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Abstract

Cosmic Ray Propagation with High Dimensional Finite Element
Method

The Galactic synchrotron emission contains abundant physics related to not only the
Galactic magnetized interstellar medium but also has prominent effect on understand-
ing the Cosmic microwave background especially the B-mode polarization. To catch up
with the growing precision in astrophysical observations, we need to build a consistent
numerical framework where simulating the cosmic ray (electron) propagation is a major
task. In the master project, we propose to use the finite element method for solving
cosmic ray (electron) transport equation within the phase-space of dimension varying
from two to six. The numeric package BIFET is developed on top of the deal.II library
with support in the adaptive mesh refinement. We mainly introduce the design and
methods in solving advection-diffusion problems and demonstrate its capability and
precision with physically simplified tests and examples.
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Abbreviations

CR cosmic ray
CRE cosmic ray electron/positron

CMB(R) cosmic microwave background (radiation)
DM dark matter
FFT fast Fourier transform
FE free/thermal electron

FEM finite element method
GMF Galactic magnetic field

UHECR ultra high energetic cosmic ray
ISM interstellar medium
ISRF interstellar radiation field
LoS line of sight

MHD magneto hydrodynamics
MPI message passing interface
PDE partial differential equation

RMHD radiation magneto hydrodynamics
SNR supernova remnant
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Introduction

In many previous studies about the Galactic synchrotron emission, it was considered
convenient to model the cosmic-ray electron 1 (CRE) distribution independently from
the structure of the Galactic magnetic field (GMF). This approach is theoretically in-
consistent, as we know that the CRE distribution is not physically independent from
the magnetic field distribution/configuration. Following the quasi-linear test particle
approach [15] in describing the CR propagation through the highly conductive mag-
netized plasma, the anisotropic spatial and spectral diffusion coefficients are dictated
by the specific shape of magnetic turbulence. Although it can be argued that for the
independent modelling we focus only on the phenomenological description. With given
sufficient astrophysical measurements and appropriate analysis it is always possible to
achieve a proper understanding within which the CRE and magnetic field distribution
are consistent. Nevertheless, we need to point out that the phenomenological modelling
is eventually not helping us in understanding more detailed physical mechanisms. For
example, the Galactic synchrotron emission at 10 GHz level mainly 2 results from the
CRE with energy roughly around 5 GeV to 30 GeV given the magnetic field strength
not stronger than 10 µG and not weaker than 2 µG. Comparing the energy loss
time scale to the typical diffusion time scale, one finds that the bulk of the electrons
which are contributing to the 10 GHz level synchrotron emissivity in the observer’s
neighbourhood is mainly from sources (e.g., supernova remnants, pulsars) near the
neighbourhood, instead of from faraway sources. Thus it becomes interesting that by
analyzing the Galactic synchrotron emission at various frequency and LoS direction we
should be able to study the properties of the CR sources, propagation patterns and
the magnetic field configurations. This can only be accomplished by including a CRE
propagation simulation inside the pipeline of generating synchrotron emission maps,
where the synchrotron emissivity we observe is calculated with exactly the same mag-
netic field as estimating the energy loss of CRE propagation. And so instead of starting
with an independent parametric description of CRE phase-space distribution, the con-

1By mentioning cosmic-ray electron (CRE) in this dissertation, we actually intend to include both
electron and positron, knowing that the energetic positron to electron ratio is less than 0.25 in the
Galaxy. The Galactic positrons are largely secondary, which means that they are not directly ac-
celerated/ejected from astrophysical sources but from the interactions between primary CR particles
with the ISM. But this “chemical” difference is ignored since we focus more on their kinematics in the
magnetized ISM.

2According to the Fig. ??, the CRE emissivity peaks at certain energy scale corresponds to the
specific observational frequency and the ambient magnetic field strength. Softer CRE spectral or
higher observational frequency pushes the peaking position to higher energy, while on the contrary,
stronger magnetic field strength tends to pull the peak to lower energy.
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2 Introduction

sistent approach requires physical modellings of the interaction between the energetic
CRs and the thermal component in the ISM (e.g., ionizing the neutral atoms, scatter-
ing with charged particles and low energy photons) and the magnetic turbulence (e.g.,
being scattered off by magnetic turbulence, amplifying magnetic turbulence through
streaming instability).

The necessity of this consistent picture for CR studies was recently pointed out by
Blasi et al. [1] and Evoli et al. [4], where they studied the phenomenon of CR being
scattered off by magnetic turbulence which in turn is amplified by the CR streaming
(in the perturbative regime) before reaching a saturation. The results of their studies
pointed out that the interactive picture can explain not only the observed spectral break
but also the vertical scale of the CR diffusion region. And such consistent approach is
also required in studies which focus on the Galactic ISM, where the CR streaming [11]
is important for launching of galactic winds [5, 14], the Parker instability [7] and the
multi-phase medium [19]. Since our research scope is narrowed only to the relativistic
electron/positron distribution which has dominant contribution to the synchrotron
energy loss (since the protons have a synchrotron lifetime of (mp/me)

4 times longer
than electron and they may lose their energy via other mechanisms without emitting
much synchrotron radiation [13]), we do not have to fully resolve the interactive system
that is mainly related to CR protons, nor we need to consider the combination of test-
particle and test-wave (which describes how the magnetic turbulence responds to the
CR flow) approaches. The minimal consistency required for simulating the Galactic
synchrotron emission only has to ensure the synchrotron emission we observe is exactly
from the synchrotron energy loss during CRE propagation.

To achieve the minimal consistency, we need to numerically solve the CRE trans-
port equation. Numerical packages for simulating CR (not only for electron/positron)
propagation have been developed since two decades ago, among which the most pop-
ular one is Galprop by Strong and Moskalenko [16] where the CR transport equation
is solved with the finite-difference method. More recently Evoli et al. [3] released the
DRAGON package with a similar solver as Galprop but support for 3D anisotropic mod-
elling of the CR spatial diffusion. We have also witnessed other numerical attempts
with finite-volume method or modified finite-difference method, but unfortunately no
open access has been provided to their numerical work [8].

It is well known that for solving a partial differential equation (PDE) or a set of
PDEs, there are generally three categories of numerical approaches: finite difference,
finite volume and finite element methods. Each method has its particular advantages
and disadvantages, while with appropriate numerical techniques they are all suitable
for simulating CR propagation with similar precision. Practically, physicists need well
developed numerical libraries with minimal programming requirements in modifying
the back-end functions for various simulation tasks. Particularly for simulating the
CR propagation, we haven’t seen any open-source numerical work with the finite-
element method in the community mainly because of the complexity in implementing
this method from scratch. Besides, there is no package that can provide us a proper
discretization beyond 3D with adaptively refined mesh. With such motivations we
introduce BIFET , the toolkit for solving PDEs in a domain with up-to six dimensions
(not including the time coordinate) based on the deal.II library (an open source finite
element library designed to provide well-documented tools to build finite element codes
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for a broad variety of PDEs). This numerical tool can help us efficiently resolve an
isotropic phase-space distribution defined within a very generic domain.
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Chapter 1

Underlying Theory

1.1 Cosmic Ray Electron Transport

Cosmic rays are referring to the relativistic, generally with energy larger than 1 MeV,
charged particles of various species. The Galactic cosmic rays are mainly categorized
by a primary component, including proton, electron, helium, carbon, etc., which can be
synthesized in the stars, and the secondary 1 component including antiprotons, borons,
etc., that are mainly produced during the CR traversing though the Galactic ISM.

It is known that CRs have frequent interactions with the magnetic turbulence, inter-
stellar photons and thermal particles, and because of which the averaged life time for a
CR particle staying the the Galaxy is roughly around 106 years. The motion of a single
charged particle can be well predicted if the ambient magnetic environment is known.
Some numerical simulators, e.g., CRPropa [? ], follow this idea of calculation, which is
precise and convenient for studying static magnetic field structure or tracing the prop-
erties of the CR motion within a specifically designed field. Another approach (known
as the test particle approach) is to treat the CRs as either an uniform or composite
fluid, and in turn the motion of each single particle is not traceable anymore. In this
way we approximate the collective behavior of CRs by the Fokker-Planck equations,
which take ensemble average of linearly perturbed description of the system consists
of the electromagnetic field and charged plasma. The quasi-linear approximation was
proved to be acceptable even the magnetic perturbation is four times larger than the
regular field strength [15], which we consider is enough for studying the Galaxy. In
the following we will use the test particle approach and build the numerical solving
routine.

