
Master in High Performance Computing

Multioutput regression of noisy time
series using convolutional neural
networks, with applications to

gravitational waves

Supervisors:
Luca Heltai,
Enrico Barausse

Candidate:
Costantino Pacilio

5th edition
2018–2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Sissa Digital Library

https://core.ac.uk/display/475265859?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Abstract

In this thesis I implement a deep learning algorithm to per-
form a multioutput regression. The dataset is a collection of
one dimensional time series arrays, corresponding to simu-
lated gravitational waveforms emitted by a black hole binary,
and labelled by the masses of the two black holes. In addi-
tion, white Gaussian noise is added to the arrays, to simulate
a signal detection in the presence of noise. A convolutional
neural network is trained to infer the output labels in the
presence of noise, and the resulting model generalizes over
many order of magnitudes in the noise level. From the re-
sults I argue that the hidden layers of the model succesfully
denoise the signals before the inference step. The entire code
is implemeted in the form of a Python module, and the neural
network is written in PyTorch. The training of the network
is speeded up using a single GPU, and I report about efforts
to improve the scaling of the training time with respect to
the size of the training sample.

ii

Contents

Docker container 1

1 Introduction to the problem 2
1.1 Deep learning . 2
1.2 Description of the problem . 3

1.2.1 Generating the dataset 4
1.2.2 Adding the noise . 7

2 Regression algorithms 10
2.1 Regression over clean signals 11

2.1.1 Ridge regressor . 11
2.1.2 Convolutional Neural Network 14

2.2 Regression over noisy signals 15
2.3 Refinements of the algorithm 21

2.3.1 Time translational invariance 21
2.3.2 Estimate the pSNR 22

3 Discussion 24

iii

iv CONTENTS

Docker container

To make your work shareable and reproducible is essential in scientific re-
search. Docker is a software tool that generates computational environments
called containers. The advantage in using Docker is that everything runs in-
side the container: you do not have to worry about the compatibility between
your software and the libraries needed to run the code. This makes Docker
an ideal tool to share a scientific code.

The main computational body of this thesis consists into a Python mod-
ule GWorch.py and a related notebook PyTorch_Regression.ipynb, where
all the computations and the plots documented hereafter are explicitely pre-
sented. I wrapped everything into a Docker container, which also contains
the dataset TD_PhenomD.hdf5 used to train and test the machine learning
algorithms. The container can be downloaded from the DockerHub public
repository cpacilio/gworch as

docker pu l l c p a c i l i o /gworch : l a t e s t

The main folder contains a script ./jupyter.sh to launch a Jupyter envi-
ronment and start to play around with the code. It is highly recommended
to run the notebooks with a CUDA compatible GPU: they are provided with
a link to a Colab version, so that you can use the Google Colab GPU.

1

Chapter 1

Introduction to the problem

1.1 Deep learning

Machine learning is a class of algorithms which learn to perform specific
tasks by induction, after being exposed to proper train samples. The task is
usually in the form of complex pattern recognition and/or reconstruction of
nonlinear correlations between the data. The popularity of machine learning
lies in its generalization, i.e., the ability of the machine to replicate the task
on new samples to which it was never exposed before. Another factor of
popularity is the diffusion of GPU computing: indeed, large train sets are
necessary for an efficient training, and speeding up the learning process is
essential to make it feasible.

Deep learning [1] is an increasingly popular form of machine learning, in
which the input data are processed through a series of nonlinear transfor-
mations. By combining enough nonlinear transformations, large classes of
functions can be approximated with a high degree of accuracy. The basic
algorithms for deep learning are the so called feed-forward neural networks
(NN). A famous result, known as the universal approximation theorem [2],
states that a feed-forward neural network with a single hidden layer ca ap-
proximate any function with compact support in Rn, with very mild assump-
tions on the kind of nonlinear transformations.

The power of NN is their ability to combine efficient nonlinear repre-
sentations of the input: this allows them to discover complex patterns with
little preprocessing of the raw data. The basic unit of a NN is the neuron:
a neuron applies a linear combination to the input, followed by a nonlinear
transformation (activation function). The most common activation function
is the rectified linear unit (ReLU), defined as f(z) = max(0, z). The coeffi-
cients of the linear combination, or weights, are the parameters of the NN.
The simplest example of NN is a fully connected neural network (FCNN), in
which neurons are organized in successive layers; each neuron is connected to
all the neurons of both the previous and the next layers, whence the name.

2

1.2. DESCRIPTION OF THE PROBLEM 3

A more elaborated form of NN is a convolutional neural network (CNN).
A CNN is a sequence of convolutional layers followed by ordinary fully con-
nected layers. They are based on the concept of weight sharing: a convo-
lutional layer consists in a group of weights (filters) shared by the whole
input. Filters represent abstract features of the input. To better extract
the relevant features, each filter undergoes a pooling; the common forms of
pooling are "average pooling" (sub-groups of weights in a filter are averaged)
or "max pooling" (only the max value is selected in each sub-group).

Even more sophisticated forms of NN have been developed during the
last decades. They include recurrent neural networks (RNN), autoencoders
(AE) and Bayesian neural networks (BNN). Their application lies beyond
the scope of this thesis, but in the final discussion I will highlight the role
that they can play in future developments of the work.

1.2 Description of the problem

In this thesis I implement a deep learning algorithm to perform a multioutput
regression. The dataset is a collection of one dimensional time series arrays,
corresponding to simulated gravitational waveforms (GW) emitted by a black
hole binary, and labelled by the masses of the two black holes. The task of
the algorithm is to infer the output labels with the best accuracy.

The problem is complicated by the fact that GW signals are noisy, be-
cause the pure signal is superimposed to the detector noise. The detector
noise is not regular: strictly speaking, it is time dependent and not Gaus-
sian, but it is well approximated by a Gaussian noise with a colored (non-flat)
power spectrum distribution [3]. In the following I will restrict to the simple
case of white Gaussian noise: this is motivated by the fact that, given a
colored Gaussian noise, one can always move close to the case of a white
noise by whitening the signal; moreover, as shown in [4], an algorithm per-
forming well on white Gaussian noise is also trainable over whitened signals
with a colored noise. Notice that the relative loudness of the noise w.r.t.
the signal is not fixed, but it is allowed to vary, and one can also attempt
to infer it from the model: indeed, in Ch.2.3.2, I expand the algorithm to a
three dimensional output regression, including also the noise level between
the targets.

