
Master in High Performance
Computing

Parallel Markov Chain Generator for GNY

and φ4 models:
An Implementation aimed for Critical

Phenomena Studies.

Supervisors :
Antonello Scardicchio Supervisor,
Ivan Girotto co-supervisor

Candidate:
Jesus Espinoza-Valverde

5th edition
2018–2019

ii

Acknowledgments

I am very grateful with my supervisor Prof. Antonello Scardicchio for his very valueble guidance, and

with my co-advisor Ivan Girotto because of his unrelenting atention and help. Finally, I also want to

thank Gustavo Ramirez for his advice and his decisive lessons on iterative methods and computational

linear algebra.

iii

This is what he’d always known:

The promise of something greater

beyond the water’s final horizon.

A.T.

Contents

Contents iv

List of Figures vi

List of Tables viii

List of Abbreviations and Symbols ix

1 Introduction 1

2 Theoretical Model Description 3
2.1 Model in the Continuum . 3

2.2 Model on the lattice . 4

2.2.1 Discretization of Space-Time and Fields . 4

2.2.2 Discretization of the Action . 5

2.2.3 Discretization of the Partition Function . 5

2.2.4 Discretized Orbservable Integral . 6

2.3 Dynamical Fermion Sampling . 6

2.3.1 The Fermion Determinant . 6

2.3.2 Pseudofermions . 7

3 Path Integral Solving: Hamiltonian Monte Carlo 9
3.1 Markov Chain Monte Carlo . 9

3.1.1 MCMC Integration . 10

3.1.2 Metropolis-Hastings Algorithm (Random-Walk Exploration) 11

3.1.3 The need for a more powerful MCMC approach 11

3.1.4 Hamiltonian Monte Carlo (HMC) . 12

3.1.5 Applying HMC to our Path Integrals . 13

4 Implementation 15
4.1 Level 01: Fields, Matrices and Basic Linear Algebra 16

4.1.1 Particular subtleties about Fields and Matrices 16
iv

CONTENTS v

4.1.2 Implementation of Fields . 20

4.1.3 Implementation of Dirac Operator . 22

4.2 Level 02: Solving φ †(DD†)−1φ : Conjugate Gradient Methods and Preconditioning . 26

4.2.1 Conjugate Gradient Method . 26

4.2.2 Preconditioned Conjugate Gradient . 27

4.2.3 Preconditioning that changes in every iteration: Flexible Conjugate Gradient . 28

4.2.4 Hermitian Successive Over-Relaxation . 28

4.2.5 Implementation of Solvers . 30

4.2.6 Convergence rate comparison of the different preconditioners 32

4.3 Level 03: Using [DD†(σ)]−1: Pseudofermion Sampling and Force Calculation 34

4.3.1 Pseudofermion Sampling . 34

4.3.2 Pseudofermion Force Calculation . 35

4.4 Level 04: Using Forces: Molecular Dynamics Simulation 35

4.4.1 Solving Canonical Equations of Motion: Molecular Dynamics 35

4.5 Level 05: Including Molecular Dynamics: Hamiltonian Monte Carlo Simulation. . . 38

4.6 Level 06: Many HMC simulations: Parameter sweeping and data analysis. 39

5 Results 41
5.1 Testing Molecular Dynamics algorithm . 41

5.1.1 |∆H| error scaling . 41

5.1.2 Conservation of Phase Space Measure . 42

5.2 Error Analysis using the Jackknife method . 43

5.3 Computation of Observables . 43

5.4 Critical Phenomena . 44

5.5 Correlation Time and Critical Slowing Down . 45

6 Conclusion 47

Bibliography 49

A Appendix 53
A.1 The Doubling Problem . 53

A.2 Mattews-Salam formula . 55

A.3 γ5-hermiticity of the Dirac operator . 55

List of Figures

4.1 Fields, Matrices and Basic Linear Algebra Operations. 16

4.2 (a) 3x3x3 space-time lattice, (b) ”interaction” terms for the lattice point [1,1,1] (green) (c)

Corresponding matrix profile of D for the whole lattice. 17

4.3 Memory requirement in Gigabytes (GB) vs lattice size (L) for the cases [red] Full Maatrix,

[blue] Sparse matrix, [green] Non-repeated matrix. 18

4.4 Tranformation φ ′(1,1,1) = D[(1,1,1), · · ·]φ → φ ′(1,1,1) = (Ddiag[σ(1,1,1)]+D f ix)η
(1,1,1){φ}. 19

4.5 (a) Example of an entire lattice domain, (b) Domain descomposition (green), with halos

(blue), the double head arrows represents the halo exchange among the processes. 20

4.6 Execution times of vector-vector operation v(i)1 ← v(i)1 ∗ v(i)2 for field sizes L = 32,64,80

and for 4,8,16,32 mpi-processes/threads. 22

4.7 Execution times of matrix-vector operation DD†φ for field sizes L = 32,64 and for

4,8,16,32 mpi-processes/threads. 25

4.8 HSOR condition number κ2[M−1(ω)DD†] plotted against ω for a Lattice size of L = 6

and coupling constant g = 1.0, κ2[DD†]) and κ2[(Diag)−1DD†]) are also shown. 29

4.9 Matrix Inversion (DD)−1 via PCGM and FCG . 30

4.10 (a) Convergence comparison of Idendity preconditioner, Inverse Diagonal preconditioner,

Conjugate Gradient preconditioner and SSOR preconditioner for a L = 18 and mean value

of gaussian-randomly generated scalar field equal zero. (b) Convergence comparison of

Idendity preconditioner, Inverse Diagonal preconditioner, Jacobi preconditioner, Conjugate

Gradient preconditioner and HSOR preconditioner for a L= 32 and mean value of gaussian-

randomly generated scalar field equal 5. 33

4.11 Execution times of Preconditioned Conjugate Gradient (HSOR) for field sizes L = 32,64

and for 4,8,16,32 mpi-processes/threads. 34

4.12 Pseudofermion Sampling . 35

4.13 Pseudofermion Force Calculation. 36

4.14 Molecular Dynamic Simulation. 37

4.15 Hamiltonian Monte Carlo Simulation. 38
vi

LIST OF FIGURES vii

4.16 Running time for a entire simulations with L= 12,16,18,24,32,36 with number of threads

T = 1,2,4,8 for (a) non optimized On-The-Fly approach (b) MKL Sparse Matrix approach.

(Note 8000 s ≈ 2h 13 min). 39

4.17 Parameter sweeping and data analysis. 39

4.18 (a) [inset] Strong and (b) Weak scaling for running independent full simulations for

5,10,15,20,25,30,35,40 MPI processes and L = 32. 40

5.1 (a) Energy error behavior with δ t2 for lattice sizes N = L3 = 43,83,123,163,203,243. (b)

Behavior of the slope m = ∆|∆H|/∆(δ t2) as function of L3. 42

5.2 Computation of 〈exp(−∆H)〉 for κ ∈ [0.16,0.21] , with the lattices sizes N = 43,83,123,163,203,243. 42

5.3 (a) Magnetization m =V−1〈∑x φx〉φ and (b) Magnetic Susceptibility χ = 〈M2〉−〈M〉2for

κ ∈ [0.16,0.21] , with the lattices sizes N = 43,83,123,163,203,243. Error bars calculated

using jackknife method. 44

5.4 (a) Binder Cumulant U = 〈M4〉/(〈M2〉)2 for κ ∈ [0.16,0.21] , with the lattices sizes

N = 43,83,123,163,203,243. (b) χ̄(L) = dL2−η fitting at λ = 1.1 (c) ∂Ū
∂κ

= cL1/ν at

λ = 1.1. 46

5.5 (a) Gc(t) = 〈φ(t0)φ(t0 + t)〉 as a function of t for a lattice L = 12 with λ = 1.145 and

κ = 0.18055 (b) correlation time ξ for a lattice L = 12 as a function of κ in the interval

[0.1595,0.2095] with λ = 1.145. 46

List of Tables

4.1 The table contains the specification details of the used infrastructure. 15

5.1 Linear fitting parameters for |∆H| vs δ t2, with the lattices sizes N = 43,83,123,163,203,243.

. 41

viii

List of Abbreviations and Symbols

Abbreviations

GNY Gross Neveu Yukawa

p.b.c Periodic Boundary Conditions

a.p.b.c Antiperiodic Boundary Conditions

DFS Dynamical Fermion Sampling

CGM Conjugate Gradient Method

PCGM Preconditioned Conjugate Gradient Method

FCG Flexible Conjugate Gradient

MCMC Markov Chain Monte Carlo

HMC Hamiltonian Monte Carlo

SLLN Strong Law of Large Numbers

CLT Central Limit Theorem

LQCD Lattice Quantum Chromodynamics

etc. etc.

ix

Chapter 1

Introduction

The φ 4 and the Gross-Neveu-Yukawa models have shown to be of great importance in physics. Even

though the φ 4 model happens to be the most simple interacting quantum field theory, it has proven to

be a reference point for the study of spontaneous symmetry breaking and renormalization [21] [23].

Its great importance lies, among other examples, in that it turns out to be intimately related to the

description of the Higgs field in the standard model [15], and in the fact that it presents a universality

class correspondence with the Ising Model [13]. The Gross-Neveu-Yukawa model is a a quartic

interaction fermionic field theory, whose importance resides in the fact that it plays a strong role as toy

model for Quantum Chromodynamics [11], it shows dynamical symmetry breaking, it has a spectrum

of bound states and it is asymptotically free [7]. The Gross Neveu model with two flavors of Majorana

fermions is equivalent to the Thirring model [29].

Lattice simulations of this models have been performed in the past (e.g. [13], [24]) using Markov

Chain Monte Carlo method (specially making extensive use of the Metropolis-Hasting Algorithm).

A further improvement over Metropolis-Hasting called Hamiltonian Monte Carlo has also been put

in practice (see e.g. [17]). The HMC algorithm has the feature of combining global moves with high

acceptance rates, improving in this way the quality of the produced statistics and the reduction of

autocorrelation lengths [8] [22] 4.

Here we developed a software that applies Hamiltonian Monte Carlo and Wilson Fermions (a

technique used to dynamically sample the fermion fields [31] [10]) for the generation of Markov Chain

series for the φ 4 and GNY models in three dimensions and two fermionic flavors, ready for their use in

statistical computation of observables and order parameters of these theories for critical phenomena

study. Here HPC comes into play because this type of simulations introduces the challenge of dealing

with massive linear algebra operations in which the memory and computational bounds are easily

reached.

1

Chapter 2

Theoretical Model Description

The Quantum Field Theory we are interested in is the one described the Gross-Neveu-Yukawa

Lagrangian given by equation 2.1, which corresponds to the most general renormalizable version of

the the GNY-Lagrangian invariant under O(N) (Global symmetry: O(N) x ZT
2).

2.1 Model in the Continuum

In the GNY-lagrangian σ corresponds to a scalar field and ψ
(f)
i corresponds to N f two-component

Majorana fermions; The index f runs throughout the total number N f of fermionic flavors considered

by the model. In this work we are going to restrict N f (number of fermion flavors) to be an even

number in order to avoid the sign problem (see 2.3.1).

LGNY[σ ,ψ, ψ̄] =
1
2
(∂µσ)2− 1

2
m2

σ
2− λ

4!
σ

4− 1
2

N f

∑
f=1

ψ̄
(f)

∂µγ
µ

ψ
(f)− 1

2
gσ

N f

∑
f=1

ψ̄
(f)

ψ
(f). (2.1)

Here m, λ and g are coupling constants. Furthermore, notice that the scalar part of this Lagrangian

corresponds to the φ 4-Lagrangian:

Lφ 4[σ ,ψ, ψ̄] =
1
2
(∂µσ)2− 1

2
m2

σ
2− λ

4!
σ

4, (2.2)

which is a way more simple model with a pretty well known critical behavior. We consider this

expression as a limiting case of the GNY model when g→ 0 used form checking purposes.

The corresponding Euclidean action our Lagrangian is given by:

S[σ ,ψ, ψ̄] =
∫

dx L[σ ,ψ, ψ̄], (2.3)

where the temporal coordinate is taken as a pure imaginary number (Wick Rotation). The partition

function ZGNY of then reads

ZGNY =
∫

D[ψ̄,ψ,φ]e−S[ψ̄,ψ,φ], (2.4)

with the Integration Measure defined as:

D[ψ̄,ψ,σ]
!
=∏

x
dφ(x)

N f

∏
f=1

dψ
(f)(x)dψ̄

(f)(x), (2.5)

3

4 CHAPTER 2. THEORETICAL MODEL DESCRIPTION

where ∏x runs over the entire space-time x. Finally the vacumm expectation values of an operator O

are calculated as:

〈O〉= 1
ZGNY

∫
D[ψ̄,ψ,σ]e−S[ψ̄,ψ,σ]O[ψ̄,ψ,σ]. (2.6)

2.2 Model on the lattice

We move our model to the lattice by systematically discretizing the space–time, the fields and the

action. By considering a space-time lattice, a natural cut off for the high frequencies is introduced,

which means we end up with a completely finite theory [18].

2.2.1 Discretization of Space-Time and Fields

Our new space-time lattice is obtained by replacing the usual Euclidean space-time continuum with a

lattice Λ, (i.e., performing x ∈ R3→ n ∈ Λ), being Λ given by a set of points such that:

Λ = {n = (n0,n1,n2) | n0,1,2 = 0,1, ...,L1,2,3−1}, (2.7)

with a defining the lattice spacing. After this, our fields are naturally discretized as:

σ(x)→ σ(na)

ψ(x)→ ψ(na)

ψ̄(x)→ ψ̄(na).

(2.8)

To work with the lattice boundaries we introduce periodic-boundary-conditions (p.b.c) and antiperiodic-

boundary-conditions (a.p.b.c), for the space-coordinates and the time-coordinate respectively. Mathe-

matically:

f (n+ µ̂Lµ̂) = e2πiϑµ̂ f (n), (2.9)

where ϑ0 = 1/2 for a.p.b.c, and ϑ1,2 = 0 for p.b.c. Here µ̂ refers to unit vectors in the main 0̂, 1̂, 2̂

directions.

Up to order O(a2) we use the following rule to transform our derivatives:

∂µ̂ψ(x)→ ψ(n+ µ̂)−ψ(n− µ̂)

2a
. (2.10)

Finally the integrals are treated as sums and the integration measure became well-defined:∫
dx...→ a3

∑
n∈Λ

..., (2.11)

D[σ ,ψ, ψ̄]→ ∏
n∈Λ

dσ(n)
N f

∏
f

dψ
(f)(n)dψ̄

(f)(n). (2.12)

2.2. MODEL ON THE LATTICE 5

2.2.2 Discretization of the Action

Using the scheme of the previous section we write down the discretized action as:

S[σ ,ψ, ψ̄] = SS[σ]+SF [σ ,ψ, ψ̄], (2.13)

where:

SS[σ] = a3
∑

n∈Λ

[
−2κ ∑

µ̂

σxσn+µ̂ +σ
2
n +λ (σ2

n −1)2

]
, (2.14)

SF [σ ,ψ, ψ̄] =
N f

∑
f

∑
n,m∈Λ

∑
α,β

ψ̄
(f)(n)αM(n,m)α,β ψ

(f)(m)β , (2.15)

being the matrix M(n,m)α,β is expressed as:

M(n,m)α,β =−1
2

gσ(n,m)δn,mδα,β −
1
2 ∑

µ

(γµ)α,β

δn+µ̂,m−δn−µ̂,m

2a
(2.16)

where α and β are spin-indexes. We take D(n,m)α,β =−M(n,m)α,β and we refer to it as our Dirac

operator.