The up-to-date understandings towards the observed features of CRs are well re-
viewed recently by Grenier et al. [6], Strong et al. [17], Tanabashi et al. [18] and the
references there in. The general trend of the frontier studies of CRs has been pushed
forward to the detailed interaction between CRs and other Galactic components like
the ionized gas and magnetic field and thus to the consistent description of the Galactic
ecology. The non-linear interactive picture which is meant to be simulated is our final
aim, and as the first step we have to focus on building the efficient numerical framework

1Note that there exists a different primary and secondary definition which distinct cosmic rays
observed above and below the earth’s atmosphere.

5



6 Underlying Theory

with its performance well profiled for the near future studies of the minimal consistent
scenario discussed above.

In describing the CRE propagation, we commonly start with the phase-space dis-
tribution ue(x,q, t) of energetic electrons2 and approximate their propagation with a
single transport equation mainly with physical terms like spatial and spectral diffu-
sion (scattering off magnetic turbulence), advection (streaming with the bulk motion),
spectral advection (re-acceleration and energy loss)

∂tue −∇x · (Dxx(∇xue))−∇E · (DEE(∇Eue)) (1.1)

+∇x · (Vue) +∇E · (bue −
1

3
(∇x ·V)ue) = Q ,

where Dxx/EE represents the spatial/spectral diffusion tensor, V represents the bulk
motion of the CRs, b indicates continuous energy loss due to several mechanisms like
synchrotron emission, inverse-Compton scattering, Coulomb scattering and ionizing
ISM, thermal bremsstrahlung. The right-hand-side Q terms stands for astrophysical
sources of energetic electrons/positrons.

In the energy loss, here we specify the mechanisms for electrons/positrons, which
are slightly different from protons. The inverse Compton scattering describes how
energetic electrons/positrons heat ISM photons and kick them to higher frequencies,
where the ISM photon field is also known as the interstellar radiation fields (ISRFs, with
“fields” for specifying the different components) which consists of various components
like CMB photons, star light (covering ultra-violet and optical-inferred bands) and dust
emission (mainly covering the inferred bands). Note that the ISRFs are not known
purely from observations, but through modelling the radiative transfer [12] of emission
and absorption processes in the ISM and tuned to match certain observables, where
the dust density and temperature distribution is modelled. Although the Galactic
dust emission is not studied in our current work, the future consistent analysis with
polarized synchrotron and dust emission should be aware that the dust distribution is
not independent from CRE.

In the simplest case we consider electrons and positrons as a single fluid, by doing so
we ignore the secondary production of positrons like the decay of protons and heavier
nuclei. A better treatment should involve at least protons/positrons and consequently
the interaction between CRs and magnetic turbulence. The spatial and spectral dif-
fusion coefficients Dxx and DEE are often defined phenomenologically because of their
complexity. The basic features of Dxx/EE includes that they depend on the regular
magnetic field orientation and turbulent amplitude and shape (according to the quasi-
linear theory of CR transport). In the quasi-linear theory the diffusion coefficients
can be analytically derived as the Fokker-Planck coefficients by solving the radiation-
magneto-hydrodynamic (RMHD) system [15]. However the reality is more complicated,
with theoretical and recent numerical studies [5, 9] the CR streaming velocity is not
always confined to the Alfvén speed, but the decoupling of CRs to the cold ISM where
the magnetic turbulence is damped can be modelled by increasing the spatial diffusion

2According to recent local measurements up to a few years ago and the standard energy loss of
secondary positrons [? ], the positron excess problem can very likely due to the primary component
from nearby pulsars, and so in the following we treat positrons as primaries.
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rate along the regular magnetic field orientation.
Although the (already simplified) CRE transport equation sounds complicated from

the physical side of view, it can be understood conceptually no more than a non-
linear advection-diffusion problem (it is still very non-trivial in practically solving such
problem from the numerical side of view).

1.2 Finite Element Method

Here we intend to give a simple description of some important concepts in numerical
analysis and especially which are involved in solving the CR transport equation with
the finite element method. The basic concept is that the finite element method de-
scribes a continuous problem in its weak formulation (applying the Galerkin methods)
and approximate solution in a finite functional space. For example consider a linear
mapping A : V → V in a Hilbert space V , a problem is defined as Au = f where u
is the solution. Instead of solving Au = f directly, the weak formulation seeks the
solution with a test function v ∈ V and convert the problem into

〈Au, v〉 = 〈f, v〉 , (1.2)

where 〈·, ·〉 represents a bi-linear form (which in the applications here it indicates a
domain integral). Then with a set of basis functions {φi} ⊂ V we try to describe
u =

∑
i Uiφi and consequently the weak formulation reads∑

j

Uj〈Aφj, φi〉 = 〈f, φi〉 , (1.3)

and the solution finding eventually becomes solving the linear algebra that represents
the weak form above. Note that the above formulas are defined in the continuous
domain. While for the discrete domain where the functional base is described with
quadrature points, we use notation uh for representing the discrete solution.

By the decomposition in the finite functional space in the discrete domain, the
solution precision is largely determined by how we choose the functional basis and
quadrature points, which are in principle independent from the finite element method
itself. For example we can take the Gaussian quadrature which means with arbitrary n
points {xi} and weights {wi} in one-dimensional domain [a, b], an integral of function
g(x) can be approximated as∫ b

a

g(x)dx =
∑
i

εig(xi) , (1.4)

εi =

∫ b

a

∏
j 6=i

x− xj
xi − xj

dx , (1.5)

which has a degree of precision at most 2n−1. By applying the quadrature rule to the



8 Underlying Theory

weak formulation we can further write Eq. 1.3 as∑
j

Uj
∑
k

ε2kA(xk)φj(xk)φi(xk) =
∑
k

εkf(xk)φi(xk) , (1.6)

where the continuous integrals have been approximated by discrete summation, and
consequently the solution u is approximated by its discrete counterpart uh(xk) =∑

i Uφi(xk).
The left hand side integral in Eq. 1.6 is not trivial as it appears. Here we illustrate

a more realistic derivation with a one-dimensional diffusion problem, which reads

−∂x(α∂xu) = f(x) . (1.7)

For its weak formulation we define the functional base {φi} and the discrete solution
uh follows from:

−
∑
j

Uj〈φi, ∂x(α∂xφj)〉Ω = 〈f, φi〉Ω , (1.8)

where the problem is defined within the domain Ω with boundary surface ∂Ω. Inte-
grating the left-hand-side by part, we arrive at∑

j

Uj [〈∂xφi, α∂xφj〉Ω − (αφi, ∂xφj · n̂)∂Ω] = 〈f, φi〉Ω , (1.9)

with n̂ represents the direction of the boundary surface. In practice the partial deriva-
tion of base functions ∂xφi are pre-defined as the functional base itself. It is also
apparent that Eq. 1.9 is in principle a set of linear equations∑

j

Mi,jUj = Ri , (1.10)

where M is known as the left-hand-side system matrix, while R is the right-hand-
side system vector. The boundary conditions we have not included in defining the
strong formulation usually applies to the boundary integral presented above, where a
strong boundary condition requires specific shape of φi or ∂xφi at the boundary surface,
whereas a nature boundary condition can simplify the integral with vanishing terms.
Take the diffusion problem above for example, a strong boundary condition can be
u(x) = g for x ∈ ∂Ω and consequently the surface integral in Eq. 1.9 should be moved
to the right-hand-side by replacing φi with g. While with a weak boundary condition
we can ask ∂xu(x) = 0 for x ∈ ∂Ω, in which case the surface integral vanishes since
∂xφj = 0 and note that this requirement will not show up explicitly in solving the
linear equations.

