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ABSTRACT
QUANTUM ESPRESSO is an open-source distribution of computer codes for quantum-mechanical materials modeling, based on density-
functional theory, pseudopotentials, and plane waves, and renowned for its performance on a wide range of hardware architectures, from
laptops to massively parallel computers, as well as for the breadth of its applications. In this paper, we present a motivation and brief review
of the ongoing effort to port QUANTUM ESPRESSO onto heterogeneous architectures based on hardware accelerators, which will overcome the
energy constraints that are currently hindering the way toward exascale computing.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0005082., s

I. INTRODUCTION

The goal of this manuscript is to describe recent and ongoing
work on the QUANTUM ESPRESSO software distribution for first-
principles atomistic simulations. We focus, in particular, on the
challenges posed by the new heterogeneous architectures, based on
multi-core chips enhanced with multiple hardware “accelerators,”
coupling exceptional performances to an acceptable energy con-
sumption. The large-scale adoption of these emerging architectures
across different classes of computing systems will bring a paradigm
shift into scientific computing, similar to what vector machines
caused in the 1980s, parallel machines in the 1990s, and massively
parallel machines more recently.

This paper is organized as follows:
In Sec. II, we briefly describe the history and the current status

of QUANTUM ESPRESSO. We give a short overview of its features and
capabilities by mostly referring to the relevant literature.

In Sec. III, we describe the challenges posed and opportunities
offered by heterogeneous architectures. The opportunity is to reach
what is dubbed “exascale computing”: an unprecedented amount
of computer power, opening new perspectives to computer simu-
lations. The challenges, for scientific software, in general, and for
QUANTUM ESPRESSO, in particular, are unprecedented as well. The
amount of needed changes is much larger, and the effects of
changes much deeper, than in previous transitions to vector, parallel,
and massively parallel architectures. Moreover, several competing
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architectures are hitting the marketplace, each one coming with a
different software stack and tools.

Section III A describes ongoing work toward performance
portability, that is, the ability to obtain comparably high per-
formances on different computer architectures, minimizing the
need for maintaining hardware-specific code versions. The work
described in Section III A, which focuses on low-level libraries,
would, however, be futile without more work at a higher level, aimed
toward future maintainability of a large and complex scientific
software project.

Section III B deals with recent and ongoing work aiming at a
sustainable development model, that is, restructuring codes in a way
that makes them easier to maintain, to extend, and especially to port
to other architectures in a foreseeable future.

Section III C describes the current status, capabilities, and some
benchmarks for QUANTUM ESPRESSO on NVIDIA graphics process-
ing units (GPUs), one of the leading candidate architectures for the
future “exascale computer.” The benchmarks are designed for rela-
tively small machines and do not aim at showing performances on
large-sized systems. They aim instead at pointing out bottlenecks,
inefficiencies, and the minimum size of calculations that saturate the
computational power of a GPU.

Finally, Sec. IV contains our conclusions: a brief analysis of the
achieved results and an outlook on forthcoming actions.

II. QUANTUM ESPRESSO AT THE TURN
OF THE TWENTIES

The QUANTUM ESPRESSO project was started in 2002, with the
merger of the following three packages for density-functional the-
ory (DFT) simulations using plane waves and (ultrasoft) pseudopo-
tentials, which had been under development since the mid-1980s:

● PWscf: code pw.x for self-consistent field (SCF) solu-
tion of Kohn–Sham equations and structural optimization,
code ph.x for lattice-dynamical calculations using linear
response, plus many other utility codes;

● CP: a code performing first-principles molecular dynamics
(MD) simulations of the Car–Parrinello type, specialized to
large supercells; and

● FPMD: a code similar to CP, but with a different and partially
overlapping set of functionalities.

Innovation in quantum-mechanical materials modeling has
always been one of the main concerns and distinctive features of this
project. In particular, the linear-response code ph.x contained in
PWscf was, to the best of the authors’ knowledge, the first implemen-
tation1 of density-functional perturbation theory (DFPT).2–5 The
elimination of virtual orbitals from linear-response and excited-state
calculations, pioneered in this implementation, has remained one of
the distinctive features of QUANTUM ESPRESSO, later to be adopted
by several other codes. On the same line, CP and FPMD were both
offsprings of the first implementation6 of Car–Parrinello MD, now
merged into a single code, cp.x.

Since the beginning, QUANTUM ESPRESSO was released under
an open-source license (GNU GPL)7 and was conceived as a “distri-
bution”: an integrated suite of packages, following loose program-
ming guidelines, rather than a monolithic application. The rationale
for these choices lies in the philosophy of fostering collaboration and
sharing of code among scientists, creating a community of users and

developers, while pursuing innovation in methods and algorithms.
For more details on such aspects, we refer to Refs. 8 and 9.

