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Overview and onlusions
Towards a osmologial standard modelThe study of osmi mirowave bakground anisotropies is one of the pillars of modernosmology. The osmi mirowave bakground (hereafter CMB) onsists of photons left overby the hot phase after the Big-Bang and is very homogeneous and isotropi. Its existenewas predited by Gamov (1946), and aidentally disovered only muh later by Penzias andWilson (Penzias & Wilson, 1965), but it was only in 1992 that the COBE satellite (Smootet al., 1992) deteted the presene of tiny temperature �utuations (1 part in 100'000), whihare thought to have been generated by quantum �utuations in the very early universe. Theobservational study of these temperature �utuations, known as anisotropies, has been a greattehnologial ahievement. Over the last ten years, there has been a spetaular advanementin the auray of measurements, using ground-based, balloon-born and orbital instruments.The WMAP satellite (Bennett et al., 2003) has reently measured the anisotropies with apreision whih, on ertain sales, is lose to a fundamental statistial limit, alled �osmivariane�.The importane of suh a wealth of data for theoretial osmology annot be overstated.In a few seonds on a desktop omputer, it is nowadays possible to produe aurate numerialpreditions of the statistial distribution of the anisotropies on the sky for any osmologialmodel of interest, i.e. of the CMB angular power spetrum. If the primordial �utuations areGaussian distributed, then the power spetrum enodes all of the statistial information: itsomputation is based on linear perturbation theory and the underlying physis is well under-stood. The detailed shape of the power spetrum arries harateristi signatures dependingon the value of the late Universe osmologial parameters and on the initial onditions forthe perturbations. By �late Universe osmologial parameters� we mean the quantities on-trolling the expansion history of the Universe, i.e. its matter budget, omplemented by somedesription of the reionization history. In the former ategory, an inomplete list wouldinlude the Hubble parameter, the energy density in baryons, old dark matter and darkenergy, the dark energy equation of state parameter (possibly inluding a desription of itstime evolution), the neutrino masses and the number of massless families plus the densityparameters and e�etive equation of state of any other exoti form of matter one might wishto inlude; speifying how the Universe was reionized in the ontext of stellar evolution the-ory might require three or four additional parameters, whih however usually redue to theoptial depth to reionization or equivalently to the redshift of reionization, as far as the CMBis onerned. Speifying the initial onditions requires the value of �primordial parameters�for the amplitudes of the primordial �utuations in eah of the matter omponents and their



2 Overview and onlusionssale dependene.The fat that CMB anisotropies are sensitive both to the late Universe osmologial pa-rameters and to primordial parameters means that CMB observations only onstrain a (de-generate) ombination of both: until now, disentangling the former required rather strongassumptions about the nature of initial onditions. Some guidane is o�ered by the in�ation-ary paradigm: in its simplest inarnation, the deay of the in�aton �eld produes adiabatiinitial onditions, in whih there is no �utuation in the relative number density of thespeies, hene no entropy perturbations (�adiabati�). The presene of entropy �utuationsan exite up to four other non-deaying modes for the perturbations. Those are olletivelytermed �isourvature�, beause in three ases the total matter density is unperturbed andhene there is no urvature perturbation in the spatial setions either. The observation ofthe �rst aousti peak in the CMB power spetrum (Page et al., 2003) at ℓ = 220.1± 0.8 hassubstantially on�rmed the predominane of the adiabati mode. However, a subdominantisourvature ontribution to the prevalent adiabati mode annot be exluded: after all, thereis no ompelling reason why the physis of the early universe should boil down to only onedegree of freedom.Even though in priniple the number of late Universe parameters an be very large, easilyexeeding a dozen, only an handful of them seems to be required by the urrently availableobservational evidene (Spergel et al., 2003; Tegmark et al., 2004b; Liddle, 2004):
• the Hubble parameter h ∼ 0.7;
• the density parameter for baryons Ωb ∼ 0.05;
• the density parameter for old dark matter (CDM) Ωdm ∼ 0.25;
• the density parameter for a osmologial onstant ΩΛ ∼ 0.7;
• the optial depth to reionization τre ∼ 0.15.Summed together, Ωdm+Ωb+ΩΛ ∼ 1 imply a �at Universe. The ruial point is that for theCMB these results only hold one we make the rather strong assumption of purely adiabatiinitial onditions. In that ase, the primordial parameters redue to the spetral index for the�utuations, ns ∼ 1, and an overall adiabati amplitude AAD. These two quantities togetherwith the above �ve late Universe parameters are what we all �standard CMB parameters�,beause they build the basis of the �onordane model� of present-day osmology1.By ombining CMB data with other osmologial and astrophysial measurements � suhas galaxy distribution statistis, supernovæ luminosity distane measurements, gravitationallensing statistis, Lyman α absorption lines, loal determination of the Hubble parameter,light elements abundane � we have reahed an unpreedented preision in determining thestandard osmologial parameters, whih are now known with an auray of a few perent.This is even more astonishing if we think that only ten years ago it was only possible for mostparameters to estimate their order of magnitude. Most importantly, various independent1We do not disuss the possibility of gravitational waves, whih are indeed predited by any in�ationarysenario; presently there are merely upper limits to their ontribution, whih ould be small enough to bevery di�ult to detet in the CMB. Our disussion here and in the following fouses on the salar setoronly.



Overview and onlusions 3observations � whih probe very di�erent epohs of the osmi history and are based ontotally di�erent physial proesses � seem to be onverging to the same answer.We are now in a position where we an move on from parameter �tting to model testing:in other words, in order to establish a �osmologial standard model� we need to assess theonsisteny and ompleteness of our theoretial framework. In order to be sure that we antrust the error-bars on the standard parameters beyond the quoted statistial error, we haveto onfront ourselves with the question of possible systemati errors in the measurements onone side, and of hidden �aws in our theoretial interpretation of the data on the other. Giventhe intrinsi di�ulty of many osmologial observations, an assessment of systemati errorsfor a ertain data-set an ome from the ombination with other, independent measurementsof the same quantity. Disrepanies in the results will indiate a �aw in the underlying theory,or in the data, or in both. This is one of the reasons why the omparison of many data-setsis so important, the other being that often the ombined data have a superior onstrainingpower due to the breaking of degenerate diretions in parameter spae. From the point of viewof model-building, it is now beoming possible to relax some assumptions whih were beforeneessary in order to extrat from the data any information at all, and thereby hek whetherour results are robust or else whether they ritially depend on our prejudies. If it is foundthat our onlusions depend strongly on the underlying model assumptions, then we needto ritially review our theoretial paradigm and open our mind to alternative expliativemodels.Testing the onordane model with the CMBThe CMB is an exellent testing ground to arry out this program: our theoretial under-standing is based on General Relativity and linear perturbation theory, whih su�es todesribe almost all of the relevant physial proesses. This makes us on�dent that we un-derstand quite well CMB anisotropies, and we an exploit them to go beyond the standardosmologial parameters in two di�erent ways: the �rst path leads diretly to the primordialUniverse, via the dependene of the CMB on the nature of initial onditions; the seondapproah makes use of the high quality of reent CMB data to look for e�ets whih werepreviously ignored beause thought to be irrelevant, but whih are now within the onstrain-ing power of the observations. In both ases, the mirowave bakground plays the role of aUniverse-sized laboratory for the study of fundamental physis whih is often unaessibleto any partile physis laboratory. This work pursues both those aspets, as we detail in thefollowing.In the �rst part, we introdue in Chapter 1 the homogeneous and isotropi Friedmann-Robertson-Walker universe, whih is the bakground on whih perturbation theory is built,and we brie�y present a few other observations whih we later ompare and ombine withthe CMB. We then give the derivation of all the relevant perturbation equations needed todesribe the CMB in Chapter 2. Those are applied to the temperature �utuations in theosmi photons in the seond part: in Chapter 3 we obtain under various approximationsanalytial expressions for the growth of perturbations in an Universe ontaining photons,old dark matter, massless neutrinos, baryons and a osmologial onstant; in Chapter 4 wepresent a thorough aount of the main features of the CMB temperature and polarization



4 Overview and onlusionsangular power spetra. In partiular, we are onerned with harateristi signatures on theangular power spetra of the standard osmologial parameters, whih onstitute the basisfor their determination using CMB data. We also introdue the most general type of initialonditions, whih onsist of one adiabati and four isourvature modes. The third part fo-uses on the interplay between theoretial modelling and observational data. The omparisonof theoretial models with atual data needs some basis in probability theory and statistis,whih we give in Chapter 5, emphasizing their appliation to the problem of parameter esti-mation from CMB observations. The last two hapters ontain most of the original researhwork, whih is developed along the two lines skethed above: Chapter 6 deals with the obser-vational onsequenes and onstraints when we add to the standard osmologial parametersnew quantities desribing possible departures from known physis, while Chapter 7 exploresthe onsequenes of relaxing the fundamental assumption of adiabatiity.In � 6.1 we fous on the e�etive number of massless neutrino families, Neff (Bowenet al., 2002). Although in the standard model of partile physis Neff = 3, there are severalmehanism whih would give Neff 6= 3 as measured by the two osmologial probes we disuss,namely Big-Bang Nuleosynthesis (BBN) ombined with observations of the light elementsabundanes, and CMB. This is beause both of them are sensitive not only to the numberof weakly interating neutrinos, but rather to the total energy density of relativisti partileswhih sets the expansion rate at early times, and therefore an onstrain e.g. the existene ofsterile neutrinos unobservable in Z-deay experiments. Using pre-WMAP CMB data alone,we obtain fairly broad bounds on Neff , 0.04 < Neff < 13.37 with 2σ likelihood ontent,whih are redued by inluding prior information oming from supernovæ luminosity distanemeasurements and large sale struture observations. We show that Neff , or equivalently
ωrel ≡ Ωrelh2, the energy density parameter in relativisti partiles, is nearly degeneratewith the amount of energy in matter, ωm ≡ Ωmh

2, and that its inlusion in CMB parameterestimation also a�ets the onstraints on other parameters suh as the urvature or the salarspetral index of primordial �utuations. However, even though this degeneray has the e�etof limiting the auray of parameter estimation from the WMAP satellite, we �nd that it anbe broken by measurements on smaller sales suh as those provided by the Plank satellitemission. We foreast that Plank will be able to onstrain Neff within 0.24 (1σ).The primordial 4He mass fration, Yp, is predited by BBN along with the abundanes ofthe other light elements as a funtion of two free parameters, namely the baryon density ωband the relativisti energy density ωrel. If we �x Neff = 3 and thereby ωrel as motivated by thepartile physis standard model, then in standard BBN the abundanes of D, 3He, 4He and
7Li depend on the baryon density alone: omparison with the observed values in astrophysialsystems indiates a slight disrepany, whih however presently annot learly be asribed tosystematial errors or to deviations from the standard BBN senario. We explore in � 6.2 thepotentiality of using the CMB as a totally independent way of measuring Yp via its impaton the reionization history, thereby possibly allowing to disriminate between the various hy-pothesis (Trotta & Hansen, 2004). We �nd that WMAP data give only a marginal detetion,
0.160 < Yp < 0.501 at 68% likelihood ontent. We estimate that the Plank satellite willdetermine the helium mass fration within 5% (or ∆Yp ∼ 0.01), whih however will only allowa marginal disrimination between di�erent astrophysial measurements. Equally important,we identify degeneraies between Yp and other osmologial parameters, most notably the



Overview and onlusions 5baryon abundane, the redshift and optial depth of reionization and the spetral index; weonlude that even though present-day CMB data auray does not require the inlusionof Yp as a free parameter, the unertainty of the helium fration will have to be taken intoaount in order to orretly estimate the errors on the baryon density from Plank.The searh for observational evidene for time or spae variations of the �fundamental�onstants that an be measured in our four-dimensional world is an extremely exiting area ofurrent researh, with several independent laims of detetions in di�erent ontexts emergingin the last few years, together with other improved onstraints. Most e�orts have beenonentrating on the �ne-struture onstant, α, both due to its obviously fundamental roleand to the availability of a series of independent methods of measurement. Of partiularinterest is the result of Webb and ollaborators, who laim a 4σ detetion of a �ne-strutureonstant that was smaller in the past (Murphy et al., 2003; Webb et al., 2003). Noteworthyamong the possibilities of independently hek those results is the CMB, whih probes αde,the value of α at deoupling, z ∼ 1100 (Martins et al., 2002, 2004; Roha et al., 2004). As weshow in � 6.3, by analyzing the �rst year WMAP data for time-variations of α we obtain theonstrain 0.95 < αde/α0 < 1.02 with 95% likelihood ontent, where α0 denotes the presentvalue. We larify the issue of degeneraies between α and other standard parameters, andgive exhaustive foreasts of the expeted performane of the full four year WMAP data, ofthe Plank satellite and of an ideal CMB experiment. We emphasize the role of polarizationmeasurements to lift �at diretions (i.e., degeneraies) in parameter spae, and disuss therole of reionization in the determination of αde.In Chapter 7 we relax the assumption of adiabatiity by allowing for the most generalinitial onditions (Buher et al., 2000) and we investigate two omplementary aspets: the �rstis the degradation in the auray of the late Universe standard parameters as a onsequeneof the introdution of new degrees of freedom in the primordial Universe (Trotta et al.,2001); the seond is the robustness of the measurement of a non-zero osmologial onstant,
ΩΛ 6= 0, when di�erent statistial approahes (frequentist rather then Bayesian) are appliedto the data, or when general isourvature modes are inluded in the analysis (Trotta et al.,2003). We also expliitly test the paradigm of adiabatiity by using CMB observations toput onstraints on the isourvature ontribution.For the �rst point, the results in � 7.2 demonstrate that the determination of the Hubbleparameter and the baryon density from pre-WMAP CMB data is essentially impossible with-out strong assumptions about the nature of initial onditions. Conversely, it beomes verydi�ult to put limits on the type of the initial onditions without using external, non-CMBpriors on the late Universe parameters. Indeed, the CMB is perhaps the most e�etive wayto diretly probe the very early Universe, and thereby onstrain or falsify the models for thegeneration of perturbations. It is therefore very important to extrat the most informationabout the onditions in the early Universe. Adding polarization information greatly enhanesthe power of the CMB to simultaneously onstrain the late Universe parameters and the pri-mordial ones: we show in � 7.4 that the full four year WMAP data will measure orthogonalombinations of the late Universe parameters with an auray of the order 10% − 30% formost parameters even in the general initial onditions ase. The Plank mission will have abetter polarization resolution and will be able to do preision osmology almost independentlyon the type of initial onditions (Trotta & Durrer, 2004). As for the possibility of mitigating



6 Overview and onlusionsthe osmologial onstant problem by introduing isourvature modes, our �ndings in � 7.3indiate that ΩΛ 6= 0, as obtained from a ombination of CMB and large sale struture data,is indeed robust even in the presene of isourvature ontributions. The more onservativefrequentist statistis � as ompared to the usual Bayesian approah � exludes ΩΛ = 0 onlyat the 2σ on�dene level for pre-WMAP CMB data ombined with the 2dF Galaxy RedshiftSurvey, but this only if we admit a rather low value for the Hubble onstant, h ∼ 0.5, whihwould be in ontradition with the result of the Hubble Spae Telesope, h = 0.72 ± 0.08(Freedman et al., 2001).Outlook and onlusionThe CMB has beome a well established tool for the study of our Universe, and an unavoidabletesting ground for any theoretial model. The ever improving quality of the data permitson one side to look for new physis in the early Universe, as shown in our study of timevariations of α, on the presene of extra relativisti partiles and on the existene of non-adiabati modes; on the other hand, it also requires an upgrade of our modelling, so toproperly treat subtle e�ets suh as the unertainty oming from our unpreise knowledge ofthe primordial Helium fration, or from our ignorane on the orret model for the generationof �utuations. For this reasons, it is important to look ahead, to the goals for the nextgeneration of experiments, and to their potential to onstrain or falsify the theoretial models.More than ever, the entral issue is beoming how to e�iently and reliably extratthe most information from upoming high-quality data: there are about 2000 observableindependent multipoles for eah of the three angular power spetra, namely temperature,E-polarization and temperature-polarization ross-orrelation, whih however are highly re-dundant due to the smooth osillatory nature of the spetra. The amount of informationwhih an be extrated is muh less, and an be ondensed in maybe a dozen of well-hosenparameters. The best hoie for those quantities is the one whih takes into aount thephysis and selets orthogonal diretions in parameters spae on the basis of fundamental de-generaies. This idea has been a leitmotiv of the works presented here, and there is probablystill spae to apply it further, espeially in onnetion with the primordial parameters.Despite this enouraging piture, there are still open hallenges for our understanding ofthe Universe: the nature of dark energy and dark matter, the details of the initial onditionsand the epoh of reionization, for example. The CMB will provide key advanements onall these issues over the next years. The polarization of the anisotropies has been detetedby the experiments DASI (Kova et al., 2002) and WMAP and will be preisely mapped bythe forthoming experiments PolarBear, Biep, SPOrt, AMiBA and QUEST, opening up anew line of researh and allowing to reonstrut the osmologial parameters with still higherpreision. This proess will ulminate with the European Spae Ageny satellite Plank(Plank Website, 2004), whih starting in 2007 will observe the temperature spetrum withthe ultimate possible preision and provide aurate mapping of the polarization as well. Inview of this wealth of data, and in order to fully exploit its potential, it is of fundamentalimportane that theoretial researh on the subjet advanes aordingly. There is a need ofmore powerful and e�ient omputational and statistial tehniques whih an handle theonsiderably larger amount of data expeted. Also, our theoretial understanding of model-



Overview and onlusions 7building has to be re�ned and in partiular we need to further develop the interdisiplinarylink between models oming from high energy physis, string theory, astrophysis and theirobservational signature on the CMB. This approah will strengthen the role of the CMB as auniverse-size laboratory for investigating the most elusive domains of fundamental physis.