For some particular problems, e.g., the advection problem (or hyperbolic partial
differential equation), we need extra caution with the discretization scheme. In practice
for advection problems we use the upwind discontinuous Galerkin method, where the
discontinuous means the functional basis is defined independently for each triangulated
cell and so the solution uh do not have to be continuous at the internal boundaries
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between two neighbouring cells. Assuming a simple one-dimensional advection problem

∂x(βu) = f(x) , (1.11)

and the plain weak formulation in functional base φm reads

−(φm, uhβ · n̂)∂Ω +
∑
i

〈uh, β · ∂xφm〉Ti =
∑
i

〈φm, f〉Ti , (1.12)

where ∂Ω represents the external boundary surface, Ti ∈ T represents the volume for
each triangulation cell i, the notation (·, ·) indicates surface integral while 〈·, ·〉 for
volume integral. Then on top which we apply the upwind scheme, which introduces
extra internal surface integrals +

∑
j(u
−
h , β·[φmn̂])Fj on the left-hand-side, where Fj ∈ F

represents the internal surface j. [φmn̂] is defined by [φmn̂] = φ+
mn̂

+ + φ−mn̂
− where the

notation + indicates the quantity in the upwind cell while − for the downwind cell.
Note that in the discrete Galerkin method, the functional basis is defined independently
for each cell.

1.3 Domain Separation

The deal.II library provides triangulation methods for a domain with number of
dimensions no higher than three, which is a common setting of a finite element method
library, and so for problems defined within higher dimensions (e.g., a CR propagation
problem with three spatial dimension and one spectral dimension) we cannot build the
mathematical framework directly with its original library functions. To overcome this,
we separate the full domain into a spatial sub-domain (denoting the spatial space x)
and a spectral sub-domain (denoting the energy/momentum space q). By default the
spatial and spectral sub-domains are constructed as hyper-rectangles. The notation
Ra+b is defined for distinguishing different dimension settings, where “a” represents
the number of dimensions in the spatial sub-domain while “b” represents that in the
spectral sub-domain. For example R1+1 setting is built by {x1, q1}, while R2+1 setting
is built by {x1, x2, q1}.

Without any loss of generality, we assume an unspecified time-dependent problem
in the form of

∂tu+ Ôu = f, (1.13)

in an arbitrary Ra+b dimension setting. The discretization in time can be approached
by a sequence of time steps with solutions un(x,q) marked by time step index n, i.e.,
the finite difference approach for the time discretization. In the Rothe’s scheme we can
rephrase the time-dependent problem as

un − un−1

tn − tn−1

+ ((1− θ)Ôn−1u
n−1 + θÔnun) = (1− θ)fn−1 + θfn , (1.14)

where θ varies within [0, 1]. θ = 1 and 0 represents implicit and explicit Euler
method respectively, while θ = 0.5 is the alleged Crank-Nicolson method. For a time-
independent problem, a steady state solution can be found technically by a single
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solving step within the θ-scheme we described above.
Intuitively, we express solution un inside the cross product Φ of two functional

spaces as

un(x,q) =
∑
i

∑
α

Uαivi(x)wα(q)

=
∑
α,i

Uαiφαi(x,q) , (1.15)

where the base function spaces are mathematically defined by

V := span{vi ∈ H1(Ra)} , (1.16)
W := span{wα ∈ H1(Rb)} , (1.17)
Φ := span{φαi ∈ V ⊗W} . (1.18)

Discretizing a PDE problem over quadrature points yields the weak formulation, where
generally we can represent the left-hand-side operator Ô by a sparse matrix Mxq.
Whereas the right-hand-side terms can be assembled into a matrix representative Rxq,
and in this way the generic weak formulation has the form

Mxq · vec(U) = vec(Rxq) . (1.19)

The reason for vectorizing (with vec denoting the matrix vectorization operation)
the solution matrix U and the right-hand-side matrix R can be understood via a sim-
plified example. Suppose upon the solution representative U we apply two indepen-
dent operations Ôx and Ôq which live separately in two sub-domains (to be specific,
Ôx ≡ Ôx(x) and Ôq ≡ Ôq(q)). It is thus straight forward to assemble matrix repre-
sentativesMx andMq respectively, namely the mapping from the strong formulation
to the weak formulation, which reads

ÔxÔqu→MxUMT
q , (1.20)

where (·)T stands for matrix transpose. By default we associate the row indices to
quadrature points in the spatial sub-domain. It is obvious at this point that solving a
Sylvester-like equation requires a vectorization and consequently the final left-hand-side
matrix readsMxq =Mq⊗Mx. And through this vectorization, we could also assemble
Mxq for even the most generic Ô(x,q) with a quadrature-point-wise Kronecker product
(represented by the symbol ⊗).

For physicists who are not very familiar with the finite element method (FEM),
we feel obliged to illustrate explicitly the methodology behind assembling the Mxq

(the very same idea goes to assembling the Rxq). A typical example can be a pure
spatial diffusion problem, where a strong formulation of the diffusion term (on the
left-hand-side of a PDE) can be

−∇x · (Dxx∇xu(x,q)) , (1.21)

where Dxx ≡ Dxx(x,q) represents the spatial diffusion tensor. The standard approach
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is to perform a integral (over the phase-space domain) on both hand sides of the strong
formulation of the problem with appropriate base functions {φαi = wαvi}, which reads

−
∫

Ωxq

φαi∇x · (Dxx∇xu) . (1.22)

The continuous Galerkin method, taken as a convenient example for discretizing a pure
diffusion problem, instructs u(x,q) =

∑
β,j Uβjφβj, and through a integration by part

we can express the above term as∑
β,j

Uβj
∫

Ω

(∇xφαi)Dxx∇xφβj , (1.23)

where Ω ≡ Ωx ⊗ Ωq represents the volume integral in two sub-domains, with the
integrand explicitly reads

(∇xvj)
T · (D(x, p)∇xvi) · (wαwβ) . (1.24)

Note that deal.II can handle the discrete integral with continuous or discontinuous
base functions in a cell-by-cell manner (based on continuous or discontinuous Galerkin
method), so that a common CR propagation problem with diffusion and advection
terms can be properly defined. Logically in BIFET what we do is to first iterate over
active cell-pairs living in the two sub-domains, and then iterates through quadrature
points are conducted where the accumulations ofMxq and Rxq are done as discrete in-
tegrals. Notice that a integral over two sub-domains is required, so we end up with four
levels of nested iterations. Although the strong formula was defined in one-dimensional
domain or sub-domains, the algorithms are dimension free.
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Chapter 2

BIFET

It is known that physical processes and phenomena are conventionally described in the
phase-space domain built by time, space and momentum. Depending on the level of
detail we focus on, the dimension in which a physical problem lives can be reduced either
by integrating over less important coordinates or by assuming certain symmetries. For
numerical simulations of cosmic ray (CR) propagation (here we treat CRs as continuous
fluids), it is always better to pursue high-dimensional descriptions if not limited by
computational methods or resources. Previously without a convenient high-dimensional
partial-differential-equation (PDE) solver, we are usually limited to an isotropic CR
distribution in the momentum sub-domain and either spherical or cylindrical symmetry
in the spatial sub-domain. This has become less favoured as the observation precision
has been improved dramatically, and thus simplified modellings are not sufficient for
the frontier studies any more.

To cope with the growing requirements in precision and resolution of CR propa-
gation simulation, it is inevitable to consider using mathematically certified libraries
to help physicists build numerical simulators properly and efficiently and so to free
them from the swamp of mathematics and programming. Here we propose BIFET, the
bi-domain finite element toolkit, which is a deal.II based package that provides conve-
nient functions for solving high-dimensional1 PDEs. Driven by such motivations, BIFET
is designed to decompose high-dimensional problems into two sub-domains, e.g., ex-
pressing a phase-space distribution with spatial and momentum coordinates separately.
The triangulation2 in each sub-domain can thus be carried out independently, and as
well for other mathematical quantities like the finite-element and sparsity pattern. The
back-end methods introduced here for assembling high-dimension linear algebra from
two sub-domains root deeply in the deal.II library.