The QUANTUM ESPRESSO distribution has much evolved over
the years. On the one hand, more sophisticated theoretical methods
and algorithmic advances have been implemented, in particular,

● projector-augmented waves (PAW);
● non-collinear and spin–orbit coupling (SOC) calculations;
● Hubbard-corrected functionals;
● nonlocal functionals and other semi-empirical and less-

empirical corrections for van der Waals bonded systems;
and

● hybrid functionals, also exploiting orbital localization.
On the other hand, QUANTUM ESPRESSO has extended its orig-

inal scope with additional packages for more property calculations.
We mention, in particular,

● activation energies and reaction barriers using the nudged-
elastic-band (NEB) method;

● superconducting transition temperatures, electrical resistiv-
ity, and other effects related to electron–phonon interac-
tions;

● phonon linewidths, thermal conductivity, and anharmonic
effects;

● nuclear magnetic resonance (NMR) chemical shifts and
electron paramagnetic resonance (EPR) g-tensors;

● transport in nano-wires in the ballistic regime;
● near-edge x-ray absorption spectra;
● implicit solvation and electrochemical models; and
● optical and electron energy loss spectra using time-

dependent density-functional perturbation theory.

On the purely computational side, optimization for mod-
ern and massively parallel high-performance computing (HPC)
architectures has been pursued using multiple parallelization lev-
els involving both message-passing interface (MPI) and multi-
threading (OpenMP).

All these advances, and related references, are documented in
Refs. 8 and 9. In particular, Ref. 9 also documented a preliminary
version of package HP, performing linear-response calculations of
Hubbard parameters, which has been since released.10

In addition to being directly used for implemented property
calculations, QUANTUM ESPRESSO is also used in more creative ways
as follows:

● as a “quantum engine” for more sophisticated calculations,
such as advanced MD calculations implemented in i-Pi,11

genetic and evolutionary algorithms, and high-throughput
calculations with AiiDA;12 and

● in modified or patched versions, for specific purposes, as in
“embedded” eQE.13

Finally, QUANTUM ESPRESSO is used to produce DFT data for
further processing by other codes. We mention, in particular, codes
performing Quantum Monte Carlo calculations (QMCPack)14 and
many-body perturbation theory (MBPT) (Yambo,15 BerkeleyGW,16

WEST,17 and Sternheimer-GW18), determining maximally localized
Wannier functions [Wannier9019 and electron–phonon interac-
tions (EPW20)], and codes performing different types of data analyses
(e.g., topological analysis with critic2)21 or computing transport
properties (e.g., WanT22 and KGEC23).
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Stable versions of the source code—the latest is v.6.5 at the
time this article was written—as well as development and exper-
imental versions can be downloaded from http://www.quantum-
espresso.org/download.

III. CHALLENGES AND OPPORTUNITIES
OF NEW HETEROGENEOUS ARCHITECTURES

The push of quantum mechanical materials simulation soft-
ware toward ever increasing levels of complexity, accuracy, and
performance has been so far assisted by a constant downsizing of
micro-processing units, allowing for a steady increase in the com-
pute capacity of general-purpose architectures at constant power.
This process is now hitting its ultimate physical limits and is just
about to come to an end. To reverse this state of affairs, major and
disruptive changes in hardware architecture are to occur. The con-
straints set by power consumption can only be met by heterogeneous
architectures with specialized cores (“accelerators”) that maximize
efficiency for a small set of instructions, e.g., graphics processing
units (GPUs), PEZY chips, tensor processors, and neuromorphic
chips. A quick look at the first places of the Top500 supercomput-
ers list clearly shows that heterogeneous architectures have become
the de facto standard for new generation HPC systems.24,25 On the
single node scale, the ratio between the computational power pro-
vided by accelerators and traditional central processing units (CPUs)
is found to grow at each procurement cycle over the last 10 years.25

Most of the computational power of future “exascale” machines (that
is, capable of 1 exaflop or 1018 floating-point operations per second)
will come from accelerators.

The ensuing architectural complexity will set demanding
requirements in terms of data movement, heterogeneous memory
management, and fault tolerance, which will all require a major, pos-
sibly joint, re-design of circuits and algorithms and the adoption of
different programming paradigms. In particular, extremely parallel
applications will require rapid and substantial architectural shifts,
including the handling of intra-node data movement between dis-
joint memory spaces and the explicit treatment of deeper memory
hierarchies.