All men, Sorates, who have any degreeof right feeling, at the beginning of everyenterprise, whether small or great, alwaysall upon God. And we, too, who are go-ing to disourse of the nature of the uni-verse, how reated or how existing with-out reation, if we be not altogether out ofour wits, must invoke the aid of Gods andGoddesses and pray that our words maybe aeptable to them and onsistent withthemselves. PlatoTimaeus
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Chapter 1Introdution
1.1 Notation and onventionsWe begin by introduing the notation and onventions whih are used throughout this work.

• The metri signature is − + ++.
• The spaetime metri is denoted by gµν , where the spaetime oordinate are xµ, µ =

0, 1, 2, 3. Greek indexes always run from 0 to 3.
• The 3-spae of onstant urvature has metri γij . Latin indexes always run from 1 to3.
• When we disuss perturbations, the bakground, unperturbed quantities are denoted byan overline. Therefore for instane ρ = ρ̄+ δρ, where ρ̄ denotes the bakground energydensity and ρ the perturbed (bakground plus linear perturbation) energy density.
• The overdot � ˙ � denotes the derivative with respet to onformal time, η.
• Bold harater denote the i = 1, 2, 3 omponents of the orresponding 4-vetor.
• Unless otherwise stated we use natural units, in whih the speed of light, the Boltzmannonstant and the Plank onstant are unity, c = kB = ~ = 1.
• The Hubble parameter today is written as H0 ≡ 100h km s−1 Mpc−1.
• The symbol ΩX denotes the density parameter in the omponent X (where X an standfor baryons, photons, old dark matter, et.), expressed in units of the ritial energydensity. In general, ΩX = ΩX(η), but whenever we omit the expliit time dependene,it is understood that the quantity is evaluated today, i.e. ΩX ≡ ΩX(η0), where η0 isthe present value of onformal time.
• The ritial energy density today is ρrit(η0) ≈ 1.88 · 10−29 h2 g/m3, and the presentenergy density of omponent X is written ρX(η0) = ωX 1.88 · 10−29 g/m3, where wehave de�ned ωX ≡ ΩX(η0)h

2.



12 Introdution1.2 Friedmann-Robertson-Walker osmologyIn this setion, we brie�y review the standard treatment of an homogeneous and isotropiuniverse. We present the bakground Einstein and onservation equations for perfet �uids,along with the unperturbed Boltzmann equation desribing relativisti partiles.1.2.1 Einstein equationsThe osmi mirowave bakground is homogeneous and isotropi to better than one partin 100'000. This justi�es the assumption that the universe, on large enough sale, an betreated as being homogeneous and isotropi. We then onsider a 4-dimensional manifold
M endowed with a metri gµν , so that onstant-time hypersurfaes are onstant-urvature,maximally symmetri 3-spaes. The Friedmann-Robertson-Walker (FRW) metri reads

gµνdxµdxν = −dt2 + a(t)γijdxidxj , (1.1)with the 3-spae metri of urvature K = {0,+1,−1} given by
γijdxidxj = dr2 + χ2(r)(dθ2 + sin(θ)2dφ2) . (1.2)Here the sale fator a(t) depends only on time, and

χ(r) =











r for K = 0 (�at universe)
sin(r) for K = +1 (losed universe)
sinh(r) for K = −1 (open universe) . (1.3)We will mostly work in onformal time η, de�ned through dη ≡ a−1(t)dt, so that theFRW metri reads

gµνdxµdxν = a(η)(−dη2 + γijdxidxj) . (1.4)Following the assumptions of homogeneity and isotropy, the bakground energy-momentumtensor, Tµν is bound to be of the perfet �uid form
Tµν = (ρ+ P )uµuν + Pgµν , (1.5)where ρ, P are funtions of the onformal time η only, and represent the �uid energy densityand pressure, respetively. The �uid 4-veloity is the timelike 4-vetor u, with

uµ =

(

1

a
, 0, 0, 0

) and uµu
µ = −1 . (1.6)We suppose that the equation of state of the �uid is of the form

P = w(ρ)ρ , (1.7)where the enthalpy w(ρ) depends only on the loal energy density. In many ases of interest,the enthalpy is simply a onstant, in whih ase it is termed equation of state parameter: forold, non-relativisti, pressureless matter wm = 0 (dust), for relativisti partiles wr = 1/3(radiation) and wΛ = −1 for a osmologial onstant (vauum energy). The energy density



1.2 Friedmann-Robertson-Walker osmology 13of a osmologial onstant is ontained in Tµν , and is of the form ρΛ = Λ/(8πG). Anotherrelevant quantity is the adiabati sound speed of the �uid, de�ned as
c2s ≡ Ṗ /ρ̇ . (1.8)The Einstein equations

Gµν = 8πGTµν (1.9)with the FRW metri (1.4) and the energy-momentum tensor (1.5) yield the two Friedmannequations. The �rst Friedmann equation is a �rst order di�erential equation for the onformalHubble parameter H(η) ≡ ȧ/a

Ḣ = −4πG

3
a2(ρ+ 3P ) . (1.10)The seond one is a onstraint equation,

H2 + K =
8πG

3
a2ρ . (1.11)An evolution equation for the �uid energy density follows from the 0 omponent of theenergy-momentum onservation equation, ∇µT

µν = 0:
ρ̇+ 3H(ρ+ P ) = 0 , (1.12)supplemented with the �uid equation of state, Eq. (1.7). If the universe ontains (or isdominated by) only one �uid with w = onst, it follows from Eq. (1.12) that its energydensity behaves as

ρ ∝ a−3(1+w) , (1.13)hene from Eq. (1.10) the sale fator of a �at universe (K = 0) is
a =

∣

∣

∣

2A

1 + 3w
η
∣

∣

∣

2
1+3w for w 6= −1/3 . (1.14)with A2 = 8πG/3ρa3(1+w) = onst. In partiular, in the radiation dominated universe(w = 1/3) we have a ∝ η, while in the matter dominated universe (w ≈ 0) a ∝ η2.In the standard osmologial piture, the universe ontains non-relativisti, pressurelessmatter (baryons and old dark matter), photons, massless neutrinos and a vauum energyomponent. In this ase, the stress-energy tensor is the sum of the �uid omponents

T µν =
∑

α

T µνα . (1.15)The Friedmann equations (1.10, 1.11) apply to the total energy density and pressure, whihare just the sum of the ontributions from eah �uid. The energy onservation equation,Eq. (1.12), still applies to the total variables, while in general for eah omponent we have
∇µT

µν
α = Qνα , (1.16)where the 4 vetor Qµνα desribe the energy-momentum transfer from the omponent α. Theonservation of total energy requires

∑

α

Qνα = 0 . (1.17)



14 IntrodutionIn the general ase, the Friedmann equations have to be solved numerially. However, wean easily write down solutions of simple ases. From Eq. (1.13) it follows that for radiation
ρr ∝ a−4 while for matter ρm ∝ a−3. Physially, the energy density of matter is dilutedby the growth of the physial volume of the 3-spae, while for radiation an extra a−1 fatoromes in from the redshifting of the partiles energy. Hene, sine a is growing, at earlyenough time the universe is radiation dominated. The equality time is de�ned as the time atwhih the two ontributions are equal, i.e. ρr = ρm, after whih the universe beomes matterdominated. Therefore

aeq
a0

=
ρr
ρm

∣

∣

∣

∣

η0

≈ 3 · 10−3 , (1.18)or in terms of the redshift z ≡ a0/a− 1 we have
zeq ≈ 3000 . (1.19)The subsript 0 indiates that the quantity is evaluated today. The numerial estimateomes from the measurement of the present day radiation density in the osmi mirowavebakground, whih together with the assumption of three massless neutrino families yields

ρr = 7.94 · 10−34

(

TCMB
2.737 K)4 g/m3 . (1.20)The matter ontent of the Universe is obtained from the ombination of CMB, large salestruture and supernovæ type IA measurements. We shall see in � 4.2 that the CMB itselfis a good probe to determine the redshift of equality.Sine for a osmologial onstant wΛ = −1, ρΛ = onst, its ontribution is negligible inthe early universe, and indeed for a redshift

z ≫
(

Ωm

ΩΛ

)3

− 1 ≈ 0.5 . (1.21)However, if Λ 6= 0, the late universe will be dominated by the vauum energy term. In thatase, a(t) ∝ exp
[

(Λ/3)1/2t
] and the expansion beomes exponential (in physial time).It is ustomary to introdue the ritial energy density as the energy density for whihthe universe is �at

ρrit ≡ 3H2

8πGa2
. (1.22)We also de�ne the Hubble parameter H0 ≡ H/a0 and the fudge fator h

H0 ≡ 100h km s−1 Mpc−1 . (1.23)The ritial energy density today then evaluates to
ρrit(η0) ≈ 1.88 · 10−29 h2 g/m3 . (1.24)At all times, the density parameters ΩX give the ontribution of the omponent X in units



1.2 Friedmann-Robertson-Walker osmology 15of the ritial energy density:
Ωr(η) ≡

ρr
ρrit , (1.25)

Ωm(η) ≡ ρm
ρrit , (1.26)

ΩΛ(η) ≡ ρΛ

ρrit =
Λ

8πGρrit , (1.27)
ΩK(η) ≡ −3K

8πGa2ρrit . (1.28)By de�nition the sum of the density parameters has to be unity
Ωr(η) + Ωm(η) + ΩΛ(η) + ΩK(η) = 1 . (1.29)The physial energy density of the omponent X is then given by

ρX(η) = ΩX(η)ρrit(η) , (1.30)and in partiular when evaluating this quantity at the present time we de�ne ωX ≡ ΩX(η0)h
2and write

ρX(η0) = ωX 1.88 · 10−29 g/m3 . (1.31)The de�nition (1.28) expresses the energy density due to the urvature of the spatialsetions for K = ±1. Sine ΩK ∝ H−2 ∝ η2, the urvature is always negligible in the earlyuniverse. Various osmologial observations indiate that today ΩK ≈ 0. However, if theuniverse is not exatly �at, this would imply that at Plank time |ΩK| ≈ O(10−60). Thesmallness of this number is the essene of the ��atness problem�. The in�ationary mehanismindeed naturally provides a solution for this �ne tuning problem: as the universe in�atesquasi-exponentially, its urvature is driven to 0.A key quantity is the angular diameter distane DA(z): onsider an objet of physiallength d sitting at a redshift z1 (orresponding to onformal time η1 and radial distane r1),whih is observed at our present position (z0 = 0, r0 = 0) under an angle θ. Then the angulardiameter distane is de�ned as
DA(η1) ≡

d

θ
= a(η1)χ(η0 − η1) , (1.32)where in the seond equality we have used d = λa(η1), with λ the omoving length of theobjet, and θ = λ/χ(r1), noting that r1 = η0 − η1 sine light travels on null geodesis. Wean now integrate Eq. (1.11) to �nd

∆η ≡ η0 − η1 =
1

H0a2
0

∫ a0

a1

da
[

Ωr + Ωm
a

a0
+ ΩK

a2

a2
0

+ ΩΛ
a4

a4
0

]1/2
, (1.33)This equation is more onveniently written in redshift spae

∆η =
1

H0a0

∫ z1

0

dz
[Ωr(1 + z)4 + Ωm(1 + z)3 + ΩK(1 + z)2 + ΩΛ]1/2

. (1.34)Reall that the quantities ΩX above are evaluated at the present time. So if we know thephysial length of an objet at a given redshift, and we measure the angle subtended by



16 Introdutionit on the sky, we are in priniple able to extrat the value of the osmologial parametersusing Eq. (1.34). The CMB provides exatly suh a standard rod on the sky: the aoustiosillations of the photon �uid just before reombination have a harateristi length sale,whih shows up as the �rst peak in the angular power spetrum, see � 4.1.2. The redshift ofreombination is also known with good auray, hene the CMBmeasures with high preisionthe angular diameter distane to the last sattering surfae. This piee of information aloneis however insu�ient to reonstrut ompletely the matter-energy ontent of the Universe:this problem is known as geometrial degeneray, and it is explained in � 4.1.2.1.2.2 Boltzmann equationAt early time, the energy density of the universe is dominated by the relativisti speies,and to leading order we an neglet in the ontribution of non-relativisti omponents tothe total energy. As long as photons are in loal thermodynamial equilibrium, the photontemperature T is related to the energy density of radiation by
ρr =

π2

30
g⋆T

4 , (1.35)where g⋆ ounts the total number of relativisti degrees of freedom
g⋆ ≡

∑

b

gb
T 4
b

T 4
+
∑

f

gf
T 4
f

T 4
(1.36)and b and f run over the bosoni and fermioni speies respetively. The fators Tb and

Tf take into aount possible temperature di�erenes between the photons and the otherrelativisti partiles. From Eq. (1.35) and ρr ∝ a−4 it follows that while the photons are inthermodynamial equilibrium, T ∝ 1/a.For T > 4000K ≈ 0.4eV hydrogen nulei are ionized, and photons are oupled to baryonsvia non-relativisti Thomson sattering o� free eletrons, see � 2.2.5. As the temperaturedrops below 0.30eV, orresponding to zde ≈ 1100, almost all the hydrogen nulei quiklyreombine, the mean free path of photons beomes larger than the Hubble length 1/H: theuniverse beomes transparent. This event is alled last sattering or deoupling.After reombination, the photon distribution funtion
f(η,E) =

1

exp(E/T ) − 1
(1.37)evolves aording to the ollisionless Boltzmann equation, whih an be derived by requiringthat the total derivative of f with respet to the a�ne parameter λ vanishesdfdλ = 0 . (1.38)In general f = f(η, xi, E, ni), where the momentum 4-vetor pµ = (p0,p) is written as

pµ =
E

a
(1,n) , (1.39)with

pi =
|p|
a
ni , p0 =

E

a
=

|p|
a
, (1.40)

√

pipi ≡ |p| , ninjγij = 1 . (1.41)



1.3 Cosmologial observations 17From Eq. (1.38) we have
∂f

∂η
+
∂f

∂xi
ni +

∂f

∂E
Ė +

∂f

∂ni
ṅi = 0 . (1.42)Beause of isotropy, ∂f/∂ni = 0, while homogeneity implies ∂f/∂xi = 0. Using the 0omponent of the geodesis equationdpαdλ + Γαµνp

µpν = 0 , (1.43)whih in the FRW universe reads
Ė + HE = 0 (1.44)we obtain from Eq. (1.42) the bakground Boltzmann equation

∂f

∂η
−HE ∂f

∂E
= 0 . (1.45)This equation is satis�ed by any f of the form f = f(aE). We onlude that after deouplingthe energy of the osmi photons is redshifted by the expansion as E ∝ a−1. The blakbody distribution, Eq. (1.37), retains its spetrum. The spetrum of the osmi mirowavebakground photons has been measured very aurately by the FIRAS spetrometer onboardthe COBE satellite (Fixsen et al., 1996), and was found to be exeedingly lose to thermal.Deviations from a perfet blak body spetrum an be measured by the Comptonizationparameter y, the hemial potential µ and the parameter Yff desribing ontamination byfree-free emission. The 95% on�dene limits on those parameters are

|µ| < 9 · 10−5 , |y| < 1.2 · 10−5 , |Yff | < 1.9 · 10−5 . (1.46)After deoupling, T is no longer a temperature in the thermodynamial sense, rather aparameter in the distribution funtion, whih drops as T ∝ a−1.1.3 Cosmologial observationsIt is only in omparatively reent times that osmology has beome a data driven siene,in whih theoretial hypothesis an be falsi�ed or validated against observational data. It isamazing that only 15 years ago the total energy density of the universe was known with order-of-magnitude auray only. Nowadays, most osmologial parameters are onstrained withina few perent. The disovery and aurate mapping of CMB �utuations has onstituted amajor pillar in this evolution and represents a fundamental ornerstone of modern osmology,see � 5.3 for an overview.It is nevertheless of equal importane that many other osmologial probes have beendeveloped in parallel, and this for at least two good reasons. Firstly, all observation su�ersin one form or in another from the degeneray problem: only a ertain ombination of osmo-logial parameters an be measured aurately. Sine degeneray diretions are di�erent fordi�erent observations, ombining two or more measurements leads to tighter onstrains onthe parameters we are interested in. The seond reason is that osmologially relevant mea-surements are intrinsially di�ult. One obvious obstale is that there is only one universe for



