whether De Sitter space is
stable under radiative corrections, including the ones coming
from graviton fluctuations. A proposal that the instability in
the graviton propagator drive the cosmological constant to
zero has been put forward in [181], see also [104] for a different
point of view on the interpretation of this property of the
graviton propagator, and [123] for an earlier discussion of
the effect of IR-fluctuations on the cosmological constant. A
general effective field theory approach to study this problem
has yet to come.

Inmany cases these works on asymptotic safety based on the FRG
can be compared to, or substantiated by, other approximation
methods or techniques. We defer a discussion of such relations
to sections 4 and 7.

3.4. The Convergence Question

...where we discuss the convergence (or lack thereof) of systematic

expansion schemes in the FRG.

In practical applications, one has to work in truncations of the
theory space. These can also be infinite dimensional, if a closed
form for the flow of an appropriate functional can be found. In
the gravitational case, closed flow equations for f (R) truncations
constitute an example [58, 109, 116, 140–143, 145–161]. Further
examples are the scalar potential and a non-minimal functional
in scalar-tensor theories, see, e.g., [104, 105, 182–184].

A reasonable expansion scheme should capture the relevant
physics already at low orders of the expansion. For a fixed point,
this includes the relevant operators. At the free fixed point one
simply expands according to canonical power counting. At a
truly non-perturbative fixed point, the relevant operators are not
known. Therefore, simple truncations that correctly model non-
perturbative physics can be difficult to devise. It is in such setups

8It is important to realize that non-local operators, i.e., operators with inverse

powers of derivatives, proliferate under the flow and are canonically increasingly

relevant. They are therefore likely to destroy the predictive nature of the fixed

point, if included in theory space explicitly. On the other hand, the flow never

generates an operator with inverse powers of derivatives within a quasi-local theory

space, i.e., the requirement of quasilocality can be imposed consistently on the

theory space. Of course it is well-known that the full effective action contains

physically important non-localities. These arise in the limit k → 0 and are expected

to be captured through resummation of quasi-local operators, see, e.g., [180] for

an example. This intricacy potentially makes this regime of the flow difficult to

describe in a quantitatively robust way. It is generally expected that an expansion

of the effective action in terms of vertex functions or form factors is best suited to

this regime, as it can automatically capture non-localities of order 1/k, and also

encode the presence of dynamically generated scales.

that the concerted use of several techniques can be most useful;
the IR regime of QCD constitutes an excellent example. Finally,
at an interacting, but near-perturbative fixed point, canonical
power counting constitutes a viable guiding principle to set
up truncations. Here, near-perturbative refers to the fact that
the spectrum of critical exponents exhibits deviations of O(1)
from the canonical spectrum of scaling dimensions, but not
significantly larger, in other words, the anomalous contribution
to the scaling of operators is ηO . O(1).

The strategy that has (implicitly or explicitly) been followed
for the choice of truncations for the Reuter fixed point has been
based on the assumption of near-perturbativity. This motivates
a choice of truncation based on canonical power counting. The
self-consistency of this assumption has to be checked by the
results within explicit truncations. Indeed, [57, 58, 142, 143]
find a near-canonical scaling spectrum in the f (R) truncation.
Moreover, [172–174] find close agreement of various “avatars” of
the Newton coupling, something that is not expected in a truly
non-perturbative regime.

As a self-consistent truncation scheme appears to be available
for quantum gravity, the apparent convergence of fixed-point
results is a key goal. It is fair to say that the status of results is
rather encouraging with regard to this question, see [91, 118, 119,
124, 125, 132, 175, 185–200]. This has given rise to the general
expectation that the Reuter fixed point indeed exists in full theory
space, and provides a universality class for quantum gravity.
Nevertheless, it should be pointed out that due to the technically
very challenging nature of these calculations, the inclusion of a
complete set of curvature-cube operators remains an outstanding
task. In the vertex expansion, higher order derivative terms are
captured by momentum-dependent correlation functions, which
exhibit robust evidence for the Reuter fixed point [156, 164, 166–
170, 172–174, 199–201].

3.5. Do Backgrounds Matter?

...where we highlight the technical challenges one faces when

attempting to reconcile the use of a local coarse-graining procedure

with the background independence expected of a non-perturbative

quantum gravity approach.

When setting up the Wetterich equation for gravity [7]
the background field formalism plays an essential role. The
background metric ḡµν serves the double purpose of i)
introducing a gauge fixing which is invariant under background-
transformations, and ii) introducing a regulator, as required to
implement a local notion of coarse graining. At the same time, the
decomposition of the physical metric into a fixed, but arbitrary
background and fluctuations introduces a new symmetry, so-
called split-symmetry transformations: the linear split (Equation
8) is invariant under

ḡµν 7→ ḡµν + ǫµν , hµν 7→ hµν − ǫµν . (12)

While actions of the form Equation (11) are invariant under these
transformations, the gauge-fixing and the regulator terms

1Sk =
∫

d4x
√
ḡ hµν[Rk(−D̄2)]µνκλhκλ , (13)
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with D̄µ denoting the covariant derivative constructed from
ḡµν violate this symmetry. Thus Ŵk[hµν; ḡµν] ≡ Ŵk[gµν , ḡµν]
genuinely depends on two metric-type arguments.

Nevertheless, the gravitational effective average action [7]
provides a background-independent approach to quantum
gravity. The background metric ḡµν is not an “absolute element”
of the theory but rather a second, freely variable metric-type
argument which is determined from its own equations of motion.
At the most conservative level this feature follows from standard
properties of the background field method satisfied by the
effective action Ŵ and their extension to the effective average
action Ŵk [107, 108, 155, 156, 202–206]. Alternatively, it has
been proposed to achieve background independence not by
quantization in the absence of a background, but rather by
quantization on all background simultaneously [119]. We now
review these arguments.

The fact that Ŵk and the resulting effective action Ŵ depend
on two arguments allows to derive a background as well as a
quantum equation of motion from Ŵ

δŴ[h; ḡ]
δḡµν

∣∣∣∣
ḡ=ḡeom ,h=0

= 0 ,
δŴ[h; ḡ]
δhµν

∣∣∣∣
ḡ=ḡeom ,h=0

= 0 . (14)

The Ward identity following from the transformation (Equation
12) then relates these two equations implying that a solution
of one is also a solution of the other. This allows to fix ḡ
in a dynamical way. In particular, it shows that at k = 0
the background metric does not have the status of an absolute
element. At finite values of k, the Ward identity satisfied by Ŵk
receives additional contributions from the regulator (Equation
13) which introduce a genuine dependence on the background
field. From these arguments, it is then clear that “background
independence” is restored at k = 0 only.

We highlight that background independence is encoded in
modifiedWard identities which are completely general and work
(in principle) for any correlator. The most important issue is to
determine a physically motivated background, around which one
can study the quantum fluctuations and which is determined by
the equations of motion Equation (14).

The “all backgrounds is no background” proposal provides
an extension of “background independence” to finite values of
k. The underlying idea is to describe (one single) background-
independent quantum field theory of the metric through the
(infinite) family of “all possible” background-dependent field
theories that live on a non-dynamical classical spacetime. Each
family member has its own classical metric ḡµν rigidly attached
to the spacetime manifold. For each given background ḡµν ,
standard methods can be used to quantize the fluctuation fields
8. Repeating this procedure for all ḡµν yields expectation values
〈O〉ḡ which are manifestly ḡ dependent in general. Loosely
speaking, the family of backgrounds, which is at the heart of
background independence in the abstract sense of the word,
should be regarded as the set of all possible ground states, one
of which will be picked dynamically.

Ultimately, the physical background metric that is present in
the geometric phase of quantum gravity, is determined by the
dynamics of the system in a self-consistent fashion by solving the

quantum equations of motion at finite k

δŴk[h; ḡ]
δhµν

∣∣∣∣
ḡ=ḡsc

k
,h=0

= 0 , (15)

where the self-consistent background metric (ḡsc
k
)µν is inserted.

Hence, the expectation value of the metric is a prediction rather
than an input. Notably, setting (h = 0, ḡ = ḡsc

k
) is a particular way

of going “on-shell” (but not the only one). We refer to [3, 156] for
further details.

Given these remarks, it is clear that future work must address
the following challenges:

(1) The different functional dependence of Ŵk on hµν and ḡµν
induces differences in the propagators for the fluctuation field
and the background field. Thus, the functional dependence
of Ŵk on hµν and ḡµν separately should be computed for
a class of background metrics as broad as possible, as
ultimately background independence can only be achieved
if the dependence on the two distinct arguments of Ŵk is
disentangled cleanly.

For computational feasibility the existing calculations
mainly employ either highly symmetric background
geometries or the Seeley-DeWitt (early time) expansion
of the heat-kernel which encapsulates only local (albeit
universal) information [207]. It is important to highlight that
computations evaluating the left-hand side of the Wetterich
equation at h = 0 (i.e., equating fluctuation propagator and
background propagator) can deform and/or remove fixed
points and introduce unphysical zeros of beta functions [163].

(2) The difference between the gµν dependence of Ŵk and
its ḡµν dependence, driven by the distinct dependence of
regulator and gauge fixing on the two metrics, is encoded in
the modified split Ward or Nielsen identity resulting from
Equation (12). In principle, by solving the flow equation
together with this Ward identity, one would obtain a flow
for a functional of a single metric. In practice, the solutions
of the Ward identity has only been possible for the simplest
approximations [108, 155, 203–206].