Porting community codes to novel hardware architectures has
always required extensive re-coding in the past. This cannot be sus-
tained any longer in view of the considerable complexity reached
by QUANTUM ESPRESSO and similar community codes (several hun-
dred thousands code lines each) and the forthcoming diversity, het-
erogeneity, and rapid evolution of the hardware architectures. The
solution we have identified is to refactor QUANTUM ESPRESSO into
multiple layers, resulting from the assembly of weakly coupled com-
ponents (modules and libraries), which are to be maintained and
enhanced independently from each other, shared among different
codes, and designed to be as architecture-agnostic as possible. A
bird’s eye view of the code will reveal four main such layers (see
Fig. 1):

● The top layer is a collection of property calculators to com-
pute materials properties and to simulate processes, which
is the ultimate goal of molecular and materials simula-
tions. These property calculators may share global variables
among themselves and with the quantum-engine modules
(see below). This layer could be partially and progressively

FIG. 1. Schematic illustration of the structure of the QUANTUM ESPRESSO dis-
tribution. The non-perturbative codes for SCF, MD, postprocessing, and other
calculations are those in the first line of the “property calculators” section (high-
lighted in red), while the linear-response and MBPT codes are in the second line
(highlighted in yellow). Low-level layers of the QUANTUM ESPRESSO distribution
(as discussed in the text) are also shown.

made code-agnostic, while it should remain as architecture-
agnostic as possible.

● The core layer contains quantum-engine modules that solve
the one-particle Schrödinger equation and perform associ-
ated tasks, such as Hamiltonian builds (i.e., the application
of the one-particle Hamiltonian to molecular orbitals and
Bloch states), or other tasks related to density-functional,
linear-response, and many-body perturbation theories. This
layer is and will likely continue to be code-specific but
should stay as architecture-agnostic as possible. Ideally, the
same quantum-engine modules could be shared among dif-
ferent codes performing similar tasks, e.g., standard SCF
computations and geometry optimizations, ab initio MD,
and linear-response/MBPT calculations.

● A collection of domain-specific mathematical libraries are
used to perform general-purpose tasks, such as 3D Fourier
analysis and linear algebra, using both iterative and fac-
torization algorithms, non-linear optimization, etc. Such
mathematical libraries should be easily shared among dif-
ferent codes of a same class (e.g., adopting the same
quantum-mechanical representation/basis set) and stay
largely architecture-agnostic as above. While these libraries
may themselves contain modules in order to ensure easy
portability across different codes, the data exchange between
them and the calling code will only occur via standard public
application programming interfaces (APIs), which will make
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minimal use of complex data structures and the derived data
types.

● Finally, a collection of low-level system libraries are used to
abstract the most recurrent architecture-specific constructs,
such as data offload to/from specialized hardware, mem-
ory synchronization, and the like. These libraries will inter-
face directly with the underlying hardware architectures and
should be fine-tuned on each of them for optimal perfor-
mance. They should be architecture-specific, and as much
code-agnostic as possible, without interfering with the other
layers.

This strategy is meant to accomplish what has come to be
dubbed separation of concerns: ideally, method developers in science
departments and research labs should be concerned with property
calculators, disregarding architectural details, whereas scientists and
research engineers in IT departments and HPC centers should focus
on low-level mathematical and system libraries. The two categories
of developers should work shoulder-to-shoulder to develop and
maintain the quantum engine. Separation of concerns is the over-
arching guideline for the action of the EU MAX Centre of Excellence
(CoE) for HPC Applications,26 whose mission is to foster the port-
ing of important community codes for quantum materials modeling
to heterogeneous architectures.

The implementation of the above strategy is bound to entail
an extensive refactoring of community codes, which, in turn, will
require a longer time than allowed by the pressing advance of hetero-
geneous architectures. For this reason, the course of action under-
taken by the QUANTUM ESPRESSO developers follows two converging
tracks. On the one hand, an accelerated version of pw.x working
on NVIDIA GPUs is already available, and more components—
initially cp.x, followed by ph.x and other linear-response codes—
are being ported. On the other hand, the refactoring of the whole
distribution into a collection of stand-alone modules and libraries
is steadily progressing. The final goal to which both tracks will
eventually converge is the identification and gradual encapsula-
tion of architecture-specific computational kernels into low-level
libraries, so as to make the migration to multiple architectures as
seamless as possible. We aim, in particular, at using the forthcom-
ing OpenMP-5 standard, which in addition to architecture-agnostic
APIs (already in OpenMP 4.5) provides deep memory copies and
a simple framework for exploiting unified shared memory when
available.

In the following, we discuss in some detail the different logical
layers that constitute the structure of the QUANTUM ESPRESSO distri-
bution, as shown in Fig. 1, starting from the bottom layer. Low-level
system libraries are discussed in Sec. III A, while the remaining layers
are discussed in Sec. III B.

A. Performance portability
Performance portability across current and future heteroge-

neous architectures is one of the grand challenges in the design
of HPC applications. General-purpose frameworks have been pro-
posed,27–30 but none of them has reached maturity and widespread
adoption. In addition, Fortran support is still very limited or missing
entirely. In this context, the MAX CoE is promoting and coordinat-
ing a collective effort involving the developers of various materials

modeling applications. Taking on this challenge with a domain-
specific approach has the advantage of providing abstraction and
encapsulation of a limited number of functionalities that constitute
the building blocks of the most common operations performed on
the accelerators in this field. This will allow us to prepare low-level
architecture-specific implementations of a limited number of ker-
nels that have been already characterized and isolated, thus keeping
the source code of the various scientific applications untouched and
reducing code branches when new systems will appear in the market.