18 IntrodutionQuantity Value ObservationsBaryon density ωb 0.024 CMB, BBN, light elements abundaneCold dark matter density ωdm 0.116 CMB+LSS+SN, lusters
Λ density ωΛ 0.378 CMB+LSS+SN+weak lensingHubble onstant h 0.72 HST, SZ, strong lensingOptial depth τre 0.17 CMBSpetral index ns 1.00 CMB, LSS, Lyman-α, lustersBaryons Ωb 0.046Cold dark matter Ωdm 0.224Cosmologial onstant ΩΛ 0.73Radiation Ωrad 7.95 · 10−5 CMBMassless ν families Nν 3.04 CMB+LSSCurvature ΩK 0.00 CMB+LSS+SN+weak lensingInitial onditions purely adiabati CMBTable 1.1: Parameters of today's �ΛCDM osmologial onordane model�, whih is in goodagreement with most of the urrent observational evidene oming from CMB (Spergel et al.,2003), large sale strutures (LSS) (Tegmark et al., 2004b), Big-Bang Nuleosynthesis (BBN)(Fields & Sarkar, 2004), supernovæ type Ia (SN) (Tonry et al., 2003), strong (Kohanek& Shehter, 2004) and weak lensing (Contaldi et al., 2003), Lyman-α absorption systems(Seljak et al., 2003a) and galaxy lusters (Bahall et al., 2003) observations.whih the experimental onditions annot be manipulated at will. Very often the interestingphysis is hidden behind foreground emissions, poor statistial sampling, faint signals andnon-linearities. It is ommon to try and extrat osmologial information by using objetswhose physial properties are poorly understood, and in general systematis are very di�ultto assess in osmology. Hene a osmologial measurement is usually onsidered as valid onlyif on�rmed by one or more independent piees of evidene.The so-alled ΛCDM onordane model is strongly supported by several independentobservational data. It is generally aepted that our universe is very lose to �at (ΩK ≈ 0);that it is dominated by �dark energy� (ΩΛ ≈ 0.7), perhaps in form of vauum energy, orquintessene or a traking salar �eld; that around 25% is non-interating old dark matter,and that only the remaining 5% is onstituted of baryons. If the three neutrino families ofthe Standard Model of partile physis are not massless (as the large mixing angle solutionto the solar neutrino problem seems to suggest), than their mass is bounded from above tobe mν <∼O(1)eV. Struture formation proeeded by gravitational instability from quantum�utuations strethed to super-horizon sale by a period of superluminal expansion (in�ation).The simplest in�ationary model, in whih in�ation is driven by one single slow-rolling salar�eld, suessfully predits the absene of non-Gaussianity, the (predominantly) adiabatinature of the �utuations and the almost sale invariant spetral index (ns ∼ 1) for theperturbations. The age of the universe, around 13 Gyrs, easily aommodates the oldestobserved objets. For de�niteness, in Table 1.1 we give the parameters of what we believeis a urrently widely aepted �onordane model�, to whih we will refer throughout thiswork for illustrative and omparative purposes.



1.3 Cosmologial observations 19Apart from CMB anisotropies, whih we will disuss in depth in the rest of this work, webrie�y present some of the piees of observational evidene whih orroborate the (presently)standard ΛCDM senario.1.3.1 Big-Bang NuleosynthesisBig-Bang Nuleosynthesis is based on the Standard Model of partile physis, and givespreditions for the abundane of light elements D, 3He, 4He and 7Li synthesized in the earlyUniverse, whih are in good overall agreement with the observed abundanes, see Olive et al.(2000) for a review and Fields & Sarkar (2004) for more reent results.Below a temperature T ∼ 1 MeV the neutron-proton onversion rate falls below the expan-sion rate, and the neutron to proton ratio freezes out at the value n/p = exp (−Q/T ) ≈ 1/6,where Q = 1.293 MeV is the neutron-proton mass di�erene. The light elements produtionstarts slightly afterwards, at a temperature T ∼ 0.1 MeV, whih is well below the bindingenergy of deuterium, BD = 2.23 MeV beause photo-dissoiation prevents the formationof deuterium and other nulei until then. By this time, β-deay has further redued theneutron-to-proton ratio to n/p ≈ 1/7. The surviving neutrons end up almost ompletelyin 4He, while the abundane of the other elements is sensitively dependent on the nulearreations rates, whih in turn depend on the baryon density, usually expressed with respetto the photon density by de�ning the parameter η10 as
η10 ≡ nb

nγ
× 1010 ≈ 274 · ωb(η0) , (1.47)where η0 is the onformal time today. A simple ounting argument, see Eq. (6.16, page 136),yields that the primordial 4He mass fration is about 25%, while the number densities of theother elements relative to hydrogen turn out to be of the order D/H ∼ 3He/H ∼ 10−5 and

7Li/H ∼ 10−10 . The preditions are very reliable and aurate, with a residual numerialunertainty whih depends on the experimentally determined reation rates; interestingly, itturns out that most of this unertainty is assoiated with our only approximative knowledgeof the neutron lifetime (Cuoo et al., 2003). The other free parameter of BBN is the radiationdensity in the early Universe, whih sets the Hubble expansion rate and therefore determinesthe freeze-out temperature for the weak reations and is usually parameterized with theequivalent number of (massless) neutrino families. We omment on the possibility of a non-standard number of neutrino families and disuss BBN-related issues in � 6.1.2.In summary, agreement between the abundane of the light elements as inferred fromastrophysial measurement and the orresponding predition of BBN is a powerful tool toverify the Standard Model of partile physis. In � 6.2.3 we present in detail the determinationof light elements, disuss the slight disrepanies between them and the BBN preditions andgive some possible interpretations. However, the overall agreement is satisfatory, and (for astandard number of neutrino families) the light elements abundanes an be explained by abaryon density ompatible with the one independently inferred from CMB, namely η10 ∼ 5.5or ωb ∼ 0.02.1.3.2 Matter distributionStruture formation proeeds from small inhomogeneities in the matter distribution whihgrow by gravitational instability, eventually giving rise to the large sale strutures like galax-



20 Introdutionies and lusters observed today. From the determination of the statistial distribution ofmatter one tries to reonstrut the properties of the primeval �utuations, and to validatethe struture formation model.In � 3.6.3 we introdue the linear matter power spetrum Pm(k), whih represents theFourier transform of the 2-point orrelation funtion for the matter density ontrast. Obser-vations of the distribution of galaxies out to a redshift z ∼ 0.1 probe the galaxy-galaxy powerspetrum, Pgg; the Sloan Digital Sky Survey, for example, urrently ontains approximately
2 × 105 galaxies (Tegmark et al., 2004a), and upon ompletion will ahieve 106 galaxies.The problem is then to relate Pgg(k), whih probes the luminous matter distribution, withthe underlying Pm(k) desribing (mostly) the dark matter distribution. This is the issueof bias, introdued by Kaiser to explain the di�erent amplitudes of the orrelation funtionfor galaxies and for lusters (Kaiser, 1984, 1987): the basi idea is that galaxies representpeaks of the matter distribution, and therefore our observations of Pgg atually selet onlythe regions of the underlying matter distribution above some threshold. This onept hasbeen extended to various kinds of bias: luminosity-dependent, morphology-dependent, olor-dependent bias, sale-dependent bias, anti-bias, and others. The simplest form is to assumea sale-independent bias, whih seems to be justi�ed on large (linear) sales, setting

Pgg(k) = b2Pm(k) for k < kNL ≈ 0.3 hMp−1 (1.48)with the bias parameter b whih is just an unknown onstant fator (see however e.g. Durreret al., 2003a for a ritial disussion). In pratie, this presription amounts to introduinga free parameter whih ontrols the amplitude of the matter power spetrum. There aremethods whih allow to determine the bias from the higher-order n-point funtion of thedistribution: for instane Verde et al. (2002) found b = 1.04 ± 0.11 from the data of the 2dFGalaxy Redshift survey (Colless et al., 2001), whih plans to measure 2.5 × 105 galaxies.One an also onsider the distribution of galaxy lusters as a funtion of redshift, whih inpriniple one should be able to predit by using hydro-dynamial simulations. Comparisonwith the observed distribution would then allow to onstrain the osmologial parameters.This simple sounding program is in pratie ompliated by the need of aurately simulatingall the relevant physis, and despite the great amount of omputational power nowadaysavailable, reent works in the �eld still involve many approximations. As a result, lusterdata mainly onstrain a ombination of the matter power spetrum at lusters sales and thevalue of Ωm, see e.g. Bahall et al. (2003).Another way to probe the mass distribution is o�ered by the Lyman α forest, the absorp-tion lines in the spetra of distant quasars produed by the neutral hydrogen in regions ofoverdense intergalati gas along the line of sight at a redshift 2−4 (Croft et al., 2002). Sinethe overdensities probed at these redshifts are still lose to the linear regime, one hopes tobe able to onnet the observations to the matter power spetrum by modelling numeriallythe relevant physis (Mandelbaum et al., 2003; Seljak et al., 2003a).Weak gravitational lensing is very promising as a tool to onstrain osmologial parame-ters, and in partiular the matter distribution. It uses the distortion in the images of distantgalaxies indued by inhomogeneities in the intervening matter distribution (Kaiser & Squires,1993), and reonstruts with a statistial analysis the so-alled �osmi shear� (Wittman et al.,2000; Bartelmann & Shneider, 2001). The tehnique is now rapidly beoming mature to helponstrain the matter budget (Contaldi et al., 2003).



1.3 Cosmologial observations 21One of the most important aspets is that all of the above observations an be ombinedto ahieve superior onstraining power on the CDM model parameters, while testing theonsisteny of the theory itself, or the soundness of eah data-set. A tehnique to mergegalaxy surveys, luster distribution, weak lensing and Lyman α data with the CMB to probea larger portion of the matter power spetrum is presented in Tegmark & Zaldarriaga (2002).There is presently a general agreement that the matter ontent of the Universe is low, around
Ωm ∼ 0.3.1.3.3 Type Ia supernovæSupernovæ (SN) are lassi�ed aording to their spetrum: the type Ia is haraterized bythe absene of hydrogen (the �I�), and by strong silion features (the �a�). The standardpiture is a progenitor binary system, with a white dwarf whih aretes matter from itsompanion until it reahes the Chandrasekhar limit, and the gravitational infall triggers athermonulear explosion whih we observe as a supernova. At the peak of its brightness, aSN an easily exeed the luminosity of its host galaxy, making it a promising andidate tomeasure distanes out to very high (z ∼ 1 − 2) redshifts.Their most important property is the remarkable homogeneity in their spetra, in theshape of their light-urve and in their peak absolute magnitude, whih makes them nearly�standard andles�. In fat, it was disovered that intrinsially brighter SNIa deline moreslowly than dim ones (Hamuy et al., 1996). By exploiting an empirial orrelation betweenthe shape of the light urve and the intrinsi luminosity, and orreting for extintion e�etsvia measurements at di�erent wavelengths, it is nevertheless possible to produe a �alibratedandle�, with a very narrow peak magnitude dispersion (Riess et al., 1996). For a review ofthe osmologial appliations, see e.g. Filippenko (2004).The measured apparent magnitude m is related to the absolute magnitude M via theluminosity distane DL

m = M + 5 log [H0DL(z,Ωm,ΩΛ)] +K (1.49)where the �K-orretion� ompensates for the di�erene in wavelength of the emitted andreeived photons due to the expansion, and the luminosity distane of an objet at redshift
z is de�ned in terms of the intrinsi luminosity L and of the measured �ux ℓ as

DL(z) ≡
(

L

4πℓ

)1/2

. (1.50)The luminosity distane is related to the angular diameter distane byDL(z) = (1+z)2DA(z).Supernovæ essentially measure the angular diameter distane over a redshift range of z ∼
0.5 − 2, muh lower than range probed by the CMB. At suh low redshift, the radiationontent is negligible, and with ΩK = 1−Ωm−ΩΛ we obtain from (1.32) and (1.34, page 15)
H0DL(z1,Ωm,ΩΛ) =

1 + z1
√

|ΩK|
×

χ

(

1 + z1
√

|ΩK|

∫ z1

0

[

(1 + z)2(1 + zΩm) − ΩΛz(2 + z)
]−1/2 dz) ,

(1.51)



22 Introdution

0.0 0.5 1.0 1.5 2.0 2.5 3.0
ΩM

-3

-2

-1

0

1

2

3

Ω
Λ

ΩΤ=1

Age < 9.6 Gyr (H=50 km/s/Mpc)

No Big Bang

z=
1

z=
1

z=
1

z=0.5

z=0.5 z=0.5
z=0.5

A

B

C

0.0 0.5 1.0 1.5 2.0 2.5 3.0
-3

-2

-1

0

1

2

3
       

 

 

 

 

 

 

 

Figure 1.1: Illustration of the determination of (Ωm,ΩΛ) using supernovæ data: the dashed(solid) urves are lines of onstant DL for the given measured apparent magnitude of astandard andle at a redshift z = 0.5 (z = 1.0). If the apparent magnitude m an bemeasured with auray ∆m = 0.05 ombining the two observations gives the dark shadedallowed region for (Ωm,ΩΛ). Figure reprinted from Goobar & Perlmutter (1995).where the funtion χ is de�ned in Eq. (1.3, page 12). Notie that magnitude-redshift re-lation (1.49) does not depend on the Hubble parameter. Therefore, assuming that we areable to reliably reonstrut the intrinsi luminosity M , from the measurement of one SNEq. (1.49) yields one degeneray line for the possible values of (Ωm,ΩΛ). By measuring aseond standard andle at z2 6= z1 we are able to determine the intersetion of the degenerateluminosity distane lines in the (Ωm,ΩΛ) plane, and thus to measure separately the matterand osmologial onstant ontent. When we add the measurements error, both lines widento two strips, and we obtain a region of on�dene for the two parameters, independently onthe Hubble parameter, see Fig. 1.1.In pratie, of ourse, a larger number of measurements is neessary, and it turns outthat the approximate ombination Ωm−ΩΛ is well onstrained, as it is intuitively lear fromFig. 1.1. For instane, Tonry et al. (2003) found
ΩΛ − 1.4Ωm = 0.35 ± 0.14 (at 1σ). (1.52)This degeneray diretion is almost orthogonal to the one in inferred from the angular diam-eter distane at z ∼ 1100 measured by the CMB, f. Fig. 4.1. Combination of supernovæ andCMB data is thus a very e�etive way to break the angular diameter distane degenerayand to onstraint the matter and vauum energy ontents separately. As we have seen, obser-vations of the matter distribution on large sales independently onstrain the matter densityparameter: it is a remarkable ahievement of modern osmology that this �osmi omple-mentarity� seems to be pointing toward the same value, namely Ωm ∼ 0.3 and ΩΛ ∼ 0.7,see e.g. Spergel et al. (2003). At the same time, the puzzle of the nature of dark matter anddark energy remains unsolved, and we o�er some further remarks regarding the osmologialonstant in � 7.3.