2.1 Software Design

As mentioned earlier that the main feature we implement in BIFET is assembling the
linear algebra structure with triangulation performed in two domains independently. In

1By high-dimension we mean dimension higher than three.
2In geometry, a triangulation is a subdivision of a planar object into triangles, and by extension

the subdivision of a higher-dimension geometric object into simplices.

13



14 BIFET

the following we present the technical details related to building the numerical system
for solving a high-dimensional PDE. An illustrative BIFET workflow chart is presented
by Fig. 2.1, where the whole routine mainly consists of two processes, one is shown on
the left side of the workflow corresponds to initializing/refining and storing the linear
algebra system of the PDEs, while the right side of the workflow displays the operations
related to solving the PDE system and interacting with the conditions.

Figure 2.1: BIFET workflow.
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2.1.1 Domains

While physically we distinguish between spatial and spectral domains, which are not
different from the numerical point of view. Technically we distinguish domain dis-
cretization with continuous Galerkin method from that with the discontinuous Galerkin.
In the Frame class we define the basic quantities for describing a domain, which in-
clude mesh/grid geometry and size, finite element degrees of freedom, dynamic spar-
sity pattern, strong boundary condition and hanging node constraints. The process
of initializing a single domain setting starts with the given mesh/grid shape, size and
discretization, from where the triangulation can be done automatically with built-in
method of deal.II library. After which, with given finite element method, we can esti-
mate the degrees of freedom and dynamic sparsity pattern according to the initial dis-
cretization, where the degrees of freedom represents how many independent unknown
variables in the final solution, while the sparsity pattern describes the basic shape of
the linear system left-hand-side matrix. Hanging node constraints are important only
for continuous Galerkin method, where the solution is required to be continuous at the
boundary of two neighbouring cells. Note that these constraints should not be used
for the discontinuous Galerkin method. Here we present the implementation of the
initializing process in Frame class.

1 template <int dim> void Frame<dim>::init() {
2 // triangulate simulation box
3 dealii::GridGenerator::subdivided_hyper_rectangle(
4 *(this->triangulation),
5 this->block_nums, this->pivot_min,
6 this->pivot_max, true);
7 // if min_refine_lv is 0, no refinement operation will be taken
8 this->triangulation->refine_global(this->min_refine_lv);
9 // enumerate dof

10 this->dof_handler->distribute_dofs(*(this->fe));
11 // apply dof to constraints
12 this->constraints->clear();
13 dealii::DoFTools::make_hanging_node_constraints(
14 *(this->dof_handler),
15 *(this->constraints));
16 // apply strong boundary
17 this->bfmap_init();
18 dealii::VectorTools::interpolate_boundary_values(
19 *(this->dof_handler),
20 *(this->bfmap),
21 *(this->constraints));
22 this->constraints->close();
23 // initialize dynamic sparsity
24 this->dsp->reinit(this->dof_handler->n_dofs(),
25 this->dof_handler->n_dofs());
26 dealii::DoFTools::make_sparsity_pattern(
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27 *(this->dof_handler),
28 *(this->dsp),
29 *(this->constraints),
30 /*keep_constrained_dofs=*/ false);
31 this->sparsity->copy_from(*(this->dsp));
32 }

2.1.2 Sparsity Pattern

The sparsity pattern (as introduced above) for a single sub-domain, i.e., Sx for the
spatial domain and Sq for the spectral domain, is built during initializing the Frame
instance. For the system left-hand-side matrix which absorbs the system matrices from
two sub-domains, the corresponding sparsity pattern is calculated as

Sxq = Sq ⊗ Sx , (2.1)

which is generic and independent of the specific expression of the system matrix itself.
In the following we present the implementation of the Kronecker product described in
Eq. 2.1. This function is defined in the Simbox class along with functions for refining
sub-domains.

1 template <int spa_dim, int spe_dim>
2 void Simbox<spa_dim, spe_dim>::Kronecker_product() {
3 // reallocate result DSP
4 this->dsp->reinit(
5 this->spectral_frame->dsp->n_rows() *

this->spatial_frame->dsp->n_rows(),↪→

6 this->spectral_frame->dsp->n_cols() *
this->spatial_frame->dsp->n_cols());↪→

7 // loop through non-zero entries in left DSP
8 auto it_left = this->spectral_frame->dsp->begin();
9 auto end_left = this->spectral_frame->dsp->end();

10 for (; it_left != end_left; ++it_left) {
11 auto alpha = it_left->row();
12 auto beta = it_left->column();
13 // loop through non-zero entries in right DSP
14 auto it_right = this->spatial_frame->dsp->begin();
15 auto end_right = this->spatial_frame->dsp->end();
16 for (; it_right != end_right; ++it_right) {
17 // get global indeces
18 auto I = alpha * this->spatial_frame->dsp->n_rows() +

it_right->row();↪→

19 auto J = beta * this->spatial_frame->dsp->n_cols() +
it_right->column();↪→

20 this->dsp->add(I, J);
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21 }
22 }
23 }

2.1.3 System Assembling

The sparsity pattern for the full domain is useful in assembling and storing the system
left-hand-side matrix. The basic idea of assembling a system matrix is similar to the
standard way defined in deal.II library, where local matrices are assembled in a cell-
wise manner and then distributed into the global matrix. Since we are independently
handling two sub-domains, the iteration at cell level is nested, which means a local
matrix is not associated to a single cell but to a couple of cells from two sub-domains.
The assembling method of local matrices in each domain is still valid, while distributing
local matrices to the global matrix requires the same method in deal.II and the
Kronecker product which merge the global sub-domain system matrices into the global
full domain matrix. Note that the Kronecker product in merging two global matrices is
not relevant to whether the left-hand-side operators can be decomposed into two sub-
domains, since during the cell-wise assembling of the local matrices we naturally use the
specific expression (with nested iterations of quadrature points in both sub-domains)
of the left-hand-side operators. The snippet below presents the system initialization
function for a pure spatial diffusion problem, where the diffusion tensor is defined
within System class (which applies to the definition of advection vector and source
distribution).

1 template <int spa_dim, int spe_dim>
2 void System_tmp<spa_dim, spe_dim>::Operator::init(
3 System<spa_dim, spe_dim> *system,
4 const Simbox<spa_dim, spe_dim> *simbox,
5 const double &step_time) {
6 // step 1, preparation
7 // instantiate quadrature rules in two sub-domains
8 auto spatial_quadrature_formula =
9 std::make_unique<dealii::QGauss<spa_dim>>(

10 simbox->spatial_frame->fe->degree + 1);
11 auto spectral_quadrature_formula =
12 std::make_unique<dealii::QGauss<spe_dim>>(
13 simbox->spectral_frame->fe->degree + 1);
14 // prepare finite element base function values in spatial domain
15 auto spatial_fev = std::make_unique<dealii::FEValues<spa_dim>>(
16 *(simbox->spatial_frame->fe),
17 *spatial_quadrature_formula,
18 dealii::update_gradients |
19 dealii::update_quadrature_points |
20 dealii::update_JxW_values);
21 // prepare finite element base function values in spatial domain



18 BIFET

22 auto spectral_fev = std::make_unique<dealii::FEValues<spe_dim>>(
23 *(simbox->spectral_frame->fe),
24 *spectral_quadrature_formula,
25 dealii::update_values |
26 dealii::update_quadrature_points |
27 dealii::update_JxW_values);
28 // degrees of freedom per cell (DPC) in two sub-domains
29 const unsigned int spatial_dpc = spatial_fev->dofs_per_cell;
30 const unsigned int spectral_dpc = spectral_fev->dofs_per_cell;
31 // number of quadrature points per cell in two sub-domains
32 const unsigned int spatial_q_points =
33 spatial_quadrature_formula->size();
34 const unsigned int spectral_q_points =
35 spectral_quadrature_formula->size();
36 // local to global matrix indices translater
37 auto spatial_l2g =
38 std::make_unique<std::vector<dealii::types::global_dof_index>>(
39 spatial_dpc);
40 auto spectral_l2g =
41 std::make_unique<std::vector<dealii::types::global_dof_index>>(
42 spectral_dpc);
43 // temporary local (per-cell) matrix caches
44 auto cell_Mx =
45 std::make_unique<dealii::FullMatrix<double>>(spatial_dpc,
46 spatial_dpc);
47 auto cell_Mq =
48 std::make_unique<dealii::FullMatrix<double>>(spectral_dpc,
49 spectral_dpc);
50 // system matrix allocation
51 system->Mxq->reinit(*(simbox->sparsity));
52