Such an effort is still in the early stages but is under active
development and is progressively entering the GPU port of QUANTUM

ESPRESSO through the so-called DevXlib library. This library
started off as a common initiative shared among MAX CoE codes
(notably, QUANTUM ESPRESSO and Yambo), aimed at hiding CUDA
Fortran extensions (see Sec. III C) in the main source base. Being
used by different codes, the library has been rationalized and
further abstracted, thus becoming a performance portability tool
aimed at supporting multiple back-ends (support to OpenACC and
OpenMP-5 foreseen, direct extension to CUDA C possible). The
main features included in the library by design are the following:

● performance portability for Fortran codes,
● deal with multiple hardware and software stacks, program-

ming models, and missing standards,
● wrap/encapsulate device specific code, and
● focused on limiting code disruption (to foster community

support).

It is important to note that part of the library design includes the def-
inition of which device-related abstract concepts need to be exposed
to the scientific developers. To give an example, memory copy and
synchronization to/from host/device memory are abstract opera-
tions that the developers of property calculators or of the quan-
tum engine itself may need to control directly. Therefore, DevXlib
exposes such control in the form of library APIs that are agnostic of
the specific device back-end.

In practice, DevXlib provides the user with (i) interfaces
to memory handling operations including creation and locking
of memory buffers (device_memcpy and device_buffers); (ii)
interfaces to basic and dense-matrix linear algebra routines, simi-
larly to BLAS and Lapack (device_linalg); (iii) interfaces to more
domain-specific operations (device_auxfuncs); and (iv) device-
oriented data structure compatible with Fortran usage. In partic-
ular, memory handling allows the user to copy memory host-to-
host, device-to-device, and also across memories, host-to-device and
vice versa, thereby dealing also with memory off-load and synchro-
nization. Importantly, both synchronous and asynchronous copies
can be performed with explicit control. Moreover, the explicit han-
dling of memory buffers is meant to ease or avoid the procedure of
allocation and deallocation of auxiliary workspace.

Besides the interface to linear algebra optimized libraries, such
as cuBLAS and cuSOLVER in the case of NVIDIA GPUs, DevXlib
also provides interfaces to selected (more specialized) kernels that
appear often in plane wave electronic structure codes (such as scalar
products with G-vector remapping or specific matrix or vector
updates, to name a few). While not covering all possible kernels
of the same complexity, this is quite effective in helping to keep
the code sources as clean as possible. Importantly, some efforts
have also been directed to devise Fortran-compatible data structures
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to handle the extra complexity of data stored on host and/or acceler-
ator memories. In principle, these data structures need to be able to
hide hardware complexity (e.g., being vendor agnostic for what con-
cerns accelerator memory), to allow for seamless memory synchro-
nization and transfer, and to be equipped with a set of methods to
implement the most common data operations. Software engineering
and experimentation of these data structures is currently ongoing.

In order to make the code more flexible and portable, some
basic functionalities are accessed via common interfaces provided
by a low-level library UtilXlib, including utilities for MPI and
OpenMP parallelization, timing, error and memory handling. This
library has been extended to include execution and data syn-
chronization points for communications involving memory spaces
located on the GPUs.

B. Toward a sustainable development, maintenance,
and porting model

QUANTUM ESPRESSO has grown in size during the years, includ-
ing as of v.6.5 almost 600 000 lines of Fortran code, 60 000 lines of
C, python, shell scripts, plus a large amount of tests, examples, and
documentation. While not especially large with respect to scientific
software projects in other fields, QUANTUM ESPRESSO is sufficiently
bulky to make its maintenance and extension a challenge that can-
not be sustained without resorting to modern software engineering
techniques. Much work, described in part in Sec. 3 of Ref. 9, has been
done in the past along the following directions:

● provide a large set of automated tests to ensure the validity
and portability of the results under different building and
execution patterns;

● extend the interoperability with other codes via struc-
tured I/O, using an extended markup language (XML) with
an industry-grade schema description for small human-
readable, data files, and optionally a hierarchical format
(HDF5) for large, binary, datasets; and

● collect large parts of the code base into modules and libraries
in order to enhance its readability, ease of maintenance, and
portability.

The work along the latter direction has been extended with the cre-
ation of distinct code layers: (i) libraries and (ii) modules. Libraries
have a well-encapsulated inner data structure and exchange data
with the rest of the code only through predefined APIs. As a conse-
quence, libraries can be developed, distributed, and compiled inde-
pendently of each other and then linked to the main code. Modules
are reusable blocks of code whose functionalities are accessed via
well-defined APIs as well but, mainly for reasons of computational
efficiency, do not stick to such a clear-cut data encapsulation scheme
as libraries and share a significant portion of their data structure
with the rest of the code. For this reason, modules must be com-
piled together with the main code and are mainly intended for usage
inside the QUANTUM ESPRESSO suite or other codes sharing the same
global data structure.