The motivation for the problem comes from recent developments in GW
astronomy, initiated with the first landmark detection of a GW from the
Ligo-Virgo collaboration [5]. It has become clear that, in the upcoming
future, astronomy will face the need to process large amounts of data from
multiple observational channels, with high precision and in a relatively small
time (ideally, in real time or even faster). Moreover, there is a growing
consensus on the fact that these objectives can be optimally realized by
exploiting the recent advances in high performance computing, such as deep

4 CHAPTER 1. INTRODUCTION TO THE PROBLEM

learning and GPU computing [6, 7, 8].
The need for a fast and accurate parameter estimation comes from the

purposes of multi-messenger astronomy, in which observations are carried
over by a network of multiple detectors looking at distinct observational
channels. The rapidity of communication between the nodes of the network
is crucial to synchronize the observations on the same source, which must be
accurately located and characterized. Current techniques [9] for searching
and parameter estimations are based on template based matches (matched-
filtering [10, 11]), and on Bayesian inference via stochastic exploration of a
large parameter space [12]. These procedures are intensively costing, because
of the dimensionality of the parameter space and of the template banks [13].
In contrast, the advantage of using a pre-trained NN is that the computa-
tional burden is relegated to the offline training, while the online inference
takes only a small time.

Recent years have seen a spreading in the applications of NN to GWs:
[14, 4, 15, 16, 17] used CNN for searching, point regression and sky local-
ization; [18, 19] used AE and RNN for denoising; [20, 21, 22] used BNN for
Bayesian inference. See also [23, 24]. This list does not pretend to be ex-
haustive. The work of this thesis follows the spirit of [4, 15]: I will reproduce
the basic results and implement some minor improvements. The computa-
tional aspects of the project do not require a deep knowledge of GW physics;
therefore I will introduce physical concepts only when strictly needed. In the
following sections I give a basic understanding of the problem; in particular,
Sec.1.2.1 describes the simulation of pure GWs, while Sec.1.2.2 covers noise
addition.

1.2.1 Generating the dataset

I need two datasets of GWs, a train_set and a test_set, to train the
NN and evaluate its performances. I used the public software PyCBC
[25, 26, 27], which was explicitly designed to simulate and analyze GW
signals, including real signals from the Ligo-Virgo gravitational interfer-
ometers. PyCBC allows to generate simulated GW signals from various
approximants, based on interpolations of numerical relativity and exact
analytical techniques. Its usage is nicely documented. For example, at
http://pycbc.org/pycbc/latest/html/waveform.html you find a tu-
torial on simulated waveforms generation, while http://pycbc.org/pycb
c/latest/html/pycbc.waveform.html documents the waveform package.
I used the function waveform.get_td_waveform to generate simulates GW
signals in the time domain.

get_td_waveform takes several arguments to set the approximant, the
intrinsic parameters (masses, spins) and the extrinsic ones (geometry of the
orbit, space-time location), and the space-time coordinates relative to the
detector frame. However I just set five arguments, leaving the rest to their

http://pycbc.org/pycbc/latest/html/waveform.html
http://pycbc.org/pycbc/latest/html/pycbc.waveform.html
http://pycbc.org/pycbc/latest/html/pycbc.waveform.html

1.2. DESCRIPTION OF THE PROBLEM 5

default:

— approximant: the numerical method used to approximate the GW
waveforms; I used the IMRPhenomD approximant [28, 29];

— mass1, mass2: the masses of the components of the binary, in units
of M� (solar mass);

— f_lower: the starting frequency of the waves (in Hz); I choose
f_lower = 40 Hz;

— delta_t: the time resolution of the signal (in Hz), i.e., the number of
bins per second in the time series; I choose delta_t = 1/8192 Hz.

Not fixing the other parameters is equivalent to assume that the binary
components of the source are non-spinning, inspiraling in a quasi-circular
orbit at a fixed distance of 1 Mpc from the detector, and with optimal
face-on orientation relative to the detector frame. If you keep fixed all the
other parameters, the distance from the source controls the amplitude of
the measured signal: more precisely, the amplitude scales as the inverse of
the distance. However, as we shall see at the beginning of Ch.2, signals
are preprocessed in the inference pipeline, in such a way that the original
information about the amplitude does not play any role. Therefore, fixing
the distance to 1 Mpc is just a convention without any impact on the final
results.

The test_set and the train_set are generated by varying mass1 and
mass2 in the range M1,M2 ∈ [5, 80]M� and M1,M2 ∈ [5.5, 80.5]M� respec-
tively, with a mass spacing ∆M = 1M�. Moreover, since the problem is
symmetric w.r.t. the exchange of the masses, I restricted to the lower half
plane M2 > M1 without loss of generality (Fig. 1.1). By simple combina-
torics, we see that both datasets contain n_samples = 2926 waveforms.

Only the last 1 second of each waveform is selected: this is because
CNNs require fixed size inputs, and 1 second is the maximum time extent of
IMPRPhenomD simulation for high component masses. The waveforms h(t)
are normalized in such a way that abs(h)|max = 1.1 Fig. 1.2 shows a plot of
one waveform from the test_set, corresponding to n_sample = 1000.

The two datasets are collectively stored into a .hdf5 file —
TD_PhenomD.hdf5, where TD stands for "time domain" — which is orga-
nized according to the following hierarchical structure:

1As I already explained, an overall normalization is irrelevant to the algorithm. I
normalized to 1 just to store more handy numbers in my arrays, since the typical amplitude
of the un-normalized samples is of order 10−19 or less.

6 CHAPTER 1. INTRODUCTION TO THE PROBLEM

(a) (b)

Figure 1.1: A visual representation of the grid domain for train_set (a) and
test_set (b).

Figure 1.2: Example of a time domain waveform from the test_set, corre-
sponding to n_sample = 1000 or equivalently to M1,M2 = (19.5, 46.5).

1.2. DESCRIPTION OF THE PROBLEM 7

TD_PhenomD.hdf5

train

data

numpy
(2926,8192)

target

numpy
(2926,2)

test

data

numpy
(2926,8192)

target

numpy
(2926,2)

The ground levels of the tree indicate that the data and target of each
group are numpy arrays of shapes, respectively, (n_samples, n_features) =
(2926, 8192) and (n_samples, n_targets) = (2926, 2).