(3) When Ŵk and with it (ḡsc
k
)µν show a strong k dependence, the

effective spacetime is likely to possess multi-fractal properties
which were argued to lead to a dimensional reduction in the
ultraviolet [133, 208–210] and to a “fuzzy” spacetime structure
at even lower scales [198, 211, 212]. In the existing analyses the
fractal-like properties were characterized in terms of ordinary,
i.e., smooth classical metrics, the trick being that one and
the same spacetime manifold was equipped not with one but
rather the one-parameter family of classical metrics, {(ḡsc

k
)µν}.

As these fractal-like properties relate to the k dependence of
Ŵk, it is at present unclear whether an “echo” of this behavior
exists in the physical limit k → 0. Investigating the full
momentum dependence of Ŵk→0 can provide an answer to
this question. If there is, it should be a mostly negligible effect
at scales relevant for current experiments.

In conclusion, the issue of the background dependence is a main
obstacle to progress in the application of the FRG to quantum
gravity, both at the conceptual and technical level.
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4. ADDITIONAL METHODS FOR

ASYMPTOTIC SAFETY

... where we review other techniques used to search for asymptotic

safety in gravity, including the ǫ expansion, numerical simulations,

tensor models, and stress the benefits of using multiple methods.

Sections 3.4 and 3.5 have highlighted the technical challenges
one faces when employing the FRG to study asymptotically
safe gravity. Therefore, there is a strong case for the use of
complementary methods, especially those where background
independence can be implemented, such as Regge calculus or
random lattice techniques, as well as specific tensor models. Due
to the rather different nature of the systematic errors in these
approaches, this simultaneously addresses the challenge linked to
the convergence of truncations. Furthermore, other techniques
may be better suited to explore the complete phase diagram of
quantum gravity potentially including pre-geometric phases.

Historically, the starting point for studies of asymptotically
safe gravity has been the ǫ expansion around d = 2, [213–
217], which has been pushed to two-loop order in [218], showing
indications for an asymptotically safe fixed point. It has been
shown that the Reuter fixed point in d = 4 dimensions is
continuously connected to the perturbative fixed point seen in
2 + ǫ spacetime dimensions [7, 125]. The connection between
Asymptotic Safety and Liouville gravity in d = 2 dimensions has
been made in [197]. An (off-shell) gauge and parameterization
dependence, as exhibited by truncated FRG studies, is also
present in the ǫ expansion. Higher-loop terms are required in
order to resum the ǫ expansion for the critical exponent to learn
about the d = 4-dimensional case. This appears to be merely a
technical challenge, to which the advanced techniques developed
in the context of supergravity [219] might potentially be adapted.

In line with the near-perturbative nature of the fixed point
in d = 4, expected from FRG studies [57, 58, 142, 143, 173], a
Padé resummation might yield a fixed point that is continuously
connected to the fixed point in the vicinity of two dimensions.

Lattice approaches provide access to a statistical theory of
random spatial geometries, thereby being in a position to provide
evidence for or against asymptotic safety in the Euclidean regime.
There are two main ways in which discrete random geometries
are explored: One can hold a triangulation fixed and vary the edge
lengths, as in Regge calculus, or hold the edge lengths fixed but
vary the triangulation, as in dynamical triangulations. The latter
have developed in two research branches: Euclidean Dynamical
Triangulations [220], and Causal Dynamical Triangulations
[221, 222].

Regge calculus (see [223] for a review) based on the Einstein-
Hilbert action is subject to the well-known conformal factor
instability, which requires an extrapolation in order to extract
information about a critical point, see the discussion in [224].
With this caveat in mind, indications for asymptotic safety are
found in Monte Carlo simulations of Regge gravity [224] based
on the Einstein-Hilbert action. Testing the effect of additional,
e.g., curvature-squared operators, which could correspond to
additional relevant directions and have an important impact on

the phase structure, is an outstanding challenge in Regge gravity.
A first comparison of scaling exponents obtained with the FRG
to the leading-order exponent in Regge gravity can be found in
[130, 225, 226].

In the case of Causal Dynamical Triangulations (CDT), the
configuration space includes only configurations that admit a
Wick rotation, see [222] for a review. Therefore, an analytical
continuation to a Lorentzian path integral is in principle possible.
In two dimensions, one can solve CDT analytically. Owed to the
fact that in this case there are no local degrees of freedom, it
has been shown in [227] and [228, 229] that the Hamiltonian
appearing in the continuum limit agrees with the one for two-
dimensional continuum quantum gravity and Horava-Lifshitz
gravity [230], respectively. Moreover, Liouville gravity can be
recovered by allowing for topology change of the spatial slices
[227]. It has been stressed in [222] though that the equivalence
of CDT and Horava-Lifshitz gravity may not extend beyond the
two-dimensional case.

In higher dimensions, one searches for the continuum
limit numerically. In practice, evidence for several [231, 232]
second-order phase transition lines/points exists in numerical
simulations, both in spherical and toroidal spatial topology. The
large-scale spatial topology does not appear to impact the phase
structure [233], but can actually improve the numerical efficiency
of the studies, as observed in [234]. The higher-order transition
can be approached from a phase in which several geometric
indicators (spatial volume of the geometry as a function of
time [235]; Hausdorff dimension and spectral dimension [236])
signal the emergence of a spacetime with semi-classical geometric
properties. The properties of the continuum limit remain to be
established, as the process of following RG trajectories along lines
of constant physics toward the phase transition has not yet led to
conclusive results regarding asymptotic safety [237, 238].

In Euclidean Dynamical Triangulations (EDTs), the
configuration space differs from CDTs, as configurations
do not in general admit a Wick rotation. This gives rise to
spatial topology change and the proliferation of so-called “baby
universes.” Early work [239–242] has not shown a higher-order
phase transition [243–245]. The inclusion of a measure-term has
led to the hypothesis that the first-order transition line could
feature a second-order endpoint, and some evidence exists that
the volume profile of the “emergent universe” approaches that
of Euclidean de Sitter, i.e., a sphere, as one tunes toward the
tentative critical point [246, 247]. This measure term could be
reinterpreted as a sum of higher-order curvature invariants
[246, 247] contributing to the action. The investigation [247]
was unable to corroborate the appearance of a second-order
endpoint though. In summary, solid evidence for a second-order
phase transition exists in the CDT case, while investigations are
ongoing in the EDT case.

Finally, dynamical triangulations can be encoded in a purely
combinatorial, “pre-geometric” class of models, so-called tensor
models [248–255], that attempt to generalizematrixmodels [256]
for two-dimensional gravity to the higher-dimensional case. FRG
tools which interpret the tensor sizeN as an appropriate notion of
“pre-geometric” (i.e., background-independent) coarse-graining
scale [257], allow to recover the well-known continuum
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limit in two-dimensional quantum gravity within systematic
uncertainties related to truncations [258]. First tentative hints for
universal critical behavior in models with 3- and 4-dimensional
building blocks have been found [259, 260]. The importance of
symmetry-identities has been emphasized in [261]. This method
could in the future provide further evidence for asymptotic safety,
see [262] for a discussion, once the systematic uncertainties
are reduced by suitable extensions of the truncation, and an
understanding of the emergent geometries has been developed.

More broadly, the framework of the Renormalization Group
and the notion of a universal continuum limit linked to a fixed
point have recently been gaining traction in several approaches
to quantum gravity, including group field theories [263–265]
as well as spin foam models [266]. Accordingly, the concept of
asymptotic safety might play an important role in several distinct
approaches to quantum gravity. In particular, in spin foams, a
search for interacting fixed points in numerical simulations has
started recently in reduced configuration spaces, see, e.g., [267–
269]. In causal sets, investigating the phase diagram and the
order of potential phase transitions has only shifted into focus
more recently, with indications for first-order phase transitions
in restricted configuration spaces for lower-dimensional causal
set quantum gravity [270–273].

In summary, the further development and application of a
broad range of tools to explore asymptotic safety could be key to
gain quantitative control over a potential fixed point, establish its
existence and to develop robust links to phenomenology, which
rely on a good understanding and control over systematic errors
within various techniques. It is encouraging, that indications for a
second-order phase transition have already been found with such
techniques.

5. RUNNING COUPLINGS

5.1. A Clarification of Semantics

...where we clarify that the term “running coupling” is used with

different meanings in different contexts.

Much of the current work on asymptotic safety of gravity uses
techniques and jargon that are more common in statistical than
in particle physics. This concerns even basic notions such as
the RG. If one aims at detecting asymptotic safety by means of
standard perturbative particle physics observables, there is thus
much room for misunderstanding.