53 // step 2, fill system matrix
54 // apply integral with base functions over sub-domains
55 // iterate over sub-domain cells (spatial domain)
56 #ifdef _OPENMP
57 system->omp_cell_distribute(simbox);
58 for (auto spatial_cell = system->it_start;
59 spatial_cell != system->it_end;
60 ++spatial_cell)
61 #else
62 for (const auto& spatial_cell :
63 simbox->spatial_frame->dof_handler->active_cell_iterators())
64 #endif
65 {
66 // initialize finite element values at given cell
67 spatial_fev->reinit(spatial_cell);
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68 // translate local indices to global indices
69 spatial_cell->get_dof_indices(*spatial_l2g);
70 // iterate over sub-domain cells (spectral domain)
71 for (const auto& spectral_cell :
72 simbox->spectral_frame->dof_handler->active_cell_iterators())
73 {
74 spectral_fev->reinit(spectral_cell);
75 // translate local indices to global indices
76 spectral_cell->get_dof_indices(*spectral_l2g);
77 // apply quadrature rule in spectral domain
78 for (unsigned int spectral_qid = 0;
79 spectral_qid < spectral_q_points;
80 ++spectral_qid) {
81 // spectral domain local full matrix
82 for (dealii::types::global_dof_index alpha = 0;
83 alpha < spectral_dpc;
84 ++alpha) {
85 for (dealii::types::global_dof_index beta = 0;
86 beta < spectral_dpc;
87 ++beta) {
88 cell_Mq->set(alpha, beta,
89 spectral_fev->shape_value(alpha,
90 spectral_qid) *
91 spectral_fev->shape_value(beta,
92 spectral_qid) *
93 spectral_fev->JxW(spectral_qid));
94 } // beta
95 } // alpha
96 // (clean cache)
97 system->Mq->reinit(*(simbox->spectral_frame->sparsity));
98 // (push local full matrix to global sparse matrix cache)
99 simbox->spectral_frame->constraints

100 ->distribute_local_to_global(
101 *cell_Mq,
102 *spectral_l2g,
103 *(system->Mq));
104 // apply quadrature rule in spatial domain
105 for (unsigned int spatial_qid = 0;
106 spatial_qid < spatial_q_points;
107 ++spatial_qid) {
108 // get spatial diffusion tensor at given quadrature point
109 const dealii::Tensor<2, spa_dim, double> coefficient{
110 system->diffusion->Dxx(
111 spatial_fev->quadrature_point(spatial_qid),
112 spectral_fev->quadrature_point(spectral_qid),
113 step_time)};
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114 // spatial domain local full matrix
115 for (dealii::types::global_dof_index i = 0;
116 i < spatial_dpc;
117 ++i) {
118 for (dealii::types::global_dof_index j = 0;
119 j < spatial_dpc;
120 ++j) {
121 cell_Mx->set(i, j,
122 dealii::scalar_product(
123 spatial_fev->shape_grad(i, spatial_qid),
124 coefficient *
125 spatial_fev->shape_grad(j, spatial_qid)) *
126 spatial_fev->JxW(spatial_qid));
127 } // j
128 } // i
129 // (clean cache)
130 system->Mx->reinit(*(simbox->spatial_frame->sparsity));
131 // (push local full matrix to global sparse matrix cache)
132 simbox->spatial_frame->constraints
133 ->distribute_local_to_global(
134 *cell_Mx,
135 *spatial_l2g,
136 *(system->Mx));
137 // accumulate to global matrix cache
138 system->Operator_Kronecker_accumulate(simbox);
139 } // spatial quadrature point
140 } // spectral quadrature point
141 } // spectral cell
142 } // spatial cell
143 }

2.1.4 multi-threading support

In the first version of BIFET we apply multi-threading parallelism mainly to the system
assembling process, which has already been illustrated by the snippet above. We will
see later in the profiling that by allocate the cell iterations into multiply thread is
efficient until the bottleneck from memory accessing is reached. This bottleneck is
purely due to the fact that we have to allocate and compute all the non-zero elements
of system matrix. To over come which, it is essential in the future to implement MPI
support with a matrix-free scheme in system matrix calculation, where the system
matrix do not have to be pre-calculated and in turn reduces greatly the computing
memory consumption and makes the process easy to be paralleled.
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2.2 Precision and Performance

2.2.1 Performance

The common routines associated to building and solving PDE system in BIFET are
data-intensive. The largest memory consumption comes from assembling PDE opera-
tor matrices. Each operator matrix size is defined together by the domain resolution
(namely, the number of cells), the base function polynomial order (which determines
the degrees of freedom per cell) and the problem dimension. The main idea for com-
putational parallelism is to distribute the workload related to accessing these matrices
since the operator matrices always stay in the RAM (random-access memory). At
the lowest optimizing level we apply a multi-threading with OpenMP3, which is easy
to be implemented and nested inside other packages, i.e., the IMAGINE pipeline with
multi-node parallelism.

A standard simulation routine of BIFET is mainly built by iterations with three ma-
jor processes: the system initialization, system solver and (non-)adaptive refinement.
Fig. 2.2 illustrates the CPU time consumption for handling simple time-independent
diffusion and advection problems with R1+1 dimension setting by serial routines in
BIFET . The CPU time cost of system initialization and refinement are roughly propor-
tional to the square of degrees of freedom, but actually faster thanks to the sparsity
in the system matrix. This is expected since the system matrices have their sizes pro-
portional to the square of the total degrees of freedom. For the diffusion problem, we
use an iterative solver so that the scaling index is close to 2.0. While for the advection
problem, a direct solver is adopted and so the solving time scales almost linearly with
respect to the system total degrees of freedom. We also observe that the system ini-
tialization and adaptive refinement are computationally at least one magnitude more
expensive than the solver, for a problem more complicated than the pure diffusion or
advection the difference is larger.

problem\process initialization refinement solver
diffusion 1.59 1.67 1.88
advection 1.38 1.46 1.26

Table 2.1: The scaling index of CPU time consumption as a power-law function of
the degrees of freedom in the discretized problems by FEM displayed in Fig. 2.2.

According to the serial profiling, initialization and adaptive refinement processes
are the major optimization targets. With further profiling which is not presented here,
we find the most time consuming part in both initialization and refinement processes is
the assembling system matrixMxq with sufficiently high degrees of freedom. By using
OpenMP , it is possible to fork the System objects among the available CPU working
threads, where each thread assembles a certain fraction ofMxq andRxq. In addition to
distributing System access among the threads, the refinement process defined within
the Solution class is optimized by following the very same idea. By increasing the
number of threads, the non-optimized and memory-access-related operations gradually

3https://www.openmp.org/
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Figure 2.2: CPU time consumption of typical standard BIFETroutines in serial mode.
Iterative solver in diffusion problem results in quadratic scaling, while direct solver in
advection problem gives linear scaling. The scaling indices are presented in Tab. 2.1

dominate over the paralleled part in the CPU time consumption when the workload
for a problem (e.g., calculating the diffusion or advection coefficient at each supporting
point) is not heavy enough, in which cases the strong scaling speedups hit the rooftops
as illustrated in Fig. 2.3.
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Figure 2.3: Strong scaling speedups of initialization and refinement processes in
computationally light and heavy problems. As a benchmark we present Amdahl’s law
of fully paralleled or 99% paralleled. Rooftops occur in computationally light cases
before exploiting the available threads.
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2.2.2 Precision

The capability and precision of BIFET pipelines in confronting common physical sce-
narios in CR propagation are illustrated by a series of integrated tests in the following.
With an analytically solvable problem, we can compare the numerical solution uh to the
corresponding analytic one u by estimating the L2 errors at any given testing position
(x,q) in the simulation domain

εL2,q =

√∫
Ωx

[u(q)− uh(q)]2 , (2.2)

εL2,x =

√∫
Ωq

[u(x)− uh(x)]2 , (2.3)

where for simplicity with built-in library functions provided by deal.II , error es-
timations are calculated in a single sub-domain, e.g., εL2,q is defined as the spatial
sub-domain error by interpolating the solution uh at the given spectral position q.