Chapter 2Cosmologial perturbation theory
In order to understand the physial origin of CMB anisotropies, we are interested in study-ing the evolution of perturbations in the photon distribution funtion, by perturbing atlinear order around the �bakground� solution for the homogeneous and isotropi Friedmann-Robertson-Walker (FRW) universe of � 1.2. That linear perturbation theory is su�ient todesribe almost all aspets of CMB physis is a onsequene of the smallness of the �utua-tions.In � 2.1 we introdue the relevant perturbation variables, disuss the issues of gauge trans-formations and gauge invariant formalism, extend the treatment to multiple �uids and de�neentropy perturbations. We then present the perturbed Einstein (� 2.2.1) and onservationequations (� 2.2.2) for an Universe �lled with four di�erent partile speies: baryons, olddark matter (CDM), photons and massless neutrinos. The Bardeen equation is presentedin � 2.2.3, while � 2.2.4 is devoted to the derivation of the ollisionless Boltzmann equation,whih desribes massless neutrinos and photons after deoupling. The last setion � 2.2.5onerns the Thomson sattering proess whih ouples photons and baryons before reom-bination, and explains the origin of CMB polarization.Cosmologial perturbation theory in the four-dimensional FRW universe is a well stud-ied subjet, see e.g. Kodama & Sasaki (1984); Mukhanov et al. (1992); Ma & Bertshinger(1995); Durrer (1994). More reently, the formalism has been extended to higher-dimensionalmanifolds, involving extra dimensions (see e.g. Riazuelo et al., 2002), in view of the reentinterest in string theory motivated braneworlds senarios.2.1 Perturbation variablesIn this setion, bakground (unperturbed) quantities are denoted by an overline, so thatthe perturbed energy density, e.g., is denoted by ρ = ρ̄ + δρ. The bakground quantitiesdepend on time only, while the linear perturbations are funtions of time and of the 3-spaeoordinate, i.e. δρ = δρ(η,x).2.1.1 Metri perturbationsWe perturb to linear order the FRW metri of Eq. (1.4, page 12) by setting

gµνdxµdxν = ḡµνdxµdxν + a2hµνdxµdxν (2.1)



24 Cosmologial perturbation theorywhere the perturbation hµν is given by
hµνdxµdxν = −2Adη2 + 2Bidxidη + 2Hijdxidxj . (2.2)The perturbation variables A,Bi,Hij are arbitrary funtions of the 4-oordinate vetor xµ = (η,x).It is onvenient to split them into omponents whih transform irreduibly under therotation group SO(3). The vetor �eld Bi an thus be written as the sum of a gradient of asalar and a divergeneless omponent (vetor)

Bi = B|i +B(v)
i , B

(v)|i
i = 0 . (2.3)We split Hij into an isotropi and an anisotropi part

Hij = Cγ̄ij + Eij , (2.4)and Eij is further deomposed in irreduible salar (spin 0), vetor (spin 1) and tensor (spin2) omponents as
Eij = E|ij +

1

2
(E(v)

j|i + E(v)
i|j ) + E(t)

ij , (2.5)where
E(v)j

|j = E(t)ij
|j = 0 (divergeneless) , (2.6)
E(t)j
j = 0 (traeless) . (2.7)Note that at this stage we are still working in real spae and we do not perform an harmonianalysis of the perturbation variables (see Kodama & Sasaki, 1984; Durrer, 1994 instead).At linear order, the di�erent spin omponents do not mix, and we an treat them separately.2.1.2 Perturbations of the energy-momentum tensorThe perturbed energy-momentum tensor is obtained by perturbing in Eq. (1.5) the energydensity

ρ = ρ̄+ δρ = ρ̄(1 + δ) , with δ ≡ δρ/ρ̄ , (2.8)the pressure
P = P̄ + δP ≡ P̄ (1 + πL) , with πL ≡ δP/P̄ , (2.9)and the spae omponents of the observer's 4-veloity

ui = δui ≡ −v
i

a
= −1

a
(v|i + v(v)i) , (2.10)

u0 = ū0 + δu0 =
1

a
(1 −A) , (2.11)and the seond line follows from the norm of the 4-veloity uµuµ = −1.The perturbation of the energy-momentum tensor is then written as

δTµν =
(

ρ̄δ + P̄ πL
)

ūµūν +
(

ρ̄+ P̄
)

(δuµūν + δuν ūµ) + P̄
(

πLḡµν + a2hµν + a2Πµν

)

, (2.12)



2.1 Perturbation variables 25where we have introdued the anisotropi stress perturbation Πµν , whih is a traeless tensorand orthogonal to the 4-veloity, uµΠµν = 0. It desribes o�-diagonal, spae-spae pertur-bations in the stress-energy tensor, and an be split into a salar Π, a divergeneless vetor
Π(v)
i and a trae-free tensor part Π(t)

ij , aording to:
Πij = (∇i∇j −

1

3
γ̄ij∇k∇k)Π +

1

2
(Π(v)

i|j + Π(v)
j|i) + Π(t)

ij , (2.13)The perturbation omponents of the stress-energy tensor therefore take the form
δT 0

0 = −ρ̄δ , (2.14a)
δT 0

i = (ρ̄+ P̄ )(Bi − vi) , (2.14b)
δT i0 = (ρ̄+ P̄ )vi , (2.14)
δT ij = P̄ (γ̄ijπL + Πi

j) . (2.14d)2.1.3 Gauge transformationsBy hoosing the bakground spaetime manifold and metri to be of the FRW form, we im-pliitly assume that for all quantity of interest Q we are able to de�ne a spatially averaged Q̄,whih represents the bakground, homogeneous and isotropi value of Q on (M̄, ḡ). Considernow a slightly perturbed manifold, Mpert, endowed with a oordinate system xµ. The value of
Q on Mpert depends on the hoie of the oordinate system, Qpert = Q̄+ δQ(xµ). Along with
xµ, any other oordinate system whih leaves ḡ invariant is admissible, i.e. we an arbitrarilytransform the oordinates by an in�nitesimal amount

xµ → yµ = xµ + δxµ (2.15)thereby obtaining for Q in this newly de�ned oordinates
Qpert(xµ) → Qpert(yµ) = Qpert(xµ) + Lδx(Q̄) , (2.16)where LX(Q̄) is the Lie derivative of Q with respet to the vetor �eld X, see e.g. Straumann(2004). Suh in�nitesimal oordinate transformations are alled gauge transformations, andthe above result is known as Stewart�Walker Lemma. Fixing the oordinate system on Mpertis alled a gauge hoie. Clearly, physial observables are geometrial quantities, and aretherefore independent of the oordinate system in whih they are alulated. The form of theequations, however, an be very di�erent aording to the gauge hoie. It is often onvenientto �x the gauge in the way whih is best suited for the problem at hand.The gauge transformation Eq. (2.15) an be written in all generality as

δx0 = T , δxi = L|i + L(v)i . (2.17)By applying the transformation law (2.16) to the perturbed metri (2.1) under a gaugetransformation of the type (2.17), we obtain the following transformation properties for the



26 Cosmologial perturbation theorymetri variables:
A → A+ HT + Ṫ , (2.18a)
B → B − T + L̇ , (2.18b)
C → C + HT , (2.18)
E → E + L , (2.18d)

B(v)i → B(v)i + L̇(v)i , (2.18e)
E(v)i → E(v)i + L(v)i , (2.18f)
E(t)ij → E(t)ij . (2.18g)The same proedure applied on the bakground stress-energy tensor T̄µν and 4-veloity

ūµ gives for the matter perturbation variables:
δ → δ − 3TH(1 + w) , (2.19a)

πL → πL − 3c2s
w

(1 + w)HT , (2.19b)
Π → Π , (2.19)
v → v + L̇ , (2.19d)

v(v)i → v(v)i + L̇(v)
i , (2.19e)

Π(v)
i → Π(v)

i , (2.19f)
Π(t)
ij → Π(t)

ij . (2.19g)In order to ompletely �x the gauge, we need to speify in Eq. (2.2) the funtional formof two salar funtions, orresponding to a spei� hoie for (T,L), and one vetor, orre-sponding to a hoie for L(v)i. In the following, we brie�y summarize some popular gaugehoies.Longitudinal gaugeLongitudinal gauge (also sometimes alled �Newtonian gauge�) is de�ned by requiring B =

E = B(v)i = 0, so that the perturbed metri element takes the formds2 = a2
[

−(1 + 2Ψ)dη2 + (1 − 2Φ)γ̄ijdxidxj] , (2.20)and we have de�ned the Bardeen potentials Ψ = A and Φ = −C (Bardeen, 1980), whihrepresent the gravitational time dilation and the perturbation to the 3-spae urvature, re-spetively. From any other gauge, the transformation T = B−Ė, L = −E and L̇(v)i = −B(v)ileads to the longitudinal gauge.Flat sliing gaugeThis gauge owns its name to the hoie E = C = E(v)i = 0, whih makes the spatialhypersurfaes unperturbed, and the metri element isds2 = a2
[

−(1 + 2A)dη2 + 2Bidxidη + γ̄ijdxidxj] . (2.21)The oordinate transformation whih leads to �at sliing gauge is T = −C/H, L = −E and
L(v)i = −E(v)i.



2.1 Perturbation variables 27Synhronous gaugeIn synhronous gauge, onstant time hypersurfaes are orthogonal to the 3-spae (hene thename), i.e. (η, xi) are Gaussian oordinates. This an be obtained by imposing A = B =

B(v)i = 0. Thus the metri presents perturbations in the spae-spae part only, and it is oftenwritten as ds2 = a2
[

−dη2 + (γ̄ij + hij)dxidxj] , (2.22a)
hij ≡ h|ij(η,x) + (∇i∇j −

1

3
γ̄ij∇k∇k)6η(η,x) . (2.22b)The above hoie does not �x ompletely the gauge: in fat, the gauge transformationwhih leads to synhronous gauge is

T = −1

a

∫

aAdη +
α

a
(2.23a)

L =

∫

(T −B)dη + β (2.23b)
L(v)i = −

∫

B(v)idη + β(v)i , (2.23)whih presents a residual gauge freedom in the four arbitrary integration onstants α and
βi = β|i + β(v)i (where β(v)i must be divergeneless). The four onstants orrespond todi�erent hoies of the onstant time hypersurfae and of the spatial oordinates on it. Thisleads to the presene of �titious �gauge modes� in the perturbation equations, whih mustbe removed beause they are just an artifat of the hoie of the oordinate. Despite thisdi�ulty, synhronous gauge is quite popular in the literature.Comoving gaugeIn the omoving gauge the total bulk veloity vanishes, δT 0

i = 0, whih translates intothe ondition Bi = vi. In order to ompletely �x the gauge one further requires E = 0and E(v)i = 0. This is ahieved with the transformation T = B − v − Ė, L = −E and
L(v)i = −E(v)i. This gauge is the one whih resembles most the gauge invariant formalism(de�ned below), sine for the variables in omoving gauge we have

C = −ζ see Eq. (2.26)
δ = D see Eq. (2.30)
δα = ∆α see Eq. (2.37)
v = V see Eq. (2.31) . (2.24)2.1.4 Gauge invarianeGeneral ovariane guarantees that all equations in general relativity an be written in a formwhih is independent of the gauge hoie (Bardeen, 1980; Kodama & Sasaki, 1984; Durrer,1994). From (2.16) it follows that for all tensor �elds with vanishing or onstant bakgroundontribution, so that LX(Q̄) = 0 ∀X, we an onstrut gauge invariant perturbation equa-tions. Suh perturbation variables are invariant under a gauge transformation of the type



28 Cosmologial perturbation theoryEq. (2.15). Sine we an ast all general relativisti equations in the form Q = 0, it is alwayspossible to onstrut gauge invariant perturbation equations (Stewart & Walker, 1974).This approah has the advantage of leading to equations whih are independent of theoordinate hoie, and whih are often easier to interpret physially. Furthermore, gaugeindependent equations are free from spurious gauge modes. In order to write down therelevant gauge invariant perturbation equations, we make use of the transformation propertiesof the metri and matter variables under a hange of gauge, Eqs. (2.18) and (2.19).Metri variablesFrom Eq. (2.18) we an onstrut the following 4 gauge invariant metri variables:
Φ ≡ −C −H(B − Ė) , (2.25a)
Ψ ≡ A+ H(B − Ė) + (Ḃ − Ë) , (2.25b)

Σ(v)
i ≡ Ė(v)

i −B(v)
i , (2.25)

H (t)
ij ≡ E(t)

ij . (2.25d)The two salar variables Φ and Φ are alled Bardeen potentials (Bardeen, 1980). Anothervery useful variable is the gauge invariant urvature perturbation ζ, whih is de�ned as
ζ ≡ −C + H(v −B) , (2.26)where v is de�ned in Eq. (2.10). From the onstraint equation (2.50), it follows that for a�at universe, K = 0, the gauge invariant urvature perturbation is related to the Bardeenpotentials by

ζ = Φ +
H

H2 − Ḣ
(HΨ + Φ̇) . (2.27)There is only one gauge invariant vetor perturbation onstruted out of metri variables,Eq. (2.25). Tensor variables are automatially gauge invariant, sine there is no spin-2oordinate transformation.Matter variablesBeause of the Stewart�Walker Lemma (2.16), the variables Π, Π(v)

i and Π(t)
i are alreadygauge invariant, sine the bakground anisotropi stress vanishes.From salar matter variables alone we an onstrut the gauge invariant variable

Γ ≡ πL − c2s
w
δ , (2.28)whih measures the intrinsi non-adiabatiity of the matter ontent. More preisely, as weshall see below, Γ is related to the entropy prodution rate. If the pressure is a funtion ofthe loal energy density only, P = P (ρ), then we an write

δP

δρ
=
Ṗ

ρ̇
(2.29)and sine by de�nition δρ = δ · ρ, δP = πL · P , it follows that Γ = 0. In the ase of a perfet�uid, P = wρ and Γ vanishes. Non-zero ontributions to Γ arise from the relative entropy ofa mixture of several �uid omponents, whih is disussed in � 2.1.5.



2.1 Perturbation variables 29The hoie of a gauge invariant density ontrast is not unique, and requires the use ofmetri variables. Meaningful ombinations are
Ds ≡ δ − 3(1 + w)H(B − Ė) (longitudinal), (2.30a)
Dg ≡ δ + 3(1 + w)C (�at sliing), (2.30b)
D ≡ δ − 3(1 + w)H(B − v) (omoving). (2.30)On super-horizon sales, Ds orresponds to the density ontrast in the longitudinal gauge; Dgis the density ontrast on homogeneous 3-spae hypersurfaes (�at sliing); D redues to thedensity ontrast in the omoving gauge. The distintion is only important on super-horizonsales, sine on small (sub-horizon) sales, all the above variables redue to the same (Durrer,2001).The remaining veloity perturbation an be written in gauge invariant form as

V ≡ v − Ė , (2.31a)
V (v)
i ≡ v(v)i − Ė(v)

i . (2.31b)Useful relations between those gauge invariant variables are
Dg = Ds − 3(1 + w)Φ , (2.32a)
D = Ds + 3(1 + w)HV , (2.32b)
D = Dg + 3(1 + w)ζ , (2.32)
ζ = Φ + HV . (2.32d)2.1.5 Multiple �uidsThe above de�nitions assume that the universe is �lled with, or dominated by, only one�uid omponent. In a more realisti modelling, we must aount for the presene of severalmatter omponents. We will usually onsider four of them, namely photons (subsript γ),massless neutrinos (subsript ν), non-interating old dark matter (CDM, subsript c) andbaryons (subsript b). The subsripts r (radiation) and m (matter) will refer generially to arelativisti (wr = 1/3) and a non-relativisti, dust-like (wm = 0) �uid, respetively. Variableswithout subsript designate the total perturbation.If multiple matter omponents are present, the total perturbation variables are the weightedsum of the variables for eah omponent:
δ =

∑

α

ρ̄α
ρ̄
δα , (2.33a)

vj =
∑

α

ρ̄α + P̄α
ρ̄+ P̄

vjα , (2.33b)
Πij =

∑

α

P̄α
P̄

Πij
α . (2.33)The equation of state and the adiabati sound speed are de�ned for eah omponent

wα ≡ P̄α
ρ̄α

and c2α ≡
˙̄Pα
˙̄ρα
, (2.34)



30 Cosmologial perturbation theoryand for the mixture we have
w ≡ P̄

ρ̄
and c2s ≡

˙̄P
˙̄ρ
. (2.35)The transformation properties of the variables for eah omponents are the same as for thetotal variables, Eqs. (2.19). Hene for eah matter omponent we an de�ne gauge invariantvariables as in Eqs. (2.28, 2.30, 2.31), yielding for the salar part:

Γα ≡ πα,L − c2α
wα

δα , (2.36a)
Vα ≡ vα − Ė , (2.36b)

Dα,s ≡ δα − 3(1 + wα)H(B − Ė) , (2.36)
Dα,g ≡ δα + 3(1 + wα)C , (2.36d)
Dα ≡ δα − 3(1 + wα)H(B − vα) . (2.36e)In the presene of multiple matter omponents, it is often useful to work with the gaugeinvariant density ontrast
∆α ≡ δα − 3(1 + wα)H(B − v) , (2.37)whih orresponds to the density ontrast in the gauge where the total matter is at rest, i.e.the omoving gauge introdued on page 27. Notie that on the right hand side it appears thetotal veloity v, rather then the veloity of the α omponent as in (2.36e). This new variableis related to the density ontrast in the �at sliing gauge by

∆α = Dg,α + 3(1 + wα) (Φ + HV ) . (2.38)2.1.6 Entropy perturbationsWhen more than one omponent is present, entropy perturbations an arise even for a mixtureof perfet �uids. The total non-adiabatiity of the mixture is given by (2.28), where thequantities appearing on the right hand side have to be interpreted as total variables. Usingthe de�nitions (2.33), we obtain
P̄Γ = P̄Γint +

∑

α

δαρ̄α(c2α − c2s) ,= P̄ (Γint + Γrel) . (2.39)We have introdued the total intrinsi entropy perturbation
Γint =

∑

α

P̄α
P̄

Γα (2.40)and the relative entropy perturbation Γrel, whih using the bakground energy onservation,Eq. (1.16, page 13), an be reast as
P̄Γrel =

1

2

∑

α,β

(1 + wα)(1 + wβ)ρ̄αρ̄β
(1 + w)ρ̄

(c2α − c2β)

(

δα
1 +wα

− δβ
1 + wβ

)

. (2.41)Here we have assumed that the omponents are deoupled from eah other, i.e. that Q̄να = 0in (1.16, page 13), see (Malik et al., 2003) for a generalization to the ase of interating �uids.