The RG was used in particle physics largely as a tool to resum
“large logarithms,” terms in the loop corrections to physical
observables of the form log(p/µ) = log(p/3) + log(3/µ),
where p is a momentum, µ a reference scale and 3 a UV cutoff.
From the way they emerge, the beta functions that resum the
large logs are just the coefficients of the logarithmic divergences
log(3/µ). One important feature of these logarithmic terms is
that their coefficients are “universal,” up to next-to-leading non-
trivial order (NLO) in the coupling expansion. This entails two
things: on the one hand, it means that, up to NLO, they are

independent of the way one computes them9. On the other hand,
one can use them to “RG improve” any tree level observable, and
one is guaranteed to obtain the correct result (not the full result,
of course, but the part that comes from calculating and then
resumming the logs). Here by “RG improvement” we mean the
substitution of the running coupling into a tree-level expression,
and the subsequent identification of the RG scale with an
appropriate physical scale of the system10. If one demands these
properties of a running coupling, then one would say that only
dimensionless couplings can run. Dimensionful couplings have
power divergences that are simply subtracted in perturbation
theory. In line with these arguments, it has been pointed out
in [274, 275], that the one-loop corrections to gravity-mediated
scattering amplitudes cannot be obtained from applying the RG
improvement to Newton’s coupling.

In Wilson’s non-perturbative approach to renormalization,
all possible terms consistent with symmetries are present in
the action. Quite often, the Wilsonian momentum cutoff has a
direct physics interpretation, e.g., as lattice spacing in condensed-
matter applications (with a relation to the Kadanoff block-
spinning [276] underlying Wilson’s renormalization idea), and
as the mass of states that are “integrated out” in effective field
theories. In lattice gauge theories the Wilsonian momentum
cutoff is finally removed (in the continuum limit), but keeps
its physics interpretation similar to the condensed-matter
applications at intermediate stages. Nevertheless, the momentum
cutoff is treated mathematically as an independent variable, and
all couplings in the Wilsonian action depend on it. Apart from a
few relevant parameters to be tuned to criticality, the remaining
set of “running couplings” is not constrained by the demands of
universality; still, this notion of running couplings remains also
valid at the non-perturbative level.

The relation between the two definitions of the RG is this: At
energy scales much higher than all the masses, the leading- and
next to leading-order terms of the perturbative beta functions,
that are independent of the renormalization scheme, can also be
obtained from the Wilsonian RG and are independent of details
of the coarse-graining scheme. In particular, the one-loop terms
can be easily found from Equation (7). The recovery of 2-loop
terms from the FRG has been addressed, e.g., in [277–283]. At
energies comparable to the masses, the beta functions extracted
from the Wilsonian RG include threshold effects which encode
the automatic decoupling of massive modes from the flow at
scales below the mass. This is an advantage over setups in which
this decoupling is not accounted for automatically and must
instead be done by hand.

If one accepts the more general Wilsonian definition of
running coupling, then the statement “dimensionful couplings
cannot run” translates into the statement that the Wilsonian
running of dimensionful couplings does not carry the same

9They are almost always derived in dimensional regularization, which for technical

reasons is the most convenient method, e.g., it respects gauge symmetries.
10 For example in a process e+e− → e+e− at center of mass energy

√
s >> me

at n-loop order the renormalized leading contribution with subtraction scale µ is

proportional to the tree level cross-section (at scaleµ) times
∑

l≤n[α(µ)c log
s
µ2 ]

l ,

which shows that the most convenient choice is µ = √
s.
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direct physical meaning as the running of dimensionless ones.
Nevertheless, to encode physics correctly within a Wilsonian
setup, the running of dimensionful couplings is critical and
cannot be neglected, since in a massive scheme operators
mix non-trivially.

To be more specific, one can consider what happens at
second order phase transitions. The generic power-like running
of the Wilsonian couplings in the FRG approach is in general
non-perturbative and its calculation is limited only by the
approximations. At the fixed point, the couplings have non-
universal values (depending on the details of the microscopic
theory), but there are also universal quantities which can be
extracted from the flow close to criticality. These are the same for
very different physical systems belonging to the same universality
class. The power-like divergences are associated to non-universal
features such as the position of the fixed point and of the
critical surface (see, e.g., [284]). For example, the power quadratic
divergence in systems belonging to the Ising universality class
is related to the critical temperature Tc, which varies from
one material to another. If one is interested in this physical
information, the accurate scaling of the corresponding quadratic
composite operator or the behavior of the two-point function
should be determined.

Similar considerations may apply in quantum gravity, where
the running Planck mass (the coefficient of the “R” operator in
the effective Lagrangian) is a non-universal quantity which is
just one of the parameters defining the position of a possible
UV fixed point and of the critical surface containing it. Note
that in an asymptotically safe theory of quantum gravity, the
physics is related not just to the UV fixed point, but to the
particular renormalized trajectory flowing away from it toward
lower energy scales. Therefore it depends indirectly on all such
Wilsonian (dimensionful) couplings. Observables, as already
discussed, are computed at k = 0 on the on-shell configurations
and are mostly sensible to a number of non-universal parameters
related to the finite number of relevant directions, including the
(flowing) Planck mass. We shall discuss in section 5.3 how one
could define the effective couplings.

5.2. Remarks on Dimensional

Regularization

...where we explain in which cases some care is required for

the correct interpretation of results achieved within dimensional

regularization.

A seemingly technical point where the Wilsonian RG approach
differs from a perturbative particle-physics perspective is the
regularization of quantum modes. While the FRG works with
explicit momentum-space regulators (or spectral regulators
of curved-spacetime Laplacians), conventional perturbation
theory mostly uses dimensional regularization for reasons of
convenience. Physics must not depend on the choice of the
regularization scheme, hence it is an obvious question as to
whether dimensional regularization can also be brought to
work in a FRG context and for the asymptotic-safety scenario
of gravity.

In fact, one-loop results for power-counting marginal
operators quadratic in the curvature with dimensionless
couplings exhibit the expected universality [120, 285, 286].
However, this is no longer true for the RG running of power-
counting relevant and irrelevant operators, simply because they
do not feature the same degree of universality. Even worse,
dimensional regularization is blind to power divergencies and
hence acts as a projection onto logarithmic divergences appearing
as 1/ǫ poles. For such reasons, Weinberg calls dimensional
regularization “a bit misleading” in the context of asymptotically
safe theories [5].

Dimensional regularization relies on the virtues of analytic
continuation. Hence, its application requires to pay attention
to the analytic structure of a problem at hand. This is well-
known, for instance, from non-relativistic scattering problems
where a naive application of dimensional regularization fails
because of a different analytic structure of the propagators and
more care is needed to apply analytic continuation methods
to regularize and compute observables [287, 288]. The same
is true for computations in large background fields where a
naive straightforward application of dimensional regularization
is not possible, but requires a careful definition in terms of a
dimensionally continued propertime or ζ function regularization
[289, 290]. The latter techniques can be linked to heat-kernel
methods and allow to access information related to power
divergences [291].

As most computations for asymptotically safe gravity are
performed in “large backgrounds,” i.e., in a fiducial background
spacetime, a proper use of dimensional regularization would
similarly require a definition in terms of, e.g., a propertime
or ζ function definition based on the heat kernel. In fact,
approximations of the FRG have beenmapped onto a propertime
representation (propertime RG). Applications to gravity do lend
further support to the existence of the Reuter fixed point and the
asymptotic-safety scenario [188].

5.3. Correlation Functions and Form

Factors

...where we clarify the distinction between RG scale dependence

and physical scale dependence within the FRG context. We further

detail how the physics of asymptotically safe theories is encoded

in momentum-dependent correlation functions and form factors,

discuss the definition of non-perturbative running couplings and

the construction of observables from these objects.

The idea of the Wilsonian renormalization group is to solve the
theory by integrating out quantum fluctuations, one (covariant)
momentum shell at the time. It is crucial to distinguish the
k-dependence from the dependence on physical scales. In the
FRG approach governed by the Wetterich Equation (5) with an
infrared cutoff, general correlation functions

Ck(p1, ..., pn) = 〈8i1 (p1) · · ·8in (pn)〉k (16)

are trivial for all (covariant) momentum scales p2i /k
2 ≪ 1,

and carry the momentum dependence of the full theory for all
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momentum scales p2i /k
2 ≫ 1 and large scattering angles. Here,

trivial means that for p2i /k
2≪ 1 the correlation functions are that

of a theory with a mass gap m2
gap & k2: the quantum dynamics

dies off with powers of p2i /k
2. In asymptotically safe theories,

these correlation functions will exhibit indications of quantum
scale invariance at large p2i /k

2.
Evidently, the correlation function Ck(p1, ..., pn) is a highly

non-trivial function of all pi, other physics scales in the theory,
such as mass scales, and the cutoff scale k. The latter is
instrumental for the transition from the full quantum dynamics
of the theory to the trivial one in the gapped regime. This
non-trivial behavior is complicated by the fact that the n-point
correlation functions carry n momenta pi with i = 1, ..., n. This
results in a multiscale problem, unless we restrict ourselves to a
symmetric point with p2i = p2. We also remark that both UV
and IR regimes may exhibit asymptotic power-law momentum
scaling or anomalous scaling and the momentum and cutoff
dependence in the transition regime at p2i /k

2 ≈ 1 is in general
highly non-trivial. In particular, the momentum dependence is
typically more general than a logarithmic one.