1. Domain-specific mathematical libraries
Apart from improving the maintainability of the whole distri-

bution, packaging the code base into libraries also has the advantage
of making distributed development and maintenance easier and of

providing a wider community with effective tools for developing
electronic-structure software ready to use in modern HPC infras-
tructures. For this reason, we aim at avoiding the usage of struc-
tured data type as arguments of the APIs as much as possible and
at exposing the interfaces using included files rather than Fortran
modules.

Currently, three major packages have been extracted from
QUANTUM ESPRESSO and are ready to be distributed as stand-alone
libraries, namely,

● LAXlib, performing parallel dense-matrix operations,
including basic linear algebra and diagonalization;

● FFTXlib, for parallel distributed three-dimensional fast
Fourier transforms; and

● KS_Solvers, a collection of iterative diagonalization algo-
rithms to solve the Kohn–Sham equations.

A large part of the computations of a typical electronic-structure cal-
culation is performed inside these libraries. The usage of machine-
optimized mathematical libraries and the inclusion of further opti-
mizations, either architecture-agnostic or architecture-specific, in
these libraries will automatically profit to all codes and computa-
tions. It is at this level that the separation of concerns is most fruitful
in terms of performance portability. While the original code targeted
MPI and OpenMP parallelization on many CPUs, the extension to
different programming paradigms for heterogeneous architectures
has much progressed since, also thanks to contributions from IT
experts.

LAXlib and FFTXlib libraries, with their completely encapsu-
lated inner data structures, can be easily used by third parties. Their
interfaces are transparent to the specific underlying architecture.

The iterative diagonalization algorithms collected inside the
KS_Solvers are disentangled from the specific Hamiltonian
builder, which is called by the library as an external routine; the
definition of wavefunctions and their scalar products inside the
Hamiltonian builder must be compatible with the one used inside
KS_Solvers. For some of the algorithms, a Reverse Communica-
tion Interface (RCI) is also available, allowing one to directly pass
the H∣ψ⟩ vectors to the library, leaving to the programmer the task
of computing and converting them to the format expected by the
RCI.

The goals of the activities described here largely overlap
with those of the Electronic Structure Library (ESL) project at
CECAM.31 The possibility of decoupling the KS_Solvers, LAXlib,
and FFTXlib libraries from their native codes was first demon-
strated during a workshop organized in 2017 within the ESL initia-
tive.32 Moreover, both KS_Solvers and LAXlib may use another
library maintained by ESL, ELPA (included in ELSI) for dense-
matrix diagonalization. QUANTUM ESPRESSO may also use the libxc
ESL library computing exchange-correlation functionals.

2. Quantum-engine modules
For other parts of the code, data encapsulation is difficult to

achieve or even unfeasible, or may introduce inefficiencies. For those
cases, it was chosen to refactor the code into general modules, still
using the global data structure of the suite. These modules are cur-
rently meant to be used inside the distribution, but they are designed
to be easily accessible for the development of further applications
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built upon the QUANTUM ESPRESSO code base. Notable examples are
Modules and LR_Modules.

Modules is a collection of Fortran modules and subroutines
that implement various operations needed to solve self-consistently
and iteratively the Kohn–Sham equations of DFT. In particular,
Modules contains the following functionalities: (i) definition of
global variables and universal constants, (ii) reading of input param-
eters and of pseudopotentials, (iii) definitions of Bravais and recip-
rocal lattices, (iv) symmetry analysis and symmetrization operations,
(v) calculation of the exchange-correlation potential, (vi) generation
of plane waves and of their mapping to FFT grids, (vii) generation
of k points, and (viii) calculation of pseudopotential terms. His-
torically, Modules exists since the very first version of QUANTUM

ESPRESSO, but it has continuously evolved in order to adapt to
novel utilities and packages of the suite.