A pure diffusion or mathematically speaking a parabolic problem, is the simplest
testing case we can start with. We prepare a typical strong formulation for the diffusion
problem as

∂tu(x,q, t)−∇x · (Dxx∇xu(x,q, t)) = f(x,q, t) , (2.4)
u(x,q, t) = 0 , x ∈ ∂Ωx , (2.5)

where a homogeneous strong condition is defined on all boundaries. For the testing
purpose, a simple steady-state solution u(x,q) which satisfies the Dirichlet boundary
condition can be pre-defined as

u(x,q) = S(z)S(x)S(y) , (2.6)

where for abbreviation C(i) represents cos( (i−imin)π
Li

) and S(i) for sin( (i−imin)π
Li

) with
Li = imax − imin defined as the simulation box length in the spatial coordinate i ∈
{x, y, z}. Inspired by the testing cases designed by Kissmann [8], we set a similar
anisotropic spatial diffusion tensor

Dxx =

 αz2 0 0
0 βx2 βxy
0 βxy βy2

 , (2.7)

where we set α 6= β for anisotropy. The weak formulation of this problem has been
presented as an example of domain separation earlier. In the R1+m setting, the right-
hand-side source term which can provide uniquely the pre-defined solution reads

f(z) =
π2αz2

L2
z

S(z)− 2παz

Lz
C(z) , (2.8)
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while in the R2+m dimension setting, its expression should be

f(z, x) = f(z)S(x)

+
π2βx2

L2
x

S(z)S(x)− 2πβx

Lx
S(z)C(x) , (2.9)

and finally in the R3+m setting, the source term is

f(z, x, y) = f(z, x)S(y)

−2π2βxy

LxLy
S(z)C(x)C(y)

−πβx
Lx

S(z)C(x)S(y)− πβy

Ly
S(z)S(x)C(y)

+
π2βy2

L2
y

S(z)S(x)S(y)− 2πβy

Ly
S(z)S(x)C(y) . (2.10)

A direct and efficient approach to this problem is to use a time-independent solver
with continuous Galerkin method in BIFET . Fig. 2.4 displays the spatial sub-domain
L2 errors estimated with different dimension and refinement settings, where in practice
the total volume of the spatial sub-domain is fixed by setting Lx = Ly = Lz = L.
For a numerical solution uh found with (dis)continuous Galerkin base functions up
to polynomial order p, the corresponding L2 errors should follow hp+1 scaling where h
represents the homogeneous numerical cell length in each spatial direction. This means
at each global refinement level, the total number of elemental cells is L/h in each spatial
direction. On the other hand, solutions found with adaptive refinement scheme do not
respect the hp+1 scaling law since the elemental cells are refined inhomogeneously.
Nevertheless, we still managed to find a roughly linear (but slightly steeper) scaling of
L2 errors in the adaptively refined cases with respect to the minimal (but not all) cell
length h.

For testing the time-dependent solving routines, we intend to recover the steady-
state solutions by a time-dependent solver with the Crank-Nicolson method. The left
panel in Fig. 2.5 illustrates the evolving property of the time-dependent solver with fixed
time-step difference d while increasing the total evolving step T/d until the minimal
error found by the time-dependent solver is reached asymptotically. Note that the
minimal evolving steps required for reaching the steady-state solution depends on the
specific dimension and resolution settings of a problem. The convergence property of
the time-dependent solver is presented by the right panel, where the total evolving time
T is fixed. With different spatial resolution defined by L/h, we marked the saturation
point beyond which further time discretization becomes redundant.
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Figure 2.4: Spatial sub-domain L2 errors measured in solving the spatial diffusion
problem with a time-independent solver. “adaptive” indicates the adaptive refinement
scheme while “global” indicates the homogeneous global refinement scheme. “pol.ξ” in-
dicates up to the ξ-th order of polynomials are adopted as finite element base functions.
Errors estimated with adaptive refinement (adaptive refinement ratio is set as 50%)
are plotted according to the same refinement level compared to the globally refined
counterparts.
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Figure 2.5: Spatial sub-domain L2 errors measured in solving the spatial diffusion
problem with a time-dependent solver. The problem is defined in R1+1 with homo-
geneously refined mesh and base functions at polynomial order 1. The minimum L2

errors corresponds to the steady-state solutions are displayed in dashed lines. The sat-
uration positions in the right panel are chosen at where the relative difference between
time-dependent and time-independent solutions is below 10−6.
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The continuous energy loss (spectral advection) is a typical and important scenario
in CR propagation where we can experiment the discontinuous Galerkin method in
the spectral sub-domain while keeping the spatial sub-domain safely discretized by the
continuous Galerkin method if no spatial advection phenomena shows up. The strong
formulation of a simple spectral advection problem is defined as

∂tu(x,q, t) +∇E · (Aqqu(x,q, t)) = f(x,q, t) , (2.11)
u(x,q, t) = 0 , q ∈ ∂Ω+

q , (2.12)

where ∂Ei = exp(−qi)∂qi since the spectral sub-domain can be built in logarithmic
scale. Similar to the previous diffusion problem, the spectral sub-domain coordinates
are represented by {qx, qy, qz}. An anisotropic spectral advection vector A is assumed
to be

Aqq =

 ηz exp (nz(qz − qz,min))
ηx exp (nx(qx − qx,min))
ηy exp (ny(qy − qy,min))

 . (2.13)

In the Rm+1 setting, with a simple right-hand-side source term f(qz) = exp (sz(qz − qz,min)),
the analytic solution which satisfies the homogeneous strong boundary condition reads

u(z) =
exp ((nz − sz)qz,min)

(1 + sz)ηz
exp (qz(1 + sz − nz))

−exp ((nz + 1)qz,min + (1 + sz)Lqz)

(1 + sz)ηz
exp (−nzqz) . (2.14)

For the testing purpose we require u(x,q, t) = u(qz)u(qx)u(qy), then in analogy to the
Rm+1 case the source term for the Rm+3 setting reads

f(qz, qx, qy) = f(qz)u(qx)u(qy)

+u(qz)f(qx)u(qy) + u(qz)u(qx)f(qy) . (2.15)

Note that shifting from the energy coordinate E derivation to its corresponding
logarithmic coordinate q = log(E) derivation introduces a diagonal tensor

Tq =

 exp(−qz) 0 0
0 exp(−qx) 0
0 0 exp(−qy)

 , (2.16)

which consequently brings itself and ∇qTq into the weak formulation. Before applying
the upwind method and boundary condition, the weak formulation for the advection
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term reads

∇E · (Aqqu) →
∑
k

∑
β,j

Uβjk
∫

Ωx

∫
Ωkq

φkαiTq∇q · (Aqqφ
k
βj)

=
∑
k

∑
β,j

Uβjk

[∫
Ωx

∮
∂Ωkq

φkαiTqAqqn̂
k
qφ

k
βj

−
∫

Ωx

∫
Ωkq

(∇qφ
k
αi)TqAqqφ

k
βj

−
∫

Ωx

∫
Ωkq

φkαi(∇qTq)Aqqφ
k
βj

]
, (2.17)

where base functions are independently defined in each spectral cell Ωk
q. With the

upwind method applied in order to ease the oscillation in the solution of an advection
problem, each spectral internal surface integral reads∑

β,j

∫
Ωx

∮
∂Ωkq

φ−βjTqAqq(φ+
αin̂

+
q + φ−αin̂

−
q ) , (2.18)

with the wind direction (pointing from downwind cell marked by − to upwind cell
marked by +) defined by TqAqq.