In section 6, we introduce diffeomorphism invariant
observables as spacetime integrals over correlators akin to the
one in Equation (16), cf. Equation (18), or S matrix elements

via the proper background vertices Ŵ̄
(8̄i1 ···8̄in )

k
. To compute

such observables, in the FRG approach to asymptotically safe
gravity we first have to compute the proper vertices of the

fluctuation fields, Ŵ
(8i1 ···8in )

k
. Their scale- and (covariant)

momentum dependence indirectly encode the physics of
asymptotically safe gravity despite not being observables
themselves. An important step toward observables is made
by considering running couplings, that are renormalization
group invariant combinations of the form factors or dressings
of these vertices as defined in standard gauge theories and
scalar and fermionic QFTs. These are defined from the k-
and momentum-dependent vertices together with appropriate
factors of the wave-function renormalizations. For instance, in
the case of scalar and fermionic QFTs, these are directly related
to S matrix elements. In turn, in gauge theories such as QCD
they lack gauge invariance but nonetheless carry important
physics information: In QCD these running couplings derived
from the proper vertices of the fluctuating or background fields
give direct access to the momentum scaling in the perturbative
regime as measured by high-energy experiments, see, e.g., [292].
Further, non-perturbative physics, such as the emergence of
the confinement mass gap, is also captured by these running
couplings, see, e.g., [293–295].

This implies that themomentum dependence of these running
couplings at k = 0 provides rather non-trivial physics
information. In asymptotically safe gravity, it can in particular
be used to identify scaling regimes in the UV and the IR as well
as the transition scale: In [164, 166, 168, 169], non-perturbative

generalizations of the Newton coupling G
(n)
k
(p2) with n =

3, 4, defined from the n-point functions, have been computed
from combinations of the proper two-, three- and four-point
functions of the fluctuation fields in a flat background and all
cutoff scales. For the generalization to the case with matter,

see [170, 172–174]. In these calculations, the dependence on
the n − 1 momenta of an n-point vertex has been simplified
by going to the momentum-symmetric point, allowing the
definition of a running coupling that depends on a single
momentum. A flat background, as used in the above studies
is of course a first step toward a comprehensive understanding
of the physical scale dependence of quantum gravity. For
first steps toward an extension to generic background, see
[156, 159].

On a generic background, the dependence on physical scales
can also be captured in the language of form factors. In the
background effective action these form factors appear naturally,
see [296],

Ŵ̄[gµν] =
∫

d4x
√
g
[
f (R)+ f1(RµνRµν)

+ Cµνρσ W
T(1)Cµνρσ − RWR(1)R+ · · ·

]
, (17)

Equation (17) also summarizes concisely the approximation
considered so far for the background effective action. The
corresponding form factors WR and WT have been computed
in [175]. Note that Equation (17) can also be understood as the
dynamical effective action in the diffeomorphism invariant single
metric approach put forward in [284, 297–300]. There it has been
argued that the physical gauge there facilitates the direct physics
interpretation of form factor such asWT andWR.

Both within the language of momentum-dependent
correlation functions as well as with form factors, the
asymptotically safe regime, the transition regime and a
long infrared regime with classical scaling have been identified.
The results are rather promising and open a path toward the
computation of observables or their local integral kernels. Still,
the approximations used so far do in particular not sustain large
curvatures and have to be upgraded significantly.

6. OBSERVABLES

...where we emphasize the necessity to investigate observables in

order to make quantum gravity testable, and discuss three possible

classes of observables.

The physical behavior of a system is probed through observables.
While their definition and construction is not a problem in
many interesting cases of quantum and statistical field theories
in flat, and possibly some specific classical curved spacetimes,
it is in general very difficult to define meaningful observables
in quantum gravity. To begin with, already in classical gravity
diffeomorphism invariance makes the notion of a spacetime
point unphysical and hence implies that there cannot exist any
local observable: any gauge invariant observable must be the
integral of a scalar density over all spacetime. The situation
is somewhat better in the presence of matter, for example it
makes sense to define the value of the scalar curvature at the
position of a particle, or at a point where certain matter fields
have predetermined values [301]. These observables are however
difficult to work with in practice. These problems persist in
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quantum gravity, see, e.g., [302]. Nevertheless the construction
of observables remains a crucial task.

In the following, we will focus on observables in the sense of
quantities that are of direct phenomenological relevance. These
often rely on introducing a (dynamically generated) background
that provides a suitable notion of locality. The type of observables
that one will consider depends very strongly on the type of
observations that one has in mind. We will distinguish three
possible classes of observations that could be used to test
asymptotic safety.

6.1. Particle Physics at the Planck Scale
The first is appropriate when we imagine living in a macroscopic
classical spacetime and probing its short distance structure by
some “microscope” of the kind that is used in particle physics.
For example, we could try to directly measure scattering cross-
sections and decay rates at Planckian scale or beyond. In this
case the issue of diffeomorphism invariance is circumvented by
postulating the existence of an asymptotically flat background,
which is necessary in order to define the appropriate notions
of particles and asymptotic states. The validity of this postulate
remains to be investigated in a given quantum theory of
gravity. In principle, the integral kernels of these particle-physics
observables can be constructed from the proper vertices of the

background effective action Ŵ̄
(8̄i1 ···8̄in )

k
for an asymptotically

flat spacetime, see [303]. We provide some details on the
calculation of these quantities in section 5.3. Indeed, the original
formulation of Asymptotic Safety by Weinberg was formulated
in these terms: as stated in [4, 5], ideally, the couplings whose
running one wants to study should be defined directly in terms
of such observables. However, most of the actual work on
Asymptotic Safety is based on the running of parameters in
the Lagrangian, that are not directly observable or not even
directly related to observables. Assuming that this notion makes
sense, measurement of the S matrix at the Planck scale and
beyond would give the most direct and unambiguous test of
Asymptotic Safety. Unfortunately, neither the theoretical nor
the experimental sides of the comparison are available. In
settings with extra dimensions, scattering cross sections have
been calculated within the framework of RG improvement [304–
306], see section 7.4 for a discussion of the potential pitfalls of
this procedure. With current technology, these observables are
also unlikely to ever be measured. Furthermore, the postulate of
an asymptotically flat background leaves out many situations that
are of interest in the context of quantum gravity.

6.2. Low-Energy Imprints
A second possibility, still closely related to the world of particle
physics, but not requiring Planckian energy, is the observation of
properties of the low-energy world that could carry an imprint
of asymptotically safe quantum gravity. One can distinguish two
sub-cases, that we shall refer to as “higher-order observables” and
“marginal observables.” Both sets of observables are most directly
calculable if one assumes a “great desert” between the Planck
and the Fermi scale. Else, one requires a specific model for the
intervening physics.

(i) The high energy theory will leave traces in the low energy
effective field theory in the form of higher order operators
that are suppressed by inverse powers of the high scale.
In particular, higher-order matter self-interactions are very
likely both non-vanishing and irrelevant in the UV, if an
asymptotically safe matter-gravity fixed point exists [307–
312]. This results in predictions for these higher-order
couplings in the IR. The separation of scales between the
Planck scale and IR scales is so large that, typically, these
quantum-gravity effects are unmeasurably tiny. Still, one may
hope that there exists a signature that is forbidden in any non-
gravitational process and that becomes detectable under rather
unexpectedly favorable circumstances.

(ii) The other, significantly more promising, possibility is that
some gross features of the low energy world, probed
at present or future colliders and linked to canonically
marginal couplings, i.e., dimensionless operators, could be
directly “explained” by properties of a UV-complete quantum
theory of gravity and matter. This is due to the fact,
explained in section 3, that Asymptotic Safety may yield
more predictions than a perturbatively renormalizable model.
In the gravitational sector, this mechanism may not lead
to testable predictions: here only a handful of parameters
are experimentally accessible and there are essentially no
constraints on the value of the curvature-squared couplings.
In the matter sector, this picture changes completely. In
this case literally thousands of observables are available,
depending on at least two dozen free parameters. Some of
these canonically marginal couplings could become irrelevant
directions of an asymptotically safe gravity-matter model.
First tentative hints have been obtained in this direction,
for example a proposed scenario for a prediction of the
Higgs mass [313] and a calculation of the top mass [178],
the Abelian gauge coupling [194, 314] and the bottom mass
[315]. These are obtained in comparatively small truncations
and are subject to the assumption that Euclidean results
carry over to Lorentzian gravity-matter systems. These are
of course not “smoking guns” for Asymptotic Safety, but it
is not unreasonable to expect that a microscopic description
of quantum gravity constrains the features of a matter
sector that can consistently be coupled to it. Indeed, the
swampland program in string theory is based upon the
same assumption. Ultimately, one could hope to arrive at an
extended list of calculable properties of matter models from
various quantum gravity theories, allowing to rule out some
of the latter observationally without the need to probe Planck-
scale physics directly. It therefore seems worthwhile to more
systematically develop the predictions that an asymptotically
safe theory of gravity and matter can make for low-energy
observables. In particular, the dark-matter sector could allow
to make genuine predictions [316–318], in contrast to the
consistency tests that the already measured properties of the
Standard Model provide. We shall discuss in section 7.1 how
such effects could be calculated.

6.3. Asymptotically Safe Cosmology
The third class of observations is related to cosmology. As long
as a Friedmann-Robertson-Walker (or some other) background
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is a good approximation, there is a well-developed machinery
for the treatment of fluctuation correlators [319]. At the
formal level, observables in quantum gravity are given by
integrated correlators, for example spacetime integrals of n-point
correlations of the Ricci scalar

O
(n)
R = 〈

∏

i

∫
d4xi

√
g(xi)R(x1) · · ·R(xn)〉 . (18)

Naturally, while the spacetime dependent curvature fluctuations
in Equation (18) are not observables themselves, they
carry the physics information encoded in its spacetime or
momentum-scale dependence.