The Doubling Problem

The direct application of the matrix 2.16 induces an issue called doubling problem, which arises at

the time of computing the fermion propagator in momentum space when we use our previous Dirac

operator D(n,m)α,β =−M(n,m)α,β as starting point. The problem is the appearance of unphysical

poles in the propagator related to unwanted extra degrees of freedom [10].

The difficulty is mend by adding an extra term to the momentum-space propagator known as Wilson

term [31] that removes any extra pole and vanishes in the continuum limit (WilsonTerm−−→
a→0

0). In

the space representation the Wilson term takes the form of a new addition to the Dirac operator:

D(n|m)α,β =
1
2

[
3
a
+gσ

]
δn,mδα,β −

1
4a

±3

∑
µ=±1

(I− γ
µ)α,β δn+µ̂,m, (2.17)

where we defined γ−µ =−γµ . For a full derivation of the previous arguments and equation 2.17 see

annexes A.1.

2.2.3 Discretization of the Partition Function

Up to this point, and for a f -number of fermions, we can write the lattice partition function for the

GNY theory as:

ZGNY =
∫

∏
n∈Λ

dσ(n) e−SS[σ]
N f

∏
f
Z
(f)
F [σ], (2.18)

where the fermionic patition function for the f -flavor is written in the following way:

Z
(f)
F [σ] =

∫
dψ

(f)(n)dψ̄
(f)(n) exp

(
∑

n,m∈Λ

ψ̄
(f)(n)Dn,m[σ]ψ(f)(m)

)
. (2.19)

6 CHAPTER 2. THEORETICAL MODEL DESCRIPTION

This integral can be computed analytically as a functional of Dn,m[σ] using Grassmann-variables

formalism (a result known as Mattews-Salam formula), reading (for a full derivation of the following

result see A.2):

Z
(f)
F [σ] = det[D(σ)]. (2.20)

Here we note that each fermion flavor will contribute with a full determinant functional in the total

partition function, giving:

ZGNY =
∫

∏
n∈Λ

dσ(n) e−SS[σ] (det[D(σ)])N f (2.21)

2.2.4 Discretized Orbservable Integral

With all the machinery developed up to this point we can write an integral expression for the computa-

tion of lattice observable mean values 〈O〉 suitable as starting point for finite computer calculations.

From 2.21 we reformulate 2.6 as:

〈O〉=
∫

∏n∈Λ dσ(n) e−SS[σ] (det[D(σ)])N f O[D(σ),σ]∫
∏n∈Λ dσ(n) e−SS[σ] (det[D(σ)])N f

. (2.22)

Nevertheless, as we will see later, it is possible to achieve further powerful simplifications to

effectively tackle with the determinant present in this expression.

2.3 Dynamical Fermion Sampling

As we mentioned before, the integral formula 2.22 serves as a starting point to get an expression

suitable for the computation of lattice observables. The peculiarity of this relation resides in the

explicit presence of the determinant of the Dirac operator (det[D(σ)]), which is a direct symptom of

the non-local nature of the fermion interactions. This explicit appearance has two main drawback:

first, the demanding complexity of implementing a direct determinant solver that does not require the

whole Dirac matrix as input (which due to memory limitations is not the most convenient approach),

and second, the high computational cost of its actual computation (the determinant has N! contributing

terms, which is prohibitively high even for moderate size systems).

This present section concerns with the questions of how to approach this determinant, how to

interpret it in a Monte Carlo Sampling Calculation, and how to reformulate it in computationally more

convenient way using a dynamical fermion sampling via the introduction of the pseudofermion idea.

2.3.1 The Fermion Determinant

During a Monte Carlo sampling approach to compute 2.22 the determinants can be interpreted in two

different ways, giving two strikingly different approaches of constructing the sampling algorithm.

Nevertheless, as we will see in short, one of them exhibits more convenient and appealing features

than the other, specially for reasonable small sampling times.

2.3. DYNAMICAL FERMION SAMPLING 7

Determinants as part of the observable

The idea of this first approach is to adsorb de determinant functionals into the observable, in such a

way that, in order to compute 〈O[σ ,ψ, ψ̄]〉 we sample (det[D(σ)])N f O[σ ,ψ, ψ̄] using a probability

weight factor of the form P ∝ e−SS[σ].

This procedure, besides being relatively easy to implement, rapidly manifest several inconveniences,

the first one is that these determinants naturally exhibit huge variations (typically of several order of

magnitudes for moderately large lattices) depending on the scalar field configurations (what actually

happens to be a explicit manifestation of the noticeable non-locality of this formulation). At the end the

sum over all configurations displays large fluctuations around the mean value, which leads to serious

numerical instabilities [10]. This suggests that treating the determinant as part of the observable is

only justified for low-dimensional small lattices and extremely large statistics.

Determinants as part of the weight factor

The second approach is to compute 〈O[σ ,ψ, ψ̄]〉 by sampling O[σ ,ψ, ψ̄] using a propability weight

factor of the form P ∝ e−SS[σ](det[D(σ)])N f . One potential disadvantage of this approach is that to

achieve that probabilistic interpretation, one must ensure that the product of determinants is a real and

positive quantity.

We can prove that the realness of det[D(σ)] is indeed ensured by construction: realness of D(σ)

follows from its γ5-hermiticity (D† = γ5Dγ5) (for a full proof of this hermiticity feature for our

particular Dirac operator see A.3):

det[D]∗ = det[D†] = det[γ5Dγ
5] = det[γ5]det[D]det[γ5] = det[D] (2.23)

A possible negativity of the determinants product is problematic because it automatically leads to a

nonsensical probability distribution. This issue is known as sign problem, and is avoided simply by

using an even number of fermionic flavors, this guarantees the nonnegativity of the joint distribution

function. For example, for two flavors:

0≤ det[D]det[D] = det[D]det[D†] = det[DD†] (2.24)

2.3.2 Pseudofermions

The idea of interpreting the fermion determinants as part of the probabilistic weight factor can be

carried out using the convenient and strikingly powerful idea of rewriting the determinants as bosonic

gaussian integrals, introducing the concept of pseudofermion field [10].

The pseudofermion field concept is based on the fact that both real/complex-variables and grassmann-

variables gaussian integrals generate determinants, for instance:

∫
∞

−∞

∫
∞

−∞

· · ·
∫

∞

−∞

dx1dx2 . . .dxN e−
1
2 xT Ax+Jx =

[
(2π)N

det[A]

]1/2

e
1
2 JT A−1J

8 CHAPTER 2. THEORETICAL MODEL DESCRIPTION

∫ ∫
· · ·
∫

dη1dη
′
1 . . .dηNdη

′
N eη ′Aη = det[A]

This means that for a particular fermion integral one can design a correspondent bosonic integral in

complex variables that produce exactly the same result. As an example, we can write for the case of

two fermionic flavors:∫
D[ψ, ψ̄]e−ψ̄(1)Dψ(1)−ψ̄(2)Dψ(2)

= (det[D])2 = det[DD†], (2.25)

with a bosonic correspondent of the form:∫
D[φR,φI]e−φ †(DD†)−1φ =

πN

det[(DD†)−1]

⇒ π
−N
∫

D[φR,φI]e−φ †(DD†)−1φ = det[DD†]. (2.26)

Where we have used det[A] = 1/det[A−1]. From here we can ensure the relation:∫
D[ψ, ψ̄]e−ψ̄(1)Dψ(1)−ψ̄(2)Dψ(2)

= π
−N
∫

D[φR,φI]e−φ †(DD†)−1φ (2.27)

So in summary, for two fermion flavors:

(det[D])2 = det[DD†] =
∫

D[ψ, ψ̄]e−ψ̄(1)Dψ(1)−ψ̄(2)Dψ(2)
= π

−N
∫

D[φR,φI]e−φ †(DD†)−1φ (2.28)

In the previous relation φ = φR + iφI is a N-component complex vector that represents an usual

scalar field. This scalar field has the same number of degrees of freedom as the corresponding fermion

field and is called pseudofermion field.

DFS: Dynamical Fermion Sampling

As we can see from 2.28, the introduction of pseudofermions allows to move from the problem of

directly computing determinants to the problem of sampling new complex scalar (pseudofermion)

fields, this is the key idea of the Dynamical Fermion Sampling [10]. Notice that this new sampling

will reside in the same grounds than the one of the pure scalar σ [n]. Using this, we rewrite 2.22 (for 2

fermion flavors) as:

〈O〉=
∫

∏n∈Λ dσ(n)dφR(n)dφI(n) e−SS[σ]−φ †(DD†)−1φ O[D(σ),σ]∫
∏n∈Λ dσ(n)dφR(n)dφI(n) e−SS[σ]−φ †(DD†)−1φ

(2.29)

Note, however, that non-locality of the fermion interaction is still present in this new formula-

tion, this due to the presence of the (DD†)−1 term. This inversion is basically the main source of

computational effort for solving 2.29.

Chapter 3

Path Integral Solving: Hamiltonian Monte
Carlo

What works once is a trick; what

works twice is a method

Anonymous

3.1 Markov Chain Monte Carlo

Markov Chain Monte Carlo is our main workhorse to deal with the actual computation of our path inte-

grals. In this section we delve into the justification for using this technique, and its final implementation

in the form of Hamiltonian Monte Carlo.

Why Markov Chain Monte Carlo integration?

We tackle first with the question of why to bother with Monte Carlo (Stochastic) integration, instead of

using standard deterministic numerical integration algorithms, such as the Simpson rule or some kind

of sophisticated quadrature method. The actual drawback of such kinds of deterministic approaches

relies on a phenomenon known as the curse of dimensionality, which manifests itself when the basic

process of regular subdivision of the integration domain, typical of deterministic methods of numerical

integration, is carried out in a space of many dimensions [5]. As illustration, let us suppose we want to

integrate the following scalar path integral:

〈O〉= 1
Z

∫
∏
n∈Λ

dσ [n] e−S[σ]O[σ] (3.1)

If we work with a 3 dimensional 3x3x3 lattice then the dimensionality of the integral will be 27. If

we subdivide each of these 27 directions in 100 sub-intervals, then we end up with the necessity

of computing at least of one value for each of the 10027 = 1054 hypercubes in which the domain is

subdivided. It is easy to see that, even with a computer performing at the exa-scale, such task would
9

10 CHAPTER 3. PATH INTEGRAL SOLVING: HAMILTONIAN MONTE CARLO

take ages of the universe to be done (No need to mention that this explosion with the dimensionality of

the number of required operations directly repercutes in the integration error of these deterministic

integration methods).

These kind of problems are overcome by the use of stochastic methodologies such as Markov

Chain Monte Carlo, which are based on the idea of importance sampling: A technique that focuses

the sampling mostly at high densities zones of the probability distribution, that means, at locations

associated with larger (more important) contributions to the overall integral.

3.1.1 MCMC Integration

Roughly speaking, a Markov Chain is defined as a series of states {x(0)} → {x(1)} → ·· · → {x(N)}
such that the probability of obtaining {x(k+1)} from {x(k)}, i.e., the transition probability q[{x(k)}→
{x(k+1)}] is independent from any previous, (or future) state {x(α)}. The idea of MCMC is to generate

a Markov Chain of states {x(k)} whose histogram of appearances imitates the one that would be

generated by the probability distribution density P[{x(k)}] that we are interested to sample, allowing

us to tackle calculations that required knowledge of P[{x(k)}], even though this probability density

cannot be written in a precisely analytical way.

Before continuing we have to stress that this imitation is successful only if the chain meets the

following features:

• Irreducibility: Every couple of states are always connected by a finite number of intermediate

steps.

• Aperiodicity: There is no change of emergence of periodic loops of subsets of states in the

chain.

• Detailed Balance Condition: The transition probabilities q between any pair of states x(α) and

x(β) should be related by the relation:

p[{x(α)}]q[{x(α)}→ {x(β)}] = p[{x(β)}]q[{x(β)}→ {x(α)}] (3.2)

The central outcome of the whole procedure is that, if a appropriate MCMC sampling algorithm is

applied, and a infinite size chain is generated, then the imitation becomes exact. With this in mind, a

integral of the form

I =
∫

dx P[{x(k)}] O(x) (3.3)

would be exactly given by the sum:

I = lim
N→∞

1
N

N

∑
k=1

O(x(k)) (3.4)

where N is the chain size and the {x(k)} are generated using MCMC. Even though the exactness of

this calculation is ensured by Strong Law of Large Numbers (SLLN) only when N → ∞, we can

3.1. MARKOV CHAIN MONTE CARLO 11

approximated the calculation to arbitrary precision using increasingly larger values of N, being the

error bounded by the Central Limit Theorem (CLT) [12].

Now we proceed to discuss the standard algorithm used implement MCMC, known as Metropolis-

Hastings (Random-Walk Exploration).

3.1.2 Metropolis-Hastings Algorithm (Random-Walk Exploration)

Let us suppose we want to generate a Markov Chain of states {x(k)} that imitates the probability distri-

bution density P[{x(k)}]. If p(x(k)) is a function such that p(x(k)) ∝ P[{x(k)}] (so we can forget about

normalization constants), we can use an auxiliary proposal transition probability q′(x(k+1)|x(k)) (could

be a gaussian for instance), to generate, on-demand, the true transition probabilities q(x(k+1)|x(k)) via

the Metropolis-Hastings Algorithm [16]:

1. set k = 0

2. sample x′ ∼ π0, and take x(k) = x′ (the current state of the chain)

3. choose a q(x(k+1)|x(k)) such that the Markov chain is irreducible and aperiodic

4. for (n < N,n++)

a) generate (propose) x′ ∼ q(x′|xk)

b) compute the acceptance probability: q(x′|xk) = min
(

1, p(x′)
p(x(k))

q′(x(k)|x′)
q′(x′|x(k))

)
c) generate a uniform between (0,1): U

d) if U < α(x′|x(k)) then x(k+1) = x′, else x(k+1) = x(k)

3.1.3 The need for a more powerful MCMC approach

The Random-Walk nickname given to this method comes from the fact that the exploration is

driven by a transition probability distribution q′(x′|x(k)) that has, in practice, nothing to do with the

target probability density P[{x(k)}]. This ”blindness” of the proposal transition probability respect to

geometry of P[{x(k)}] has the consequence that, for complex-shaped multidimensional distributions, it

takes numerous tries for this random-walk exploration to ”find” appropriate directions of movement

where it can reach (and sample) new high probability states. And even though the algorithm can

eventually manage to move along a favorable direction for a few steps, it can easily deviate and move

along other no so favorable ones. All these subtle features make the Metropolis-Hasting algorithm

”slow” in reaching and finding new far-away and important states to sample.

This previous effect is directly reflected in the autocorrelation length, that is, the minimum

number of ω intermediate states between {x(k)} and {x(k+ω)} so that they are uncorrelated. In order

to produce proper statistics, we should only consider states of the Markov chain that are separated by

this correlation length, and this limits the number of suitable configurations from the whole Markov

Chain that are appropriate for statistical calculations [12].