LR_Modules is a much more recent part of QUANTUM

ESPRESSO, which appeared about 5 years ago and evolved signifi-
cantly since that time. The reason for the creation of LR_Modules
was to unify, harmonize, generalize, and refactor the functionalities
that are common to all linear-response and MBPT codes of the suite.
LR_Modules contains the following functionalities: (i) definition of
global data structures for linear response, (ii) calculators of linear-
response quantities (such as response density and potentials), (ii)
iterative solvers (e.g., Lanczos recursive algorithms), (iii) response
exchange-correlation kernel calculators, (iv) symmetrization rou-
tines, and (v) projectors on the empty-states manifold, to name a
few. The functionalities of LR_Modules are used in the following
packages:

● PHonon for calculation of lattice vibrational modes (phonons),
Born effective charges, dielectric tensor, and other vibra-
tional properties;1–3,33–43

● TDDFPT for calculation of optical absorption spectra of
molecular systems44–49 and collective excitations in solids
such as plasmons50–52 and magnons;53

● EPW for calculation of electron–phonon coupling, transport,
and superconducting properties of materials;20 and

● HP for the first-principles calculation of Hubbard parameters
of the Hubbard-corrected DFT.10

The generalized and unified subroutines from LR_Modules
have been refactored in such a way that they can be easily and
straightforwardly employed in any other future linear-response or
MBPT code of QUANTUM ESPRESSO or even in third-party codes.
They can now be used generically to build perturbations, apply them
to the occupied ground-state Kohn–Sham wavefunctions, and com-
pute the related self-consistent first-order response properties either
by solving the Sternheimer equations or by solving the Liouville
quantum equations using the Lanczos recursion method.

3. Interoperability
Exportable output in QUANTUM ESPRESSO is based on the

adoption of standard data formats: XML and HDF5. These two for-
mats have the advantage of providing information about the hierar-
chy and the types of the data that may be automatically processed
by external applications. The support of these features in modern
scripting languages such as python makes them convenient for the
development of postprocessing and analysis tools. For HDF5, the
description of the hierarchy and of data types is contained in the

file; for XML files, we provide it under the form of XSD schemas.54

In order to streamline the reading of XML files in python using the
specifications of the schemas, we have also released a python pack-
age, xmlschema,55 which converts the ASCII content of the XML
file into a corresponding python dictionary whose structure and data
types follow the indications given by the schema. The python dictio-
nary can then be used directly by the reading application or saved as
JSON of YAML files.

The coherence between the released schemas for XML and the
effective output of the applications is guaranteed by a python set of
tools that produce Fortran bindings for reading and writing XML
data, starting from the XML schema. The tools generate the writing
routines from the format specification and keep them automatically
aligned with the schema. These tools have also been released as a
separate package.56

The qeschema57 package provides the APIs specific for read-
ing and writing the XML, HDF5, and unified pseudopotential for-
mat (UPF) files used by the applications in the suite. This package
also provides converters to map some structured data as crystal
structures to and from other format commonly used in visualiz-
ers, structure databases, or atomistic simulation utilities as ASE58 or
pymatgen59 or HDF5 charge densities that may be exported to other
formats, for instance, the XSF format of XCrySDen.60

The postQE61 package provides python extensions and APIs
to use the postprocessing utilities of the PP package inside python
applications. Many PP components are compiled as python exten-
sions using F2PY. For those applications that may have a large
computational load and memory footprint, postQE provides instead
tools to extract data from the output files of the Fortran executables.

C. Evolution of the GPU-enabled version
QUANTUM ESPRESSO introduced support for accelerated sys-

tems as early as 2013, starting from v. 5.0, in the form of custom
plugins for some of the codes of the suite.62,63 This initial approach,
based on CUDA C and ad hoc libraries for linear algebra,62 proved to
be successful in boosting the code performance,64 but hardly sustain-
able from the maintenance and development points of view, mainly
due to the substantial amount of “boilerplate” (replicated) code used
to interface Fortran subroutines with CUDA C.

In light of this limitation, a new port, dubbed QE-GPU, has
been recently rewritten from scratch, starting from the case study
presented by Romero et al.65 who ported v. 6.1 of pw.x to NVIDIA
GPUs.66 In Ref. 65, the authors detailed a new strategy based on
CUDA Fortran—the Fortran analog of CUDA C—and demon-
strated 2× to 3× speedup consistently achieved on a variety of
platforms and using different benchmarks. The new GPU-enabled
releases of QUANTUM ESPRESSO extend this work, but adopting a
few design solutions to streamline future development and porting
to other heterogeneous architectures, as detailed below.

While still being developed with CUDA Fortran, the last release
of QE-GPU is almost entirely accelerated through a directive-based
approach, using the so-called cuf kernel compiler directive, which
generates a parallel architecture-specific code for loop-based struc-
tures. In some cases, this choice may limit the code performance,
but it brings a number of positive consequences. First, it allows
one to validate the GPU code on the CPU and, in principle, to
retain a single source code for both CPU and GPU implementations.
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Second, this design choice enables the straightforward adoption of
other directive-based programming models, such as OpenACC or
OpenMP, if required. As a consequence, even if the current imple-
mentation only runs on NVIDIA GPUs, special care has been paid to
design the software in a way that minimizes the future effort needed
to port the code to other accelerators that can be exploited through
a directive-based programming model. In particular, attention has
been paid not to introduce CUDA Fortran kernels in the high-level
structure of the code, except for trivial data transformations, and
to keep them confined to the domain-specific and system libraries
described in Secs. II A and II B 1.