Inflation is believed to occur at sub-Planckian energies, but
it may be close enough to a fixed-point regime to be directly
influenced by it. Further, in settings like Starobinsky inflation,
higher-order operators in the gravitational theory actually drive
inflation. Along this line, it was explored in [177] whether
the freedom in the R2 coupling offered by Asymptotic Safety
can be used to realize Starobinsky inflation giving power
spectra compatible with present observations. Moreover, there
are some tentative hints that quantum-gravity effects typically
drive scalar potentials toward flatness, see, e.g., [182, 299, 316],
and generally impose strong constraints on the inflationary
potential that is usually introduced in a rather ad-hocmanner, see
also [320]. In a more unorthodox approach to early cosmology,
the idea is being explored that quantum gravity directly solves
the horizon, flatness and monopole problems and generates
the appropriate spectrum of fluctuations without the need for
additional degrees of freedom together with an ad-hoc potential.
In particular, in [321] it has been demonstrated that an action
including all gravitational four-derivative invariants leads to
the suppression of spacetime configurations with an initial
singularity as well as anisotropies and inhomogeneities. In the
early universe the usual flat space QFT machinery is not available
and one has to use different observables that are geared to high
temperature/high curvature situations. Then one may hope that
features of the fixed point such as scaling exponents and OPE
coefficients - that in statistical physics are generally considered
measurable physical quantities - could leave an imprint in these
cosmological observables.

Similar to quantum effects in QED encoded in the Euler-
Heisenberg Lagrangian and its higher-loop extensions, quantum
effects in gravity are encoded in the full effective action, including
its non-local parts. The potential dynamical importance of non-
localities for cosmology, e.g., in the context of dynamical dark
energy, has been emphasized in [201].

6.4. Remarks
As with other situations where non-perturbative physics is
involved, one could try to cross-check results obtained with
continuum QFT methods with lattice studies. It is worth
mentioning that also in lattice approaches to quantum gravity,
observables are very hard to define and especially to implement
in the simulations, see, e.g., [322] for encouraging recent results.
This is in stark contrast to the large number of observables

that can be defined in the presence of an asymptotically
flat background.

Finally, let us recall that in other approaches to quantum
gravity such as LQG, “geometrical” observables such as lengths,
areas, volumes, and curvatures have played an important role.
These have also been discussed to some extent in Asymptotic
Safety, [323], and can be computed with a flow equation for
composite operators [90, 324–329]. While presently it is not clear
what type of measurement is required to access such observables,
they can be used to explore whether different approaches to
quantum gravity give rise to universal physical results. Further,
such geometrical observables have been used in [330] to set up a
physical renormalization scheme.

7. RELATION OF ASYMPTOTIC SAFETY TO

THE EFFECTIVE-FIELD THEORY

APPROACH

7.1. Asymptotic Safety and Effective Field

Theory

...where we discuss the relation of the EFT framework to Asymptotic

Safety and also outline a strategy how to devise approximations in

which the link between the two descriptions can be established in

practice.

The framework of EFT is pervasive in modern particle physics.
EFT is based on an expansion in E/M, where E is the typical
energy scale of the experiment, andM is the scale above which the
EFT description may no longer be meaningful. In EFT, one finds
that higher loop corrections are suppressed by higher powers
of E/M, so that the tree level and one loop are usually enough
to explain most of the phenomenology, provided the system is
indeed perturbative in nature, as happens to be the case in many
particle-physics applications. Physical predictions are possible
even when the theory is not perturbatively renormalizable,
as long as one considers only low-energy observables and
assumes that the dimensionless counterparts of all couplings are
roughly ofO(1).

Einstein gravity is a paradigmatic example of this point of
view. It is perturbatively non-renormalizable, but one can still
reliably compute observables in perturbation theory, as long as
they are not affected by the higher-derivative terms in the action,
whose coefficients are not calculable. This is the case for some
non-analytic parts of scattering amplitudes. The calculation of
the quantum corrections to the Newtonian potential is the most
reliable calculation ever performed in quantum gravity [331]. It is
also the most accurate, since the separation of scales between the
characteristic scale of the theory (the Planck scale) and the scale
where one performs experiments (even at the LHC) is the largest
of any EFT, so that loop corrections are suppressed by enormous
factors. In this way, every test of Einstein’s GR is also a test of this
EFT of gravity.

In view of this, the motivation for asymptotic safety is two-
fold: first, to have predictions for what happens at and beyond the
Planck scale and second, the promise of increased predictivity,
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in particular also at lower energies. This is especially desirable
in the presence of standard-model or beyond-standard-model
matter which is or might be detected in present and future
colliders or, e.g., in dark-matter detection experiments. We stress
again that the enhanced predictivity comes from the fact that
asymptotic safety selects a class of RG trajectories which are
expected to be parametrized by only a few free parameters. In
principle, all the remaining coefficients in the effective action are
calculable, including the coefficients of local higher dimensional
operators that appear perturbatively divergent and are therefore
not calculable in the EFT.

When one follows a realistic RG trajectory from the UV fixed
point, crossing the Planck scale and moving toward the IR, one
must eventually arrive in the immediate neighborhood of the
free-theory fixed point of Einstein theory, which is the domain
where EFT is applicable. In this regime, all the predictions of
EFT must still hold true. Indeed, in the FRG formalism, the loop
expansion can be reconstructed systematically by expanding the
right-hand side of the equation in powers of h̄, cf. Equation (7).
This is usually not done, because there are already other methods
that are perhaps better suited for this task; but in principle, the
FRG can reproduce all the results of the EFT in this way.

In practice, constructing a flow that links the description of the
fixed point, whichmight ormight not be near-perturbative, to the
perturbative low-energy regime after potentially passing through
a more strongly-coupled transition regime, is a challenge. A
possible strategy to deal with this complex problem is to figure
out which parts of the flow can be captured by perturbation
theory, and then use different tools (perturbation theory, one’s
favorite FRG approach) in the respective regime so as to
obtain maximally reliable predictions of the observables. In
order to link the description in terms of the FRG for the
effective average action Ŵk to the perturbative EFT setup, one
needs to calculate Ŵk=M , where M is the scale at which a
perturbative description becomes possible. This procedure has
been performed and carefully checked in QCD, where we flow
from an asymptotically free theory of quarks and hadrons in the
ultraviolet to chiral perturbation theory and low energy effective
models in the infrared.

First steps toward using the FRG to derive the effective
action of quantum gravity and matter systems have been
taken in [332, 333]. Such calculations overlap significantly with
EFT calculations.

Investigations in low energy effective theories are typically
based on the Wilsonian action Seff,3 (regularized with a UV
cutoff) both in QCD and in standard perturbative low energy
EFT approach which is used in collider physics. The Wilsonian
action is the generalized Legendre transform of the effective
average action [88, 89] and obeys the Polchinski equation [334].
So far, the Wilsonian action has been less used in asymptotic-
safety investigations, but it could help to compare to results
obtained from collider measurements of scattering observables
for its closeness to low energy effective theories. These works can
be based on recent proposals in [335, 336] for the flow of the
Wilsonian action based on proper time regulator schemes [336].

The choice of truncation used for the effective average action
down to the scale M might be crucial to correctly encode the
various consequences of the UV fixed point, both in the matter

and gravity sector. Ŵk=M or Seff,3=M provide the initial condition
for a subsequent perturbative calculation at one or two loops; of
course, also RG schemes would need to be matched for precision
calculations. The perturbative part of the RG evolution gives
rise to the non-localities in Ŵk→0 and all IR effects which are
necessary to include to correctly describe observables. In this
way, the FRG and perturbation theory can be used concertedly
in order to link the UV fixed point to observable physics
in the IR (see also section 5.3), and the use of different RG
equations (Wetterich and Polchinski) would offer non-trivial
consistency checks.

7.2. Effective vs. Fundamental Asymptotic

Safety

...where we discuss why an asymptotically safe fixed point could

matter even if the deep UV of quantum gravity is described by a

completely different theory.

The RG fixed point underlying asymptotic safety features
infinitely many infrared attractive directions. Therefore, a fixed
point can serve various purposes in different scenarios: (1)
it can be the UV starting point of an RG trajectory, (2)
it can be the IR endpoint of an RG trajectory, (3) it can
generate an intermediate scaling regime at finite scales. The latter
option can play a role in settings where a more “fundamental”
description of quantum gravity holds at small distance scales,
i.e., beyond a finite momentum cutoff kUV. Indeed, for k <

kUV, an effective description (with the metric as the effective
gravitational field—not necessarily in the sense of perturbative
EFT) holds, i.e., we are in the theory space of asymptotically
safe gravity. The more fundamental description provides the
initial condition for the RG flow at kUV. If the initial condition
satisfies a finite number of conditions related to the relevant
directions of the fixed point, the flow will pass close by the
fixed point and exhibit an approximate scaling regime over
a finite range of scales. The flow toward the deep IR will
then closely resemble that of an actual fixed-point trajectory,
resulting in essentially the same predictivity [337], see [338] for
a general discussion and [339] for a discussion in the context of
string theory.