2.2 Perturbation equations 31The quantity Γrel represents relative entropy perturbations whih are produed by thedi�erent dynamial behavior of the matter omponents with di�erent sound speed. Theentropy perturbation between the omponents α and β is de�ned as
Sαβ ≡ δα

1 + wα
− δβ

1 + wβ
. (2.42)It is easy to see that the entropy perturbations are gauge invariant quantities by substitutingthe gauge dependent density ontrasts on the right hand side with the gauge invariant densityvariables de�ned in (2.37), obtaining

Sαβ =
∆α

1 + wα
− ∆β

1 + wβ
. (2.43)In order to larify the physial meaning of Sαβ, onsider a mixture of radiation and dust-like matter. We are interested in �utuations of the number density (per physial volume)ratio of the two speies:

δ

(

nr
nm

)

/(nrnm) =
δnr
nr

− δnm
nm

. (2.44)Reall that (see e.g. Kolb & Turner, 1990) nr ∝ s ∝ T 3, with s the radiation entropy pervolume, hene
δnr
nr

=
δs

s
= 3

δT

T
=

3

4

δρr
ρ̄r

(2.45)For matter we have
δnm
nm

=
δρm
ρ̄m

, (2.46)and therefore
δnr
nr

− δnm
nm

=
δr

(1 + wr)
− δm

(1 + wm)
= Srm . (2.47)Thus a non vanishing relative entropy perturbation means that there are spatial inhomo-geneities in the relative number density of the the two �uids, whih an be understood as aspatial variation in the equation of state. The above results are generalized in � 4.3.2.2 Perturbation equationsIn this setion, we write down the �rst order perturbation equations using the gauge invariantformalism and variables de�ned above. For ompleteness, we also give the vetor and tensorequations, but in the rest of this work we will onentrate exlusively on the salar setor.2.2.1 Einstein equationsThe perturbed Einstein equations

δGµν = 8πGδTµν (2.48)are split in their salar, vetor and tensor parts.



32 Cosmologial perturbation theorySalar equationsThere are 4 salar equations for the 4 gauge invariant quantities Φ,Ψ, V and D:
(△ + 3K)Φ = 4πGa2ρ̄D (Poisson), (2.49)

HΨ + Φ̇ = 4πGa2ρ̄(1 + w)V (onstraint), (2.50)
Φ − Ψ = 8πGa2ρ̄wΠ (anisotropi stress), (2.51)

HU̇ + (H2 + 2Ḣ)U = 4πGa2ρ̄

(

c2sDg + wΓ +
2

3
w△Π

)

, (2.52)where
U ≡ Ψ +

H2 − Ḣ
H2

Φ +
Φ̇

H . (2.53)Reall that Dg is related to D, V and Φ via Eqs. (2.32, page 29), and we have assumedan equation of state of the form (1.7, page 12). Eq. (2.49) is the general relativisti analogueof the Poisson equation. In order to lose this system, we need to speify the matter ontentby giving w, c2s, Γ and Π. For a single perfet �uid, Γ = Π = 0, hene from the anisotropistress equation (2.51) it follows that Ψ = Φ.We shall see below that an evolution equation for Π follows e.g. from the kineti desriptionprovided by the Boltzmann equation, see Eq. (2.127, page 42). For multiple �uids, we willalso rewrite Γ in terms of the relative entropy perturbations, as in Eq. (2.41).Vetor equationsThe vetor part yields a onstraint and an evolution equation for V (v)
i and Σ(v)

i :
(

2K + △ + 4(Ḣ − H2)
)

Σ(v)
i = 16πGρ̄a2(1 + w)V (v)

i , (2.54)
Σ̇(v)
i + 2HΣ(v)

i = 8πGρ̄a2wΠ(v)
i . (2.55)For a perfet �uid, Π(v)

i = 0, the above equations give in a �at universe on large sales(suh that gradients an be negleted)
Σ(v)
i = −V (v)

i ∝ 1

a2
. (2.56)Therefore in the absene of ative seeds, vetor perturbations are always deaying on largesales.Tensor equationThe tensor part yields an equation desribing the gravitational waves. It is the equation of afored harmoni osillator, with a damping term due to the expansion of the universe:

Ë(t)
ij + 2HĖ(t)

ij + (2K −△)E(t)
ij = 8πGρ̄a2Π(t)

ij . (2.57)On super-horizon sales and for zero urvature, the term ∝ E(t)
ij is negligible. The homoge-neous equation in the radiation era, when H = η−1, has a deaying solution E(t)

ij ∝ η−1 anda onstant solution, E(t)
ij = onst. As a mode enters the horizon, the osillatory behaviortakes over, and the wave propagates with a frequeny k2 + 2K and is damped as a−1. In the



2.2 Perturbation equations 33absene of anisotropi stress and in a �at universe, K = 0, the general solution of (2.57) for
Π = 0, writing E(t)

ij = h(x, η)εij(x) and going to Fourier spae in a �at universe, is given by
h = (kη)1−q [Ajq−1(kη) +Bnq−1(kη)] , (2.58)where jν(x) and nν(x) are the Bessel and von Neumann funtions of order ν, respetively(see Eqs. 3.10, page 48) and a ∝ ηq.2.2.2 Conservation equationsThe onservation equations, whih follow from the ontrated Bianhi identity, o�er evolutionequations whih are sometimes of a simpler form and are handy to manipulate. From theperturbed energy onservation equation

δ(∇µT̄
µν) = 0 (2.59)we obtain the following equations for a mixture of non-interating �uids.Salar equationsThere are two salar onservation equations, one for the density ontrast and the seond forthe veloity perturbation. In terms of Dg,α the onservation equations read:

Ḋg,α + 3H(c2α − wα)Dg,α = −3HΓαwα + (1 + wα)△Vα , (2.60)
V̇α + (1 − 3c2α)HVα = Ψ + 3c2αΦ +

wα
1 + wα

(

Γα +
c2α
wα

Dg,α +
2

3
(△ + 3K)Πα

)

. (2.61)Is is sometimes onvenient to express the above in terms of the density ontrast Dα:
Ḋα − 3wαHDα = (△ + 3K) [(1 +wα)Vα + 2HwαΠα] + 3

1 + wα
1 + w

(H2 + K)(V − Vα) , (2.62)
V̇α + HVα = Ψ +

c2α
1 +wα

Dα +
wα

1 + wα

(

Γα +
2

3
(△ + 3K)Πα

)

. (2.63)Vetor equationWe obtain one evolution equation for the vortiity Ω(v)
iα ≡ Σ(v)

iα + V (v)
iα :

Ω̇(v)
i,α + HΩ(v)

i,α(1 − 3c2α) =
1

2

wα
1 + wα

△Π(v)
i,α . (2.64)If the anisotropi stress soure term is absent, we an rewrite the above equation asddη (Ω(v)

i,αa
1−3c2α) = 0 , (2.65)hene

Ω(v)
i,α ∝ a3c2α−1 . (2.66)



34 Cosmologial perturbation theory2.2.3 The Bardeen equationIt is often onvenient to have an evolution equation for the Bardeen potential in terms of thetotal matter ontent. By ombining the onservation equation Eq. (2.60) with the Einsteinequations (2.49�2.51) we obtain a seond order equation, alled the Bardeen equation, for Φ:
Φ̈ + 3H(1 + c2s)Φ̇ +

[

3(c2s − w)H2 − (1 + 3c2s)K − c2s△
]

Φ = gΦ , (2.67)where the soure term gΦ is generated by the matter anisotropi stress and entropy pertur-bation:
gΦ = 8πGa2P

[

HΠ̇ + [2Ḣ + 3H2(1 − c2s/w)]Π + 1
2△Π + 1

2Γ
]

. (2.68)The above equation an be reast in an evolution equation for the gauge invariant urvatureperturbation, Eq. (2.27). For hydrodynamial matter, i.e. setting Π = 0 and for a �at universe(K = 0) we �nd
ζ̇ =

H
H2 − Ḣ

[

c2s△Φ + 3
2H

2wΓ
]

. (2.69)This expression will be used when disussing the evolution of urvature and entropy pertur-bations.2.2.4 Collisionless Boltzmann equationWe brie�y reall in the following the basis of relativisti kineti theory, for more details seee.g. de Groot et al. (1980). Consider the phase spae given by the the tangent bundle
T ≡ {(xµ, pµ)|xµ ∈ M, pµ ∈ Tx} (2.70)where M is the spaetime manifolds and Tx its tangent spae at the point xµ. For a partileof mass m, its distribution funtion f(xµ, pµ) is de�ned on the mass-shell
Pm(xµ) ≡ {pµ ∈ Tx|pµpµ = −m2} (2.71)The Liouville operator L is de�ned on T , and it gives the evolution of f(xµ, pµ) along thepartile world lines, aording to the Boltzmann equation

L [f ] = C [f ] , (2.72)whih states that the rate of hange of f is due to the ollision term C [f ]. For the purpose ofstudying relativisti partiles suh as photons and massless neutrinos, we will treat the ase
m = 0 only. The hereby derived equations will then be applied to the desription of neutrinosand of photons after reombination. Further details and the general ase for massive partilesan be found in e.g. Durrer (1994); Uzan (1998).We now proeed with perturbing the left hand side of Eq. (2.72). Its bakground solutionwas presented in � 1.2.2, and was shown to be of the form f̄ = f̄(ap), see Eq. (1.45), where
E2 = p2 ≡ pµpνg

µν . By splitting the distribution funtion into a bakground and a perturbedpart,
f(η, xi, p, ni) = f̄(η, p) + F (η, xi, p, ni) (2.73)we move to a phase spae whih di�ers to linear order from the one of f̄ . Therefore the hoieof F and its transformation properties depend on the isomorphism relating the �bakground�



2.2 Perturbation equations 35and the �perturbed� phase spae. By an opportune hoie of the isomorphism, it an beshown (Durrer, 1994) that under a gauge transformation F transforms as
F → F + p

∂f̄

∂p

[

HT + niTi
]

. (2.74)It follows that the following variable
F ≡ F − p

∂f̄

∂p

[

C + ni(Ėi −Bi)
]

, (2.75)is gauge invariant. In terms of F , the ollisionless Boltzmann equation reads
∂F
∂η

+
∂F
∂xi

ni − pH∂F
∂p

− (3)Γijkn
jnk

∂F
∂ni

= p
∂f̄

∂p

[

ni∂i(Ψ + Φ)
]

, (2.76)and (3)Γijk are the Christo�el symbols of the bakground 3-spae. The above equation isin manifestly gauge invariant form, and we notie that spatial variations in the Bardeenpotential at as soure for perturbations in the distribution funtion.By integrating this equation over the partile energies, we obtain a di�erential equationfor the brightness perturbation I, de�ned as
I = Ī(η) + I(η, xi, ni) ≡ 4π

∫ ∞

0
f̄p3dp+ 4π

∫ ∞

0
Fp3dp . (2.77)The brightness represents the energy per unit solid angle as measured by an observer atposition xi. The photon energy is just the monopole of the brightness, i.e.

ργ =

∫ dΩ
4π
I , (2.78)and therefore ρ̄γ = Ī. From Eq. (2.76) we obtain

İ +

(

ni∂i + 4H− (3)Γijkn
jnk

∂

∂ni

)

I = −4Ī
[

ni∂i(Ψ + Φ)
]

. (2.79)The above an be rewritten in terms of the temperature ontrast
Θ(η, xi, ni) ≡ δT

T
=

1

4

I
Ī

(2.80)and using the bakground energy onservation equation we obtain
Θ̇ +

(

ni∂i − (3)Γijkn
jnk

∂

∂ni

)

Θ = −ni∂i(Ψ + Φ) . (2.81)This is the Boltzmann equation for relativisti, ollisionless partiles, whih relates gravita-tional perturbations to temperature �utuations of their distribution funtion.The Boltzmann hierarhyWe now go to Fourier spae, and we restrit ourselves to the spatially �at ase, K = 0, sothat the eigenfuntions of the Laplaian are just plane waves and (3)Γijk = 0 (an harmoni



36 Cosmologial perturbation theorydeomposition for non-�at spaes an be found e.g. in Vilenkin & Smorodinskii, 1964; Kodama& Sasaki, 1984), so that for any salar f
f(η,x) =

1

(2π)3/2

∫ d3kf(η,k)eıkx , (2.82)and in general we denote the real spae f and its harmoni transform with the same symbol.De�ning µ ≡ njkj/k and k ≡
√

kiki we obtain from Eq. (2.81)
Θ̇ + ıµkΘ = −ıµk(Ψ + Φ) . (2.83)Assuming that Θ does not depend expliitly on ki, then the dependene on the photonsmomentum diretion omes in only via µ. In that ase Θ = Θ(η, k, µ), and we will suppressthe expliit time dependene. We now perform an expansion in Legendre polynomials1

Θ(µ, k) =
∑

ℓ

(2ℓ+ 1)PℓΘℓ , (2.84)
Θℓ(k) ≡

1

2

∫ 1

−1
dµΘ(µ, k)Pℓ(µ) , (2.85)where Pℓ(x) is the Legendre polynomial of order ℓ, whih satisfy

P0(x) =1 , (2.86)
P1(x) =x , (2.87)
P2(x) =

1

2
(3x2 − 1) , (2.88)

(ℓ+ 1)Pℓ+1(x) =(2ℓ+ 1)xPℓ(x) − ℓPℓ−1(x) . (2.89)From Eq. (2.83) follows an in�nite hierarhy of equations for the moments of the Boltzmannequation:
Θ̇0 + ıkΘ1 = 0 , (2.90)

Θ̇1 +
1

3
ıkΘ0 +

2

3
ıkΘ2 = −1

3
ık(Φ + Ψ) , (2.91)

Θ̇ℓ +
ℓ

2ℓ+ 1
ıkΘℓ−1 +

ℓ+ 1

2ℓ+ 1
ıkΘℓ+1 = 0 (ℓ ≥ 2) . (2.92)Gradients of the Bardeen potentials at as a soure for the �rst moment. Beause of thereursion relation, eah multipole moment ℓ is oupled to the preeding and the followingmoment. Therefore, power is transferred to higher moments, and in priniple we need tosolve an in�nite number of oupled di�erential equations. Simply trunating the hierarhy byimposing Θℓmax = 0 is not an optimal solution, sine the error due to the trunation will re�etbak to lower moments via the oupling. A more e�etive trunation sheme is disussed inMa & Bertshinger (1995). We notie that at early times and super-horizon sales (i.e.

kη ≪ 1) higher moments are suppressed by suessive powers of kη, Θℓ ∼ O(Θℓ−1kη), andhene the �rst few moments are su�ient to aurately desribe the temperature �utuation.1Di�erent normalizations for the expansion oe�ient are ommonly used in the literature and their relationwith the one used here is: in Hu & Sugiyama (1995b) ΘHS = ıℓ(2ℓ + 1)Θℓ (notie that in this work theBardeen potentials are suh that ΨHS = Ψ but ΦHS = −Φ); in Ma & Bertshinger (1995) Θ is denoted by
Ψ and ΨMB

ℓ = ıℓΘℓ, whih is the same onvention used by Seljak & Zaldarriaga (1996); in Durrer (1994)
Θ is denoted by M and Mℓ = Θℓ/2.



2.2 Perturbation equations 37Relations with marosopi quantitiesFrom the de�nition of the stress-energy tensor (de Groot et al., 1980)
T µν(xα) =

∫ d3p

p0
pµpνf(xα, pµ) (2.93)and omparing with Eq. (2.14, page 25), we an establish the hydrodynamial gauge invariantvariables as integrals over momenta of the gauge invariant brightness perturbation:

Dg,γ =
1

ρ̄γ

∫ dΩ

4π
I , (2.94a)

V j
γ = − 1

(1 +wγ)ρ̄γ

∫ dΩ
4π
njI , (2.94b)

Πij =
1

wγ ρ̄γ

∫ dΩ
4π
nijI . (2.94)Rewriting the above in terms of multipole moments of the temperature perturbation, we havethe identities in harmoni spae2

Θ0 =
1

4
Dg,γ , (2.95a)

Θ1 = −1

3
ıkVγ , (2.95b)

Θ2 = − 1

12
k2Πγ . (2.95)Trunating the Boltzmann hierarhy at the third moment by setting Θℓ = 0 for ℓ ≥ 3, weobtain

Ḋg,γ +
4

3
k2Vγ = 0 , (2.96)

V̇γ −
1

4
Dg,γ = −1

6
k2Πγ + Φ + Ψ , (2.97)

Π̇γ −
8

5
Vγ = 0 . (2.98)Unsurprisingly, we reover the two onservation equations of (2.60-2.61, page 33) for ra-diation (with wγ = c2γ = 1/3 and Γ = 0), supplemented with an evolution equation for Πγ .These equations are appropriate for relativisti, ollisionless and massless partiles suh asneutrinos. At later times, however, higher order moments need to be taken into aount.Photons are sattered by eletrons, and to desribe their evolution we now turn to the ap-propriate ollision term.2Notie that the monopole of our F orresponds (up to multipliative onstants) to the density perturbationin the omoving gauge; in the literature the temperature perturbation in Newtonian gauge is often employed(as in (Hu & Sugiyama, 1995b)), in whih ase an extra term ∝ Φ appears along with ΘN

0 . With thenormalization onvention of (Hu & Sugiyama, 1995b), the relation between our monopole and the one inNewtonian gauge is Θ0 = ΘN
0 − Φ. All other multipoles ℓ > 0 do not su�er from this ambiguity and aregauge independent.