A further advantage of CUDA Fortran is explicit memory man-
agement. QUANTUM ESPRESSO organizes related data into modules
and derived types. Allocation and synchronization of these kinds of
data structures is a straightforward and concise operation in CUDA
Fortran, while OpenACC and OpenMP support automatic synchro-
nization of these data types only in the most recent releases. In addi-
tion, by retaining full control on memory allocations and synchro-
nizations between the RAM and GPU’s global memory, we provide a
clear view of all intra-node memory operations to the programmer,
thus facilitating future porting activities.

As detailed in Sec. III B, a few specific components of
QUANTUM ESPRESSO have been extracted from the main code trunk,
made independent from it and released as packaged libraries. Some
of them have been targeted for GPU acceleration, namely, the par-
allel dense eigenvalue solver (LAXlib) and the parallel distributed
FFT (FFTXlib). In this case, we abandoned directive based acceler-
ation in favor of architecture specific APIs and libraries. Indeed, the
last release of these libraries relies on cuBLAS for linear algebra ker-
nels, cuFFT for 1D and 2D Fourier transforms, and cuSOLVER for
solving real and complex generalized eigenvalue problems.67

As of version 6.5, the following set of functionalities benefit
from GPU acceleration and operate on data residing on the GPU:

● electronic self-consistency for both magnetic and spin-
unpolarized systems;

● iterative solution of the Kohn–Sham Hamiltonian using
either the conjugate gradient or the Davidson method;

● calculation of atomic forces; and
● calculation of exact exchange terms for hybrid functionals.

The acceleration is obtained by exploiting numerous kernels that
have been ported to GPU: local-potential, pseudopotential, kinetic-
energy contributions to the Hamiltonian, preconditioner evaluation
for iterative solvers, application of the overlap operator, wavefunc-
tion initialization, Hubbard component contribution to the effective
potential, and charge density generation. For all the aforementioned
operations, where applicable, both the case of real-valued wavefunc-
tions (k = 0 only sampling, useful to reduce the memory footprint
and to speed up simulations) and the case with spinor wavefunctions
(non-collinear magnetism) have been ported to GPU.

Currently, only pw.x can benefit from GPU acceleration, but
other codes are being ported and will be available in future releases.
The GPU-enabled version of pw.x is fully compatible with its CPU
counterpart, provides the same features, undergoes the same regres-
sion testing suite, and converges to equivalent results within a given
convergence criterion.

The speedup provided by the GPU implementation depends
drastically both on the hardware and on the details of the input

data. The extreme scale performance has been already detailed else-
where;68,69 thus, here we focus on smaller problems, consisting of
tens of atoms and hundreds of electrons. This will allow us to iden-
tify the lower limit for the input cases that can benefit from GPU
acceleration.

The qeinputgenerator70 was used to prepare a set of bench-
marks. This tool automatically generates input files for pw.x pro-
viding a few options to customize the accuracy of the simulation
and using pseudopotentials from two sets, either standard solid-
state pseudopotentials (SSSP) efficiency or SSSP precision.71 These,
in turn, include norm conserving,72–74 ultrasoft,75 and PAW76,77

pseudopotentials, thus covering a significant fraction of pw.x func-
tionalities. Sixteen structures having unit cell volume between 250
Å3 and 1000 Å3 were randomly selected from the Crystallography
Open Database (COD).78–83 Structures with fractional occupations
and rare earth elements were discarded. All input and output data
are available on the Materials Cloud archive.84

In Fig. 2, we compare the best time-to-solution obtained with
a single 18-core Intel(R) Xeon(R) E5-2697 v4 @ 2.30 GHz (BDW)
CPU and the same hardware accompanied by one NVIDIA’s Tesla
V100 GPU card. The ratio between the theoretical peak performance
of these two units is roughly 1–10, but effective GPU acceleration
can only be achieved with extremely data parallel workloads and the
speedup provided by the graphic card can even become lower than
1 when this condition is not met. This limit is investigated with the
present benchmark using a rather standard balance between GPU
and CPU computational power for a HPC node.

The CPU results have been collected with QUANTUM ESPRESSO
v. 6.5 compiled with Intel’s 2019 suite, Intel’s MPI implementation,
and Intel’s Math Kernel Library (MKL), while QE-GPU v. 6.5 was
built with the PGI 19.10 Fortran compiler and linked to Intel’s 2019
MKL. For the set of inputs detailed above, the pure MPI paralleliza-
tion is the best strategy for the CPU version of the code; there-
fore, we performed all simulations for the CPU version disabling
OpenMP. On the other hand, the GPU code requires OpenMP
parallelism since the number of MPI processes is limited by the
number of GPU cards installed on the system: each MPI process
should be assigned just one accelerator.85 For both the CPU and
the GPU versions, only parallelism over k-points (-NPOOL option) has
been used—a reasonable choice, given the relatively small dimen-
sion of the dense eigenvalue problem to be solved during iterative
diagonalization.