In this sense, an asymptotically safe fixed point can play a role
in an EFT setup for gravity, and serve as a way to extend the
regime of validity of the standard perturbative EFT framework.

7.3. The Structure of the Vacuum

...where we caution that the true ground state of gravitymight not be

a flat background, making the bridge to the EFT setting potentially

more intricate. This question has so far only been addressed within

a severe approximation of the dynamics and degrees of freedom.

The EFT approach to quantum gravity typically quantizes (small)
fluctuations about a flat background. To link asymptotic safety
to the EFT regime, one must therefore explore whether a flat
background is a self-consistent choice, i.e., whether the flat
background corresponds to the ground state of the theory. Here,
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we should highlight that the ground state should of course be
determined from the full gravity-matter system.

To date the only explicit investigation of the vacuum structure
of asymptotically safe gravity based on the effective action
Ŵk=0 has been performed within the conformally reduced R +
R2-approximation11 and a layered structure of the effective
spacetime has been found within this simple truncation
(borrowing terminology from a vacuum model of Yang Mills
theory, it has been termed “lasagna vacuum”) [340]. Thereby the
spatial modulation of the metric cures the notorious conformal
factor instability generating a phase similar to those present also
in higher-derivative low-dimensional condensed matter systems.

While this proposed vacuum structure has only been found in
a severe approximation of the dynamics and degrees of freedom,
this can be read as a firm warning regarding all backgrounds
that are not shown to be solutions of the effective field equations.
They are of no physical relevance and might convey an incorrect
general picture. In particular, one typically expects truncations
to converge faster when the field configurations are expanded
about the true ground state of the theory—an expectation that
can be tested within, e.g., the O(N) model. On the other hand,
it is crucial to remark that a spatially modulated ground state
appears to be difficult to reconcile with stringent tests of Lorentz
symmetry in the gravitational and the matter sector. Further,
while the conformal approximation could suffice to capture the
presence of a fixed point, it is to be expected that the inclusion of
spin-2 modes will have a strong impact on such studies.

Moreover, the importance of properly accounting for
the (k-dependent) ground state in studies of the flow is
emphasized in a recent background-independent re-analysis of
the cosmological constant problem allegedly caused by quantum
vacuum fluctuations. Paying careful attention to identifying the
correct ground state, the often discussed naturalness problem
disappears, see [198].

Understanding the ground state of the theory at k = 0 is
important. It is expected that since 3k = λ∗k2 → ∞ in the
quantum regime governed by the Reuter fixed point, the self-
consistent metrics (cf. section 3.5) ḡsc

k→∞ ∝ k−2 will display
increasing and ultimately diverging curvature. It is an open
question how this manifests itself at the level of Ŵk→0 and its
effective field equations. Whether this is an unphysical effect and
only present at large k or whether it translates into a physical scale
dependence is presumably important for questions of singularity
resolution in black-hole spacetimes and the early universe. More
generally, accounting for true vacuum of the theory, with the help
of the self-consistent background is important for a quantitatively
precise exploration of the phenomenological implications of the
quantum-gravity effects.

7.4. RG Improvement

...where we critically review and discuss the procedure of RG

improvement, discuss its interpretation as “quantum-gravity

11In this approximation, only fluctuations of the conformal factor are taken into

account. Quite surprisingly, this appears to suffice to generate an asymptotically

safe fixed point in simple truncations [189], contrary to the expectation that the

important degrees of freedom in gravity are the spin-2 ones.

inspired” phenomenology, and caution regarding the quantitative

reliability of this tool.

Since the task of calculating the effective action Ŵk→0, including
its non-local contributions, is an extremely challenging one,
one may hope to extract qualitative information on the effects
of quantum fluctuations by applying the procedure of “RG
improvement” in gravity. In section VI.A, we have already
defined what is meant by RG improvement in a perturbative
context. Proceeding in a similar way in a gravitational context,
it has been a common strategy to retain the dependence of
some of the couplings, Gk and 3k say, on the RG scale k and
identify the latter with a geometrical quantity or momentum.
Based on such RG improvement ideas there is a substantial body
of work investigating black-hole physics [341–355], gravitational
collapse [356–362], and cosmological scenarios [320, 360, 363–
376] inspired by Asymptotic Safety. One might expect that this
procedure could be justified in some cases where the external
scale in question acts as an IR cutoff for fluctuations.

The “improvement” could be applied at different stages, for
instance, at the level of the action or the field equations, or
of the solution of the field equation. This freedom already
implies that this procedure could lead to ambiguous results. As
an example, we may consider the RG-improvement procedure
based on the effective average action approximated by the
Einstein-Hilbert action,

Ŵk =
1

16πGk

∫
d4x

√
g[23k − R] . (19)

Dimensional analysis implies that at the fixed point Gk = g∗k−2,
3k = λ∗k2. Identifying k2 with the Ricci scalar and substituting
the result back into Equation (19) leads to a higher-derivative
R2 action. This is precisely what one would expect for the fixed-
point action for an f (R) theory in the large R limit. Indeed RG
improving any f (R) theory in the same way results in an R2

action, as expected from classical scale invariance. Thus the scale
identification generates interactions that have a natural place in
the effective action (Equation 17). However, this can lead at most
to qualitative insights, as is made clear, for example, by the fact
that even the simple identification k2 ∼ R can only be made up
to some arbitrary numerical factor.

To understand better whether an RG improvement is justified,
let us consider some classic QFT examples, and contrast them
with their gravitational counterparts. The Uehling potential in
QED is probably the paradigmatic example: the correct form
of the one-loop potential between two point charges can be
obtained by inserting the one-loop form of the running coupling
in place of the classical coupling and identifying the RG scale
with the Fourier momentum of the static potential between
the point charges. Conversely, one can read off the screening
nature of the QED coupling from the one-loop effective action.
Similarly, the Coleman-Weinberg effective potential is obtained,
in a classically scale-invariant theory, by replacing the classical
quartic scalar coupling by its one-loop counterpart, evaluated
at a renormalization scale k ∼ φ. This is justified, insofar as
the classical VEV of the scalar is the only scale in the problem.
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Similar considerations have also been applied to non-Abelian
gauge theories [377–379].

Coming closer to gravity, a recent example in curved space
where RG improvement works, is the case of interacting
conformally coupled fields in de Sitter spacetime. A correlator
evaluated at the fixed point can be related to a CFT correlator in
flat space by a Weyl transformation. Then, the late time power-
like behavior of correlators can be obtained as a resummation
of secular terms controlled by the anomalous dimensions in flat
space, with an RG improvement at the renormalization scaleµ =
H [380], where the Hubble scale H of the de Sitter background is
the only non-trivial scale in the problem.

Even more relevant for us, the running of G and the quantum
corrections to the Newtonian potential due to a scalar field loop
have been compared in [381]. They find that in general the
RG improvement gives the expected qualitative behavior, and
also reproduces the correct numerical coefficients for minimal
coupling (ξ = 0) or conformal coupling (ξ = 1/6).

The reason why all these examples work (at the quantitative
level) is the logarithmic running of the coupling. It is particularly
instructive to compare the Uehling potential with the analogous
calculation in gravity. In the calculation of [381], the running
of G is logarithmic and proportional to the mass of the scalar
field. This gives a result that is in agreement with the quantum
correction to the potential. On the other hand, if one extracts
the (quadratic) running of G from the FRG, and tries to derive
the analog of the Uehling potential from there, one gets a term
with the opposite sign of the quantum correction calculated in
EFT [331]. This is a clear failure of the RG improvement: the
EFT calculation gives a screening contribution, whereas the FRG
seems to give an antiscreening one, as required by asymptotic
safety. The situation has been clarified in part in [119]: due
to the use of the background field method, there are different
ways of defining Newton’s coupling that have different types of
behavior at low energy (where the EFT result holds) and at high
energy, where one is assumed to approach a fixed point. However,
this leads us back to the issue of the shift Ward identities,
cf. section 3.5 that, as discussed earlier, does not currently have
a satisfactory solution.

In conclusion, physical quantum effects in an asymptotically
safe theory have to be calculated, as in any other QFT, from the
effective action, where all fluctuations have been integrated out.
We stress that the results one obtains from the RG improvement,
e.g., for black holes or the early universe, cannot be viewed as
actual derivations from a fundamental theory of quantum gravity,
but should still be viewed as “quantum-gravity-inspired models,”
providing qualitatively sensible, though not necessarily precise,
answers in some cases where there is a clearly identifiable single
scale in the problem.

8. SCALE SYMMETRY AND CONFORMAL

SYMMETRY

8.1. The RG as Scale Anomaly

...where we clarify the meaning of scale symmetry in the context of

asymptotic safety.

A point that tends to generate confusion concerns the
interpretation of the RG flow as an anomalous breaking of
scale invariance. It may seem puzzling that the asymptotic safety
program claims (quantum) scale invariance even though Ŵk
contains dimensionful couplings. The goal of this section is to
clarify this point. We follow [382], see also [284], section 6.9 12.