12 CHAPTER 3. PATH INTEGRAL SOLVING: HAMILTONIAN MONTE CARLO

In common applications, where the evaluation of P[{x(k)}] (or a function proportional to it), do

not require high computational effort, each step of the random-walk exploration algorithm becomes

computationally cheap, and the previous drawback is overcomed simply by enlarging the number

of total steps N of the algorithm, up to a point where the obtained statistical quality of the results is

satisfactory. Nevertheless, if each evaluation of P[{x(k)}] is expensive, as it is in our case, for instance,

where at each step we must solve the system 4.5 for a extremely large dirac operator D[σ], then using

a MCMC algorithm able to reduce the correlation length becomes desirable.

In this work we have chosen to replace the usage of the Metropolis-Hastings algorithm by Hamil-
tonian Monte Carlo, which, along with its further refinements is the De Facto method for Monte

Carlo sampling applied for Lattice Quantum Chromodynamics (LQCD) calculations.

3.1.4 Hamiltonian Monte Carlo (HMC)

The Hamiltonian Monte Carlo algorithm achieves a substantial reduction in the autocorrelation
length by inserting knowledge of the geometry of the probability distribution density that it tries to

sample. This knowledge acquisition is possible by the introduction of auxiliary conjugate momentum

variables for each of the degrees of freedom of the original distribution. The HMC algorithm combines

simple serial updates of these artificial momenta parameters with samples of the original distribution

variables (position coordinates) through the computation of momentum-position trajectories following

classical Hamiltonian Dynamics [5].

In essence, the HMC maps the target distribution density P[x] to the phase space Γ[x,p] of a

classical dynamics system, and uses the canonical equations of motion

ẋ =
∂H(x,P)

∂P
, ṗ =−∂H(x,p)

∂x
, (3.5)

to reach, by means of orbital movement, new far-away states for x, ensuring larger statistical inde-

pendency, and by this, reducing the autocorrelation length for the contructed Markov Chain. The

momentum variables are sample independently, and rebooted after every new configuration is proposed,

allowing a change in the exploring orbit of each step of the algorithm. The artificial Hamiltonian

H(x,p) =U(x)+T (p) is introduced by interpreting the probability distribution density P[x] as a the

potential energy U(x), and the kinetic energy T (x) is constructed as:

T (p) =
1
2

p ·p =
1
2

d

∑
i=1

p2
i , (3.6)

where d is the number of degrees of freedom of P[x]. After that, the joint probability distribution

for a extended state (x,p) is then proposed as:

P(x,p) =
e−H(x,p)

Zext ,
(3.7)

where Zext is the normalization constant (basically the integral of e−H(x,p) over all the possible

domains of x an p). Finally, in order to meet the detailed balance condition, we use as transition

3.1. MARKOV CHAIN MONTE CARLO 13

probability formula:

q([x′,p′] | [x,p]) = min
(
1,exp[−H(x′,p′)+H(x,p)]

)
(3.8)

To see how the expressions 3.7 and 3.8 fit together the detailed balance condition, we just write it

and then replace P and q:

e−H(x,p)

Zext
min

(
1,exp[−H(x′,p′)+H(x,p)]

)
=

e−H(x′,p′)

Zext
min

(
1,exp[−H(x,p)+H(x′,p′)]

)
, (3.9)

which is obviously true.

Properties of HMC

• Reversibility: Hamiltonian dynamics ensures that, given a time-evolution operator T̂s such

that T̂s[x(t),p(t)] = [x(t + s),p(t + s)], there exists an inverse operator T̂−s such that T̂−s[x(t +
s),p(t + s)] = [x(t),p(t)], always with a one-to-one correspondence. This feature is important

for sampling purposes because it ensures that the MCMC updates via Hamiltonian Dynamics

leaves the target distribution invariant (reversibility of the Markov Chain).

• Volume Preservation: An crucial property is that Hamiltonian Dynamics preserves the volume

of the phase space (This result is known as Liouville’s Therorem). This feature is of huge

practical importance because it keeps our interpretations of acceptance probabilities always

meaningful as time evolve.

3.1.5 Applying HMC to our Path Integrals

In order to apply the Hybrid Monte Carlo Algorithm to our problem we first observe that the following

transformation of the partition function:

ZGNY =
∫

∏
n∈Λ

dσ(n)dφR(n)dφI(n) e−SS[σ]−φ †(D[σ]D†[σ])−1φ

↓

ZGNY =
∫

∏
n∈Λ

d p(n) ∏
n∈Λ

dσ(n)dφR(n)dφI(n)e−{
1
2 ∑n∈Λ p2

n−SS[σ]−φ †(D[σ]D†[σ])−1φ},

(3.10)

leaves any expectation value independent of px unchanged. Then we interpret the term in the exponen-

tial as a Hamiltonian H(p,φ):

H(p,σ ,φ = φR + iφI) =
1
2 ∑

n∈Λ

p2
n−SS[σ]−φ

†(D[σ]D†[σ])−1
φ

= H0(p,σ)+Vext(φ ,D[σ]),

(3.11)

with H0(p,σ) = 1
2 ∑n p2

n+SS(σ) and Vext(φ ,D[σ]) = φ †(DD†)−1φ . Notice that H0 is the hamiltonian

corresponding to the φ 4-theory Lagrangian and Vext can be interpreted as an external potential. The

next step is to compute the Molecular Dynamics force:

F :=−∇σ [H0(p,σ)+Vext(φ ,D[σ])]

=−∇σSS[σ]−∇σ

(
φ

†(DD†)−1
φ

)
.

(3.12)

14 CHAPTER 3. PATH INTEGRAL SOLVING: HAMILTONIAN MONTE CARLO

The pure scalar term can be computed directly from 2.14, and is given by:

Fφ 4 = ∑
n

n̂

[
2κ ∑

µ

(
σn+µ̂ +σn−µ̂

)
−2σn−4λ (σ2

n −1)σn

]
, (3.13)

The second term can be computed using the following matrix identity ∂M−1/∂ω =−M−1(∂M/∂ω)M−1:

Fext =−φ
†(DD†)−1

(
∇σ DD†

)
(DD†)−1

φ

=−
(
(DD†)−1

φ

)†
(

∂D
∂σ

D† +D
∂D†

∂σ

)(
(DD†)−1

φ

)
=−g∑

n
∑
m

(
(Dn,mD†

m,n)
−1

φn

)†(
δn,mD†

m,n +Dn,mδm,n

)(
((Dn,mD†

m,n)
−1

φn

) (3.14)

Finally, the steps of the algorithm are summarized as:

• Sampling the conjugate momenta according to the gaussian probability distribution: ∝ exp(−p2
x/2).

• Numerical Molecular Dynamics evolution to solve the equations of motion for a time interval τ :

(p0,σ0,φ0)→ (p f ,σ f ,φ f).

• Then using Metropolis acceptance step, i.e. accept or reject the new state (p f ,σ f ,φ f) according

to the probability:

P[(p0,σ0,φ0)→ (p f ,σ f ,φ f)] = min[1,exp(−∆H)] (3.15)

Chapter 4

Implementation

Here we present the schematic structure of our HMC application for the simulation of the GNY model.

For clearness we decided to separate the whole scheme in different levels, being the higher levels

contained in the lower ones, in a mamushka-like fashion. At each level we will specify algorithmic

details and theoretical subtleties, as well as comments on implementation and benchmarking. The

details of the infrastructure used for simulations and development are shown in the Table 4.1.

Architecture: x86 64
Model name: Intel(R) Xeon(R) Platinum

8170 CPU @ 2.10GHz
CPU(s): 52
Thread(s) per core: 1
Core(s) per socket: 26
Socket(s): 2
NUMA node(s): 2
CPU GHz: 2.10
L1d cache: 32K
L1i cache: 32K
L2 cache: 1024K
L3 cache: 36608K

Table 4.1: The table contains the specification details of the used infrastructure.

15

16 CHAPTER 4. IMPLEMENTATION

4.1 Level 01: Fields, Matrices and Basic Linear Algebra

This level is related with the implementation of our basic study objects: the fields and the Dirac

operator. Besides that, it concerns about their most basic operations: the vector, vector-vector and

matrix-vector types. A diagram of this level is shown in Figure 4.1.

Matrix - Vector Multiplications:

��; �; � ��
†

�
†

Vector Operations:

��; � †

Vector-Vector Operations:

�� [+, −, ∗, /] �; �� †

Level 01:

Fields, Matrices and Basic Linear

Algebra Operations

Figure 4.1: Fields, Matrices and Basic Linear Algebra Operations.

4.1.1 Particular subtleties about Fields and Matrices

At this point, where most of our methodology has been established, it is a good time to think about

how to deal with our Dirac operator, and to review what are the most basic arithmetic operations that

we might apply to it before proposing a strategy to tackle them.

As we will see soon on 4.2, the CGM, PCGM and FCG algorithms (which are going to be used to

invert the matrix DD†) and from the force equation 3.14, that the required operations that we need

to perform using D[σ] are of the type cDD†η and ηTDD†η , which can be seen as matrix-vector and

vector-vector if they are computed always from right to left (so avoiding in this way matrix-matrix

operations). In summary we identify the matrix-vector as the main (and only) operation involving

D[σ] that we will have to care about. To optimize this operation as much as possible (knowing the

huge amount of times that it has to be computed for a single simulation), we do need to understand its

underlying structure and, in addition, how to take advantage of its sparsity patterns and its symmetry.

Sparsity Profile of D[σ]

Our Dirac operator D[σ] on the lattice is given by:

D(n|m)α,β =
1
2

[
3
a
+gσ(n)

]
δn,mδα,β −

1
4a

±3

∑
µ=±1

(I− γ
µ)α,β δn+µ̂,m. (4.1)

4.1. LEVEL 01: FIELDS, MATRICES AND BASIC LINEAR ALGEBRA 17

To visualize the structure of D[σ] let’s write it in a intuitively simpler way by defining

Γ0 := 2−1 [3a−1 +gσ [n]
]

δn,mδα,β ; Γ±µ :=−(4a)−1(I− γ
±µ)α,β δn±µ̂,m, (4.2)

so we have:

D(n|m)α,β = Γ0(n|m)α,β

+Γ−1(n|m)α,β+Γ1(n|m)α,β

+Γ−2(n|m)α,β+Γ2(n|m)α,β

+Γ−3(n|m)α,β+Γ3(n|m)α,β .

(4.3)

For the field in a particular lattice position, the diagonal matrix Γ0 correspond to, let us say,

”interactions” of this point with itself, Γ±1 is then related to interactions with lattice points in the ±1̂

directions. The same for Γ±2 in the directions ±2̂ and Γ±3 for the ±3̂ directions. For a space-time

lattice of length 3 we display the previous idea in Figure 4.2 (a) and (b) and the sparsity profile of D in

(c).

(c)(a) (b)

D=

x2

x0

x1

Γ0 Γ±1 Γ±2 Γ±3

][Γ3

Γ-3

Γ2

Γ-2

Γ1

Γ-1

Γ0

Figure 4.2: (a) 3x3x3 space-time lattice, (b) ”interaction” terms for the lattice point [1,1,1] (green) (c)
Corresponding matrix profile of D for the whole lattice.

How much memory does D[σ] need?

In order to have an idea of how large can become the memory requirement of D[σ] for growing lattice

sizes, we contemplate 3 scenarios. In the first scenario we consider storing the whole matrix: the

number of entries for a lattice size of L is given by N = 4L6, considering that each of this elements

is a real complex number, then the memory volume is 64L6 bytes. The second case concerns with

how much memory is required to store only non-zero terms, that is, considering it as a sparse matrix.

From 4.3 we see there are 10 non-zero values per row, giving in total Nnon-zero = 20L3 non-zero values

for the whole matrix (notice how the bigger is the matrix, the sparser it becomes). The memory

volume will be given by 320L3 bytes. In the third scenario we consider only storing the non-repeated

18 CHAPTER 4. IMPLEMENTATION

entries. Considering that the matrices Γ±1, Γ±2 and Γ±3 are repeated from row to row, only Γ0

contributes appreciably to Nnon−repeated . Finally the we have that Nnon−repeated = 18L+L3. To write

down the required memory volume we have to take into account that the values filling up Γ0 are given

by the scalar field σ , so we can ignore this contribution knowing that they are stored in a different

buffer (precisely in a field vector). In this way we obtain a 288 bytes of memory requirement for

the non-repeated case, a value that doesn’t depend on L. For each of these case we plot the required

memory vs the lattice size in Figure 4.3.

Dense Matrix Memory Consumption ∝ L6

Sparse Matrix Memory Consumption ∝ L3

On the Fly Matrix Memory Consumption

M
em

o
ry

	R
eq

u
ir

em
en

t	(
G

B
)

10−9

10−6

1

106

109

1012

Lattice	size
0 200 400 600 800 1000

Figure 4.3: Memory requirement in Gigabytes (GB) vs lattice size (L) for the cases [red] Full Maatrix,
[blue] Sparse matrix, [green] Non-repeated matrix.

D-vector operations: On-The-Fly approach

Let us consider the operation Dφ = φ ′ for a pseudofermion field φ in the 3x3x3 lattice, and let us

focus in how to obtain the middle component φ ′(1,1,1). From Figure 4.4 it is clear that φ ′(1,1,1) =

D[(1,1,1), · · ·]φ can be rewritten as φ ′(1,1,1) = (Ddiag[σ(1,1,1)]+D f ix)η
(1,1,1){φ} by getting rid of all

the zeros, so Ddiag, D f ix and η(1,1,1){φ} are much smaller arrays than D and φ .

Ddiag and D f ix are of size 7|β |2 (|β | is the spin dimension), Ddiag depends on σ through Γ0 and

D f ix is a totally constant matrix. Note that these features are rather general because they are totally

independent of the lattice size. Something similar occurs with ηn{φ}: it can be constructed taking

from φ the only necessary entries actually needed for the multiplication. A procedure to construct

ηn{φ}, supposing φ is a linear memory buffer with mapping φ [n1,n2,n3]→ φ [L3L2 · (n1 + β1)+

4.1. LEVEL 01: FIELDS, MATRICES AND BASIC LINEAR ALGEBRA 19

. φD[(1,1,1),	…]

(1,1,1)
=φ'=][][

η(1,1,1){φ}

DFIX

DDIAG[σ(1,1,1)]

φ(0,1,1)β

φ(2,1,1)β

φ(1,0,1)β

φ(1,2,1)β

φ(1,1,2)β

φ(1,1,0)β

φ(1,1,1)β

Γ3 Γ-3 Γ2 Γ-2 Γ1 Γ-1

Γ0

+ .
0α,	β

0α,	β		0α,	β		0α,	β		0α,	β		0α,	β		0α,	β

Figure 4.4: Tranformation φ ′(1,1,1) = D[(1,1,1), · · ·]φ → φ ′(1,1,1) = (Ddiag[σ(1,1,1)]+D f ix)η
(1,1,1){φ}.

L3 · (n2 +β2)+(n3 +β3)] (βi are spin indexes) is to move back and forth ±|β |, ±L3|β |, ±L3L2|β |2

positions in φ from the pointer to φ [n1,n2,n3], and copy blocks of sizes |β | at η ,η + |β |,η +2|β |,η +

3|β |,η +4|β |,η +5|β |,η +6|β | 1. The total matrix multiplication is the completed by looping over

n ∈ Λ, constructing ηn{φ} and Ddiag[σ(n)] each time and multiplying (Ddiag[σ(n)]+D f ix)η
n{φ}.