The two sets of results are numerically equivalent: the largest
discrepancy between the total energies computed by the CPU and
the GPU versions is 2 ⋅ 10−8 Ry, while the largest difference in the
total force is 3 ⋅ 10−5 Ry/Bohr.

In Fig. 2, we report the wall time required to reach conver-
gence (or 80 SCF cycles when convergence was not achieved) for
the CPU and GPU versions. Only the best time to solution as a
function of k-point parallelism is reported. The total execution time
also has contributions, not reported because much smaller, from the
initialization step and by the final calculation of atomic forces. For
the smallest test case, a 98-atom organic compound with 246 elec-
trons that converges in less than 1 min on our hardware, the GPU
speedup is just 1.4×. This is indeed the current limiting size for tak-
ing advantage of GPU acceleration. On the other hand, as the prob-
lem size grows, especially as a function of the basis set dimension,86

the speedup can exceed 3×.
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FIG. 2. Collection of benchmarks performed with QUANTUM ESPRESSO v. 6.5 and QE-GPU v. 6.5 on an 18-core Intel(R) Xeon(R) E5-2697 v4 @ 2.30 GHz or the same CPU
plus a NVIDIA V100 card. The number of electrons per simulation cell and the number of k-points used for reciprocal space sampling are reported close to the chemical
formula. For each simulation, the sum of the time taken by the initialization, the iterations during self-consistency, and the estimation of atomic forces is compared.

IV. OUTLOOK AND CONCLUSIONS
The work on the QUANTUM ESPRESSO distribution has since

many years followed some well-established lines of action: (i) imple-
menting new numerical algorithms, theoretical methods, and prop-
erty calculations; (ii) improving interoperability with external codes;
and (iii) making the codes more modular and easier to work
with, more portable across architectures, without sacrificing perfor-
mances. The arrival of heterogeneous, accelerated architectures has
made the latter direction more urgent and wider in scope. It is no
longer sufficient to isolate low-level computational kernels into sim-
ple mathematical libraries: performance portability must be ensured
at the level of so-called “domain-specific” libraries. Without effective
actions in the direction (iii), it will become difficult to implement,
and even more difficult to maintain, further property calculations,
new theories, and new algorithms.

The work described in Sec. III C is the starting point for the
effective implementation of the plan described in Sec. III. The next
significant step is the merger of the main QUANTUM ESPRESSO dis-
tribution with the CUDA Fortran version for NVIDIA GPUs. This
will eliminate the constraint of keeping the latter version akin to the
main distribution in order to simplify the “alignment” process as the
main distribution evolves.

In parallel, more work is ongoing to achieve performance
portability, as described in Sec. III A. In particular, support for
OpenMP-5 is being introduced into the domain-specific mathe-
matical libraries of Sec. III B and the low-level system libraries of
Sec. III A. In this respect, we are working with Intel software engi-
neers to guarantee complete compatibility for their future Ponte
Vecchio GPU architecture, and QUANTUM ESPRESSO will be ready
to run on these cards when they will appear on the market, toward
the end of 2021.87 Porting to AMD accelerated architectures is also
ongoing, exploiting the public OpenACC stack. Work on ARM
vectorized (SVE instruction set) architectures (EPI88 and AFX6489

processors) is also ongoing and on track to release an optimized

QUANTUM ESPRESSO version for these architectures. All these port-
ing efforts would be hardly feasible without the contribution of IT
experts and HPC centers, in the spirit of the separation of concerns.
This solution does not target the maximum level of architecture-
specific optimizations but leaves the possibility open to achieve
them, once the hardware is finally installed in major HPC centers,
using specially tailored patched versions.

The benchmarks presented in Sec. III C are realistic but rel-
atively small-size use cases. The extension to large-scale calcula-
tions requires further work to identify and remove memory and
computation bottlenecks. In particular, the amount of global mem-
ory per card is a relevant parameter that substantially impacts
the performance of the accelerated version of the code. Some of
the largest benchmarks in our set do saturate the memory avail-
able on a single card, depending upon the parallel options used
to distribute plane-wave components. Similar issues will certainly
show up also in extreme scale benchmarks. For single-point self-
consistent or molecular-dynamics calculations, the most critical bot-
tlenecks toward scaling to the whole exascale system will be the
amount of memory in cards due to the superlinear complexity of
plane-wave electronic structure calculations (the amount of mem-
ory and computation increases more than quadratically with the
size of the system). It is foreseen that the best “exaflop” perfor-
mances will be actually achievable for selected cases, such as “high-
throughput” and “ensemble” large-scale calculations, which can be
split into many smaller ones. The efficiency of each computation
will thus be critical for fully exploiting the capability of the HPC
systems.
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