Consider a perturbatively renormalizable QFT, with an
interaction term uO ≡ u

∫
d4xL, where L is a dimension-four

operator and u a dimensionless coupling. If there is no mass
term, the theory is scale invariant under the standard realization
of scale transformations which act on the fields but not on the
couplings. In the quantum theory, however, scale invariance is
broken by the beta function

δǫŴ = −A(ǫ) ∼ −ǫβu O . (20)

Here ǫ is the infinitesimal parameter generating the
transformation, δǫgµν = 2ǫgµν , etc. and A(ǫ) is the trace
anomaly which can be formally seen as due to non-invariance of
the functional integration measure. At a fixed point βu = 0 and
scale invariance is recovered.

Equation (20) can be generalized to the Wilsonian RG. In this
case there is an additional term coming from the presence of an
explicit momentum cutoff which is given by the “beta functional”
defined in Equation (5):

δǫŴk = −A(ǫ)+ ǫk∂kŴk . (21)

For the effective average action given in Equation (1) one finds
that the anomaly is given by [382]

A ∼ ǫ
∑

i

βui k
di Oi , (22)

where di is the canonical mass dimension ofOi. AgainA vanishes
at a fixed point. Nevertheless, the standard realization of scale
invariance, acting on fields only, is broken due to the extra term
in Equation (21)

δǫŴk ∼ ǫ
∑

i

di ūi Oi . (23)

There is however an alternative realization of scale invariance
acting on both the fields and the cutoff. Here the transformation
of the fields remaining unaltered δ̂ǫgµν = 2ǫgµν , etc. while

the cutoff transforms as δ̂ǫk = −ǫk. Under this alternative
realization,

δ̂ǫŴk ∼ −A(ǫ) , (24)

which vanishes at a fixed point.
In conclusion, we see that in a “Wilsonian” formulation of the

RG, quantum scale invariance is realized at a fixed point, albeit
with respect to a different implementation of rescalings than the
one generally used in particle physics.

12Here we discuss global scale invariance. It has been shown that local scale

invariance can be maintained in the RG flow provided a dilaton field is present

[383–385].
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8.2. Black Hole Entropy

...where we discuss an argument against a QFT for gravity based

on black-hole entropy and point out where assumptions are being

made which require further investigation.

Aharony and Banks [386] and Shomer [387] presented a chain of
arguments indicating that a quantum-field theoretic description
of gravity in four dimensions cannot be UV complete. In short,
this chain proceeds along the following lines. First, it is assumed
that, at high energies, the density of states in quantum gravity
is dominated by black holes, which also goes by the name of
“asymptotic darkness.” Black hole thermodynamics, building on
quantum field theory on a curved background, implies that the
leading term in the entropy S of the black hole is proportional
to the area A of its horizon. For a d-dimensional Schwarzschild
black hole

S ∝ A ∝ M
d−2
d−3 (25)

where M is the ADM mass of the black hole. Identifying M with
a typical energy scale E, the asymptotic darkness hypothesis then
suggests that the number of states available at high energy should
scale as

SBH ∝ E
d−2
d−3 (26)

In four dimensions this implies that SBH ∝ E2. On the other
hand, the degrees of freedom of a conformal field theory (CFT)
living on a d-dimensionalMinkowski space follow the scaling law

SCFT ∝ E
d−1
d (27)

which in four dimensions becomes SCFT ∝ E
3
4 . The mismatch

between the density of available states Equations (26) and (27)
is then taken as an indication that the high-energy completion
of four-dimensional gravity cannot be given by a conformal
field theory.

We now critically review the assumptions entering into this
chain of arguments:

(1) Scales involved in the problem:
Seeing quantum-gravity effects in scattering events requires
going to large energies and small impact parameters relative to
the Planck scale. This is not the same as considering just trans-
Planckian energies: the energy involved in the merger of two
astrophysical black holes clearly exceeds the Planck mass mPl ≈
10−5g by many orders of magnitude. Nevertheless, classical
general relativity provides a very accurate description of these
events, for which the impact parameter is large compared to the
Planck length.

(2) The asymptotic darkness hypothesis:
The idea of asymptotic darkness relies on the hoop
conjecture [388] which states that scattering at sufficiently
high energy results in black-hole formation. While numerical
simulations confirm this expectation in classical gravity
[389, 390], a corresponding study in the quantum case is lacking,
see also the discussion in [391]. When phrased in terms of the
effective action (Equation 17), it is expected that the form-factors

W(1) (or, more generally, the 1PI vertices) will play a central role
in correctly describing scattering processes at trans-Planckian
scales. Currently, little is known about these effects though, and
it is an open question whether or not Planckian scattering in
asymptotically safe gravity does or does not lead to black-hole
formation. In [392], it has been proposed that black-hole
formation in Planckian scattering is a key property of gravity that
allows the theory to self-unitarize (classicalisation). Whether this
has anything to do with asymptotic safety is an open question.
See [393, 394] for related discussions in the context of non-linear
sigma models.

(3) Corrections to the entropy formula:
The semi-classical area law (Equation 25) is a good
approximation for large black holes. It receives further
corrections from quantum gravity though. Logarithmic
corrections were determined in [395], indicating that

S = A

4G
− 3

2
log

(
A

4G

)
+ · · · (28)

Clearly, these corrections become increasingly important for
small (i.e., near-Planckian) black holes, see, e.g., [395–398]. Thus,
it is a priori unclear if the simple scaling law (Equation 25) is
applicable in the quantum gravity regime.

(4) Dimensional reduction of the momentum space:
A critical point in extending scaling arguments to quantum
gravity is the identification of the correct notion of
dimensionality which actually controls the scaling laws. While
in flat Minkowski space there is just the dimension of spacetime
d, fluctuating spacetimes are typically characterized by a whole
set of “generalized dimensions” (spectral dimension, Hausdorff
dimension, etc.) which do not necessarily agree. In particular,
a rather universal result about quantum gravity [399, 400]
indicates that the dimension of the theory’s momentum space
(spectral dimension) undergoes a dimensional reduction to
ds = 2 at energies above the Planck scale. In [401], it was
argued that such a mechanism could constitute a potential way
to reconcile the semi-classical scaling in gravity with the scaling
of states in the conformal field theory. In order to make such
proposals robust, it is important to identify the proper notion
of dimensionality which controls the scaling of the quantity of
interest. In the context of black hole thermodynamics, it has
been suggested that this could be achieved with the “Unruh
dimension” [402] governing the scaling laws in the black-hole
evaporation process.

(5) Entropy of asymptotically safe black holes:
The entropy of black holes in asymptotic safety has been
investigated in [342, 345, 346, 351] based on RG improvement
techniques (the cautionary remarks regarding RG improvement
from section 7.4 apply in this case). One outcome of this
investigation was that the entropy of Planck-size black
holes follows the Cardy-Verlinde formula [351] indicating
compatibility with a conformal field theory description.
Concerning macroscopic black holes, the semi-classical
result for the black-hole entropy can presumably be
understood entirely in terms of the entanglement entropy
of matter fields living on the black-hole background
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geometry [403], see [404] for a comprehensive review, and
[405, 406] for discussions in the context of the FRG and
asymptotic safety.

In conclusion, combining semi-classical arguments based on
the asymptotic darkness hypothesis and conformal field theory
in flat space gives rise to results in tension with the asymptotic-
safety conjecture. It is clear that much more work is needed in
order to actually show that these arguments also apply in the
framework of quantum gravity.

9. UNITARITY

9.1. General Remarks

...where we point out that the concept of unitarity in quantum

gravity is way more subtle than for a quantum field theory on flat

Minkowski space.

Conservation of probabilities is a cornerstone of quantum
mechanics. For a QFT in a flat Lorentzian background, this
feature is reflected by the S matrix, connecting the initial
state and the final state of a physical system, being unitary.
Starting from a QFT defined on a Euclidean signature spacetime
the Osterwalder-Schrader axioms [407, 408], including the
requirement of reflection positivity, guarantee that the theory has
an analytic continuation to a unitary QFT.

Notably, it is highly non-trivial to generalize the concept
of a unitary S matrix to more general backgrounds [409] or
to the gravitational interactions [410, 411]. Examples for such
generalizations are the local S matrix in de Sitter space studied
in [412] or the one recently constructed in [413].

Along a different line, the existence of unphysical modes such
as tachyons, negative norm states, etc., in a given background
ḡµν does not automatically signal the inconsistency of the
theory. It may just indicate the instability of this particular
background13. As an example, [340] highlights how a non-
standard background removes the conformal-mode problem in
the Euclidean path-integral. From a phenomenological point of
view, a minimal requirement is to impose that cosmologically
relevant backgrounds of Friedman-Lemaitre-Robertson-Walker-
type are stable on cosmic time-scales.

An important indicator that asymptotically safe gravity
could indeed be unitary comes from the causal dynamical
triangulations (CDT) program. Here one finds that the (two-
step) transfer matrix connecting spacial slices at different time-
steps is self-adjoint and bounded [414, 415], indicating that
it satisfies the requirement of reflection positivity. Since the
analytic continuation to Lorentzian signature is well-defined in
CDT, the resulting Hamiltonian in the Lorentzian setting is self-
adjoint. Under the preconditions that this feature survives in
the continuum limit and that CDT indeed probes the Reuter
fixed point, this indeed points toward Asymptotic Safety being
a unitary theory.