The fact that the furtest memory position from φ [n1,n2,n3] to compute φ ′[n1,n2,n3] is just L3L2|β |2

(the total size of the buffer is L3L2L1|β |3) give us a strong hint on how to parallelize this operations

and how to split our domains.

Domain Decomposition and Parallelization

Notice that L3L2|β |2 is exactly the size of a 3-2 lattice plane. If we distribute in memory the lattice

domain in the 1̂ direction among the processes, (or in other words, by decomposing along the row-major

direction the memory buffers for all our fields and auxiliary vectors), we will see that to compute the

multiplication D · vector using the On-The-Fly method in a particular subdomain, the elements in the

fist (last) lattice planes will need data from the last (first) planes of the previous (next) subdomain. This

is a perfect scenario for a halo exchange approach: each subdomain can be enlarged with two extra

”halo” planes, in such a way that an exchange of planes is carried out before each matrix multiplication,

so at every moment each process will have in memory enough data to compute its entire section (see

Figure 4.5). MPI non-blocking communication semantics can be used to implement this idea. If each

subdomain is large enough then a complete overlap of communication-computation could be achieved.

In the case of vector-vector operations this decomposition works fine but with Reductions and AllRe-

ductions instead of halo exchanges.

1Some modulo operations are needed to avoid going out of the φ buffer limits. In this same regard, the negative signs
introduced in the entries of D by the aperiodic boundary conditions can be moved from D to η for the convenience of
keeping D f ix constant.

20 CHAPTER 4. IMPLEMENTATION

(a) (b)

(n1,	n2,	n3)
φ

MPI	proc	#2

MPI	proc	#1

MPI	proc	#0

Figure 4.5: (a) Example of an entire lattice domain, (b) Domain descomposition (green), with halos
(blue), the double head arrows represents the halo exchange among the processes.

4.1.2 Implementation of Fields

We implemented the fields as c++ classes templated in the type of variable stored (real or complex)

and in the number of spinorial degrees of freedom (0,1,...). For instance, if we need to fill up a

3-dimensional space-time lattice of size L with two scalar field σ and three pseudofermion fields φA

and φB, we declare them as:

1 / / S c a l a r F i e l d : 1−sp in−component and r e a l v a l u e s .

2 F i e l d <1, double> sigma A{L} , s igma B{L} ;

3 / / P seudo fe rmion F i e l d : 2−sp in−components and complex v a l u e s .

4 F i e l d <2, dcmplx> phi A {L} , ph i B {L} , ph i C {L} ;

Listing 4.1: Declaration of Fields.

Now, in order to initialize them we have 3 options: Gaussian random initialization (mean value 0.0,

standard deviation 1.0) or uniform initialization (all values equal to 1.0), and finally copy assignment:

1 / / G a u s s i a n I n i t i a l i z a t i o n o f t h e F i e l d s

2 g a u s s i a n R a n d o m I n i t (sigma A , random seed A) ;

3 g a u s s i a n R a n d o m I n i t (phi A , random seed A + 1) ;

4 / / Uniform I n i t i a l i z a t i o n o f F i e l d s .

5 g a u s s i a n R a n d o m I n i t (sigma B , random seed B) ;

6 g a u s s i a n R a n d o m I n i t (phi B , random seed B + 1) ;

7 / / Copy Ass igment

8 phi C = phi B ;

Listing 4.2: Initialization of Fields.

4.1. LEVEL 01: FIELDS, MATRICES AND BASIC LINEAR ALGEBRA 21

As vector operations we implemented multiplication by a constant and complex conjugation:

1 / / M u l t i p l i c a t i o n by a c o n t a n t (r e a l o r complex)

2 sigma A ∗= r ;

3 phi A ∗= c ;

4 / / Complex C o n j u g a t i o n

5 phi B . c o n j u g a t e () ;

Listing 4.3: Vector operations.

For the vector-vector operations we implemented summation, subtraction, element-wise multiplication

and division, comparison and scalar product.:

1 phi A = phi C

2 / / [+ , − , / ,∗ , ==] o p e r a t i o n s

3 phi A += phi B ;

4 phi A −= phi B ;

5 phi A ∗= phi B ;

6 phi A /= phi B ;

7 boo l comp = (phi A == phi C) ;

8 / / S c a l a r p r o d u c t

9 dcmplx = phi B ∗ phi C ;

Listing 4.4: Vector-Vector operations.

Finally include a testing module to check for the correctness of these operations:

1 s t a t i c c h a r ∗ a l l t e s t s ()

2 {
3 m y r u n t e s t (t e s t p o p u l a t e s c a l a r) ;

4 m y r u n t e s t (t e s t p o p u l a t e p s e u d o f e r m i o n) ;

5 m y r u n t e s t (t e s t c o p y s c a l a r) ;

6 m y r u n t e s t (t e s t c o p y p s e u d o f e r m i o n) ;

7 m y r u n t e s t (t e s t s u m e q s c a l a r) ;

8 m y r u n t e s t (t e s t s u m e q p s e u d o f e r m i o n) ;

9 m y r u n t e s t (t e s t m i n e q s c a l a r) ;

10 m y r u n t e s t (t e s t m i n e q p s e u d o f e r m i o n) ;

11 m y r u n t e s t (t e s t p r o d e q s c a l a r) ;

12 m y r u n t e s t (t e s t p r o d e q p s e u d o f e r m i o n) ;

13 m y r u n t e s t (t e s t d o t p r o d p s e u d o f e r m i o n) ;

14 m y r u n t e s t (t e s t c o m p a r i s o n s c a l a r) ;

15 m y r u n t e s t (t e s t c o m p a r i s o n p s e u d o f e r m i o n) ;

16 r e t u r n 0 ;

17 }

Listing 4.5: Fields testing.

Distributed-Memory Fields

A distributed-memory (MPI) version of the field class was also implemented using the description

suggested for domain decomposition given in 4.1.1. The interface of usage is essentially the same as

22 CHAPTER 4. IMPLEMENTATION

the one for fields, with the exception that it requires specifying the MPI communicator as argument.

1 / / MPI I n i t i a l i z a t i o n

2 MPICommManager wor ld (& argc , &argv , t h i s I s W o r l d) ;

3 / / D i s t r i b u t e d S c a l a r F i e l d : 1−sp in−component and r e a l v a l u e s .

4 D i s t r i b u t e d F i e l d <1, double> s igma {L , &wor ld } ;

5 / / D i s t r i b u t e d Pseudo fe rmion F i e l d : 2−sp in−components and complex v a l u e s .

6 D i s t r i b u t e d F i e l d <2, dcmplx> p h i {L , &wor ld } ;

Listing 4.6: Declaration of Distributed Fields.

Benchmarking

To compare the performance of the multi-threaded and MPI versions of the fields, we show below, in

the Figure 4.6, the execution times of a typical vector-vector operation (specifically the element-wise

multiplication v(i)1 ← v(i)1 ∗ v(i)2 , which appears frequently in the Conjugate Gradient Algorithm), for an

increasing number of mpi-processes/threads and for field sizes given by L = 32,64,80 (vector size

given by N = 4L6). As we can see, in all cases the two forms of parallels show comparable execution

and scaling times, the MPI version being slightly better.

L = 32 (OMP)
L = 32 (MPI)
L = 64 (OMP)
L = 64 (MPI)
L = 80 (OMP)
L = 80 (MPI)

Ti
m

e
(n

s)

104

105

106

107

Procs

0 5 10 15 20 25 30 35

Figure 4.6: Execution times of vector-vector operation v(i)1 ← v(i)1 ∗ v(i)2 for field sizes L = 32,64,80
and for 4,8,16,32 mpi-processes/threads.

4.1.3 Implementation of Dirac Operator

We implemented the operator D[σ] and the operations Dφ , D†φ and DD†φ using three different main

approaches:

1. Full matrix construction, multiplication using the highly optimized intel mkl cBLAS library..

4.1. LEVEL 01: FIELDS, MATRICES AND BASIC LINEAR ALGEBRA 23

2. Sparse matrix construction (storing only non zero terms), multiplication using the highly opti-

mized intel mkl Sparse cBLAS library.

3. Storing only non-repeated terms in a reduced matrix (Ddiag +D f ix), generation of profile matrix

during multiplication [proposed On-The-Fly method](see 4.1.1).

Given the possibility that each of these approaches had advantages over the others in different

lattice size ranges, we implemented all of them so that they had the exact same usage interface. This

would allow us to switch from one method to another depending on the range, without implying an

alteration of the general code of simulation. This behavior is achieved using c++ object-oriented

programming and polymorphism:

1 / / S c a l a r F i e l d : 1−component and r e a l v a l u e s .

2 F i e l d <1, double> s igma {L} ;

3 / / P seudo fe rmion F i e l d : 2−component and complex v a l u e s .

4 F i e l d <2, dcmplx> p h i {L} ;

5 / / Ou tpu t Pseudo fe rmion f i e l d s (\ p h i o u t = DDˆ\ d ag ge r \ p h i)

6 F i e l d <2, dcmplx> p h i o u t 1 {L} , p h i o u t 2 {L} , p h i o u t 3 {L} ;

7

8 / / G a u s s i a n I n i t i a l i z a t i o n o f t h e F i e l d s

9 g a u s s i a n R a n d o m I n i t (sigma , random seed A) ;

10 g a u s s i a n R a n d o m I n i t (phi , random seed B) ;

11

12 / / C r e a t i o n o f t h e d i f f e r e n t m a t r i x schemes (Dense , s p a r s e ,

13 / / r e d u c e d [On−The−Fly])

14 D e n s e D i r a c M a t r i x D dense {L , sdim , gcc , s igma } ;

15 S p a r s e D i r a c M a t r i x D s p a r s e {L , sdim , gcc , s igma } ;

16 ReducedDi racMa t r i x D reduced {L , sdim , gcc , s igma } ;

17

18 / / M u l t i p l i c a t i o n i n t e r f a c e

19 mult DDdgg v (D dense , phi , p h i o u t 1) ;

20 mult DDdgg v (D spa r se , phi , p h i o u t 2) ;

21 mult DDdgg v (D reduced , phi , p h i o u t 3) ;

22

23 / / O v e r l o a d i n g of o p e r a t o r == t o check i f o u t p u t s a r e t h e same

24 boo l check aga in s t BLAS = (p h i o u t 1 == p h i o u t 3) ;

25 boo l c h e c k a g a i n s t s p a r s e B L A S = (p h i o u t 2 == p h i o u t 3) ;

26

27 / / P r i n t check

28 s t d : : c o u t << check with BLAS << ”\n ” ;

29 s t d : : c o u t << c h e c k w i t h s p a r s e B L A S << ”\n ” ;

Listing 4.7: Basic interface for the three multiplication methods.

Finally include a testing module to check for the correctness of these operations:

1 s t a t i c c h a r ∗ a l l t e s t s ()

2 {
3 m y r u n t e s t (t e s t p o p u l a t e f u l l D) ;

24 CHAPTER 4. IMPLEMENTATION

4 m y r u n t e s t (t e s t p o p u l a t e s p a r s e D) ;

5 m y r u n t e s t (t e s t p o p u l a t e R e d u c e d) ;

6 m y r u n t e s t (t e s t D v f u l l D) ;

7 m y r u n t e s t (t e s t D v s p a r s e D) ;

8 m y r u n t e s t (t e s t D v R e d u c e d D) ;

9 m y r u n t e s t (t e s t D d g g v f u l l D) ;

10 m y r u n t e s t (t e s t D d g g v s p a r s e D) ;

11 m y r u n t e s t (t e s t D d g g v R e d u c e d D) ;

12 m y r u n t e s t (t e s t D D d g g v f u l l D) ;

13 m y r u n t e s t (t e s t D D d g g v s p a r s e D) ;

14 m y r u n t e s t (t e s t DDdgg v Reduced D) ;

15 r e t u r n 0 ;

16 }

Listing 4.8: Dirac Operators testing.

Distributed-Memory Dirac Operator

A distributed-memory (MPI) version for the Dirac Operator was implemented for the On-The-Fly

(Reduced) approach, following the description given in 4.1.1, and using the just mentioned distributed-

memory fields,

1 / / MPI I n i t i a l i z a t i o n

2 MPICommManager wor ld (& argc , &argv , t h i s I s W o r l d) ;

3 C o n d i t i o n a l O S t r e a m p c o u t { s t d : : cou t , r ank == 0} ;

4

5 / / D i s t r i b u t e d F i e l d s d e c l a r a t i o n

6 P a r a l l e l F i e l d <1, double> p s c a l a r 1 {L , &wor ld } ;

7 P a r a l l e l F i e l d <2, dcmplx> ppseudo f e rmion1 {L , &wor ld } ;

8 P a r a l l e l F i e l d <2, dcmplx> ppseudo f e rmion2 {L , &wor ld } ;

9

10 / / D i s t r i b u t e d F i e l d s I n i t i a l i z a t i o n

11 p s c a l a r 1 . g a u s s i a n R a n d o m I n i t (random seed A) ;

12 ppseudo fe rmion1 . g a u s s i a n R a n d o m I n i t (random seed B) ;

13

14 / / D i s t r i b u t e d On−The−Fly [r e d u c e d] m a t r i x D e c l a r a r i o n− I n i t i a l i z a t i o n

15 P a r a l l e l R e d u c e d D i r a c M a t r i x pD reduced {L , sdim , gcc , p s c a l a r 1 , &wor ld } ;

16

17 / / P a r a l l e l (MPI) M u l t i p l i c a t i o n .

18 pD reduced . mul t D v (ppseudofe rmion1 , ppseudo f e rmion2) ;

Listing 4.9: Basic interface for distributed memory On-The-Fly Dirac Operator.

Benchmarking

To compare the performance of the multi-threaded (OMP on-the-fly multiplication and MKL Sparse

cBlas) and MPI versions of the matrix-vector operation, we show below, in the Figure 4.7, the execution

4.1. LEVEL 01: FIELDS, MATRICES AND BASIC LINEAR ALGEBRA 25

times to perform DD†φ for an increasing number of MPI-processes/threads and for field sizes given

by L = 32,64 (vector size given by N = 4L6). As we can see, in spite of showing a poorer scaling

compared to the homemade OMP and MPI versions of the On-the-fly multiplication, the MKL Sparse

cBlas implementation shows a better performance, being approximately an order of magnitude faster

when only one or two processes / threads are used.

(b)(a)

L = 32 (OMP)
L = 32 (MPI)
L=32 (MKL Sparse cBLAS)

ti
m
e[
D
D

† 	φ
]	(
n
s)

0

2×106

8×106

107

Procs / Threads

0 5 10 15 20 25 30 35

L = 64 (OMP)
L = 64 (MPI)
L = 64 (MKL Sparse cBlas)

ti
m
e[
D
D

† 	φ
]	(
n
s)

0

107

4×107

5×107

#	Procs	/	Threads

0 5 10 15 20 25 30 35

Figure 4.7: Execution times of matrix-vector operation DD†φ for field sizes L = 32,64 and for
4,8,16,32 mpi-processes/threads.