1.2.2 Adding the noise

In order to add white Gaussian noise to a numpy array, I used the function
numpy.random.normal(mean,sigma,bins), which returns a numpy array of
length bins, whose points are randomly selected from a Gaussian distri-
bution with a given mean and standard deviation sigma. The white noise
corresponds to mean = 0, and in our case bins = 8192. Therefore, sigma is
the parameter controlling the relative loudness of the noise w.r.t. the signal.

As a measure of the relative loudness, I used the peak signal-to-noise
ratio (pSNR), defined as the ratio between the absolute peak of the signal
and the standard deviation of the noise. In math: let s(t) = h(t) + n(t)
be the total signal in the time domain, decomposed as the sum of the pure
signal h(t) and the noise n(t); then

pSNR =
max|h(t)|
sigma

with n(t) ∈ Gauss(0, sigma) . (1.1)

Fig.1.3 gives a visual representation of the relation between the noisy signals
(blue) and the pure signals (orange), at two different noise levels pSNR = 3
and pSNR = 1. We see that, as the pSNR decreases, it becomes more
challenging to distinguish the noisy signals from pure noise.

It is obvious that any algorithm will become less accurate as the
pSNR decreases. It is a matter of experimental design to decide how much
low the pSNR is allowed to be without losing in inference accuracy. The
web page https://www.gw-openscience.org/catalog/GWTC-1-confid
ent/html/ contains an updated catalog of the Ligo-Virgo confident detec-
tions: you can visualize the noise level in terms of the matched filtering
SNR (MF-SNR), which is defined as the square root of the signal over noise
power integrated over frequencies2 [13, 30]. The MF-SNR for the confi-

2In math: (MF-SNR)2 = 4
∫∞
fmin

df |h̃(f)|2/Sn(f), where h̃(f) is the frequency domain
representation of the GW strain and Sn(f) is the power spectral density of the noise.

https://www.gw-openscience.org/catalog/GWTC-1-confident/html/
https://www.gw-openscience.org/catalog/GWTC-1-confident/html/

8 CHAPTER 1. INTRODUCTION TO THE PROBLEM

Figure 1.3: Orange: pure signal; Blue: noisy signal. Upper panel: ad-
dition of white Gaussian noise at pSNR = 3 to n_sample = 100 (left)
and n_sample = 1000 (right) from the test_set. Lower panel: same but
pSNR = 1.

1.2. DESCRIPTION OF THE PROBLEM 9

dent detection oscillates in the range ≈ 10 ÷ 15. Moreover, as illustrated
in Fig. 4 of [5], the statistical significance of a detection is less than ≈ 2σ
when MF-SNR . 10. Considering that the relation between MF-SNR and
pSNR is approximately MF-SNR ≈ 13× pSNR [19], we can safely restrict
to noise levels pSNR & 0.8.

Chapter 2

Regression algorithms

In this Chapter I describe the implemented NN architecture, I discuss non
trivial aspects in designing and optimizing the training, and I document the
resulting performances.

— In Sec.2.1 I discuss regression over pure signals, without noise addi-
tion. Despite being an over-simplification, never realized in any actual
experiment, it already offers important clues for an efficient training.
In particular, I will show how a proper redefinition of the output labels
improves the inference accuracy.

— In Sec.2.2 I discuss regression over noisy signal, which is the central
result of the thesis. The main challenge is train a NN which generalizes
efficiently over a broad range of pSNR levels, ideally up to pSNR →
∞, without overfitting around a specific value of the pSNR .

— Finally, in Sec.2.3 I discuss some improvements: in particular, in
Sec.2.3.1 I enforce resilience to time translations of the waveforms,
while in Sec.2.3.2 I expand the output layer of the NN to estimate the
pSNR .

Before going on, let me explain how I preprocessed the data and how I
evaluated the performances.

Preprocessing It is a good practice in machine learning to to standard-
ize the input data [31]. Standardization of an array consists into an affine
rescaling of the elements, in such a way that the new elements have zero
mean and unit standard deviation. This is useful because it helps to reduce
the variances in the distribution of the data.

Now, if you have a dataset of shape (n_samples, n_features), you can
standardize the samples w.r.t. the features (standardization by rows) or
the features w.r.t. the samples (standardization by columns). For example,
the sklearn.StandardScaler standardizes by columns. In the case of GW

10

2.1. REGRESSION OVER CLEAN SIGNALS 11

waveforms, it is more natural to standardize by rows, because there is no
correlation between the corresponding features of distinct samples. Now it
is clear why, as claimed in Sec.1.2.1, an overall normalization of the signals
is irrelevant.

Performance metrics I evaluate the inference accuracy using the follow-
ing two metrics:

— the "R squared" (R2) score, defined as (1 minus) the ratio between the
square of the inference errors and the variance of the target labels (see
https://scikit-learn.org/stable/modules/model_evaluation.
html#r2-score):

R2 = 1− SS|res
SS|tot

, (2.1)

where

SS|res =

n_samples∑
i=1

(yi − ŷi)2 , (2.2a)

SS|tot =

n_samples∑
i=1

(yi − ȳ)2 ; (2.2b)

— the mean relative error (MRE):

MRE =
1

n_samples

n_samples∑
i

∣∣∣∣yi − ŷiyi

∣∣∣∣ . (2.3)

In the above definitions yi is the true label for the i-th sample, ŷi is the
inferred value from the model, and ȳ is the average of yi over all samples.

The R2 score ranges from −∞ (arbitrarily bad inferences) to 1 (exact
inferences). It is a very common metric used by the scientific community
to evaluate regressions, and it corresponds to the built in score method
implemented by the sklearn regression classes. The MRE ranges from ∞
to 0. R2 and MRE offer complementary information: for example, you can
have an R2 close to 1 while still a MRE above 20%, which you might not
consider satisfactory if you are very demanding.

2.1 Regression over clean signals

2.1.1 Ridge regressor

The Python library sklearn already offers several regression algorithms: see
https://scikit-learn.org/stable/supervised_learning.html for a

https://scikit-learn.org/stable/modules/model_evaluation.html#r2-score
https://scikit-learn.org/stable/modules/model_evaluation.html#r2-score
https://scikit-learn.org/stable/supervised_learning.html

12 CHAPTER 2. REGRESSION ALGORITHMS

complete list. It is useful to investigate the problem with an algorithm from a
well tested library: this allows to check that the dataset does not suffer from
intrinsic problems, and it offers a benchmark to evaluate the convenience of
using a NN.