13This is a well-known situation, for instance, in scalar theories, where an

expansion about a saddle point of the potential leads to tachyonic instabilities,

but does of course not signal an inconsistency of the theory. For instance, in

inflationary scenarios these instabilities are key to the resulting physics.

These limitations should be kept in mind when
discussing unitarity in a background-independent, quantum
gravitational setting.

9.2. Flat-Space Propagators

...where we review Ostrogradsky’s theorem and its loopholes.

With the above cautionary remarks in mind, let us discuss
the gravitational propagator on a flat background. In the
presence of a finite number of higher-derivative terms, a partial-
fraction decomposition of the propagator reveals the presence
of additional modes. For example, a propagator derived from a
four-derivative theory yields

1

p2(p2 +m2)
= 1

m2

(
1

p2
− 1

p2 +m2

)
. (29)

The terms in the partial-fraction decomposition come with
alternating signs with the modes associated to the negative
residues corresponding to ghosts. In the case of physical fields
related to asymptotic states, this violates reflection positivity
[416]. The latter signals the violation of unitarity in the
Lorentzian theory and is related to a spectral function with
negative parts. The violation of unitarity is already present at the
classical level where it corresponds to an instability of the theory
according to Ostrogradsky’s theorem. Any non-degenerate
Hamiltonian with higher time derivatives of finite order
unavoidably features such an instability, see, e.g, the pedagogical
discussion in [417]. This directly implies that truncations to
finite order in momenta generically feature truncation-induced
instabilities and are not suitable to investigate the unitarity of
the theory.

There are three prominent ways to avoid the
Ostrogradsky instability:

1) Propagators consisting of an entire function with a single zero
at vanishing momentummay avoid the occurrence of negative
residues. This is the path taken by non-local ghost-free gravity
[418–421]. At the classical level, the well-posedness of the
corresponding initial-value problem has been discussed in
[422].

2) One can give up Lorentz invariance, introducing higher-order
spatial derivative terms while keeping two time-derivatives.
This is the idea underlying Hořava-Lifshitz gravity [230]
which, by construction, is a power-counting renormalizable,
unitary theory of gravity.

3) Accept that Nature allows for the violation of causality at
microscopic levels [423–426]. In this case, the degrees of
freedom associated with negative residues are interpreted as
“particles propagating backward in time.” If these particles
are sufficiently heavy this may not leave an experimentally
detectable trace.

We stress that in any case unitarity should be assessed based
on the propagators derived from the effective action Ŵk=0.
Propagators derived from the effective average action Ŵk at
intermediate k may feature artificial poles. Under the flow in
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k, the mass of a ghost might diverge so that the corresponding
degrees of freedom decouple, see [427].

9.3. Spectral Function of the Graviton

...where we discuss the consequences of potential negative spectral

weights of the graviton.

The ghost mode discussed in the last section 9.2 is but one
example for a spectral function that has negative spectral weights:
Evidently, the second term in parenthesis in Equation (29) leads
to a δ-function with negative prefactor in the spectral function
of the graviton. In asymptotically safe gravity the graviton
propagator is a general function of momentum. Consequently
the spectral function more generally may simply have
negative parts.

To begin with, negative spectral weights are a well-known
feature of the gluon spectral function in Yang-Mills theory: upon
the assumption of a spectral representation of the gluon, it
can be shown that its total spectral sum is vanishing due to
the Oehme-Zimmermann superconvergence relation [428, 429].
This relation already implies that in the asymptotically free
regime of Yang-Mills theory, the spectral function of the gluon
is negative for large spectral values. Indeed, the analytic form for
large spectral values can be computed within perturbation theory.
More recently it could also be shown by similar arguments
that the spectral function is also negative for small spectral
values [430].

These investigations highlight the fact that even the existence
of spectral representations for gauge fields with non-linear gauge
symmetries is an open issue. This is tied to the fact that these
fields are not directly related to asymptotic states even in regimes
where they heuristically can be interpreted as particles. In QCD
this is manifest in gluon jets at colliders. In the context of gravity,
this feature is intrinsic to the proposal made in point 3) of
the previous subsection: owing to their large mass, the states
associated with the negative residue terms do not correspond to
asymptotic states, see [431] for a recent discussion.

In summary, even if the spectral representation of a gauge
fields exists, it very well can—and in the case of the gluon
must—contain negative parts. Evidently, this adds significantly
to the already discussed intricacies of discussing unitarity
and the interpretation of positivity violations in quantum
gravity: negative spectral weights may be present without
spoiling unitarity but clearly their presence casts doubts on
unitarity. This situation asks for the investigation of the spectral
representation of correlations of well-defined diffeomorphism-
invariant observables, see section 6.

9.4. Interpretation of Potential Ghost

Modes

...where we refer back to the concept of effective asymptotic safety

discussed in section 7.2 and discuss the interpretation of the masses

of unstable graviton modes in this context.

Future studies of unitarity may reveal that asymptotic safety
features physical ghost modes and hence is not a unitary
fundamental QFT. Even in this case, an asymptotically safe fixed
point can still play a role within the setting described in section 6,
and serve as an extension of the EFT regime for gravity. Then,
the asymptotically safe description in this setting could inherit
unitarity from the more “fundamental” description. In particular,
the asymptotically safe setting can in this case exhibit unstable
modes, with masses m > kUV—these signal the need for a
more “fundamental” description. Conversely, the masses of ghost
modes can be used as an estimate for the scale of new physics.

9.5. Remarks
In summary, it is currently unclear whether or not asymptotically
safe gravity is unitary, it shares with other approaches to quantum
gravity. The question combines both conceptual and technical
challenges in quantum gravity: there is the conceptual question
of the complex structure of correlation functions in the presence
of a dynamical metric field, as well as the necessity of non-
perturbative numerical computations in Lorentzian signature. As
already emphasized in section 6, cross-checks between quantum-
gravity approaches and the concerted use of more than one
method are called for.

10. LORENTZIAN NATURE OF QUANTUM

GRAVITY

...where we highlight the expected fundamental difference between

Lorentzian and Euclidean quantum gravity and explain why the

flow equation is typically set up in a Euclidean setting.

Hitherto, the bulk of the Asymptotic Safety literature employs
background spacetimes carrying Euclidean signature metrics.
This brings two technical advantages: Firstly, Euclidean signature
entails that the squared momentum of the fluctuation fields is
positive semi-definite. Thus it is straightforward to define the
“direction of the RG flow,” first integrating out fluctuations with
a large squared momentum before successively moving toward
lower values. Secondly, the regulated propagators do not exhibit
poles, as the particle cannot go on shell.

For a QFT defined on flat Euclidean space R
d, one can

carry out the computation and analytically continue the results
to Lorentzian signature by a Wick rotation. In the context of
quantum gravity, including Asymptotic Safety, this strategy is
very challenging for several reasons listed below, part of which
has been already discussed in detail in section 9.

1. A generic background metric may not admit a (global) Killing
vector which lends itself to an analytic continuation to a
well-defined Lorentzian time direction [432].

2. The complex structure of the full graviton propagators may
obstruct the simple analytic continuation of the Euclidean
propagator, for example there may very well be cuts touching
the Euclidean axis. Within the FRG this is complicated further
as a momentum regularization either breaks the underlying
(global) spacetime symmetry or leads to additional poles
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and/or cuts [433]. There has been much progress in the past
years on this in standard QFTs, see e.g., [433–438], but the
extension to asymptotically safe gravity has not been put
forward yet.

3. At the structural level, there are solid arguments to expect
that the effective actions obtained from integrating out
fluctuations in a Lorentzian and Euclidean signature setting
will be different. Firstly, the space of metrics of the two
settings comes with different topological properties: while all
Euclidean metrics can be connected by geodesics (defined
with respect to a suitable connection) this property does not
hold in the Lorentzian case [439]. Secondly, the heat kernels
for differential operators constructed from a Euclidean and
Lorentzian signature metric differ by non-local terms [440].
While the latter do not affect the singularity structure of
the heat kernel underlying perturbative renormalization, they
may lead to differences in Ŵ.

A way to address the first point comes from studying Asymptotic
Safety in the Arnowitt-Deser-Misner (ADM) formalism. In this
case, spacetime has a built-in foliation structure which defines a
natural time direction. A first investigation of Asymptotic Safety
in this framework has been performed in [441] and further
developed in a series of works [226, 442–448]. This provided first-
hand indications that the asymptotic-safety mechanism remains
operative for Lorentzian signature metrics as well, at least within
very small truncations. At this stage the computations in the
Lorentzian signature framework have not reached a level of
sophistication where the structural differences outlined in point
(3) can be resolved. In general, the systematic development of the
FRG applicable to Lorentzian signature spacetimes is a research
area to be developed in the future.

This point could in the future become another example for
the progress that can become possible if tools and concepts
from various quantum-gravity approaches are brought together.

Specifically, causal set theory [see [449] for a review], at least
when restricted to so-called “sprinklings,” can be viewed as a
discretization of the Lorentzian path integral over geometries. See
also [450]. This motivates the search for a universal continuum
limit, linked to a second-order phase transition in the phase
diagram for causal sets. Monte Carlo studies of the phase diagram
for restricted configuration spaces in low dimensionalities can be
found in [270–273].
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