An interesting behavior occurs in the case of L = 32 when the number of MPI-processes/threads

equals the size of the field edge (procs = threads = 32) [see Figure (a)]: for the MPI implementation,

a poorer scaling compared to the OMP case is observed, which makes sense noticing that when the

number of processes approach 32 the size of the exchange halos tends to be similar (or equal) to that

of the domain subregion. In this scenario the scaling is limited by the redundant workload associated

to compute the multiplication sections correspondent to the halos. This problem limits the maximum

number of processes that can be used for smaller lattices and only ceases to be serious when the lattice

size is several times bigger than the maximum number of processes used [see for instance Figure (b)

where the differences between OMP and MPI approaches become less dramatic]. A solution to this

problem can be found in the implementation of a more sophisticated domain decomposition procedure,

for example using of MPI Virtual Topologies.

The redundant workload problem does not affect the OMP implementation, and we consider it more

preferable for small or medium lattice sizes over the MPI implementation. The MKL Sparse solution

is, however, preferable over these last two, given the fact that it considerably exceeds the performance

of the former ones, especially for few threads/processes. This makes it the most appropriate option if

we want to run series of independent simulations, each with one or few threads, during a sweeping of

couplings parameter space.

In a scenario where we have very large lattices that exceed the RAM capacity of the infrastructure

(and therefore also the size of the Sparse matrix), then an MPI implementation (or hybridized with

OMP) would become the option to follow.

26 CHAPTER 4. IMPLEMENTATION

In this project we are mainly interested in small and medium lattices so an MPI implementation

that covers the rest of the levels of our code will be left as future work.

4.2 Level 02: Solving φ †(DD†)−1φ : Conjugate Gradient Methods

and Preconditioning

In order to implement the Dynamical-Fermion-Sampling approach (DFS) described in 2.3.2 we notice

that:

φ
†(DD†)−1

φ = [φ †(D†)−1][D−1
φ] = [D−1

φ]†[D−1
φ], (4.4)

then, if we define χ = D−1φ and sample it according to exp(−χ†χ), we can recover φ from:

φ = Dχ. (4.5)

Roughly speaking, we can say that, with DFS we translate the problem of computing the determi-

nant of the Dirac operator (and all the numerical instabilities of doing so) into the problem of sampling

new φI and φR fields solving the linear system 4.5.

To solve 4.5 we have chosen the Conjugate Gradients method (CGM), which is a iterative method

known for having smaller complexity than other solvers such as Gauss or Gauss-Seide, besides being

really convenient because its core is based only on simple vector-vector and matrix-vector operations.

By construction he have that DD† is a symmetric positive-definite (SPD) hermitian matrix, which is

the necessary conditions for CGM to work.

4.2.1 Conjugate Gradient Method

The conjugate Gradient Algorithms is given by 28:

r0 := b−Ax0 (4.6)

if r0 is sufficiently small, then return x0 as the result (4.7)

p0 := r0 (4.8)

k := 0 (4.9)

repeat (4.10)

αk :=
rTk rk

pT
k Apk

(4.11)

xk+1 := xk +αkpk (4.12)

rk+1 := rk−αkApk (4.13)

(4.14)

4.2. LEVEL 02: SOLVING φ †(DD†)−1φ : CONJUGATE GRADIENT METHODS AND
PRECONDITIONING 27

if rk+1 is sufficiently small, then exit loop (4.15)

βk :=
rTk+1rk+1

rTk rk
(4.16)

pk+1 := rk+1 +βkpk (4.17)

k := k+1 (4.18)

end repeat (4.19)

return xk+1 as the result (4.20)

4.2.2 Preconditioned Conjugate Gradient

The preconditioning is a method focused to improve the conditiong number of a matrix. The basic

principle is to transform the problem Ax= b into M−1Ax=M−1b in such a way that κ(M−1A)� κ(A)

[3]. A good preconditioning matrix M should approximate A as much as possible be way more easy to

invert. In this way M−1Ax≈ A−1Ax≈ x and M−1b≈ A−1b and the new system imitates the trivial

problem x = A−1b [25].

The issue with using this idea directly with the Conjugate Gradient method is that, although we

can ensure M and A to be hermitian by their own, the product M−1A in general is not. This problem

could be overcome writing M as M = EET , then:

E−T (E−1AE−T)(ET x) = E−T E−1b (4.21)

Introducing x̂ = ET x we have E−1AE−T x̂ = E−1b. This is a suitable problem because the transfor-

mation E−1AE−T preserves the hermiticity of A. Now the problem is to compute E. This could

be avoided doing the replacements ri ← E−1ri and pi ← ET pi in the original Conjugate Gradient

algorithm. We end up with [28]:

Problem: solve Ax = b with A Hermitian and positive-definite.

r0 := b−Ax0 (4.22)

if r0 is sufficiently small, then return x0 as the result

z0 := M−1r0

p0 := r0 (4.23)

k := 0 (4.24)

(4.25)

28 CHAPTER 4. IMPLEMENTATION

repeat

αk :=
rTk zk

pT
k Apk

(4.26)

xk+1 := xk +αkpk (4.27)

rk+1 := rk−αkApk (4.28)

if rk+1 is sufficiently small, then exit loop

zk+1 := M−1rk+1

βk :=
zTk+1rk+1

rTk rk
(4.29)

pk+1 := zk+1 +βkpk (4.30)

k := k+1 (4.31)

end repeat

return xk+1 as the result

Using this methodology we implemented three preconditioners, an identity (or dummy) precondi-

tioner used for comparison purposes, and inverse diagonal preconditioner and Hermitian Successive

Over-Relaxation.

4.2.3 Preconditioning that changes in every iteration: Flexible Conjugate Gra-
dient

If we want to use a preconditioner that changes according to the results of every interation (so

M = M(ri)), we only need to change the formula for βk in the original Preconditioned Conjugate

Gradient with the Polak-Ribiere formula:

βk :=
zT

k+1(rk+1− rk)

zT
k rk

(4.32)

This allow us to use, for instance, Conjugate Gradient and the Jacobi method as preconditioners [25].

4.2.4 Hermitian Successive Over-Relaxation

This method requires the decomposition of our Hermitian Matrix A into the form A = D+L+L†

where the matrix D corresponds to the Diagonal and L to the lower triangular. The preconditioning

matrix is given by [25]:

M(ω) =
ω

2−ω

[
1
ω

D+L
]

D−1
[

1
ω

D+L
]†

(4.33)

where ω is an adjustable parameter. Then the preconditioned matrix M−1A takes the form:

M−1(ω)A =
2−ω

ω

[
1
ω

D+L
]−†

D
[

1
ω

D+L
]−1

A (4.34)

4.2. LEVEL 02: SOLVING φ †(DD†)−1φ : CONJUGATE GRADIENT METHODS AND
PRECONDITIONING 29

The inverse matrix operations
[
ω−1D+L

]−1 x and
[
ω−1D+L

]−† x could be computed without the

need of a solver; they are obtained using back and forward subtitution. In the case of
[
ω−1D+L

]−† x
the system takes the form:

a(0)11 x1 +a(0)12 x2 +a(0)13 x3 + · · ·+a(0)1n xn =b(0)1

a(1)22 x2 +a(1)23 x3 + · · ·+a(1)2n xn =b(0)1

. . . =
...

a(n−1)
nn xn =b(n−1)

n

(4.35)

and the formulas to solve this (backward substitution) become:

xn =
b(n−1)

n

a(n−1)
nn

; xi =
b(i−1)−∑

n
j=i+1 a(i−1)

i j x j

a(i−1)
ii

; i = n−1,n−2, . . . ,1 (4.36)

The way to solve
[
ω−1D+L

]−1 x (forward subtitution) is complete analogous but starting from the

upper-left corner instead of starting in the lower-right one.

In Figure 4.8 we plot the condition number κ2[M−1(ω)DD†] against ω for the DD† matrix cor-

responding to a lattice size of 6 and a coupling constant g = 1.0. The condition numbers κ2[DD†])

(original matrix) and κ2[(Diag)−1DD†] are plotted as horizontal lines for comparison purposes. These

calculations were done using Python.

κ2	for	Original	Matrix
κ2	(ω)	for	SSOR	precond
κ2	for	Inverse	Diagonal	precond

κ 2

0

100

200

300

400

500

ω

0 0,5 1 1,5 2

Figure 4.8: HSOR condition number κ2[M−1(ω)DD†] plotted against ω for a Lattice size of L = 6
and coupling constant g = 1.0, κ2[DD†]) and κ2[(Diag)−1DD†]) are also shown.

From Figure 4.8 we see that a ω ≈ 1.0 reduces the condition number considerably with respect the

original condition number and the one obtained using the inverse diagonal preconditioning.

30 CHAPTER 4. IMPLEMENTATION

4.2.5 Implementation of Solvers

As mentioned in 4.2 we proposed solving inverse operation [DD†(σ)]−1 by means of CGM, PCGM,

and FCG (see Figure 4.10). To achieve this, we implemented an abstract solver class, and the CG

and the preconditioners as children classes (see Listing 4.10). The ConjugateGradient class contains

to special methods: cg() which abstracts the CGM and PCGM algorithms, and receives the desired

preconditioner as an argument (run only the CGM solver we pass the identity preconditioner). The

second special method is fcg() which abstracts the FCG algorithm.

Multiplications by Dirac
Operator:

aux ← ��

Vector, Vector-Vector
Operations:

→ �� [+, −, /, ∗] ��′

Preconditioning

(��†)−1Matrix Inversion

Level 02:
Conjugate Gradient Method and
Preconditioning

Conjugate Gradient Algorithm

''''''
contains

''''''''

Figure 4.9: Matrix Inversion (DD)−1 via PCGM and FCG

1 c l a s s S o l v e r

2 {
3 p u b l i c :

4 S o l v e r () {}
5 v i r t u a l ˜ S o l v e r () {}
6 v i r t u a l vo id a p p l y p r e c o n d i t i o n i n g (. . .) = 0 ;

7 v i r t u a l c o n s t s t d : : s t r i n g name () c o n s t = 0 ;

8 } ;

9 c l a s s C o n j u g a t e G r a d i e n t : p u b l i c S o l v e r

10 { . . .

11 p u b l i c :

12 vo id a p p l y p r e c o n d i t i o n i n g (. . .)

13 . . .

14 vo id cg (. . . , S o l v e r& precond) ;

15 vo id f c g (. . . , S o l v e r& precond) ;

16 . . .

17 } ;

18 c l a s s J a c o b i : p u b l i c S o l v e r

4.2. LEVEL 02: SOLVING φ †(DD†)−1φ : CONJUGATE GRADIENT METHODS AND
PRECONDITIONING 31

19 { . . .

20 p u b l i c :

21 vo id a p p l y p r e c o n d i t i o n i n g (. . .)

22 . . .

23 } ;

24 c l a s s I n v e r t e d D i a g o n a l : p u b l i c S o l v e r

25 { . . .

26 p u b l i c :

27 vo id a p p l y p r e c o n d i t i o n i n g (. . .)

28 . . .

29 } ;

30 c l a s s I d e n t i t y : p u b l i c S o l v e r

31 { . . .

32 p u b l i c :

33 vo id a p p l y p r e c o n d i t i o n i n g (. . .)

34 . . .

35 } ;

36 c l a s s SSOR : p u b l i c S o l v e r

37 { . . .

38 p u b l i c :

39 vo id a p p l y p r e c o n d i t i o n i n g (. . .)

40 . . .

41 } ;

Listing 4.10: Class herarchy for solver-preconditioner classes.

We tested the implementation by generating a field filled with complex gaussian random numbers

and applying the DD†(σ) operator to it, then the result and the matrix are used as inputs for the

algorithm and the solution is then compared to the original field (see Listing 4.11). We implemented a

struct cg manager to avoid the allocation an reallocation of auxiliary buffers in repeted calls of the

solver, creating and destroying this buffers only once during all the application running. This struct

contains the CG function, along with some other tools to follow the trail of convergence properties.

1 / / Main S o l v e r d e c l a r a t i o n .

2 C o n j u g a t e G r a d i e n t c o n j G r a d s o l v e r {L , t o l e r a n c e } ;

3

4 / / P r e c o n d i t i o n e r s d e c l a r a t i o n s

5 I d e n t i t y i d e n t i t y p r e c o n d ;

6 I n v e r t e d D i a g o n a l i n v D i a g p r e c o n d ;

7 J a c o b i j a c o b i p r e c o n d {L , t o l e r a n c e , 4} ;

8 C o n j u g a t e G r a d i e n t c o n j G r a d p r e c o n d {L , t o l e r a n c e , 4} ;

9 SSOR s s o r p r e c o n d {L} ;

10

11 / / A p l i c a t i o n o f t h e same s o l v e r wi th d i f f e r e n t p r e c o n d i t i o n e r s

12 c o n j G r a d s o l v e r . p r e c o n d c g (D, i n p u t , o u t p u t I , i d e n t i t y p r e c o n d) ;

13 / / ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

14 c o n j G r a d s o l v e r . p r e c o n d c g (D, i n p u t , o u t p u t I n v D i a g , i n v D i a g p r e c o n d) ;

15 / / ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

32 CHAPTER 4. IMPLEMENTATION

16 c o n j G r a d s o l v e r . f c g (D, i n p u t , o u t p u t j c , j a c o b i p r e c o n d) ;

17 / / ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

18 c o n j G r a d s o l v e r . f c g (D, i n p u t , o u t p u t c g , c o n j G r a d p r e c o n d) ;

19 / / ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

20 c o n j G r a d s o l v e r . p r e c o n d c g (D, i n p u t , o u t p u t s s o r , s s o r p r e c o n d) ;

21 / / ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

22

23 / / Checking r e s u l t s

24 c h e c k I c g = (r e f e r e n c e == o u t p u t I) ;

25 c h e c k I n v D i a g c g = (r e f e r e n c e == o u t p u t I n v D i a g) ;

26 c h e c k j c c g = (r e f e r e n c e == o u t p u t j c) ;

27 c h e c k c g c g = (r e f e r e n c e == o u t p u t c g) ;

28 c h e c k s s o r c g = (r e f e r e n c e == o u t p u t s s o r) ;

Listing 4.11: Testing inversion with different preconditioners.

Finally include a testing module to check for the correctness of these operations:

1 s t a t i c c h a r ∗ a l l t e s t s ()

2 {
3 m y r u n t e s t (t e s t i d e n t i t y c g) ;

4 m y r u n t e s t (t e s t I n v D i a g c g) ;

5 m y r u n t e s t (t e s t j c c g) ;

6 m y r u n t e s t (t e s t c g c g) ;

7 m y r u n t e s t (t e s t s s o r c g) ;

8 r e t u r n 0 ;

9 }

Listing 4.12: Solver testing.

4.2.6 Convergence rate comparison of the different preconditioners

In Figure 2 we compare effect of the different preconditioners in convergence behavior by plotting the

residual ri = |b−DD†(σ)xi| against the number of iterations. Here σ corresponds to the scalar field,

which in this case was gaussian-randomly generated with mean value 0 and standard deviation 1. In

Figure 1 (a) We compare Identity (dummy), Inverse Diagonal, CG and HSOR. In (a) Jacobi precon-

ditioner is not plotted because it actually increases the number of iterations needed for convergence.