I chose sklearn.Ridge because it is quite fast and moderately accurate
for the problem at and. The official documentation can be found at https:
//scikit-learn.org/stable/modules/generated/sklearn.linear_m
odel.Ridge.html#sklearn.linear_model.Ridge: it is a linear regression
algorithm with an L2 regularization. The most relevant arguments are alpha
(the coefficient of the regularization) and tol (the precision of the solution). I
found that the best choices for my problem are alpha = 100 and tol = 10−3.

Fig.2.1a shows the test accuracies of the resulting trained model. The
scatter plots show the predicted labels (y_pred) versus true labels (y_true);
the orange straight line shows the ideal inference y_pred = y_true. The
results are not much satisfactory: the combined R2 score is ≈ 0.82 and the
combined MRE is ≈ 20%; moreover, it is disturbing to see a great difference
in the accuracy of M1 and M2, because the physics is symmetric w.r.t. to
their exchange.

The last observation suggests that a proper change of variables may im-
prove the results. Let us consider the following redefinition of the labels:

Mtot = M1 +M2 (total mass) , (2.4a)

Mchirp =
(M1 ×M2)

3/5

(M1 +M2)1/5
(chirp mass) . (2.4b)

The use of the total mass is motivated by the switching symmetry of the
problem, and by the fact that GR is a scale-free theory and Mtot approx-
imates the total energy of the system. The use of the chirp mass is less
obvious, and it is motivated by the dynamics of the problem. As it is ex-
plained in [32], it follows from Einstein’s equations that the rate of change
of the frequency f of a GW signal is described, at first approximation and
for low frequencies, by

df

dt
≈ 96π8/3

5

(
GMchirp

c3

)5/3

f11/3 . (2.5)

Intuitively, if we redefine the labels as they appear in the analytical treat-
ment, we are partially unfolding the nonlinearities of the problem. Therefore,
since sklearn.Ridge is a linear regressor, the redefinition will improve the
resulting accuracy. The results, shown in Fig.2.1b, confirm this intuition.
In the new variables, the (combined) R2 score is ≈ 0.95 and the MRE is
≈ 9.5%. We see that, already from the analysis of pure signals, we can learn
about the importance of redefining the output labels. I will now show that
a CNN drastically outperforms the above results.

https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.Ridge.html#sklearn.linear_model.Ridge
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.Ridge.html#sklearn.linear_model.Ridge
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.Ridge.html#sklearn.linear_model.Ridge

2.1. REGRESSION OVER CLEAN SIGNALS 13

(a)

(b)

Figure 2.1: Test results of the Ridge regression over the pure signals. (a): re-
gression over the original labels (M1,M2). (b): regression over the redefined
labels (Mtot,Mchirp).

14 CHAPTER 2. REGRESSION ALGORITHMS

Input vector (shape:1×8192)

Convolution
+Max_Pooling
+ReLU

n_kernel kernel_size pool_size
16 32 8
32 32 8
64 32 8

Flatten vector (shape:1×704)

input_size output_size
Fully
connected
layers

Linear
+ReLU

704 64
64 64

Linear 64 2
Output vector (shape:1×2)

Figure 2.2: The convolutional neural network designed to perform regression
over the pure and noisy signals. Notice that you can modify the last linear
layer by increasing the output_shape to estimate more targets.

2.1.2 Convolutional Neural Network

Architecture For a deep learning approach to the above regression prob-
lem I propose the CNN architecture illustrated in Fig.2.2. The net-
work was built using the PyTorch library: see https://pytorch.or
g/docs/stable/index.html for the official documentation. It has
3 hidden convolutional layers (torch.nn.Conv1D), 2 hidden linear layers
(torch.nn.Linear) and 1 output linear layer. A nonlinear ReLU activation
function (torch.nn.functional.relu) is applied at the end of all the hidden
layers. All the three convolutional layers have the same kernel_size = 32
and increasing number of kernel (resp., 16, 32 and 64). After each convolu-
tion a max-pooling filter of size 8 is applied. The stride is 1 (resp. 8) for
the convolutional (resp. pooling) filters.

Training The training depends on several hyperparameters:

— epochs: The number of training epochs, which I fixed to 300. Notice
that this is just a large number ensuring that the network converges.
One can optimize the training time using a validation set. I will de-
scribe the benefit of a validation set in Sec.2.2, when dealing with the
noisy signals. However, for pure signals, the benefits of a validation
set are small.

— batch_size: The number of training samples after which the weights
are updated. I obtained the best results for batch_size = 32.

— optimizer: The optimization algorithm. I used the
torch.optim.Adam with learning rate lr = 10−3.

https://pytorch.org/docs/stable/index.html
https://pytorch.org/docs/stable/index.html

2.2. REGRESSION OVER NOISY SIGNALS 15

— criterion: The loss function to be minimized during the training.
I used the mean squared error (torch.nn.MSELoss) between y_pred
and y_true.

To reduce overfitting, the train_set is shuffled before starting the training,
and the batches are shuffled after each epoch. Moreover, I found that the
training does not converge if the labels are not mapped into a compact
support. Therefore, I normalize the labels during the training, and I save
the normalization factors for consistent future inference.

Results I trained the network using the free GPU available on Google
Drive (a single-core nvidia tesla k80). Fig.2.3 shows the performances of
the resulting model, evaluated on the test_set. We can see that the use of
a CNN dramatically improves the results: the combined R2 score is larger
than 0.99 and the (combined) MRE does not exceed the 2% level. Moreover,
while it is still true that the regression over (M1,M2) is worse than the one
over (Mtot,Mchirp), now the difference is very small and we can undoubtedly
say that both regressions are excellent: one possible explanation is that, due
to the universal approximation theorem, the CNN is able to handle much
better the nonlinearities of the (M1,M2) representation.

2.2 Regression over noisy signals

To train the previous CNN over noisy signals is more challenging, as it should
be already obvious from Fig.1.3: not only the presence of the noise makes
the signal less definite, but we also want the network to be accurate over
a broad range of noise levels. This problem has been already addressed in
[4, 15, 19, 21, 16], and a successful strategy dubbed "curriculum learning"
emerged. Here I describe the idea of curriculum learning (CL) as it was
implemented in more recent papers [21, 16], along with a variant (CL0)
implemented in the initial papers [4, 15, 19]1:

— Curriculum learning (CL): The training consists of n iterations;
at each iteration, noise with SNR randomly chosen in the interval
[Ni, Nmax] is added to the signals, for i = 1, . . . , n. As Ni progres-
sively decreases, the network is first trained on louder signals, which
are easier to learn, and then it is gradually exposed to increasing noise
levels. Be careful not to confuse the number of iterations with the
number of epochs: the latter is re-initialized after each iteration!