38 Cosmologial perturbation theory2.2.5 Thomson satteringWe now onsider the ase of elasti Thomson sattering between photons and non-relativistieletrons. We give some elements of the derivation for the ollision term for the total photonintensity, while we just outline the polarization treatment. A detailed derivation an be foundin Kosowsky (1996); Durrer (2001).Thomson sattering of unpolarized light generates linear polarization if the inident inten-sity has a quadrupolar anisotropy. In the tight oupling regime, ollisions make the photonsdistribution funtion uniform in the eletrons rest frame, and therefore no polarization anarise. However, during the weak oupling regime just before last sattering, the mean freepath of photons grows and a sizable temperature quadrupole is generated, whih ats as asoure for polarization, as we brie�y desribe in this setion. After deoupling, free streamingonserves the polarization state, whih an only be hanged by further resattering due toreionization, see � 4.1.3.2.2.2.5.1 Stokes parametersThe polarization state of light is usually desribed in terms of Stokes parameters, see e.g.Jakson (1975). The eletri �eld of a plane monohromati eletromagneti wave propagat-ing in the z diretion is
E(x, t) = Eeı(ωt−kz) , (2.99)where the omplex vetor E desribing the polarization state of the wave is given by
E =







axe
ıθx

aye
ıθy

0






. (2.100)Instead of using the four numbers (ax, ay, θx, θy), it is onvenient to introdue the Stokesparameters

I ≡ a2
x + a2

y , (2.101)
Q ≡ a2

x − a2
y , (2.102)

U ≡ 2axay cos(θx − θy) , (2.103)
V ≡ 2axay sin(θx − θy) , (2.104)whih an be diretly measured with a linear polarizer and a quarter-wave plate. Their phys-ial interpretation is straightforward: I gives the total intensity, Q measures the di�erenebetween x and y polarization, U gives phase information for the two linear polarizations,and V determines the di�erene between positive and negative irular polarization. I and

V are physial observables independent of the oordinate system, but Q and U mix under arotation by an angle φ of the x− y plane:
Q′ = Q cos(2φ) + U sin(2φ) (2.105a)
U ′ = −Q sin(2φ) + U cos(2φ) , (2.105b)from whih it is easy to derive that the physially observable quantity is the polarizationvetor P, lying in the x − y plane, with magnitude (Q2 + U2)1/2 and with polar angle

α = 1
2 tan−1 U

Q .
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θE iny
E inx

Eouty

Eoutx

nin
nout

Figure 2.1: Geometry of the the Thomson sattering proess in the rest frame of the eletron,represented by the sphere in the enter. A photon beam is inoming from the left and issattered o� with an angle θ.Finally, the four stokes parameters are not independent, but satisfy the relation
I2 = Q2 + U2 + V 2 . (2.106)2.2.5.2 Sattering ross setionWe now onsider the sattering proess in the rest frame of the eletron, with the geometry ofFig. 2.1. The Thomson sattering ross setion for an inident wave with linear polarization

E in into a sattered wave with polarization Eout isdσdΩ =
3σT
8π

|E in · Eout|2 , (2.107)with σT the Thomson sattering ross setion. It is onvenient to work with the partialintensities Ix and Iy, de�ned as
Ix ≡ I +Q

2
and Iy ≡

I −Q

2
. (2.108)The inoming wave is unpolarized by assumption, so I inx = I iny = I in/2, and for the outgoingwave we �nd

Ioutx =
3σT
16π

I in and Iouty =
3σT
16π

I in cos2(θ) (2.109)or, in terms of the outgoing Stokes parameters
Iout =

3σT
16π

I in(1 + cos2(θ)) , (2.110)
Qout =

3σT
16π

I in sin2(θ) , (2.111)
Uout = 0 . (2.112)



40 Cosmologial perturbation theoryThe value of Uout has been found by realulating Q in an outgoing basis whih has beenrotated by π/4. Thomson sattering does not generate irular polarization, so V = 0 andwe will not onsider it further. Sine from (2.106) there are only three independent Stokesparameters, and V = 0 all the time, the desription in terms of I and Q is su�ient, and wewont use U any further.The total outgoing intensities are obtained by integrating over all inoming diretions,and rotating the result into a ommon oordinate system using (2.105):
Iout =

3σT
16π

∫ dΩ(1 + cos2(θ))I in(θ, φ) , (2.113)
Qout =

3σT
16π

∫ dΩ sin2(θ) cos(2φ)I in(θ, φ) . (2.114)2.2.5.3 Temperature hierarhyWe are now in the position of deriving the ollision term due to Thomson sattering for theintensity distribution funtion f , whih is of the form
C [f ] =

df+dη − df−dη . (2.115)where f+(xµ, pµ) (f−) denotes the distribution of partiles within (∆xµ,∆pi/p0) of (xµ, pµ)gained (lost) in the sattering proess. Aording to the hypothesis of moleular haos(de Groot et al., 1980), the ontribution lost is just proportional to the eletron densitytimes the photon distribution, hene with the de�nitions (1.40�1.41, page 16)df−dη (xµ, p, ni) = τ̇ f(xµ, p, ni) , (2.116)where
τ̇ ≡ aσTne (2.117)is the di�erential Thomson optial depth, and ne is the free eletron density. The ontributionsattered into pi = pni is most easily evaluated in the eletron's rest frame, whih we denoteby a tilde. After averaging over inoming and summing over outgoing polarization states, weobtain df̃+dt̃ (xµ, p̃, ñ) = σTne

∫ dΩ̃ε

4π
f̃(p̃, ñ)ω(ñ, ε) , (2.118)where the angular dependene of the sattered intensity is, from (2.113)

ω(ε, ε′) =
3

4
[1 − (ε · ε′)2] = 1 +

3

4
εijε

′ij (2.119)with εij ≡ εiεj − 1
3δij. We now transform into the oordinate system, in whih the photondistribution funtion f is de�ned. To �rst order we have the relations

p̃ = p
(

1 + ni(v
i
b −Bi)

)

, (2.120)
ñ = n , (2.121)sine aberration appears only at seond order. We have used the baryon 3-veloity vib, sineeletrons and baryons are eletromagnetially oupled and their veloities are the same. Note



2.2 Perturbation equations 41that the above transformation assumes vb ≪ 1, i.e. that the eletrons are non-relativisti,onsistent with the fat that we onsider vb as a perturbation. Splitting the distributionfuntion in an isotropi part and a (gauge dependent) perturbation, f = f̄(η, p) + δf(xi, pi),we then ompute the energy integrated ollision term
4π

∫

p3dpC [f ] = aσTne

[

−4ni(v
i
b −Bi)ρ̄γ + δργ − δI(n) +

3

4
nijδIij

]

, (2.122)and we have introdued the gauge dependent brightness perturbation δI ≡ 4π
∫ dpp3δf andits seond moment

δIij ≡
∫ dΩε

4π
εijδI(ε) . (2.123)The expression Eq. (2.122) an be brought in expliit gauge invariant form by substitutingthe gauge dependent variables with the orresponding gauge independent ounterparts. Aftersome manipulations we obtain

4π

∫

p3dpC [f ] = 4τ̇ ρ̄γ

[

Θ0 − niV
i
b − Θ +

1

16
nijΠ

ij
γ

]

, (2.124)where we have used the identity (2.94, page 37). In view of adding the ollision term onthe right hand side of the hierarhy (2.90, page 36), it is onvenient to rewrite it in terms ofmultipoles of the temperature �utuation Θ and transform to Fourier spae
4π

∫

p3dpC [f ] = −4τ̇ ρ̄γ



(ıkVb + 3Θ1)P1 +
9

2
Θ2P2 +

∑

ℓ≥3

(2ℓ+ 1)ΘℓPℓ



 . (2.125)A few remarks are in order at this point: as a onsequene of the onservation of energy inthe elasti ollision, non-relativisti Thomson sattering does not ontain a monopole, whilethe dipole orresponds to a veloity mismath between photons and baryons, as is apparentfrom the �rst term on the right hand side with 3Θ1 = −ıkVγ . The angular dependene of thesattering generates a quadrupole moment. In the limit of very many ollisions, τ̇ ≫ H, allmultipoles ℓ > 1 are driven to zero, therefore in the strong oupling regime, the photons andbaryons veloity oinide and higher order moments are suppressed: thus the tight-oupledphotons-baryons system an be desribed as an hydrodynamial �uid in term of the zerothand �rst moments only.The Boltzmann hierarhy, Eq. (2.90, page 36), supplemented with the above ollision termfor photons-eletrons Thomson sattering, now beomes:
Θ̇0 + ıkΘ1 = 0 , (2.126a)

Θ̇1 +
1

3
ık(Θ0 + Φ + Ψ) +

2

3
ıkΘ2 = −τ̇(1

3
ıkVb + Θ1) , (2.126b)

Θ̇2 +
2

5
ıkΘ1 +

3

5
ıkΘ3 = −τ̇ 9

10
Θ2 (2.126)

Θ̇ℓ +
ℓ

2ℓ+ 1
ıkΘℓ−1 +

ℓ+ 1

2ℓ+ 1
ıkΘℓ+1 = −τ̇Θℓ (ℓ ≥ 3) . (2.126d)Rewriting the above in terms of marosopi quantities and utting the hierarhy at ℓ = 2



42 Cosmologial perturbation theorygives instead of Eq. (2.96, page 37)
Ḋg,γ +

4

3
k2Vγ = 0 , (2.127a)

V̇γ −
1

4
Dg,γ +

1

6
k2Πγ − Φ − Ψ = −τ̇(Vγ − Vb) , (2.127b)

Π̇γ −
8

5
Vγ = −τ̇ 9

10
Πγ . (2.127)2.2.5.4 Polarization hierarhyAs disussed in � 2.2.5.2, photons sattered at a right angle are are preferentially polarizedalong the diretion orthogonal to the sattering plane (i.e. in the Eoutx diretion in Fig. 2.1when θ = π/2). Expanding the inoming intensity in spherial harmonis aording to

I in(θ, φ) =
∑

ℓ

∑

m

IℓmYℓm(θ, φ) , (2.128)then the resulting Qout, from (2.114) is
Qout =

3σT
4π

√

2π

15
Re I22 , (2.129)whih shows that if the inoming photon intensity as a funtion of diretion has a non-zeroomponent of Y22, assoiated with an ℓ = 2 quadrupolar moment, then there will be a netlinear polarization of the outgoing distribution.In analogy with the intensity distribution funtion f , we denote by fQ = f̄Q(η, p) +

FQ(η, xi, p, ni) the perturbed distribution funtion in phase spae and by ΘQ the brightnessperturbation for the Stokes parameter Q,
ΘQ =

1

4

∫∞
0 f̄Qp3dp
∫∞
0 FQp3dp . (2.130)Then the ollisional Boltzmann equation for the brightness perturbation fQ in Fourier spaeis (Bond & Efstathiou, 1984; Kosowsky, 1996)

Θ̇Q + ıkµΘQ = −τ̇
[

ΘQ +
1

2
(1 − P2)

(

Θ2 + ΘQ
2 − ΘQ

0

)

]

. (2.131)Expanding the equation in Legendre polynomials as in Eq. (2.85, page 36), we obtain theBoltzmann polarization hierarhy:
Θ̇Q

0 + ıkΘQ
1 = − τ̇

2

[

Θ2 + ΘQ
0 + ΘQ

2

]

, (2.132)
Θ̇Q

1 +
1

3
ık
[

ΘQ
0 + 2ΘQ

2

]

= −τ̇ΘQ
1 , (2.133)

Θ̇Q
2 +

2

5
ıkΘQ

1 +
3

5
ıkΘQ

3 = − τ̇

10

[

9ΘQ
2 − Θ2 + ΘQ

0

]

, (2.134)
Θ̇Q
ℓ +

ℓ

2ℓ+ 1
ıkΘQ

ℓ−1 +
ℓ+ 1

2ℓ+ 1
ıkΘQ

ℓ+1 = −τ̇ΘQ
ℓ (ℓ ≥ 3) . (2.135)Polarization e�ets also feed bak into the temperature ollision term, modifying the ℓ = 2equation in the temperature hierarhy (2.126) as follows:

Θ̇2 +
2

5
ıkΘ1 +

3

5
ıkΘ3 = − τ̇

10

[

9ΘQ
2 − Θ2 + ΘQ

0

]

. (2.136)



2.2 Perturbation equations 432.2.5.5 E and B polarizationFrom the the hierarhy of equations (2.132) it is possible to determine the brightness pertur-bation for Q today, and de�ne the orresponding power spetrum. However, the approahusing Stokes parameters is limited by the fat that U and Q are not rotationally invariant,but are de�ned with respet to a �xed oordinate system on the sky. Not only the superpo-sition of di�erent modes is umbersome beause of the behavior of Q and U under rotation,but the oordinate system beomes ambiguous and ill-de�ned on the whole sky, sine it isimpossible to de�ne a rotationally invariant orthogonal basis on the two-sphere.The solution is to onstrut two spin 2 quantities from Q and U , whih one then expandsin the appropriate spin-weighted basis on the two-sphere (Zaldarriaga & Seljak, 1997), andredues to salar quantities by ating on them with spin raising and lowering operators.This manipulations yield two salar quantities whih are rotationally invariant, and thereforewell de�ned on the whole sky. Furthermore, one an expand these quantities in terms ofusual spherial harmonis and build two linear ombinations whih behave di�erently underparity transformation: the ombination labelled E, in analogy with the eletri �eld, isinvariant under a parity hange, while the B-type ombination hanges it sign, analogous tothe magneti �eld. Another terminology, sometimes found in the literature, is C mode for�url� (orresponding to the B-type) and G for �gradient� (orresponding to the E-type).Another advantage of this deomposition is that only the ross-orrelation between E-polarization and temperature is needed, sine the ross-orrelation between B and E or Tvanishes sine B has opposite parity. Furthermore, salar modes do not generate B polar-ization, due to the peuliar µ dependene of Thomson sattering, while tensor modes do.Therefore, the separation of the polarization signal in E and B modes is useful to separatesalar from tensor ontribution, and to identify foreground ontamination or a lensing signal,whih an onvert E polarization into B polarization for salar modes.We do not give expliit expressions here, whih are rather tehnial and are not neededin the following, but refer the reader to Zaldarriaga & Seljak (1997) instead. A similardeomposition, but with a di�erent normalization has been proposed by Kamionkowski et al.(1997).
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Part IICOSMIC MICROWAVE BACKGROUND





Chapter 3Fundamental equations
The all sky piture of CMB anisotropy delivered by COBE and more reently and with 30times more resolution by WMAP an be onsidered as a �ngerprint of the early Universe.More preisely, it is an aurate reprodution of the �utuations in the radiation-mattermixture at the epoh of reombination.In this setion we suintly explain the origin of this piture, by starting with the be-havior of salar perturbations in a Universe ontaining one perfet �uid, � 3.1; many of thefundamental features of the anisotropies an be understood in a simple model with a mixtureof radiation and matter whih are oupled only gravitationally, as demonstrated in � 3.2 wherethe onepts of adiabati and CDM isourvature initial onditions are introdued; adding amassless neutrino omponent yields two new growing modes, the neutrino entropy/densityand veloity isourvature solutions, derived in � 3.3. Although the results of those two se-tions are already known in the literature, the derivation presented in this work is original.We then re�ne the piture of aousti osillations by inluding baryons in � 3.4, and skeththe origin of damping in � 3.5. Finally we derive the line of sight solution for the observedtemperature �utuations today and introdue the CMB angular power spetra in � 3.6. Theunderstanding and tools developed in the following will build the basis for the next hap-ters, where parameter extration tehniques will be disussed (Chapter 5) and appliationspresented (Chapters 6 and 7).There is a rih literature on the osmi mirowave bakground but unfortunately an up-dated work whih enompasses both and introdution to the �eld and more advaned ma-terial, overing the rapid evolution of the last few years, is presently laking. Throughoutthis and the next hapter we give ample referenes to the lassi and more reent researhpapers; as bakground material, Lineweaver et al. (1997) is a valuable soure whih presentsan introdution to the CMB theory as well as some observational issues; Durrer (2001) isbuilt on a gauge invariant formalism similar to the one used here; Partridge (1995) is a goodintrodutory overview written at the onset of the reent data-driven epoh. A rather ompletereview of both theory and data analysis is o�ered by Hu & Dodelson (2002).3.1 One perfet �uidWe begin by examining the behavior of salar perturbations in a �at (K = 0) universe whihontains a single perfet �uid, desribed by w = c2s = onst, and Γ = Π = 0.