This is because the used scalar field makes DD†(σ) to be not diagonally dominant (A requirement for

Jacobi and other iterative methods to work properly). If we shift the mean value of the scalar field in

such a way DD† became diagonally dominant, we find not only that the Jacobi method starts working

better but the overall ratio of convergences of all the other methods improves drastically. In Figure

2 (b) we plot ri vs number iterations for all the preconditioners for a matrix DD†(σ) created with a

scalar field with mean value 5 and a lattice size of 32. In this case we see how the convergence is way

more faster in all cases, including Jacobi.

4.2. LEVEL 02: SOLVING φ †(DD†)−1φ : CONJUGATE GRADIENT METHODS AND
PRECONDITIONING 33

a)

Identity	Preconditioner
Inverse	Diagonal	Preconditioner
Conjugate	gradient	Preconditioner
SSOR	Preconditioner

r i
=

| b
 -

A
x i

 |

10−9

10−6

10−3

1

1000

Iterations
0 100 200 400 500 600

b)

Identity	Preconditioner
Inverse	Diagonal	Preconditioner
Jacobi	Preconditioner
SSOR	Preconditioner
Conjugate	Gradient	Preconditioner

r i
=

| b
 -

A
x i

 |

10−9

10−6

10−3

1

1000

Iterations
0 5 10 20 25 30

Figure 4.10: (a) Convergence comparison of Idendity preconditioner, Inverse Diagonal preconditioner,
Conjugate Gradient preconditioner and SSOR preconditioner for a L = 18 and mean value of gaussian-
randomly generated scalar field equal zero. (b) Convergence comparison of Idendity preconditioner,
Inverse Diagonal preconditioner, Jacobi preconditioner, Conjugate Gradient preconditioner and HSOR
preconditioner for a L = 32 and mean value of gaussian-randomly generated scalar field equal 5.

Benchmarking

In order to compare the performance of our different implementations for the matrix inversors, we

plot the execution time of the solvers using our two preferred types of multiplication (homemade

On-The-Fly and MKL Sparse) against the number of OMP/MKL threads for lattices of L = 24 and

L = 32, using the HSOR preconditioner. As we can see below, in the Figure 4.11, and as expected

from our time measurements for the matrix-vector operations, the Sparse implementation happen to be

roughly one order of magnitude faster than the homemade counterparts.

We also note that the lack of scaling of the version using sparse multiplications indicates that the

best strategy for parallelization is the use of few threads per simulation, and dedicating more threads

or processes for totally independent simulations.

34 CHAPTER 4. IMPLEMENTATION

L = 24 (CG OMP - On-The-Fly)
L = 32 (CG OMP - On-The-Fly)
L = 24 (CG Sparse Multiplication)
L = 32 (CG Sparse Multiplication)

Ti
m

e[
So

lv
e[

φ
'

=
(D

D
†)-1

φ
]]

(n
s)

0

2,5×109

5×109

1010

1,5×1010

1,75×1010

OMP / MKL Threads

0 5 10 15 20 25 30 35

Figure 4.11: Execution times of Preconditioned Conjugate Gradient (HSOR) for field sizes L = 32,64
and for 4,8,16,32 mpi-processes/threads.

4.3 Level 03: Using [DD†(σ)]−1: Pseudofermion Sampling and

Force Calculation

At this level we consider to main procedures:

4.3.1 Pseudofermion Sampling

The aim of this algorithmic level is to sample the distribution e−φ †(DD†)−1φ , sampling first a gaussian

distribution of the form exp(−χ†χ) using the Marsaglia polar method [20] (a standard C++ imple-

mentation in Listings 4.13), to finally use the trick of writing φ †(DD†)−1φ = [φ †(D†)−1][D−1φ] =

[D−1φ]†[D−1φ]→ φ = Dχ so we obtain the original distribution. The algorithmic structure is shown

in Figure 4.12.

1 vo id p o l a r (d oub l e ∗x1 , dou b l e ∗x2)

2 {
3 do ub l e u , v , q , p ;

4

5 do

6 {
7 u = 2 . 0 ∗ random () − 1 ;

8 v = 2 . 0 ∗ random () − 1 ;

9 q = u ∗ u + v ∗ v ;

10 }
11 w h i l e (q >= 1 . 0 | | q == 0 . 0) ;

12

13 p = s q r t (−2 ∗ l o g (q) / q) ;

4.4. LEVEL 04: USING FORCES: MOLECULAR DYNAMICS SIMULATION 35

Pseudo Fermion Field Sampling

Generate Buffer of Uniform Random
Numbers:

�[0, 1]

Generate Buffer of Gaussian Random
Numbers:

← �[0, 1]� ′

Re-scale Gaussian Buffer:

� ← ⋅2‾√ � ′

Multiply by Dirac Operator:

� ← �� End Pseudo Fermion Field Sampling

Level 03:
Pseudofermion Field Sampling

Seed
Fields
Dirac Operator

�

Box-Muller Algorithm

Figure 4.12: Pseudofermion Sampling

14 ∗x1 = u ∗ p ;

15 ∗x2 = v ∗ p ;

16 }

Listing 4.13: Simple C++ implementation of Marsaglia polar method

4.3.2 Pseudofermion Force Calculation

Here we have one inversion (the other one is repeated), performed using Preconditioned Conjugated

Gradient or Flexible Conjugate Gradient. The algorithmic structure, as described in 3.1.5, is shown in

Figure 4.13.

4.4 Level 04: Using Forces: Molecular Dynamics Simulation

4.4.1 Solving Canonical Equations of Motion: Molecular Dynamics

Note that if the trajectories described by the equations 3.5 were simulated exactly then H(x,p)
would be, of course, a constant of motion. In this scenario the movement would be always over a

hypersurface of constant probability density, and 3.8 would lead always to an acceptance probability

of 1. Nevertheless, in practice equations 3.5 cannot be solve exactly and we will end up with a finite

difference |∆H|. The key point is that, the exact our trajectories are, the smaller is |∆H| (and higher

or acceptance rates). This is something that we can always achieve with arbitrary precision if we

take an important and subtle detail into account: Not all numerical integrators (such as the Euler, mid

point, or Runge-Kutta methods) preserve phase-space measure (a feature that is required in order

to ensure HMC works properly as an MCMC algorithm). Fortunately, there are special algorithms

designed to meet this preservation: the so called sympletic integrators . This type of integrator are

extensively use in Molecular Dynamics simulations, or in any other application where any type of

36 CHAPTER 4. IMPLEMENTATION

==

Pseudo Fermion Force
Calculation

Fields
Dirac Operator Conjugate Gradient Algorithm

'''''''
contains

''''''''

Multiplications by Dirac
Operator:

aux ← ��

Vector, Vector-Vector
Operations:

→ �� [+, −, /, ∗] ��′

Preconditioning

(��†)−1Matrix Inversion

Matrix Multiplications:

(+ �) ⋅
∂�

∂�
�† ∂�†

∂�

Scalar Product

�� †
Force End Pseudo Fermion Force

Calculation

Level 03:
Pseudo Fermion Force Calculation

Figure 4.13: Pseudofermion Force Calculation.

Newtonian/Hamiltonian dynamics should be computed for large trajectories. These type of approaches

have the following characteristics:

• Error goes as the square of time-step: |∆H| ∼ O(δ t2).

• They conserve phase-space measure.

For this project, we have chosen to use the Stormer-Verlet Integrator, which is highly reliable and

relatively easy to implement.

Stormer-Verlet Integrator

With this methodology we define the micro-evolution operators Ip(δ t) and Iφ (δ t), for p and φ

respectively, and up to first order, are given by [30]:

Ip(δ t) (p(i)x ,φ
(i)
x) =

(
p(i)x −∇φ H(p(i)x ,φ

(i)
x)δ t,φ (i)

x

)
= (p(i+1)

x ,φ
(i)
x), (4.37)

Iφ (δ t) (p(i)x ,φ
(i)
x) =

(
p(i)x ,φ

(i)
x +∇pH(p(i)x ,φ

(i)
x)δ t

)
= (p(i)x ,φ

(i+1)
x). (4.38)

In terms of Ip(δ t) and Iφ (δ t) the full time-evolution operator given by the Stormer-Verlet integrator is

written down as:

(p(n),φ (n)) =

[
Iφ

(
δ t
2

)
Ip (δ t) Iφ

(
δ t
2

)]n

(p(0),φ (0)), (4.39)

where n is the number micro trajectories, and nδ t is the total simulation time. Finally we can obtain a

explicit version of this expression by applying ∇p and ∇φ directly to our discretized Hamiltonian:

px = ∇pH(px,φx) ; Fx :=−∇φ H(px,φx). (4.40)

4.4. LEVEL 04: USING FORCES: MOLECULAR DYNAMICS SIMULATION 37

The relation δ t = τ/n should be tunned in such a way that |∆H| is not too big, nor too small. If

|∆H| ≈ 0 then the evolution of the Markov Chain is prone to strong autocorrelations (small trajectories)

and the sampling of the phase space becomes inefficient. In the other hand if |∆H| >> 0 then the

acceptance rate decreases and the convergence of the algorithm slows down.

Here at this level we have the internal Molecular Dynamics simulation. It is made up from a couple

of Action updates, a couple of energy measurements, and a Stormer-Verlet integrator, as described in

4.4.1. The algorithmic structure is shown in Figure 4.14.

Molecular Dynamics

Update Action

[�, �,] = [�] + [�, �,]�†
� � �†

Update Hamiltonian

�(�, �, �)

Verlet Integrator

Evolve Scalar Field:

(��/2)��

Update Dirac Matrix

Calculate Pseudo Fermion Force:

− ((� �)∇� �† �†)−1

Evolve Auxiliary Momentum:

(��)��

Evolve Scalar Field:

(��/2)��

Update Dirac Matrix

Is

?

MD iteration < MD Steps

YesNo

Update Action

[�, �,] = [�] + [�, �,]�†
� � �†

Update Hamiltonian

�(�, �, �)

End Molecular Dynamics

Level 04:
Molecular Dynamics

Scalar Field
Pseudo Fermion Field

��

Figure 4.14: Molecular Dynamic Simulation.

38 CHAPTER 4. IMPLEMENTATION

4.5 Level 05: Including Molecular Dynamics: Hamiltonian Monte

Carlo Simulation.

This level consists in the actual HMC simulation. The algorithmic structure, as described in 3.1.5, is

shown in Figure 4.15.

Initialize Lattice
Initialize Dirac Matrix

Operators

Sample Scalar Field
according to:

�
− /2�2

Molecular Dynamics
: generate new field

configuration

Sample auxiliary
Momentum according

to:

�
− /2�

2

Sample Pseudo Fermion Field
according to:

�
− (� ��†

�†)−1

Is

?

�� ⩽ 0
YesNo

Accept new
configuration

Is

?

�[0, 1] < �
−��

Yes

Is

?

Iteration > Burn − in
No

Yes

Measure
Observables

Is

?

Iteration < MC Steps

Yes

Average
Observables

NoOutput
DataEnd Simulation

Simulation

Lattice Size
Coupling Constants
MC Steps
MD Steps
Tolerance Parameters

Level 05:

Hybrid Monte Carlo Simulation

Figure 4.15: Hamiltonian Monte Carlo Simulation.

Benchmarking

Now we compare the performance for full single simulations, once again we plot the execution

time using our two preferred types of multiplication (homemade On-The-Fly and MKL Sparse)

inside the solver routine (see Figure 4.16), against the number of OMP/MKL threads for lattices

of L = 12,18,24,28,32,36. Again we conclude that the Sparse version overpasses the homemade

4.6. LEVEL 06: MANY HMC SIMULATIONS: PARAMETER SWEEPING AND DATA ANALYSIS. 39

versions and is our final preferred choice. After this point, and due to the poor scaling of the Sparse

method, we reaffirm our final strategy of dedicating more processes to independent simulations than to

the internal parallelization of our algorithms.

(a)

L	=	12	On	The	Fly
L	=	18	On	The	Fly
L	=	24	On	the	Fly
L	=28	On	The	Fly
L	=	32	On	The	Fly
L	=	36	On	The	Fly

ti
m
e	
(s
)

0

104

2×104

3×104

4×104

5×104

6×104

#	OMP	Threads

0 2 4 6 8

(b)

L	=	12	Sparse
L=18	Sparse
L	=	24	Sparse
L	=	28	Sparse
L	=	32	Sparse

ti
m
e	
(s
)

0

2000

6000

8000

#	MKL	Threads

0 2 4 6 8

Figure 4.16: Running time for a entire simulations with L = 12,16,18,24,32,36 with number of
threads T = 1,2,4,8 for (a) non optimized On-The-Fly approach (b) MKL Sparse Matrix approach.
(Note 8000 s ≈ 2h 13 min).

4.6 Level 06: Many HMC simulations: Parameter sweeping and

data analysis.

This section consists, first, of a sweep of parameters: one over the different lattice sizes (scale

transformations), and another over the ranges of coupling constants. The second part corresponds to

the analysis of the data produced by these sweeps, and its objective is to determine critical points and

critical exponents, among other properties. The algorithmic structure is shown Figure 1.

For-loop over different Lattices Sizes:

For-loop over Coupling-Constants parameter space:

Hybrid Monte Carlo
Simulation

Saving Results

Begin

Data Analysis

End

Level 06:
- Sweeping over parameter space

- Data Analysis.
Parameter - Sapce sweeping

Figure 4.17: Parameter sweeping and data analysis.

40 CHAPTER 4. IMPLEMENTATION

Benchmarking

At this level we target a trivial MPI parallelization in which we lunch multiple identical and totally

independent simulations, each with different coupling values over the parameter space. Strong and

weak scaling benchmarks are shown in Figure 4.18 for a lattice of L = 32 (a) and (b). In this approach

the communication times are non-existent and the scaling is almost linear as seen in Figure 4.18 (a)

inset.

(a)

t(n)/t(5)

t(
n)

/t
(5

)

0,2

0,4

0,6

0,8

1

Processes

0 10 20 30 40 (b)

t(n)/t(5)

t(
n)

/t
(5

)

0

0,25

0,5

0,75

1

1,25

1,5

Processes

0 10 20 30 40

t(5)/t(n)
Linear Scaling

t(
5)

/t
(n

)

0

2

4

6

8

Processes

0 10 20 30 40

Figure 4.18: (a) [inset] Strong and (b) Weak scaling for running independent full simulations for
5,10,15,20,25,30,35,40 MPI processes and L = 32.

Chapter 5

Results

In this chapter we briefly discuss physical results focused on critical phenomena extracted from our

simulations for the φ 4 model. The corresponding analysis for the GNY model will be left as future

work.

5.1 Testing Molecular Dynamics algorithm

Before moving on to the analysis of actual Hamiltonian Monte Carlo simulations, it is important

to check the correct functioning of the main engine to propose new configurations: the molecular

dynamics algorithm. We go through this showing that its results and behavior are consistent with what

we expect on numerical and physical grounds

The two crucial properties our molecular dynamics algorithm (Stormer-Verlet) that we might revise

are the error scaling of |∆H| and the conservation of phase space measure.

5.1.1 |∆H| error scaling

In order to check the relation |∆H| ∼ O(δ t2) we plotted the absolute fluctuation of the energy after

after carrying out molecular dynamics trayectories of unitary length (τ = 1) , in function of the time

step, for the lattices the following sizes N = 43,83,123,163,203,243 [see Figure 5.1 (a) and Table 5.1].