— Curriculum learning 0 (CL0): As before, but at each iteration the
added noise has a fixed SNR equal to Ni.

1One can also switch between the two strategies during the training: for example, in
[4, 15] CL0 was the main strategy, but in the last stages of the training CL was preferred.

16 CHAPTER 2. REGRESSION ALGORITHMS

(a)

(b)

Figure 2.3: Test results of the CNN regression over the clean signals. (a): re-
gression over the original labels (M1,M2). (b): regression over the redefined
labels (Mtot,Mchirp).

2.2. REGRESSION OVER NOISY SIGNALS 17

(a) (b)

Figure 2.4: (a): MRE accuracy for training over (M1,M2) (orange) and
(Mtot,Mchirp) (blue). (b) MRE accuracy for CL versus CL0 training.

It follows non only that the number of samples to which the network is
exposed during the training is n × n_samples, but also that the training
epochs and the training time are amplified by a factor n. For example,
the training time for the regression over pure signals was ∼ 3 mins; for a
typical number of iterations, say n = 10, and assuming a perfect scaling, the
training time will increase to ∼ 30 mins. While it is true that 30 mins is not
a big deal, there is a compelling reason to push down the training time: our
project is just a toy model with only 2 degrees of freedom, but the typical
number of parameters of a GW signal is 9 ÷ 16. The shape of a realistic
dataset (which goes beyond the scope of this thesis) can easily become of
order O(1010). Therefore, in realistic situations, it is critical to optimize the
training time.

To this aim, I implemented an early stopping validation callback: you
take aside a 10% random portion of the train_set, call it the validation_set,
and use it to early stop the training when the validation loss becomes flat.
Flatness is considered achieved when the difference between the validation
loss at epochs i and i+ 1 is less than 10−4 for 10 consecutive epochs.

Results I applied the CL strategy with Nmax = 5 and Ni decreasing from
4.5 to 0.1 in steps of 0.5, which corresponds to a total of n = 10 itera-
tions. Fig.2.4a shows the test results for training over (Mtot,Mchirp) and
over (M1,M2): the figure plots the percentage MRE versus the log-scale
pSNR . The pSNR ranges from 0.5 to 104, the latter corresponding to the
limit of pure signal. First, you see that there is a clear benefit in using
the (Mtot,Mchirp) representation. Second, there is a minimum in the MRE
curve in correspondence of pSNR = 5: this is expected because the network
was maximally exposed to a pSNR close to Nmax = 5. Perhaps the most
important observation is that the curves approach a low MRE plateau in the

18 CHAPTER 2. REGRESSION ALGORITHMS

(a) (b)

Figure 2.5: MRE vs. pSNR for several choices of Nmax.

limit of pure signal: this is a spotlight that the hidden layers are actually
denoising the signals; indeed, the network was never exposed to such a small
noise and the only explanation for such a good accuracy is the occurrence of
a denoising.

In contrast, Fig.2.4b shows that naively applying a CL0 strategy results
in a very poor final accuracy. This is because the value of pSNR decreases
during the training and the network overfits at the local pSNR , without
retaining any memory of the previous iterations. The CL strategy fixes this
problem by letting pSNR span a range of progressively decreasing lower
limit but fixed upper limit.

Fig.2.6 offers a visualization of the model performance via the scatter
plots for pSNR = 2, 1, 0.5 and 106.

How do the results change if you vary Nmax in the CL strategy? I
repeated the training for Nmax = 3, 20, 50, 200, fixing the of iterations to
n = 10 and decreasing Ni down to 0.1 in uniformly spaced steps. Fig.2.5
shows the MRE when Nmax = 3, 5, 20 (2.5a) and when Nmax = 50, 200
(2.5b). What we see is that, as Nmax increases, the performances at high
pSNR improve but the ones at low pSNR deteriorate; conversely, when
Nmax decreases, the accuracy at high pSNR diminishes while the one at
low pSNR does not vary much. Therefore, I conclude that pSNR = 5 is
a good compromise. (By the way, Fig.2.5b also shows that the MRE has
no global minimum for sufficiently high Nmax, but it falls smoothly to its
asymptotic value.)

I also benchmarked the training times as you vary the epochs. I
considered three epochs policies: epochs = 100 with no validation_set;
epochs = 300 with no validation_set; and epochs determined by the early
stop validation callback, with the only constraint that max_epochs = 200.
Moreover, in order to measure how the training time scales with n_samples,
I repeated the training for a smaller subset (n_samples=500) of the origi-

2.2. REGRESSION OVER NOISY SIGNALS 19

Figure 2.6: Scatter plots for pSNR = 2, 1, 0.5 and 106. Each scatter plot is
accompanied by one example of noisy signal in the test_set (blue time series)
and the corresponding clean signal (orange time series), to better visualize
the difficulty of the inference. In the last example the noise is so low that
the two signals are perfectly superimposed.

20 CHAPTER 2. REGRESSION ALGORITHMS

(a) (b)

(c)

Figure 2.7: Benchmarks of the training time and test accuracy for dif-
ferent epochs policies. (a): training times for epochs = 100, 300 and
max_epochs = 200 with early stop validation; the first three bars refer to
train_samples = 500, while the "full" bars refer train_samples = 2926. (b):
The corresponding MRE curves for train_samples = 2926. (c): Scaling of
the training with n_samples, for the case epochs=100 and max_epochs=200
with early stop validation; the training was measured on a single GPU.

2.3. REFINEMENTS OF THE ALGORITHM 21

nal train_set. The results are shown in Fig.2.7a. I normalized the times
w.r.t. epochs = 100 and n_samples = 500. As it is expected, when
epochs = 100, 300, the training time scales linearly with both n_samples
and epochs. On the other hand, when validation callback is implemented,
the training time is ∼ 2 smaller w.r.t. epochs = 100, and I managed to
train the model in only ∼ 3 mins!. Early stop validation gives also a benefit
in terms of sample scaling: as shown in Fig.2.7c, when the model is trained
on a single GPU, the training time scales almost linearly for epochs = 100,
but less than linearly in the presence of validation stop. This is important in
perspective, because it allows to scale efficiently the training when a much
larger parameter space is explored.