48 Fundamental equationsSine the anisotropi stress vanishes, from Eq. (2.51, page 32) it follows Ψ = Φ. Theevolution of the perturbations is given by the two onservation equations (2.62�2.63, page33) supplemented by the Poisson equation (2.49, page 32), whih in Fourier spae read:
Ḋ − 3wHD = −(1 + w)k2V , (3.1)

V̇ + HV = Ψ +
c2s

1 + w
D , (3.2)

−k2Ψ =
3

2
H2D . (3.3)These equations an be ombined into a seond order equations for the density ontrast:

D̈ + (1 − 3w)HḊ − 3

2
H2(1 + 2w − 3w2)D + c2sk

2D = 0 (3.4)By de�ning a new variable x ≡ kη and the parameter ν ≡ 2/(1+3w), we obtain the followingequation for D ≡ Dxν−2 d2dx2
D +

2

x

ddxD +

[

c2s −
ν(ν + 1)

x2

] D
x2

= 0 , (3.5)For c2s 6= 0 the solution is a linear ombination of spherial bessel (jν) and von Neumann(nν) funtions of order ν (Abramowitz & Stegun, 1970)
D = C1jν(csx) + C2nν(csx) ≡ Zν(csx) . (3.6)Therefore the general solution of Eqs. (3.1) is

D = x2−νZν(csx) , (3.7)
V =

3

2
ν

[

Zν(csx)x
1−ν +

2 − ν

3ν(1 + ν)
x2−νZν−1(csx)

]

, (3.8)
Ψ = −3

2
ν2x−νZν(csx) . (3.9)The asymptoti behavior of the Bessel and von Neumann funtions is

jν ∝ xν for csx≪ 1, jν ∝ 1

x
cos(csx− γν) for csx≫ 1, (3.10a)

nν ∝ x−(ν+1) for csx≪ 1, nν ∝
1

x
sin(csx− γν) for csx≫ 1. (3.10b)with γν ≡ π(ν + 1)/2. For an expanding universe (x > 0) and ν > −1 (i.e. w < −1 or

w > −1/3) nν is divergent at early times, csx ≪ 1. Therefore we set C2 = 0 and we obtainthe asymptoti solutions (for w > −1/3)






















Ψ = Ψ0

D = −2

3

Ψ0

ν2
x2

kV =
2

(1 + ν)ν2
Ψ0x

for csx≪ 1 (3.11)
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Ψ = Ψ0x
−(1+ν) cos(csx+ γν)

D = −2

3

Ψ0

ν2
x1−ν cos(csx+ γν)

kV =
(ν − 2)Ψ0

3(1 + ν)
x1−ν cos(csx+ γν−1)

for csx≫ 1. (3.12)This solution was �rst disovered by Bardeen (1980). The Bardeen potential is onstant onsuper-horizon sales, and deays one inside the aousti horizon. On sales smaller thanthe aousti horizon (csx≪ 1) density perturbations osillate: the gravitational attration isresisted by the �uid pressure (w 6= 0) and this sets up aousti osillations. The amplitude ofdensity and veloity �utuations remains onstant inside the horizon in the ase of radiation(ν = 1, w = 1/3), while it inreases for w > 1/3 or w > −1/3. The behavior of the densityand veloity perturbations on sales larger then the horizon depends on the variable underonsideration. While D, orresponding to the density ontrast in the omoving gauge, isgrowing, the density ontrast in the �at sliing gauge Dg remains onstant. Therefore thereis no universal riterion to establish the growth of perturbations outside the horizon: thebehavior depends on the hosen gauge. As we go to early times, x→ 0, perturbation theoryremains valid as long as it is possible to �nd a gauge in whih the largest perturbation variabledoes not diverge. We ome bak to this point in � 4.3, where we derive the most generalinitial onditions.The ase of dust w = c2s = 0 has a power-law solution on all sales. It su�es to remarkthat Eq. (3.5) redues to d2dx2
D +

2

x

ddxD − 6

x2
D = 0 , (3.13)whose general solution is D = Ax2 +Bx−3. The growing exat solution is therefore























Ψ = Ψ0

D = −1

6
Ψ0x

2 ∝ a

kV =
1

3
Ψ0x ∝ a1/2

for dust, w = 0. (3.14)Clearly, in a dust universe perturbations always grow on sub-horizon sales, sine there is nopressure to ounterbalane the gravitational attration.3.2 Cold dark matter and radiationIn this setion we investigate the evolution of perturbations in a �at universe ontaining onlyradiation and a pressureless matter omponent whih is deoupled from radiation. Thus thematter has only a gravitational e�et and represents a old dark matter omponent. In thenext setion we inlude massless deoupled neutrinos in the piture, while the role of baryons,whih are oupled to photons via Thomson sattering, is investigated in � 3.4.3.2.1 Adiabati and isourvature modesIn this setion we use as density variable the density ontrast in the total omoving gauge
∆α, de�ned in Eq. (2.37, page 30). We identify the radiation with photons (subsript γ),



50 Fundamental equationsand we have wγ = c2γ = 1/3, while for matter wm = c2m = 0. We normalize the sale fatorat the matter-radiation equality, so that
ρ̄m(aeq) = ρ̄γ(aeq) with aeq ≡ 1 hene ρ̄m

ρ̄γ
= a . (3.15)The total equation of state parameter and sound veloity are therefore

w =
1

3

1

a+ 1
and c2s =

1

3

4

4 + 3a
. (3.16)As long as we are onsidering times well before deoupling, the photons form a tight oupled�uid with baryons, sine Thomson sattering prevents the generation of anisotropi stress(and higher multipoles in the Boltzmann hierarhy) in the photons omponent, Πγ = 0, aswe show in � 3.4. Therefore, via the anisotropi stress equation (2.51, page 32), the Bardeenpotentials are equal, Ψ = Φ. The Bardeen equation for Φ (2.67, page 34) is then

Φ̈ + 3H(1 + c2s)Φ̇ + 3(c2s − w)H2Φ = c2s△Φ + 3
2H2wΓ , (3.17)where Γ = Γrel is related to the relative entropy perturbation S ≡ Smγ = ∆m − 3

4∆γ byEq. (2.41, page 30). By using the Poisson equation we an rewrite the above as an equationfor the total density ontrast,
H−2D̈ + (1 − 6w + 3c2s)H−1Ḋ − 3

2(1 + 8w − 3w2 − 6c2s)D =

− c2s

(

k

H

)2
[

D − 3c2z(1 +w)S
]

,
(3.18)where we have introdued c2z ≡ ρ̄γ ρ̄m(c2γ − c2m)/ [(1 + w)ρ̄] = a/(3a + 4).The energy onservation equation (2.60, page 33) reads for the radiation and matteromponents:

Ḋg,γ +
4

3
k2Vγ = 0 (radiation), (3.19)

Ḋg,m + k2Vc = 0 (matter). (3.20)Subtrating (3.20) from (3.19) and using that
Dg,α

1 + wα
− Dg,β

1 +wβ
=

∆α

1 + wα
− ∆β

1 + wβ
= Sα,β (3.21)we obtain

Ṡ = −k2(Vm − Vγ) . (3.22)In order to �nd an evolution equation for the entropy S, we derive (3.22) and making use ofthe momentum onservation equation (2.63, page 33) after a lengthy manipulation we arriveat
H−2S̈ + (1 − 3c2z)H−1Ṡ =

(

k

H

)2 [ 1

3(1 + w)
D − c2zS

]

. (3.23)Together, Eqs. (3.18) and (3.23) desribe the evolution of adiabati (urvature) and isour-vature (dark matter) perturbations in a �at universe ontaining only dark matter and radi-ation.



3.2 Cold dark matter and radiation 51We start by onsidering large sales (k ≪ H) at early times, a→ 0. Then the right handside of (3.18) and (3.23) is negligible, thus D and S are deoupled. Using the sale fator aas variable, we obtain an homogeneous system














a2 d2da2
D − 2D = 0

a2 d2da2
S + a

ddaS = 0

(Large sales, radiation epoh) (3.24)whose general solution onsists of four modes,
{

D = D0a
2 +D1a

−1

S = S0 + S1 ln a
. (3.25)We will all the mode with D0 6= 0,D1 = S0 = S1 = 0 the growing adiabati mode, while theone with S0 6= 0,D0 = D1 = S1 the growing isourvature mode (notie that for a < 1 the

S1 mode is indeed deaying). As we show below, the isourvature mode at early times hasvanishing total density ontrast, Bardeen potential urvature perturbation, ζ = 0, hene itsname1.Consider �rst the growing adiabati mode: we an now restore the solution for D in thesoure term on the right hand side of Eq. (3.23) to �nd the solution for S up to seond orderin k/H. The Bardeen potential is easily found from the Poisson equation, and the result is






























































D = D0a
2

S =
D0

64

(

k

H

)2

a2 ∝ a4

Φ = −3D0

2

(Ha
k

)2

= onst
kV =

1

2

k

HΦ ∝ a

ζ = −9D0

4

(Ha
k

)2

= onst (adiabati, radiation epoh). (3.26)
Clearly, we reover the behavior already found in the single radiation �uid ase for thepotential. We also disover that the entropy perturbation grows as a4, but remains negligibleon large sales, thus the adiabatiity ondition S ≈ 0 is maintained on large sales.For the growing isourvature mode we �nd, to the same approximation























































D =
S0

12

(

k

H

)2

a ∝ a3

S = S0

Φ = −S0

8
a

kV = −S0

8

k

Ha ∝ a2

ζ = −3S0

16
a

(isourvature, radiation epoh). (3.27)
1The CDM isourvature mode is sometimes termed �isothermal� in the literature: this omes from the fatthat D = 0 implies δT

T
= −

ρ̄m

ρ̄γ
∆m ≈ 0 at early times. Intuitively, it takes only a small perturbation in theradiation omponent to ompensate for a �utuation in the matter at early times, beause the Universe isradiation dominated.



52 Fundamental equationsWe see that there is no generation of entropy on large sales (Ṡ = 0), however the isourvatureondition Φ ≈ 0 is maintained only as long as a≪ 1. Naively we would expet that, as longas the sale onsidered is outside the horizon, the term ontaining S on the right hand side ofEq. (3.18) is suppressed as k2/H2, thus D (hene Φ) should not grow signi�antly. However,sine Φ ∝ H2/k2, e�ets of magnitude k2/H2 in D are signi�ant for Φ. This an be seenmore diretly by rewriting the right hand side of Eq. (3.17) as −c2sk2/H2Φ− 2(1 +w)c2sc
2
zS.Therefore even on super-horizon sale the term ∝ S at as a soure for Φ whenever c2sc2z issigni�antly non-zero. This is the ase during the transition from the radiation to the matterdominated epoh.Having established the behavior in the early epoh, we now turn our attention to saleswhih enter the horizon when the universe is well matter dominated, i.e. to wavelengths suhthat

k ≪ keq ≡ H(aeq) . (3.28)The e�ets of the radiation-matter transition are easiest to disuss by looking at the behaviorof the urvature perturbation ζ. To this end we rewrite the evolution equation (2.69, page34)as
ζ̇ = −c2sH

[

2

3(1 + w)

(

k

H

)2

Φ + 3c2zS

]

. (3.29)The term ∝ Φ on the right hand side is always negligible on super-horizon sales (k/H ≪ 1);for adiabati perturbations we also have S = 0, and thus we obtain
ζ = onst (adiabati, all times), (3.30)the usual onservation law for ζ in the adiabati ase. For the isourvature mode (S = S0 =onst) we �nd by integration

ζ = −3S0

∫ a

0

da
a
c2sc

2
z −→
a→∞

−1

3
S0 (isourvature, matter epoh). (3.31)The radiation-matter transition generates a urvature perturbation from the initial isourva-ture one, and this even on super-horizon sales.Sine ζ = onst in the matter era independently on the initial onditions, we an �ndthe value of the Bardeen potential in the matter epoh simply by integrating the de�nition ofthe urvature perturbation, using that w = onst as well. We then obtain the relation (validonly in the regime where ζ = onst, w = onst)

Φ =
3(1 + w)

5 + 3w
ζ + Ca−

5+3w
2 , (3.32)and we an drop the seond term, whih is deaying for w > −5/3. Therefore

Φ(a≫ aeq) = onst = 3
5ζ (matter epoh, independent of IC). (3.33)For the adiabati mode, ζ = onst in the radiation era as well, therefore we an apply (3.32)with w ≈ onst = 1/3, getting

Φ(a≪ aeq) = onst = 2
3ζ (radiation epoh, adiabati). (3.34)



3.2 Cold dark matter and radiation 53Let us denote by Φ0 the value of Φ at the moment when the initial onditions for theperturbations are spei�ed, deep in the radiation era. The adiabati mode orresponds to
S0 = 0,Φ0 6= 0, while the isourvature mode has S0 6= 0,Φ0 = 0. From (3.33) we know that
Φ is onstant on super-horizon sales in the matter era, independent of the type of initialonditions; we denote its value by ΦMD, and we wish to express it in terms of S0,Φ0. Foradiabati perturbations, ζ stays onstant through the transition, and therefore ombining(3.33) with (3.34)

ΦMD ≈ 9
10Φ0 (adiabati, large sales). (3.35)For isourvature perturbations, the growth of ζ through the transition gives a non-zero Φ inthe matter epoh, from (3.33) and (3.31) :

ΦMD ≈ −1

5
S0 (isourvature, large sales). (3.36)In onlusion, we an summarize our results in terms of a transfer matrix as

(

Φ

S

)

a≫aeq =

(

9/10 −1/5

0 1

)(

Φ0

S0

)

. (3.37)It is often useful to use the urvature perturbation as a variable desribing the adiabatimode, instead of Φ. In terms of the initial values of the urvature and entropy perturbations,
(ζ0, S0), the �nal values in the matter era are given by a transfer matrix of the form

(

ζ

S

)

a≫aeq =

(

Tζζ TζS
0 TSS

)(

ζ0
S0

)

. (3.38)From the above analysis, we onlude that for sales k ≪ keq the transfer oe�ients are
Tζζ = 1 , TζS = −1

3
, TSS = 1 . (3.39)For smaller sales, whih enter the horizon before the universe is ompletely matter domi-nated, the oe�ients have to be found numerially.3.2.2 Aousti osillationsWe have seen in � 3.1 that perturbations in a �uid of photons osillate on sales smaller thanthe horizon. We now disuss the orresponding behavior in the presene of matter, and linkthe phase of the osillations to the adiabati or isourvature initial onditions on large sales.Negleting the anisotropi stress, Πγ = 0, the onservation equations (2.60�2.61, page 33)for photons read

Ḋg,γ + 4
3k

2Vγ = 0 (3.40)
V̇γ − 1

4Dg,γ = 2Φ (3.41)where Φ an be onsidered as an external potential determined by the Poisson equation. Wean reast the above in a seond order equation for the density perturbation:
D̈g,γ + c2γk

2Dg,γ = 2Φ . (3.42)



54 Fundamental equationsAdiabati initial onditionsLet's onsider Eq. (3.42) deep in the matter era, when the driving fore is just a onstant setby the dominating matter ontribution in the adiabati ase. Then the general solution ofEq. (3.42) is
Dg,γ = C1 cos(cγkη) +C2 sin(cγkη) − 8Φ (3.43)
kVγ =

1

4cγ
[C1 sin(cγkη) − C2 cos(cγkη)] . (3.44)For small sales, where all hoies of density perturbation are equivalent, we reover theosillatory behavior already found in � 3.1. The density perturbations perform harmoniosillations around a zero point displaed by a onstant fator.The onstants C1 and C2 are �xed by the initial onditions, adiabati or isourvature,established by mathing the above solution on large sales with the results of the previoussetion. To this end, we shall use the following relation between Dg,γ and ∆γ , whih followsfrom the de�nitions of the variables:

1
4Dg,γ = 1

3∆m − 1
3S −HV − Φ . (3.45)From the momentum onservation equation (2.63, page 33) we obtain for the total veloityperturbation in the matter era

V̇ + HV = Φ , (3.46)with solution
V = V1a

−1 +
2

3
H−1Φ . (3.47)The term ∝ a−1 is deaying, therefore we retain V ∼ 2

3H−1Φ. Inserting this into Eq. (3.45)and using that in the matter era Φ = 9/10Φ0 − S0/5 we obtain on large sales, where
∆m ∼ (k/H)2Φ ≪ Φ,

1
4Dg,γ(a≫ aeq) ≈ onst = −3

2Φ0 . (3.48)Thus on large sales and in the matter epoh, Dg,γ is independent of the entropy perturbation,and is simply related to the primordial Bardeen potential.The adiabati mode stays deoupled from the isourvature mode on super-horizon sales,therefore we an set the initial onditions for the solution (3.43�3.44) by taking its onstant-time super-horizon limit, i.e. k → 0, η = onst ≫ ηeq. This gives, with S0 = 0

1
4Dg,γ = 1

4C1 − 2ΦMD (3.49)and omparing with Eq. (3.48) and using again (3.35) we obtain
C1 = 4

3ΦMD . (3.50)The onstant C2 is set by noting that the adiabati ondition S = 0 is preserved onsuper-horizon sales, and that, beause of energy-momentum onservation for matter andradiation, this implies
Vγ = Vm . (3.51)Sine

V =
4

4 + 3a
Vγ +

3a

4 + 3a
Vm (3.52)



3.2 Cold dark matter and radiation 55we have that V ≈ Vm for a≫ aeq, and with (3.47) it follows that
Vγ = Vm ≈ 2

3ΦH−1 . (3.53)Comparing this with the large sale limit of Eq. (3.44),
lim

k→0,η=onst Vγ =
η

4

[

C1 − C2 lim
y→0

cos y

y

]

, (3.54)we see that we need to impose C2 = 0, otherwise Vγ would diverge in the large-sale limit
y → 0, and we reover again (3.50) by using H = 2/η:

C1 = 4
3ΦMD and C2 = 0 . (3.55)In onlusion, the adiabati solution is







Dg,γ =
4

3
Φ cos(cγkη) − 8Φ

kVγ = cγΦ sin(cγkη)
(adiabati). (3.56)Isourvature initial onditionsAs we have seen in the previous setion, Φ = 0 is no longer maintained in the matter era forisourvature initial onditions. It is therefore onvenient to solve (3.42) at early times in theradiation regime, where we know that the driving term on the right hand side is Φ ∝ η (f.Eq. (3.27, page 51)):