L mL bL R2

43 1.75406e+03 -2.62807e-05 9.9999966e-01
83 6.65441e+03 -7.28279e-05 9.9999981e-01

123 2.71213e+04 -2.68746e-04 9.9999985e-01
163 7.27669e+04 -1.18048e-03 9.9999960e-01
203 1.27494e+05 -1.48028e-03 9.9999979e-01
243 2.32798e+05 -2.62039e-03 9.9999980e-01

Table 5.1: Linear fitting parameters for |∆H| vs δ t2, with the lattices sizes N = 43,83,123,163,203,243.

41

42 CHAPTER 5. RESULTS

(a)

N	=	43		
N	=	83	
N	=	123	
N	=	163	
N	=	203	
N	=	243	|	Δ

	H
	|

0

5

10

15

20

25

δ	t2
0 2×10−5 4×10−5 6×10−5 8×10−5 10−4

(b)

m	=Δ	|	Δ	H	|	/	Δ	(δ	t2)
m	=	16.73L3	-618.11,		R2	=	0.99984

m
	=

Δ	
|	Δ

	H
	|	

/	Δ
	(δ

	t2)

0

105

2,5×105

N	=	L3

0 2500 5000 7500 104 1,25×104

Figure 5.1: (a) Energy error behavior with δ t2 for lattice sizes N = L3 = 43,83,123,163,203,243. (b)
Behavior of the slope m = ∆|∆H|/∆(δ t2) as function of L3.

In Table 5.1 we can see that the squared linear correlation coefficient is ∼ 1 for all the cases.

Furthermore, we can verify that all the intercepts bL are small (∼ 0) which goes in accordance with

the expected exact behavior of the solutions in the continuous-time limit. Regarding the behavior of

the slopes [see Figure 5.1 (b)], we found out that they show a linear relationship with L3, which is in

accordance with the fact that H grows in contributions as L3.

5.1.2 Conservation of Phase Space Measure

If the measure is conserved then we should expect 〈exp(−∆H)〉= 1. To see this we write:

〈exp(−∆H)〉= 1
Z

∫
D[P,φ] exp(−H[P,φ]) exp(−∆H[P′,φ ′,P,φ]) (5.1)

Changing variables (P,φ)→ (P′,φ ′) we get

=
1
Z

∫
D[P′,φ ′]

∣∣∣∣ ∂ (P,φ)
∂ (P′,φ ′)

∣∣∣∣ exp(−H[P′,φ ′]), (5.2)

now, if the measure is actually conserved, then |∂ (P,φ)/∂ (P′,φ ′)|= 1 and 5.2 is evaluated to 1. To

test this the we compute 〈exp(−∆H)〉 for different values of the coupling constant κ , for the lattices

sizes N = 43,83,123,163,203,243 [see Figure 5.2].

N	=	43

N	=	83

N	=	123

N	=	163

N	=	203

N	=	243

〈	
e-	Δ

	H
	 	〉

0,99996

0,99998

1

1,00002

1,00004

Κ
0,16 0,17 0,18 0,19 0,2 0,21

Figure 5.2: Computation of 〈exp(−∆H)〉 for κ ∈ [0.16,0.21] , with the lattices sizes N =
43,83,123,163,203,243.

5.2. ERROR ANALYSIS USING THE JACKKNIFE METHOD 43

From Figure 5.2 we can see that for all lattice sizes this expected value is accurate up to the fifth

decimal digit. A tendency to increasing the errors is observed with the growth of the lattice size.

5.2 Error Analysis using the Jackknife method

Due to the numerical nature of our observable calculations, all values obtained following our Monte

Carlo methodology will be accompanied by statistical errors. A practical way to calculate these

errors is the use of a methodology called the Jackknife method [19], specially useful to correct bias

estimations in sampling sampling procedures [9].

With the Jackknife method we divide our chain of configuration into bins of width w, so if our

original set is given by {x(1), . . . ,x(N)}, our bins, or sub-sets or width w are going to be given by:

{x(1), . . . ,x(w)},{x(w+1), . . . ,x(2w)}, . . . ,{x(n−1)w+1, . . . ,x(n w)}, where n is the total number of bins

(N = nw).

If Õ(k,w) corresponds to the average of an observable over the k−bin, i.e. if

˜O(k,w) =
1
w ∑

i∈k−bin
O(x(j)), (5.3)

and Ō is the average over the whole set:

Ō =
1
n ∑

k
Õ(k,w), (5.4)

the the expression

δw =

√
1

n(n−1)∑
k

(
Õ(k,w)− Ō

)2 (5.5)

is the standard error obtained by treating Õ(k,w) to be independent samples. If we set w = 1 then

δ1 = σ0 is an estimator of the square root of the variance, meaning then that±σ0/
√

N is our statistical

errors. In this way we write down our final results as

O = Ō± σ0√
N

. (5.6)

5.3 Computation of Observables

We ran parallel simulations to compute vacuum expectation values for the magnetization m =

V−1
∑x φx, magnetic suscetibility χ = 〈M2〉 − 〈M〉2 and Binder cumulant U = 〈M4〉/(〈M2〉)2 as

functions of the coupling constant κ ∈ [0.16,0.21] on 2+1 lattice space-times for the lattices sizes

N = 43,83,123,163,203,243. The Markov Chain produced was of length 2x104, 103 of which were

used for the thermalization of the system and ignored in the collection of statistics (burn-in time). Each

Markov link required a whole Molecular Dynamics simulation to be produced, each of then of a 2x102

steps. The value of the coupling constant λ was chosen to be 1.1x100 according to Hasenbusch [13]

suggestion.

44 CHAPTER 5. RESULTS

Analyzing the behavior of m and χ with κ [see Figure 5.3 (a) and (b)] we observe the occurrence

of a phase transition somewhere between κ = 0.18 and κ = 0.19. To spot out the critical value κc, the

corresponding diagram of the Binder cumulant is used [see Figure 5.4 (a)]: the point of intersection of

the U curves for the different lattices is found at κc = 0.18625, which differs from the value reported

by [13] (κc = 0.18644) with a margin of 0.1%.

(a)

N	=	43

N	=	83

N	=	123

N	=	163

N	=	203

N	=	243

M
	=

	V
-1
	〈

	∑
x	φ

x	〉
φ

0

0,2

0,4

0,6

0,8

κ
0,16 0,17 0,18 0,19 0,2 0,21

(b)

N	=	43

N	=	83

N	=	123

N	=	163

N	=	203

N	=	243

χ	
=	
〈	

M
2 	〉

	-	
〈	

M
	〉

2

0

0,5

1

1,5

2

κ
0,16 0,17 0,18 0,19 0,2 0,21

Figure 5.3: (a) Magnetization m =V−1〈∑x φx〉φ and (b) Magnetic Susceptibility χ = 〈M2〉−〈M〉2for
κ ∈ [0.16,0.21] , with the lattices sizes N = 43,83,123,163,203,243. Error bars calculated using
jackknife method.

5.4 Critical Phenomena

One of the features of second order phase transition is that near its vicinities several quantities

diverge. It turns out to be extremely important for the theory of critical phenomena to understand

and characterize the specific way in which these quantities diverge. This characterization is done by

defining what is know as critical exponents [32]. To see where do these critical exponent appear, and

to discuss later on their importance, let us consider first an arbitrary divergent observable F(t), where t

is some parameter whose variation drives on the phase transition (for example the reduced temperature

t = (T −Tc)/Tc in a ferromagnetic system) . One might expect that near the critical point F(t) behave

as:

F(t) = A|t|λ (1+btλ1 + . . .). (5.7)

The quantity λ is a critical exponent and it has the striking property of being universal. A quantity

is universal if it assumes exactly the same value for any system within a given universality class. A

universality class is characterized by the dimension of the system, the range of the interaction and the

symmetry of the order parameters [6].

5.5. CORRELATION TIME AND CRITICAL SLOWING DOWN 45

In the cases of lattice models a very usual technique used for the computation of critical exponent

is known as finite-size scaling (FSS) [6]. Using this approach the the critical exponents are then

extracted from the scaling of the observables with the lattice size, for instance, near the critical point

the magnetic susceptibility behaves as:

χ = aL2−η(1+bL−ω + cL−ω ′+dL−2ω + · · ·)+B (5.8)

where B is an analytic background and L the linear size of the p.b.c lattice [14]. For ∂Ū/∂κ|κc , the

behavior is given by:

∂Ū/∂κ|κc = aL1/ν(1+bL−ω + cL−ω ′+dL−2ω + · · ·). (5.9)

η exponent

Following [13] [2] [14] and using the following ansatz suggested by 5.8:we obtain the critical exponent

η for Binder cumulant fixed at Ū = 1.6032 (value at estimated phase transition), and with λ = 1.1.

χ̄(L) = c+dL2−η (5.10)

[see Figure 5.4 (b)]. The found value was η = 0.02921 which differs from the value reported by [13]

(η = 0.03357) in 12.98% [13].

ν exponent

Also following [13] [2], we calculate the critical value ν for the slope of the Binder cumulant at

Ū = 1.6032 (value at estimated phase transition) for λ = 1.1. The scaling behavior for Ū was fitted

using a simple power law ansatz suggested by 5.9 [see Figure 5.4 (c)] as:

∂Ū
∂κ

= cL1/ν (5.11)

The found value was ν = 0.71181 which differs from the value reported by [13] (ν = 0.6289) in

14.185%.

5.5 Correlation Time and Critical Slowing Down

To study autocorrelations in our Markov chains we proceed to measure the observable Gc(t) =

〈φ(t0)φ(t0 + t)〉. For instance in Figure 5.5 (a) we show Gc(t) as a function of t for a lattice L = 12

and λ = 1.145 and κ = 0.18055. Our data are fitted as ∝ e−t/ξ (red dashed line), from which we can

extract the correlation time ξ (In this particular case we found ξ = 28,57 in units of Monte Carlo

time). This correlation time naturally gives us the distance parameter between configurations in our

chain that we must use to extract sufficiently uncorrelated configurations for further use in statistical

calculations of observables. To see how the autocorrelation time depends on the physical system, we

plot the correlation time ξ for a lattice L = 12 as a function of κ in the interval [0.1595,0.2095] (which

46 CHAPTER 5. RESULTS

κc	=	0.18625

(a)

N	=	43

N	=	83

N	=	123

N	=	163

N	=	203

N	=	243

κc	=	0.18625

U	
=〈

	(∑
x	φ

x)4 	〉
	/	

(〈
	(∑

x	φ
x)2 	〉

)	2

1

1,5

2

2,5

3

κ
0,16 0,17 0,18 0,19 0,2 0,21

(b)

χ(L)
χ(L)	=		0.97637	L2-0.02921

χ	

10

100

1000

104

L 102 5 20

(c)

-∂	U	/	∂	κ
-∂	U	/	∂	κ	=	0.01307	L	1/0.71181

-∂
	U

(L
)	/

	∂
	κ

0,01

0,1

1

10

100

1000

L
102 5 20

Figure 5.4: (a) Binder Cumulant U = 〈M4〉/(〈M2〉)2 for κ ∈ [0.16,0.21] , with the lattices sizes
N = 43,83,123,163,203,243. (b) χ̄(L) = dL2−η fitting at λ = 1.1 (c) ∂Ū

∂κ
= cL1/ν at λ = 1.1.

contains κc), and setting λ = 1.145. We can clearly see that, in the vicinity of the critical point (see

Figure 5.5 (b)), the correlation time sharply increases. This increase in autocorrelation time implies

that if we want to extract a fixed number of uncorrelated configurations from our Markov chain for

statistical calculations, we must necessarily increase the total length of the chain, which is further

translated in a enhancement of the required computational effort of the simulations in the parameter

regions close κc. This phenomenon is called as critical slowing down and is well known in the context

of Monte Carlo simulations, where is typically observed near the critical points of a theory [26] [27].

The severity of the critical slowing down depends on the algorithm used and on the observable one is

analyzing. Its danger is that, if it is not taken into account, the autocorrelation time can easily become

much larger than the prefixed in Monte Carlo time, involving the generation of Markov states without

any statistical value.

(b)(a)

G(t)
∝ exp(-t/ξ); [ξ = 28.57]

G
(t

)	
=	
〈	

ρ(
t 0

)	
ρ(

t 0
+t

)〉

0

2000

4000

6000

8000

104

MC	time	(a.u.)

0 200 400 600 800 1000

ξ(κ)
κc = 0.18625

ξ

0

25

50

75

100

125

150

175

κ

0,16 0,17 0,18 0,19 0,2 0,21

Figure 5.5: (a) Gc(t) = 〈φ(t0)φ(t0 + t)〉 as a function of t for a lattice L = 12 with λ = 1.145 and
κ = 0.18055 (b) correlation time ξ for a lattice L= 12 as a function of κ in the interval [0.1595,0.2095]
with λ = 1.145.

Chapter 6

Conclusion

In this project we created from scratch software to simulate 3–dimensional φ 4 and 3-dimensional

Gross-Neveu-Yukawa models on the lattice, using Monte–Carlo methods. The purpose of this work

was implement the set of techniques traditionally used in lattice QCD simulations and adapt them for

the use in more simple theories such as φ 4 and GNY, targeting as specialization the study of critical

phenomena. The final aim of this proposal was to obtain insight in these later theories, and to get into

contact with the computational and algorithmic complications associated with simulating LQCD: an

activity which is widely known to be extremely computationally intensive, and, because of that, a

subject of interest for High Performance Computing.

In the development of our implementation we identify matrix-vector operations as the main

bottlenecks and the rapidly increasing matrix sizes as our main concern regarding memory limits.

We implemented these operations using three different approaches: Full matrix approach using intel

mkl cBLAS, sparse matrix approach using intel mkl sparse cBLAS, and finally with a homemade

multiplication strategy that generates the matrix entries on computing time (On-The-Fly approach).

We checked the consistency of the three methods, disregarding the full matrix or dense approach

from the beginning, due to its high memory requirements and relatively slow performance. With the

on-the-fly method we proposed and implemented shared memory (OMP) and distributed memory

(MPI) parallelizations, requiring the distributed approach the domain decomposition of fields and

el use de Exchange Halos. After running performance measurements, we conclude that the Sparse

version is faster in all cases, besides showing poor scaling in relation to the number of thread used. The

On-The-Fly version has the advantage, however, of lacking an upper bound of memory, this because

the matrix elements are generated on the multiplication time. This means that it can be used in a wider

range of lattice sizes.

After that we implemented de inverse operation [DD†(σ)]−1φ by means of the Conjugate Gradient

method in such a way it is compatible with multithreaded versions of the matrix operations previously

developed. This along with a preconditioning strategy, we implemented Identity preconditioner, Inverse

Diagonal preconditioner, Conjugate Gradient as preconditioner of Flexible Conjugate Gradient, Jacobi

method as preconditioner of Flexible Conjugate Gradient, and Hermitian Successive Over-Relaxation.
47

48 CHAPTER 6. CONCLUSION

All these methods analysed and compared in terms of convergence speed-up, being in general HSOR

the best of them.