At the same time2, it is important to check that reduction of the train-
ing time does not also results in performance degradation: Fig.2.7b shows
the MRE curves for the three epochs policies and training over the full
train_sample- We see that the difference in prediction accuracy is of the
percent order, and therefore the validation callback reduces the training time
without sensibly affecting the final performances.

2.3 Refinements of the algorithm

2.3.1 Time translational invariance

The datasets used in the previous sections suffer from a drawback: the po-
sition of the peak of the signals is always at ∼ 0.8 seconds. It might be
that this information, which in principle should be irrelevant, is percolating
in the training and the network is overfitting over it. In order to check the
behaviour of the network under peak shifts, I applied a random numpy.roll
shift to the each signal, with a random left/right rolling between 0% and 5%
of the signal length. When necessary, I applied zero padding at the waveform
tail. The results are shown in the blue curve of Fig.2.8a: the MRE is roughly
constant, with small oscillations around the 35% level, which means that the
CNN was overfitting over the position of the signal peak.

This issue can be fixed if the signal peak is randomly shifted during the
training. To this aim, I run a modified CL training with random 0-to-5%
peak shift. Using the early stop validation policy, the training takes ∼ 6
times more (∼ 9 mins). The orange curve in Fig.2.8a is the resulting MRE:
you see that now the network has become resilient to the position of the peak,
and the performances are as good as in the non-shifted case. For consistency,
in Fig.2.8b I plotted the MRE corresponding to the un-shifted test_set: the
main difference of the new model is a performance degradation at low pSNR ,
but in both cases the MRE remains within 10% for pSNR & 1.

2I apologize for the different uses of the word "time" in this paragraph!

22 CHAPTER 2. REGRESSION ALGORITHMS

(a) (b)

Figure 2.8: (a): Comparison of the test MRE over randomly shifted signals
within 5%, for the original model (blue curve) and a new model trained on
randomly shifted waveforms (orange curve). (b): MRE of the two models
over the original non-shifted test_set.

2.3.2 Estimate the pSNR

The extension of the network to estimate the pSNR is straightforward: from
the point of view of the architecture, you just have to add an output node
(from 2 to 3) to the final layer; from the point of view of the data preparation,
you just have to add a further column to the labels with the corresponding
pSNR . During the training, I compactified the pSNR column rescaling it
by a factor of 10. The results are shown in Fig.2.9: the scatter plots are
relative to the test_set with random noise per sample in the range [1, 10].
Fig.s2.9a and 2.9b correspond, respectively, to the cases without and with
peak shift. In both cases, the prediction of the pSNR is only accurate for
pSNR ≤ Nmax = 5: this is expected, because the network was never exposed
to larger pSNR . On the other hand, (Mtot,Mchirp) are correctly estimated
within 10% also for pSNR ≥ Nmax.

2.3. REFINEMENTS OF THE ALGORITHM 23

(a)

(b)

Figure 2.9: Scatter plots for random noise distribution in the range pSNR ∈
[1, 10]. (a): train and test without peak shift. (b) train and test include
random 0-to-5 % peak shift.

Chapter 3

Discussion

In this thesis I discussed a deep learning approach to parameter estimation,
with a focus on regression over noisy time series. The time signals repre-
sent simulated gravitational waves produced by binary black holes orbiting
around each other. The main motivation in using deep learning comes from
the ability of neural networks to recognize and codify fully nonlinear corre-
lation patterns. I found that the main benefits in terms of performance are:
(i) low latency inference; (ii) information compression; (iii) generalization.

— Low latency inference
The computational burden of a NN is concentrated on the offline train-
ing: once the model is trained, inferences for individual signals can be
drawed in much less than one second. To be more quantitative, I
benchmarked the prediction time on a single CPU: it takes only ≈ 900
µs to make a single inference. Considering that the time window of a
signal is 1 sec., we see that deep learning can allow very low latency
parameter estimation.

— Information compression
NNs occupy a relatively small amount of memory. Indeed, the .pkl file
containing the network parameters is only 530 kB in size. In contrast,
the .hdf5 dataset I used for training occupies 386 MB; moreover, I
generated noisy signals on the run during the training, which resulted
in an effective training dataset 10 times larger. This means that the
network compresses the information contained in ≈ 4 GB into ≈ 5 ×
10−4 GB!

— Generalization
As I showed in Fig.s 2.4 and 2.6, the network can generalize outside its
domain of training, if a proper training strategy is employed. Indeed,
thanks to curriculum learning, the hidden layers learn to denoise, and
the the NN is able to draw accurate inferences even from pure signals
without noise.

24

25

Scope for improvements

This work has of course many improvements directions. The final goal,
which is beyond the scope of the thesis, is to build a pipeline to process and
make inferences from real data. Let me briefly list what I consider the main
limitations of the thesis in this sense, and describe what are their possible
solutions:

— the network was trained over a 2-dimensional parameter space
(M1,M2), neglecting the spins and the spatial orientation of the bi-
nary;

— I only considered white Gaussian noise;

— I considered samples of fixed time extension, limiting the analysis to
only the last 1 second of each GW signal;

— the NN performs point estimate, but it does not output a measure of
the inference uncertainty.

The first two are limitations on the size of training template bank. The
dataset can be easily extended by varying the other simulation parameters
and by adding more realistic noise realizations. In particular, when the
orientation w.r.t. the detector is allowed to vary, one can simulate a network
of multiple detectors and project the signals over the individual detectors: it
would be interesting to study how the accuracy improves by combining the
inferences from each detector.

The second limitation comes from the type of NN architecture we are
using, namely a CNN. CNNs are standard feed forward NNs admitting only
fixed size inputs. However, GW data are recorded as long continuous streams
of inputs; moreover, different GWs can cover very different time extents
within the input. This calls for an architecture with a more flexible input
size. A possible solution is offered by recurrent neural networks (RNN),
which are specifically designed to process a series of inputs. A RNN scans a
long input of data in smaller steps and, besides forwarding the input through
the network, it also saves part of the information into an internal memory.
In this way, the information about the early steps is not lost, but in can be
used to make more informative operations in later steps.

Finally, uncertainty estimates can be obtained using Bayesian neural
networks (BNN). In a BNN the weights are not single numbers, but rather
distributions: the goal of the training is to optimize the Bayesian posteriors
of the the weights, given the observed training samples. Therefore you can
obtain a statistical sample of inferences by picking up weights from their
distribution multiple times.