Spectral L2 error scaling properties of time-independent solver with various dimen-
sion and refinement settings are illustrated by Fig. 2.6. The performance of applying a
time-dependent solver to the same problem is illustrated in Fig. 2.7.
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Figure 2.6: Spectral sub-domain L2 errors measured in solving the spectral advec-
tion problem. “adaptive” indicates adaptive refinement scheme while “global” indicates
global refinement scheme. “pol.ξ” indicates up to ξ-th order of polynomials are adopted
as finite element base functions. Solutions found with adaptive refinement (adaptive
refinement ratio is set as 50%) are plotted according to refinement level compared to
globally refined counterparts.
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uration positions in the right panel are chosen at where the relative difference between
time-dependent and time-independent solutions is below 10−6.
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In the above two testing cases, we have seen the diffusion and advection problems
separately. A more realistic problem usually involves both diffusion and advection
which need to be solved simultaneously either defined in the same sub-domain or in
two sub-domains separately. Here we set up an advection-diffusion problem (with
diffusion and advection in the same sub-domain) and approach unconventionally with
the continuous Galerkin method as in the pure diffusion problem case and then observe
the performance. Despite the fact that discontinuous Galerkin is the standard method
for solving an advection-diffusion problem, a continuous Galerkin method however is
computationally lighter and easier to be implemented and also interesting to be tested
as an alternative approach. The strong formulation of a simple advection-diffusion
problem is defined as

∂tu(x,q, t) +∇x · (Axxu(x,q, t))−∇x · (Dxx∇xu(x,q, t)) = f(x,q, t) , (2.19)
u(x,q, t) = 0 , x ∈ ∂Ω+

x , (2.20)
n̂x · (Axx −Dxx∇x)u(x,q, t) = 0 , x ∈ ∂Ω−x , (2.21)

where ∂Ω+ and ∂Ω− represent the upper and lower surface bounds respectively. We
do not intend to complicate advection or diffusion tensors, and so they are set with
constant values

Axx =

 ηz
ηx
ηy

 , Dxx =

 α 0 0
0 β 0
0 0 β

 . (2.22)

In the R1+m setting, with simple time-independent source f(x,q, t) = exp (zmin − z)
an analytic solution that satisfies our boundary conditions can be derived as

u(z) = (
exp(zmin − z)

(α + ηz)
− 1

ηz
) exp

(
−ηz(z − zmax)

α

)
− exp(zmin − z)

(α + ηz)
+

1

ηz
. (2.23)

In the R2+m and R3+m settings we require u(x,q) = u(z)u(x)u(y) so that the corre-
sponding source functions reads

f(z, x) = f(z)u(x) + u(z)f(x) , (2.24)
f(z, x, y) = f(z, x)u(y) + u(z)u(x)f(y) . (2.25)

The left-hand-side of the time-independent weak formulation reads∑
β,j

Uβj
∫

Ω

(Dxx∇xφβj −Axxφβj) · ∇xφαi , (2.26)

in which the surface integral terms vanish due to the boundary conditions.
Fig. 2.8 illustrates the precision of the time-independent solver in two different cases.

In the first case we set diffusion coefficient as the same magnitude as the advection
coefficient, while in the second case the diffusion term is significantly weaker than the
advection. It is known that continuous Galerkin method is not appropriate for solving
a pure advection problem, and so by mixing a diffusion term into the advection problem
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to suppress artificial oscillation in the solution the continuous Galerkin may become
feasible. We should expect that smaller diffusive partition in the advection-diffusion
problem requires higher mesh refinement to reach the ideal error scaling law. This is
observed in the upper panel of Fig. 2.8 where the ideal error scaling is only achieved
with highly refined grid, while in the lower panel of Fig. 2.8 the ideal error scaling is well
followed sicne the diffusion term is significant enough at the given mesh resolution. The
performance of applying a time-dependent solver to the advection-diffusion problem is
illustrated in Fig. 2.9.
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Figure 2.8: Spatial sub-domain L2 errors measured in solving the advection-diffusion
problem. “adaptive” indicates adaptive refinement scheme while “global” indicates
global refinement scheme. “pol.ξ” indicates up to ξ-th order of polynomials are adopted
as finite element base functions. Solutions found with adaptive refinement (adaptive
refinement ratio is set as 50%) are plotted according to refinement level compared to
globally refined counterparts.
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Figure 2.9: Spectral sub-domain L2 errors measured in solving the advection-diffusion
problem with a time-dependent solver. The problem is defined in R1+1 with homoge-
neously refined mesh and base functions at polynomial order 1. The minimum L2 errors
corresponds to the steady-state solutions are displayed in dashed lines. The satura-
tion positions in the right panel are chosen at where the relative difference between
time-dependent and time-independent solutions is below 10−6.
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The above tests all focus on problems non-trivially defined in a single sub-domain,
from which we have collected some practical experience for more realistic problems
which span across the whole domain4. Here we define a simple problem with constant
and isotropic spatial diffusion and spectral advection as

∂tu−∇x · (Dxx∇xu) +∇E · (Aqqu) = f , (2.27)
u(x,q, t) = 0 , q ∈ ∂Ω+

q , (2.28)
u(x,q, t) = 0 , x ∈ ∂Ωx , (2.29)

Aqq =

 η
η
η

 , Dxx =

 α 0 0
0 α 0
0 0 α

 . (2.30)

Since the operators (diffusion and advection) are independent, we are able to formulate
the solution as u(x,q, t) = u(x, t)u(q, t) and consequently the right-hand-side source
as f(x,q, t) = fx(x, t)uq(q, t) + fq(q, t)ux(x, t). By learning from the simple forms of
solutions in previous tests we fill the system with

ux(ξ) = sin

(
(ξ − ξmin)π

Lξ

)
, (2.31)

ux(x) =
∏
ξ

u(ξ) , (2.32)

uq(qξ) =
exp(qξ,min)

η(1 + s)

[
exp ((1 + s)(qξ − qξ,min))− exp

(
(1 + s)Lqξ

) ]
, (2.33)

uq(q) =
∏
qξ

u(qξ) . (2.34)

The weak formulation consists of the spatial component from the weak formulation of
the spatial diffusion problem and the spectral component from the weak formulation of
the spectral advection problem, and so the discontinuous Galerkin method is used only
in the spectral domain where the advection is defined. Before applying the upwind
method, the time-independent left-hand-side is represented by∑

k

∑
β,j

Uβjk
∫

Ωx

(∇xviDxx∇xvj)

×
[ ∮

∂Ωkq

wkαTqAqqn̂
k
qw

k
β −

∫
Ωkq

(∇qw
k
α)TqAqqw

k
β −

∫
Ωkq

wkα(∇qTq)Aqqw
k
β

]
. (2.35)

Fig. 2.10 displays the measured spatial and spectral L2 errors with respect to the
simulation mesh resolution. By applying a time-dependent solver, the asymptotic
error convergence with fixed time-difference and fixed total evolving time are displayed
respectively in Fig. 2.11 (for spatial L2 errors) and Fig. 2.12 (for spectral L2 errors).

4We emphasize that all problems are defined on the full domain, but when no operation is defined
in a sub-domain the corresponding weak formulation is usually a trivial mass matrix.
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Figure 2.10: Spatial and spectral domain L2 errors measured in the spatial diffu-
sion with spectral advection problem. “adaptive” indicates adaptive refinement scheme
while “global” indicates global refinement scheme. “pol.x” means up to x-th order of
polynomials are adopted as finite element base functions. L/h means the number of
cells along each spatial dimension. Solutions found with adaptive refinement are placed
according to refinement level in comparison with globally refined counterparts. In this
illustration we set adaptive refinement ratio as 50%.