On top of that we constructed Molecular Dynamics layer of our code which intimately rest on the

matrix inversion operations. Moreover the MD layer is in turn the engine for the full Hamiltonian

Monte Carlo algorithm. At the end we took time measurements for single simulation times at different

lattice size scales, both using internal parallelization and trivial parallelization in which we ran many

independent simulations with different parameters for the couplings space, being at the end the

preferred strategy the one of dedicating more threads or processes for totally independent simulations.

We use our software to extract physics from the well-known φ 4 model from which we could find

its critical point and its critical exponents, we also analyzed the correlation times for the associated

Markov chain and observed the phenomenon of critical slowing down, which due to its characteristics ,

is of both physical and algorithmic interest.

As future work we leave the complete MPI parallelization of the code, better and more diverse

performance measurements, the consideration of algorithmic improvements to attack the problem of

critical slowing down and the physical analysis of the GNY model.

Bibliography

[1] D. J. Amit and V. Martin-Mayor. Field Theory, the Renormalization Group, and Critical

Phenomena: Graphs to Computers Third Edition. World Scientific Publishing Company, 2005.

[2] H. Ballesteros, L. Fernández, V. Martı́n-Mayor, A. M. Sudupe, G. Parisi, and J. Ruiz-Lorenzo.

Critical exponents of the three-dimensional diluted ising model. Physical Review B, 58(5):2740,

1998.

[3] R. Barrett, M. W. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout, R. Pozo,

C. Romine, and H. Van der Vorst. Templates for the solution of linear systems: building blocks

for iterative methods, volume 43. Siam, 1994.

[4] K. Bitar, A. Kennedy, R. Horsley, S. Meyer, and P. Rossi. Hybrid monte carlo and quantum

chromodynamics. Nuclear Physics B, 313(2):377–392, 1989.

[5] S. Brooks, A. Gelman, G. Jones, and X.-L. Meng. Handbook of markov chain monte carlo. CRC

press, 2011.

[6] J. Cardy. Finite-size scaling. Elsevier, 2012.

[7] R. F. Dashen, B. Hasslacher, and A. Neveu. Semiclassical bound states in an asymptotically free

theory. Phys. Rev. D, 12:2443–2458, Oct 1975.

[8] S. Duane, A. D. Kennedy, B. J. Pendleton, and D. Roweth. Hybrid monte carlo. Physics letters

B, 195(2):216–222, 1987.

[9] B. Efron. Bootstrap methods: another look at the jackknife. In Breakthroughs in statistics, pages

569–593. Springer, 1992.

[10] C. Gattringer and C. Lang. Quantum chromodynamics on the lattice: an introductory presentation,

volume 788. Springer Science & Business Media, 2009.

[11] D. J. Gross and A. Neveu. Dynamical symmetry breaking in asymptotically free field theories.

Physical Review D, 10(10):3235, 1974.

[12] M. Hanada. Markov chain monte carlo for dummies. arXiv preprint arXiv:1808.08490, 2018.
49

50 BIBLIOGRAPHY

[13] M. Hasenbusch. A monte carlo study of leading order scaling corrections of 4 theory on a

three-dimensional lattice. Journal of Physics A: Mathematical and General, 32(26):4851, 1999.

[14] M. Hasenbusch. Finite size scaling study of lattice models in the three-dimensional ising

universality class. Physical Review B, 82(17):174433, 2010.

[15] K. Huang, E. Manousakis, and J. Polonyi. Effective potential in scalar field theory. Physical

Review D, 35(10):3187, 1987.

[16] M. H. Kalos and P. A. Whitlock. Monte carlo methods. John Wiley & Sons, 2009.

[17] L. Kärkkäinen, R. Lacaze, P. Lacock, and B. Petersson. Critical behaviour of the three-

dimensional gross-neveu and higgs-yukawa models. Nuclear Physics B, 415(3):781–796, Mar

1994.

[18] L. Lellouch, R. Sommer, B. Svetitsky, A. Vladikas, and L. F. Cugliandolo. Modern Perspectives

in Lattice QCD: Quantum Field Theory and High Performance Computing: Lecture Notes of the

Les Houches Summer School: Volume 93, August 2009. OUP Oxford, 2011.

[19] L. Lyons and L. Louis. A practical guide to data analysis for physical science students. Cambridge

University Press, 1991.

[20] G. Marsaglia and T. A. Bray. A convenient method for generating normal variables. SIAM review,

6(3):260–264, 1964.

[21] I. Montvay and G. Münster. Quantum fields on a lattice. Cambridge University Press, 1997.

[22] R. M. Neal et al. Mcmc using hamiltonian dynamics. Handbook of markov chain monte carlo,

2(11):2, 2011.

[23] M. E. Peskin. An introduction to quantum field theory. CRC press, 2018.

[24] W. Rath. Cluster simulations in the Gross Neveu model. Humboldt-Universität zu Berlin, 2009.

[25] Y. Saad. Iterative methods for sparse linear systems, volume 82. siam, 2003.

[26] S. Schaefer, R. Sommer, and F. Virotta. Investigating the critical slowing down of qcd simulations.

arXiv preprint arXiv:0910.1465, 2009.

[27] S. Schaefer, R. Sommer, F. Virotta, A. Collaboration, et al. Critical slowing down and error

analysis in lattice qcd simulations. Nuclear Physics B, 845(1):93–119, 2011.

[28] J. R. Shewchuk et al. An introduction to the conjugate gradient method without the agonizing

pain, 1994.

[29] W. E. Thirring. A soluble relativistic field theory. Annals of Physics, 3(1):91–112, 1958.

BIBLIOGRAPHY 51

[30] L. Verlet. Computer” experiments” on classical fluids. i. thermodynamical properties of lennard-

jones molecules. Physical review, 159(1):98, 1967.

[31] K. G. Wilson. Confinement of quarks. Physical review D, 10(8):2445, 1974.

[32] J. M. Yeomans. Statistical mechanics of phase transitions. Clarendon Press, 1992.

Appendix A

Appendix

Write your appendix here. Following two are examples.

A.1 The Doubling Problem

To see the appearance of the unwanted poles we must compute the free fermion propagator. For this

we calculate the Fourier transform of the Dirac operator for the free case:

FT [D(m|n)] = D̃(p|q) = 1
|Λ| ∑

n,m∈Λ

e−ip·naD(n|m)eiq·ma

=
1
|Λ| ∑

n,m∈Λ

e−ip·na

[
∑
µ

γ
µ

δn+µ̂,m−δn−µ̂,m

2a

]
eiq·ma

=
1
|Λ| ∑n∈Λ

∑
µ

e−ip·na γµ

2a

[
eiq·(n+µ̂)a− eiq·(n−µ̂)a

]
=

1
|Λ| ∑n∈Λ

∑
µ

e−i(p−q)·na
γ

µ i
a

[
eiqµ a− e−iqµ a

2i

]
,

(A.1)

but |Λ|−1
∑n∈Λ e−i(p−q)·na = δ (p−q), so:

D̃(p|q) = δ (p−q)D̃(p), (A.2)

with D̃(p) = i/a∑µ γµsin(pµa). Then, we obtain the momentum-space propagator inverting D̃(p). To

do this we rely in the following identity [2]:(
mI+ i∑

µ

γ
µbµ

)−1

=
mI− i∑µ γµbµ

m2 +∑µ b2
µ

, (A.3)

applying this to D̃(p) we obtain:

D̃−1(p) =
−ia−1

∑µ γµsin(pµa)

a−2 ∑µ sin2(pµa)
−−→
a→0

−i∑µ γµ pµ

p2 . (A.4)

We see that in the continuum limit we obtain the correct pole at p = (0,0,0) but in the lattice case

we observe the presence of 7 extra nonphysical poles p = (π/a,0,0),(0,π/a,0), ...,(π/a,π/a,π/a).
53

54 APPENDIX A. APPENDIX

The Wilson term

The previous unwanted poles are easily removed by adding an extra term to D̃(p) that vanishes in the

a→ 0 limit:

D̃(p)α,β =
i
a ∑

µ

(γµ)α,β sin(pµa)+δα,β
1
a ∑

µ

[1− cos(pµa)] (A.5)

Using the identity A.3 we get:

D̃−1(p)α,β =
a−1

∑µ [1− cos(pµa)]δα,β − ia−1
∑µ(γ

µ)α,β sin(pµa)

a−2
(
∑µ [1− cos(pµa)]

)2
+a−2 ∑µ sin2(pµa)

−−→
a→0

−i∑µ γµ pµ

p2

(A.6)

Now both the lattice and the continuum cases share an unique pole at p = (0,0,0). Now we have

to compute the form of this extra term in the space representation, to do so we compute its inverse

Fourier transformation:

Dwilson(n|m)α,β = FT−1[δ (p−q)D̃wilson(p)]

= FT−1

[
δ (p−q)δα,β

1
a ∑

µ

[1− cos(pµa)]

]
=

1
|Λ| ∑

p,q∈Λ̃

eip·na
δp,qδα,β

1
a ∑

µ

[1− cos(pµa)]e−iq·ma

=
1
|Λ| ∑

p∈Λ̃

eip·(n−m)a
δα,β ∑

µ

[
2− eipµ a− e−ipµ a

2a

]

= δα,β
1
|Λ| ∑

p∈Λ̃

∑
µ

[
−eip·(µ̂+n−m)a +2eip·(n−m)a− eip·(−µ̂+n−m)a

2a

]

= δα,β ∑
µ

[
− 1
|Λ|∑p∈Λ̃

eip·(µ̂+n−m)a + 1
|Λ|∑p∈Λ̃

2eip·(n−m)a− 1
|Λ|∑p∈Λ̃

eip·(−µ̂+n−m)a

2a

]
,

But knowing that |Λ|−1
∑p∈Λ̃

exp(ip · (n−m)a) = δn,m we get:

Dwilson(n|m)α,β =−a∑
µ

δn+µ̂,mδα,β −2δn,mδα,β +δn−µ̂,mδα,β

2a2 , (A.7)

which, up to order O(a4) is equivalent to −a/2(∂µ)
2, being this an expression that vanishes in the

continnum limit a→ 0. Taking into account this result we rewrite our Dirac operator as:

D(n|m)α,β → D(n|m)α,β +DWilson(n|m)α,β

=
1
2

gσ δn,mδα,β +
1
2

3

∑
µ

(γµ)α,β

δn+µ̂,m−δn−µ̂,m

2a
− 1

2

3

∑
µ

δα,β

δn+µ̂,m−2δn,m +δn−µ̂,m

2a

=
1
2

[
3
a
+gσ

]
δn,mδα,β −

1
2

3

∑
µ

(I− γµ)α,β δn+µ̂,m +(I+ γµ)α,β δn−µ̂,m

2a
.

(A.8)

Finally we write down this in a more compact way by defining γ−µ =−γµ :

D(n|m)α,β =
1
2

[
3
a
+gσ

]
δn,mδα,β −

1
4a

±3

∑
µ=±1

(I− γ
µ)α,β δn+µ̂,m. (A.9)

A.2. MATTEWS-SALAM FORMULA 55

A.2 Mattews-Salam formula

For a single fermion flavor the partition function is given by

Z
(f)
F [σ] =

∫
D[ψ(f), ψ̄(f)] exp

(
∑

n,m∈Λ

ψ̄
(f)(n)D(n|m)ψ(f)(m)

)
(A.10)

which corresponds to an integral in Grassmann variables. To compute it we use the linear transformation

Ψ(f) = Dψ(f). Then using the following grassmannian identity η ′ = Dη→ dη ′ = det[D]dη we write:

Z
(f)
F = det[D]

∫
D[Ψ(f), ψ̄(f)]exp

(
ψ̄

(f) ·Ψ(f)
)

= det[D]
∫

D[Ψ(f), ψ̄(f)]
(

1+ ψ̄
(f) ·Ψ(f)

)
= det[D],

(A.11)

where we used the Taylor expansion of the exponential function and the nilpotency property of the

Grassmann numbers.

A.3 γ5-hermiticity of the Dirac operator

To prove this hermiticity we apply γ5 to both sides of the our Dirac operator:

(γ5D(n|m)γ5)α,β =
1
2

[
3
a
+gσ

]
δn,mδα,β (γ

5)2− 1
4a

±3

∑
µ=±1

[
γ

5(I− γ
µ)γ5

]
α,β

δn+µ̂,m, (A.12)

and now, from anticonmutation relation {γ5,γµ}= 0 and knowing (γ5)2 = I we see that:

γ
5
γ

µ =−γ
µ

γ
5 → γ

5
γ

µ
γ

5 =−γ
µ , (A.13)

this implies that:

(γ5D(n|m)γ5)α,β =
1
2

[
3
a
+gσ

]
δn,mδα,β −

1
4a

±3

∑
µ=±1

[(I+ γ
µ)]

α,β δn+µ̂,m

=
1
2

[
3
a
+gσ

]
δn,mδα,β −

1
4a

±3

∑
µ=±1

[(I− γ
µ)]

α,β δn−µ̂,m

=
1
2

[
3
a
+gσ

]
δn,mδα,β −

1
4a

±3

∑
µ=±1

[(I− γ
µ)]

α,β δn,m+µ̂

= D†(n|m)α,β ,

(A.14)

where we used γ−µ =−γµ . With this the demostration is complete.

Our hearts broke without you...,
Our hearts would have followed you...

Our hearts....

	Contents
	List of Figures
	List of Tables
	List of Abbreviations and Symbols
	Introduction
	Theoretical Model Description
	Model in the Continuum
	Model on the lattice
	Discretization of Space-Time and Fields
	Discretization of the Action
	Discretization of the Partition Function
	Discretized Orbservable Integral

	Dynamical Fermion Sampling
	The Fermion Determinant
	Pseudofermions

	Path Integral Solving: Hamiltonian Monte Carlo
	Markov Chain Monte Carlo
	MCMC Integration
	Metropolis-Hastings Algorithm (Random-Walk Exploration)
	The need for a more powerful MCMC approach
	Hamiltonian Monte Carlo (HMC)
	Applying HMC to our Path Integrals

	Implementation
	Level 01: Fields, Matrices and Basic Linear Algebra
	Particular subtleties about Fields and Matrices
	Implementation of Fields
	Implementation of Dirac Operator

	Level 02: Solving (DD)-1 : Conjugate Gradient Methods and Preconditioning
	Conjugate Gradient Method
	Preconditioned Conjugate Gradient
	Preconditioning that changes in every iteration: Flexible Conjugate Gradient
	Hermitian Successive Over-Relaxation
	Implementation of Solvers
	Convergence rate comparison of the different preconditioners

	Level 03: Using [DD()]-1: Pseudofermion Sampling and Force Calculation
	Pseudofermion Sampling
	Pseudofermion Force Calculation

	Level 04: Using Forces: Molecular Dynamics Simulation
	Solving Canonical Equations of Motion: Molecular Dynamics

	Level 05: Including Molecular Dynamics: Hamiltonian Monte Carlo Simulation.
	Level 06: Many HMC simulations: Parameter sweeping and data analysis.

	Results
	Testing Molecular Dynamics algorithm
	|H| error scaling
	Conservation of Phase Space Measure

	Error Analysis using the Jackknife method
	Computation of Observables
	Critical Phenomena
	Correlation Time and Critical Slowing Down

	Conclusion
	Bibliography
	Appendix
	The Doubling Problem
	Mattews-Salam formula
	5-hermiticity of the Dirac operator