It is worth noting that all these directions have been already explored
in the literature with very encouraging results. See, in particular: [15] for

26 CHAPTER 3. DISCUSSION

addition of more realistic noise; [17] for inference of the sky-location of the
signal; [18] for the use of RNN to denoise the signals; [20, 21] for uncertainty
estimates using BNN and [22] for an alternative Bayesian approach using
variational autoencoders.

Bibliography

[1] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. na-
ture, 521(7553):436–444, 2015.

[2] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer
feedforward networks are universal approximators. Neural networks, 2
(5):359–366, 1989.

[3] D Shoemaker. Advanced ligo anticipated sensitivity curves tech. Rep.
LIGO-T0900288-v3, 2010. URL https://dcc.ligo.org/public/0002
/T0900288/002/AdvLIGO%20noise%20curves.pdf.

[4] Daniel George and EA Huerta. Deep neural networks to enable real-
time multimessenger astrophysics. Physical Review D, 97(4):044039,
2018. URL https://arxiv.org/abs/1701.00008.

[5] Benjamin P Abbott, Richard Abbott, TD Abbott, MR Abernathy,
Fausto Acernese, Kendall Ackley, Carl Adams, Thomas Adams, Paolo
Addesso, RX Adhikari, et al. Observation of gravitational waves from a
binary black hole merger. Physical review letters, 116(6):061102, 2016.
URL https://dcc.ligo.org/public/0122/P150914/014/LIGO-P150
914_Detection_of_GW150914.pdf.

[6] Gabrielle Allen, Warren Anderson, Erik Blaufuss, Joshua S Bloom,
Patrick Brady, Sarah Burke-Spolaor, S Bradley Cenko, Andrew Con-
nolly, Peter Couvares, Derek Fox, et al. Multi-messenger astrophysics:
Harnessing the data revolution. arXiv preprint arXiv:1807.04780, 2018.
URL https://arxiv.org/abs/1807.04780.

[7] Gabrielle Allen, Igor Andreoni, Etienne Bachelet, G Bruce Berriman,
Federica B Bianco, Rahul Biswas, Matias Carrasco Kind, Kyle Chard,
Minsik Cho, Philip S Cowperthwaite, et al. Deep learning for multi-
messenger astrophysics: A gateway for discovery in the big data era.
arXiv preprint arXiv:1902.00522, 2019. URL https://arxiv.org/ab
s/1902.00522.

[8] Eliu Antonio Huerta, Gabrielle Allen, Igor Andreoni, Javier M Antelis,
Etienne Bachelet, G Bruce Berriman, Federica B Bianco, Rahul Biswas,

27

https://dcc.ligo.org/public/0002/T0900288/002/AdvLIGO%20noise%20curves.pdf
https://dcc.ligo.org/public/0002/T0900288/002/AdvLIGO%20noise%20curves.pdf
https://arxiv.org/abs/1701.00008
https://dcc.ligo.org/public/0122/P150914/014/LIGO-P150914_Detection_of_GW150914.pdf
https://dcc.ligo.org/public/0122/P150914/014/LIGO-P150914_Detection_of_GW150914.pdf
https://arxiv.org/abs/1807.04780
https://arxiv.org/abs/1902.00522
https://arxiv.org/abs/1902.00522

28 BIBLIOGRAPHY

Matias Carrasco Kind, Kyle Chard, et al. Enabling real-time multi-
messenger astrophysics discoveries with deep learning. Nature Reviews
Physics, 1(10):600–608, 2019. URL https://arxiv.org/abs/1911.1
1779.

[9] Jolien DE Creighton and Warren G Anderson. Gravitational-wave
physics and astronomy: An introduction to theory, experiment and data
analysis. John Wiley & Sons, 2012.

[10] Bruce Allen, Warren G Anderson, Patrick R Brady, Duncan A Brown,
and Jolien DE Creighton. Findchirp: An algorithm for detection of
gravitational waves from inspiraling compact binaries. Physical Review
D, 85(12):122006, 2012. URL https://arxiv.org/abs/gr-qc/050911
6.

[11] S Babak, R Biswas, PR Brady, Duncan A Brown, K Cannon, Collin D
Capano, Jessica H Clayton, T Cokelaer, Jolien DE Creighton, T Dent,
et al. Searching for gravitational waves from binary coalescence. Physical
Review D, 87(2):024033, 2013. URL https://arxiv.org/abs/1208.3
491.

[12] John Veitch, Vivien Raymond, Benjamin Farr, W Farr, Philip Graff,
Salvatore Vitale, Ben Aylott, Kent Blackburn, Nelson Christensen,
Michael Coughlin, et al. Parameter estimation for compact binaries
with ground-based gravitational-wave observations using the lalinfer-
ence software library. Physical Review D, 91(4):042003, 2015. URL
https://arxiv.org/abs/1409.7215.

[13] Benjamin J Owen and Bangalore Suryanarayana Sathyaprakash.
Matched filtering of gravitational waves from inspiraling compact bi-
naries: Computational cost and template placement. Physical Review
D, 60(2):022002, 1999. URL https://arxiv.org/abs/gr-qc/9808076.

[14] Hunter Gabbard, Michael Williams, Fergus Hayes, and Chris Messenger.
Matching matched filtering with deep networks for gravitational-wave
astronomy. Physical review letters, 120(14):141103, 2018. URL https:
//arxiv.org/abs/1712.06041.

[15] Daniel George and EA Huerta. Deep learning for real-time gravitational
wave detection and parameter estimation: Results with advanced ligo
data. Physics Letters B, 778:64–70, 2018. URL https://arxiv.org/
abs/1711.03121.

[16] Plamen G Krastev. Real-time detection of gravitational waves from
binary neutron stars using artificial neural networks. arXiv preprint
arXiv:1908.03151, 2019. URL https://arxiv.org/abs/1908.03151.

https://arxiv.org/abs/1911.11779
https://arxiv.org/abs/1911.11779
https://arxiv.org/abs/gr-qc/0509116
https://arxiv.org/abs/gr-qc/0509116
https://arxiv.org/abs/1208.3491
https://arxiv.org/abs/1208.3491
https://arxiv.org/abs/1409.7215
https://arxiv.org/abs/gr-qc/9808076
https://arxiv.org/abs/1712.06041
https://arxiv.org/abs/1712.06041
https://arxiv.org/abs/1711.03121
https://arxiv.org/abs/1711.03121
https://arxiv.org/abs/1908.03151

BIBLIOGRAPHY 29

[17] Chayan Chatterjee, Linqing Wen, Kevin Vinsen, Manoj Kovalam, and
Amitava Datta. Using deep learning to localize gravitational wave
sources. Physical Review D, 100(10):103025, 2019. URL https:
//arxiv.org/abs/1909.06367.