34 BIFET

101 102 103

T/d (fixed d)

10 4

10 3

10 2

10 1

100

L2 ,
q

1 + 1, global, pol.1

L/h = 2
L/h = 4
L/h = 8
L/h = 16
L/h = 32

101 102

T/d (fixed T)

10 4

10 3

10 2

10 1

100

L2 ,
q

1 + 1, global, pol.1

L/h = 2
L/h = 4
L/h = 8
L/h = 16
L/h = 32

d2 scaling
saturation

Figure 2.11: Spatial L2 errors measured in the spatial-diffusion with spectral-
advection problem with a time-dependent solver. The testing spatial diffusion problem
is defined in R1+1 with homogeneously refined mesh and finite element base functions
at polynomial order 1. The minimum L2 errors corresponds to the steady-state so-
lutions are displayed in dashed lines. The saturation positions in the right panel are
chosen at where the relative difference between time-dependent and time-independent
solutions is below 10−6.
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Figure 2.12: Spectral L2 errors measured in the spatial-diffusion with spectral-
advection problem with a time-dependent solver. The testing spatial diffusion problem
is defined in R1+1 with homogeneously refined mesh and finite element base functions
at polynomial order 1. The minimum L2 errors corresponds to the steady-state so-
lutions are displayed in dashed lines. The saturation positions in the right panel are
chosen at where the relative difference between time-dependent and time-independent
solutions is below 10−6.



Chapter 3

Application Examples

Convinced by integrated tests of various typical problems, we move on to illustrate the
capacity of BIFET in realistic simulations. The examples are designed as one of the com-
monly adopted simulation settings in previous studies carried out with other simulators
like Galprop [16] and DRAGON [3] where GMF is pre-defined and fixed. We consider
a CRE propagation problem with time-independent spatial diffusion plus spectral ad-
vection in the R1+1 dimension setting. Homogeneously distributed Galactic magnetic
field is assumed without requiring CR feedback, which means no CR streaming insta-
bility in the magnetic turbulence. In the R3+3 dimension setting, the simplified CRE
propagation is defined as

∂tÑ −∇x · (D∇xÑ) +∇E · (bÑ) = Q , (3.1)
Ñ(x,q, t) = 0 , q ∈ ∂Ω+

q , (3.2)

Ñ(x,q, t) = 0 , x ∈ ∂Ωx , (3.3)

where Ñ(E, r) represents spherical symmetric CRE differential density. This toy mod-
elling of CRE propagation can be applied to either point source modelled as some
exponential profile in a homogeneous diffusive background [? ], or extended sources
in galaxy clusters [? ] and dwarf galaxies [? ]. Reducing to the R1+1 dimension
with spherical symmetries, the time-independent propagation equation ∂tÑ = 0 is
reformulated as

− 1

r2
∂r(r

2D∂rÑ) +
1

E2
∂E(E2bÑ) = Q , (3.4)

∂rÑ(r = 0) = 0 , (3.5)
Ñ(r = rmax) = 0 , (3.6)
Ñ(E = Emax) = 0 . (3.7)

We are interested in CREs reside within the energy range E ∈ [10−2, 103] GeV,
where the dominant continuous energy loss mechanisms are Coulomb interactions (ne-
glecting the degree of ionization), non-thermal bremsstrahlung (in strong-shielding
limit), inverse Compton scattering and synchrotron emission, which can be approx-
imated mono-chromatically (which means the energy loss rate is approximated as a
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function of CR energy alone) as

−b(E) = bic + bsync + bcoul + bbrem , (3.8)

bsync =
cσT
4π

(B0γ)2

' 4.96× 10−7γ2 GeV/Gyr , (3.9)

bic =
4

3
cσTωγ

2

' 2.08× 10−7γ2 GeV/Gyr , (3.10)
bcoul = 2.7cσTnHmec

2(6.85 + ln γ)

' 0.96 ln γ + 6.58 GeV/Gyr , (3.11)

bbrem =
175.5αcσT

8π
nHmec

2γ

' 0.02γ GeV/Gyr , (3.12)

where c is the light speed, σT is the Thomson cross-section, α is the fine structure
constant. We assume a typical averaged magnetic field strength B0 = 4.0 µG, averaged
hydrogen density nH = 1.14 cm−3, and constant background photon field energy density
w = 0.25 eV/cm3. Fig. 3.1 presents the CRE energy loss rates as functions of its total
energy. Although the energy loss modelling is not very realistic, it catches the basic
feature of the dominating mechanisms at different electron energy range. In addition,
the toy modelling of an isotropic spatial diffusion coefficient [3] can be defined as

D(E) = D0(
E/GeV

B0/µG
)1/3

' 3.15× 10−2γ1/3 kpc2/Gyr , (3.13)

where D0 = 1.0 × 102 kpc2/Gyr. In analogy to the phenomenon where CREs are
produced by the supernova explosion, we could roughly describe the source term Q as

Q(E, r) = Q0gsnr(E/GeV)−κ

' 1.99× 106 exp(−r/h)γ−2.2cm−3GeV−3Gyr−1 , (3.14)

with Q0 = 1.0 cm−3GeV−3Gyr−1, h = 0.5 kpc, κ = 2.2, which are chosen for illustra-
tive purpose. Alternatively, we can replace supernova-remnant-driven profile gsnr by a
WIMP-annihilation-driven profile

g2
dm = 2.56

h6

(h+ r)2(h2 + r2)2
, (3.15)

which is known the Burkert profile [2] for dark matter distribution in dwarf galaxies,
where the square comes from how we estimate the annihilation cross-section and the
constant 2.56 is set in this example for normalizing the total source density with respect
to gsnr.

Differs from the testing case for spatial diffusion with spectral advection, here we
have additional geometric tensors Tr = r−2 and Tq = E−3. The raw (before applying the
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Figure 3.1: CRE continuous energy loss rate in various mechanisms defined in the
toy modelling. At low energy scale Coulomb interaction loss (dashed green curve)
dominates until around 0.1 GeV level, from where Bremsstrahlung loss (dotted red
curve) takes over. When CRE energy goes higher than 10 GeV magnitude, synchrotron
loss (solid blue curve) and inverse Compton loss (dash-dot blue curve) become dominant
mechanisms.

upwind method) weak formulation of the time-independent left-hand-side consequently
has more terms in the spatial domain, which reads∑

k

∑
β,j

Uβjk
∫

Ωr

(vivj)

[ ∮
∂Ωkq

wα(Tqb̃) · n̂qwβ

−
∫

Ωkq

(∇qw
k
α) · (Tqb̃)wkβ −

∫
Ωkq

wkα(∇qTq) · b̃wkβ
]

+

∫
Ωkq

(wkαw
k
β)

[ ∫
Ωr

(Tr∇rvi + vi∇rTr) · (D̃∇rvj)

]
, (3.16)

where the effective advection coefficient b̃ = E2b, and the effective diffusion coefficient
D̃ = r2D.

Fig.3.2 presents the spectral and spatial behaviour of the steady state solutions. The
energy spectrum exhibits the expected steepening below 1 GeV due to the transition
from diffusion to advection domination and 10 GeV due to the transition of dominant
continuous energy loss mechanism illustrated by Fig.3.1. Since the source term Q faces
spatial suppression, CRE spectral steepening occurs around lower energy scale and
becomes more smooth at higher radii. Meanwhile, the radial flattening in the dark-
matter (DM) induced CRE spectral distribution follows the fact that DM induced
modelling provides more CREs at high radii than supernova-remnant (SNR) induced
modelling.
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Figure 3.2: Spectral (left) and spatial (right) distribution of CRE differential density
E2Ñ at different radial and energy positions. Thick (red) curves represent results from
CRE source distribution in analogy to DM annihilation while thin (blue) curves are
from source distribution in analogy to supernova remnants.



CONCLUSION

As demonstrated above, we have successfully built up the framework for handling the
high-dimensional PDE system. The multi-threading speedup and precision in solv-
ing simple advection-diffusion problems has been examined. We emphasize that this
toolkit itself is not fully incomplete from a technical point of view, where we need
further MPI parallelism and matrix free method in assembling the system matrix rep-
resentatives. Towards its application in realistic and complicated CRE propagation,
CR-GMF co-evolution and even the RMHD system, we need to implement more aux-
iliary back-end functions, especially a hyper-propagator class that consists of several
single PDE objects. Technically in terms of the solving scheme, we can try to imple-
ment the goal-oriented adaptive refinement method [10], and besides, the non-linear
PDE system needs extra caution. In the end we should connect the BIFET toolkit into
either the hammurabi X package or directly into the IMAGINE engine in order to realize
our conceptual picture of consistent simulation and analysis of the Galactic synchrotron
emission.
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