[18] Hongyu Shen, Daniel George, EA Huerta, and Zhizhen Zhao. De-
noising gravitational waves using deep learning with recurrent de-
noising autoencoders. arXiv preprint arXiv:1711.09919, 2017. URL
https://arxiv.org/abs/1711.09919.

[19] Hongyu Shen, Daniel George, Eliu A Huerta, and Zhizhen Zhao. Denois-
ing gravitational waves with enhanced deep recurrent denoising auto-
encoders. In ICASSP 2019-2019 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pages 3237–3241.
IEEE, 2019. URL https://arxiv.org/abs/1903.03105.

[20] Alvin JK Chua and Michele Vallisneri. Learning bayes’ theorem
with a neural network for gravitational-wave inference. arXiv preprint
arXiv:1909.05966, 2019. URL https://arxiv.org/abs/1909.05966.

[21] Zhizhen Zhao Elise Jennings Himanshu Sharma Hongyu Shen, E.
A. Huerta. Deterministic and bayesian neural networks for low-latency
gravitational wave parameter estimation of binary black hole mergers.
arXiv preprint arXiv:1903.01998, 2019. URL https://arxiv.org/ab
s/1903.01998.

[22] Ik Siong Heng Francesco Tonolini Roderick Murray-Smith Hunter Gab-
bard, Chris Messenger. Bayesian parameter estimation using condi-
tional variational autoencoders for gravitational-wave astronomy. arXiv
preprint arXiv:1909.06296, 2019. URL https://arxiv.org/abs/1909
.06296.

[23] He Wang, Zhoujian Cao, Xiaolin Liu, Shichao Wu, and Jian-Yang Zhu.
Gravitational wave signal recognition of o1 data by deep learning. arXiv
preprint arXiv:1909.13442, 2019. URL https://arxiv.org/abs/1909
.13442.

[24] Christopher Bresten and Jae-Hun Jung. Detection of gravitational
waves using topological data analysis and convolutional neural network:
An improved approach. arXiv preprint arXiv:1910.08245, 2019. URL
https://arxiv.org/abs/1910.08245.

[25] Tito Dal Canton et al. Implementing a search for aligned-spin neutron
star-black hole systems with advanced ground based gravitational wave
detectors. Phys. Rev., D90(8):082004, 2014. doi: 10.1103/PhysRevD.9
0.082004.

https://arxiv.org/abs/1909.06367
https://arxiv.org/abs/1909.06367
https://arxiv.org/abs/1711.09919
https://arxiv.org/abs/1903.03105
https://arxiv.org/abs/1909.05966
https://arxiv.org/abs/1903.01998
https://arxiv.org/abs/1903.01998
https://arxiv.org/abs/1909.06296
https://arxiv.org/abs/1909.06296
https://arxiv.org/abs/1909.13442
https://arxiv.org/abs/1909.13442
https://arxiv.org/abs/1910.08245

30 BIBLIOGRAPHY

[26] Samantha A. Usman et al. The PyCBC search for gravitational waves
from compact binary coalescence. Class. Quant. Grav., 33(21):215004,
2016. doi: 10.1088/0264-9381/33/21/215004.

[27] PyCBC. v1.14.4. doi: 10.5281/zenodo.3546372. URL https://doi.or
g/10.5281/zenodo.3546372.

[28] Sascha Husa, Sebastian Khan, Mark Hannam, Michael Pürrer, Frank
Ohme, Xisco Jiménez Forteza, and Alejandro Bohé. Frequency-domain
gravitational waves from nonprecessing black-hole binaries. i. new nu-
merical waveforms and anatomy of the signal. Physical Review D, 93
(4):044006, 2016. URL https://arxiv.org/abs/1508.07250.

[29] Sebastian Khan, Sascha Husa, Mark Hannam, Frank Ohme, Michael
Pürrer, Xisco Jiménez Forteza, and Alejandro Bohé. Frequency-domain
gravitational waves from nonprecessing black-hole binaries. ii. a phe-
nomenological model for the advanced detector era. Physical Review D,
93(4):044007, 2016. URL https://arxiv.org/abs/1508.07253.

[30] Benjamin P Abbott, R Abbott, TD Abbott, MR Abernathy, F Acer-
nese, K Ackley, C Adams, T Adams, P Addesso, RX Adhikari, et al.
Gw150914: First results from the search for binary black hole coales-
cence with advanced ligo. Physical Review D, 93(12):122003, 2016. URL
https://arxiv.org/abs/1602.03839.

[31] Yann LeCun, Leon Bottou, Genevieve B. Orr, and Klaus Robert Müller.
Efficient BackProp, pages 9–50. Springer Berlin Heidelberg, Berlin,
Heidelberg, 1998. ISBN 978-3-540-49430-0. doi: 10.1007/3-540-49430-
8_2. URL https://doi.org/10.1007/3-540-49430-8_2.

[32] LIGO Scientific, VIRGO collaborations, BP Abbott, R Abbott, TD Ab-
bott, MR Abernathy, F Acernese, K Ackley, C Adams, T Adams,
P Addesso, et al. The basic physics of the binary black hole merger
gw150914. Annalen der Physik, 529(1-2):1600209, 2017. URL https:
//arxiv.org/abs/1608.01940.

https://doi.org/10.5281/zenodo.3546372
https://doi.org/10.5281/zenodo.3546372
https://arxiv.org/abs/1508.07250
https://arxiv.org/abs/1508.07253
https://arxiv.org/abs/1602.03839
https://doi.org/10.1007/3-540-49430-8_2
https://arxiv.org/abs/1608.01940
https://arxiv.org/abs/1608.01940

	Docker container
	Introduction to the problem
	Deep learning
	Description of the problem
	Generating the dataset
	Adding the noise

	Regression algorithms
	Regression over clean signals
	Ridge regressor
	Convolutional Neural Network

	Regression over noisy signals
	Refinements of the algorithm
	Time translational invariance
	Estimate the pSNR

	Discussion