Dg,γ = C1 cos(cγkη) +C2 sin(cγkη) −
3

4
k−2η−1eq S0η , (3.57)

kVγ =
1

4cγ
[C1 sin(cγkη) − C2 cos(cγkη)] +

9

16
k−3η−1eq S0 . (3.58)The onstants C1 and C2 are determined by looking at the early time limit on super-horizon sales, η → 0, k = onst ≪ keq. From the early-times solution (3.27) we have that

Dg,γ → 0 for η → 0, and therefore we need to set C1 = 0. The early time limit for Eq. (3.58)gives
lim

η→0,k=onst kVγ = − C2

4cγ
+

9

16
k−3η−1eq S0 , (3.59)while from the isourvature solution (3.27) ombined with (3.52) we have for a≪ aeq

lim
η→0,k=onst kVγ = kV ∝ η2 → 0 . (3.60)By requiring that the left hand side of (3.59) vanishes we onlude that

C2 =
3

4cγ
k−3η−1eq S0 . (3.61)In onlusion, isourvature initial onditions exite a sine osillation in the radiation den-sity:











Dg,γ =
3

4
k−2η−1eq S0

[√
3k sin(cγkη) − η

]

kVγ = −3
√

3

16
k−2η−1eq S0

[√
3k cos(cγkη) − 1

]

(isourvature). (3.62)



56 Fundamental equationsAn heuristi argument (Hu & Sugiyama, 1995b) explains why adiabati initial onditionsexite the osine mode while isourvature initial onditions produe the sine mode: at earlytimes, the potential ating as a driving fore on the right hand side of Eq. (3.42) is onstantfor adiabati initial onditions, while it is ∝ η in the isourvature ase. This mimis a osineand a sine foring term, respetively, and thus the orresponding modes get exited. Anapproximated analytial solution valid until reombination and through the radiation-mattertransition an be found in Hu & Sugiyama (1995a).3.3 Neutrinos and initial onditionsIn this setion we extend the above treatment to inlude massless neutrinos. They aredesribed as an additional relativisti omponent, whih is deoupled from the others belowa temperature of a few MeV, and therefore their distribution funtion obeys the ollisionlessBoltzmann equation. We shall see in the following that the anisotropi stress reated by freestreaming of neutrinos onsiderably ompliates the simple piture of the previous setion.By inluding one more omponent in the mixture, we generally expet two additionalmodes to arise, whih we will be able to identify with the so-alled �neutrino isourvaturedensity� (NID) and �neutrino isourvature veloity� (NIV) modes. In the following, we shallrefer to both of them as to �neutrino isourvature modes�2, and we will sometimes all theneutrino density mode �neutrino entropy�, whih is a more appropriate de�nition in our view.These two modes were �rst found by Buher et al. (2000), who solved a formal expansion inpowers of η of the Einstein and onservation equations at early times and on large sales (i.e.for ηk → 0) in synhronous gauge, an analysis repeated in the gauge invariant formalism inTrotta (2001). The approah we propose here o�ers a more physial understanding and theapproximations we employ ould be extended to a re�ned analytial model of the sub-horizonstruture of the neutrino modes angular power spetra. We expliitly give some details ofthe derivation, sine to our knowledge this alulation is new.We argue in � 3.3.4 that an �anisotropi stress mode�, whih is haraterized by a non-vanishing Πν at early times, is non-physial, sine it leads to inurable divergenes in theperturbation variables.3.3.1 Evolution equations for a three omponents modelIn the presene of neutrinos, the bakground radiation energy density is written as
ρ̄r = ρ̄γ + ρ̄ν = ρ̄γ(1 + rν) , (3.63)where we have de�ned the onstant rν ≡ (7Nν/8)(4/11)

4/3 ≈ 0.68 for Nν = 3 neutrinofamilies. As before, the sale fator is normalized to matter-radiation equality, the onformalHubble parameter is
H =

1 + η/2

η + η2/4
=

(1 + 7a)1/2

7a
, (3.64)2The term �isourvature� is somewhat abused for the neutrino density mode, see the remark after Eq. (3.93)on page 61. We nevertheless employ this terminology for simpliity and onsisteny with the literature.



3.3 Neutrinos and initial onditions 57and the osmologial parameters as a funtion of the sale fator are of the form
Ων(a) =

rν
(1 + rν)(1 + a)

, (3.65)
Ωγ(a) =

1

(1 + rν)(1 + a)
, (3.66)

Ωm(a) =
a

(1 + a)
. (3.67)We still neglet the dynamial e�et of baryons, whih to lowest order is unimportant, butontinue to assume that Thomson sattering drives to zero all multipoles ℓ ≥ 2 in the Boltz-mann hierarhy for photons, whih are then desribed as a relativisti perfet �uid. Neutrinosbeome ollisionless after neutrino deoupling, therefore the �uid approximation is insu�-ient. A neutrino anisotropi stress is generated by free streaming and to lowest order we utthe Boltzmann hierarhy for neutrinos, Eq. (2.96, page 37), by setting to zero all moments

≥ 3. The goal is to derive seond order evolution equations for the three relevant and physialquantities: the total density ontrast D, the entropy perturbations in the dark matter, Smγ ,and in the neutrinos, Sνγ , supplemented by an evolution equation for the neutrino anisotropistress.The soure term in the Bardeen equation is modi�ed in two ways: there is an additionalentropy ontribution oming from the neutrino entropy perturbation Sνγ , and we have totake into aount the anisotropi stress term. This gives for the evolution equation of thetotal density ontrast D (ompare with (3.18, page 50))
H−2D̈ + (1 − 6w + 3c2s)H−1Ḋ − 3

2(1 + 8w − 3w2 − 6c2s)D =

−
(

k

H

)2
{

[

c2sD − 3c2sc
2
z(1 + w)

(

Smγ −
rν

1 + rν
Sνγ

)]

+
2rν

3(1 + rν)(1 + a)

[

HΠ̇ν −
[

(1 + 3w) − 3c2z
]

H2Πν −
1

2
k2Πν

]

}

.(3.68)Equation (3.23, page 50) aquires extra terms oming from Sνγ , reading
H−2S̈mγ+(1−3c2z)H−1

[

Ṡmγ − Ṡνγ

]

=

(

k

H

)2 [ 1

3(1 + w)
D − c2zSmγ −

4wrν
3(1 +w)(1 + rν)

Sνγ

]

.(3.69)In deriving the above equations we have made use of (2.38, page 30) and (3.22, page 50)together with the following useful relations:
1

4
∆γ =

1

3(1 + w)
D − 4rν

3(4 + 3a)(1 + rν)
Sνγ −

a

4 + 3a
Smγ , (3.70)

kVγ = kV − 4rν
(4 + 3a)(1 + rν)

(Vν − Vγ) −
3a

4 + 3a
(Vm − Vγ) . (3.71)We obtain an equation for the neutrino entropy perturbation by deriving the di�erene ofthe momentum onservation equation for neutrinos (Eq. (2.97, page 37) written for ν insteadof γ) and the momentum onservation for the photon �uid, (3.19, page 50), with the result

S̈νγ +
k2

3
Sνγ =

k4

6
Πν . (3.72)



58 Fundamental equationsThe oupled system (3.68), (3.69) and (3.72) desribes the evolution of adiabati andentropy perturbations in a mixture of photons, dark matter and radiation, one we speify
Πν . However, on super-horizon sales and for early times, k/H ≪ 1, the anisotropi stress isunimportant, sine from (2.98, page 37) written for ν instead than for γ, it obeys

a
ddak2Πν =

8

5

k

HkVν ≈ 0 , (3.73)whih shows that on super-horizon sales there is no generation of anisotropi stress, a resultexpeted on the grounds of ausality arguments. At earlier times, the neutrinos were oupledto eletrons via weak interation proesses, whih isotropized the neutrino distribution fun-tion suppressing any appreiable anisotropi stress; hene we an assume that at the timeunder onsideration (just after neutrino deoupling) there is no anisotropi stress to zerothorder in powers of a, i.e. Πν = O(a) at least.In the above approximation and for a≪ 1 we thus obtain the simple system






























a2 d2da2
D − 2D = 0 ,

a2 d2da2
Smγ + a

ddaSmγ = a
ddaSνγ ,

a2 d2da2
Sνγ = 0 ,

(3.74)whose general solution onsists of six modes,










D = D0a
2 +D1a

−1 ,

Smγ = S0 + S1 ln a+Nva ,

Sνγ = Nd +Nva .

(3.75)We reognize the growing and deaying adiabati (the D0 and D1 terms, respetively) andisourvature dark matter (S0 and S1 terms, respetively) modes, and we also �nd two newnon-deaying modes, a onstant neutrino entropy mode Nd, and a neutrino veloity mode
Nva (the reason for this terminology is explained below).In order to go beyond this large sales solution, we need to inlude the e�et of theanisotropi stress. To this end, we reast Eq. (3.73) by substituting kVν with

kVν = kV − aH
k

[

1

1 + rν

ddaSνγ +
3(1 + rν)a

4

ddaSmγ] . (3.76)From now on we drop the last term on the right hand side, whih is always suppressed by apower of a exept in the dark matter isourvature ase, whih we do not investigate furtherhere. For the total veloity, the onstraint equation (2.50, page 32), ombined with the theanisotropi stress equation (2.51, page 32) and the Poisson equation (2.49, page 32) yield, inthe early time a≪ 1 limit
kV =

H
k

(

3

4
D − 3a

4

ddaD − rν
1 + rν

k2Πν

)

. (3.77)The evolution equation (3.73) for the anisotropi stress then reads, for a≪ 1

a
ddak2Πν +

4

5

rν
1 + rν

k2Πν =
6

5
D − 6a

5

ddaD − 8a

5(1 + rν)

ddaSνγ . (3.78)



3.3 Neutrinos and initial onditions 59In the same limit and in terms of the sale fator a, the equations for D and Sνγ beome(dropping the last term ∝ k2Πν on the right hand side of (3.68) whih is always negligibleompared to the others):
a2 d2d2a

D − 2D = −
(

k

H

)2 rν
3(1 + rν)

Sνγ −
2rν

3(1 + rν)

[

a
ddak2Πν − 2k2Πν

]

, (3.79)
a2 d2d2a

Sνγ +
1

3

(

k

H

)2

Sνγ =
1

6

(

k

H

)2

k2Πν . (3.80)The system of oupled di�erential equations (3.78), (3.79) and (3.80) is too di�ult to solveanalytially. To �nd an approximate solution valid to leading order in powers of a for earlytimes, we treat the anisotropi stress iteratively as a perturbation to the large sale solution,Eq. (3.75), in analogy with the proedure in Hu & Sugiyama (1995a). More spei�ally, weuse the large sale solution for D and Sνγ as a soure on the right hand side of Eq. (3.78) todetermine the anisotropi stress, then we re-insert the solution for Πν on the right hand sideof (3.79) and (3.80) to �nd self-onsistent orretions to the large sale behavior.As an illustration, let us �rst onsider the adiabati growing mode, D = D0a
2,D1 = S0 =

S1 = Nd = Nv = 0. In that ase, the right hand side of (3.78) is dominated by the terms in
D, giving

a
ddak2Πν +

4

5

rν
1 + rν

k2Πν = −6

5
D0a

2 , (3.81)whih has the partiular solution
k2Πν = −3(1 + rν)D0

7rν + 5
a2 . (3.82)Notie that, although the above form of Πν ∝ a2 is of the same order as the adiabati solution

D ∝ a2, its ontribution on the right hand side of (3.79) anels out beause of the fator2 in the exponent. Thus it is onsistent to have negleted the anisotropi stress in the �rstplae when deriving the large sale solution.With the above approximation forΠν , from (3.80) we an determine the growth of neutrinoentropy perturbations in the adiabati mode, �nding to leading order in powers of a
Sνγ = − (1 + rν)D0

48(7rν + 5)

(

k

H

)2

a2 ∝ a4 ≪ D . (3.83)The growth of the dark matter entropy perturbation is also modi�ed by the oupling tothe neutrino entropy perturbations on the left hand side of (3.69, page 57), but the term
∝ Ṡνγ ∝ a4 has the same saling as the term ∝ D on the right hand side, and the approximatesolution is

Smγ =
1

64

[

1 − 1 + rν
3(7rν + 5)

]

D0

(

k

H

)2

a2 ∝ a4 ≪ D . (3.84)In onlusion, the growing adiabati mode at early times in the presene of neutrinos and



60 Fundamental equationsanisotropi stress has the approximate solution (ompare with the solution (3.26, page 51)):














































































































D = D0a
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Smγ ∝
(

k

H

)2

a2 ∝ a4

Sνγ ∝
(

k

H

)2

a2 ∝ a4

k2Πν ∝ a2

Φ = −3

2

(

ka

H

)2

D0 = Φ0 = onst
Ψ = Φ0 +

3rν
7(1 + rν)

(

ka

H

)2

≡ Ψ0 = onst
kV =

1

2

k

HΦ0 ∝ a

ζ = −9D0

4

(Ha
k

)2

= onst
(adiabati). (3.85)

The Bardeen potentials are no longer equal due to the anisotropi stress, the frationalorretion being
∣

∣

∣

∣

∣

Φ0 − Ψ0

Φ0

∣

∣

∣

∣

∣

=
2

7

rν
1 + rν

≈ 0.1 , (3.86)of order 10%, in good agreement with Hu & Sugiyama (1995a).3.3.2 Neutrino entropy modeLet us now turn our attention to the Nd 6= 0 mode, with Nv = D0 = D1 = S0 = S1 = 0: thisis learly a neutrino entropy mode, sine Sνγ = onst for a→ 0.To determine the growth of perturbations in the total density D beyond the large salesolution D = 0, onsider the right hand side of Eq. (3.79): if the anisotropi stress goes atleast as a2, then the part ontaining Πν anels (for Πν ∝ a2) or is subdominant with respetto the Sνγ term (for Πν = O(a3) or higher). In any ase, we an neglet the anisotropi stressterm as a soure for D with respet to the neutrino entropy perturbation, with the aveatthat at the end of our alulation we have to hek that this assumption is satis�ed - indeed,f. Eq. (3.89). By this argument, we look for a partiular solution of
a2 d2d2a

D − 2D = −
(

k

H

)2 rν
3(1 + rν)

Nd , (3.87)whih is given by
D = − rν

9(1 + rν)
Nd

(

k

H

)2

ln(a) ∝ a2 ln(a) . (3.88)The logarithmi dependene an be negleted if we do not apply this solution over a toolarge time range (say, less than a few orders of magnitude), and replaed by the value of
ln(a) evaluated at the typial value of the sale fator in the range onsidered, a∗, whih wereabsorb in the overall normalization by de�ning a new onstant N∗

d ≡ Nd ln(a∗).



3.3 Neutrinos and initial onditions 61We an now solve for Πν by inserting the above expression for D in Eq. (3.78, page 58),and observing that on the right hand side dSνγda = 0, thus obtaining
k2Πν = N∗

d

(

k

H

)2 rν
3(7rν + 5)

∝ a2 , (3.89)whih is onsistent with our initial assumption for Πν .Finally, the Bardeen potentials follow from the Poisson equation and the anisotropi stressequation, yielding
Φ =

rνN
∗
d

6(1 + rν)
= onst , (3.90)

Ψ = Φ

(

1 − 2rν
7rν + 5

)

= onst . (3.91)The gauge invariant urvature perturbation ζ is given by (2.27, page 28) and it an berewritten as
ζ =

3

2
Φ +

a

2

ddaΦ − rν
2(1 + rν)

(H
k

)2

k2Πν . (3.92)yielding for the neutrino entropy mode
ζ =

rνN
∗
d

1 + rν

(

1

4
− rν

6(7rν + 5)

)

= onst . (3.93)This results agree with the power law solution found by Buher et al. (2000), whih theyalled �neutrino isourvature density� mode; we prefer however to term this mode �neutrinoentropy�, sine the initial urvature perturbation does not vanish, and indeed is of the sameorder as the entropy perturbation.3.3.3 Neutrino veloity modeThe mode with Nv 6= 0 has vanishing entropy at early times, sine Sνγ → 0 for a → 0, butthe bulk veloity di�erene between neutrinos and photons in non-zero,
k(Vν − Vγ) = − Ṡνγ

k
= onst (3.94)hene its name.From the power-law solution for this mode (see Buher et al., 2000; Trotta, 2001) weexpet that the anisotropi stress goes to leading order as Πν ∝ a. Indeed, by replaing thelarge-sale solution D = 0, Sνγ = Nva on the right hand side of (3.78) we �nd the partiularsolution

k2Πν = − 8Nv

9rν + 5
a . (3.95)We now use this expression as a soure on the right hand side of (3.79) to determine theorretions to D, and we an ignore the ontribution of the term ∝ Sνγ whih goes as a3ompared to the part ontaining Πν , whih is dominant, being proportional to a. We thushave to solve

a2 d2da2
D − 2D = − 16rνNv

3(1 + rν)(9rν + 5)
a , (3.96)



62 Fundamental equationsand we �nd the partiular solution
D =

8rνNv

3(1 + rν)(9rν + 5)
a . (3.97)As already notied in Buher et al. (2000), the Bardeen potentials are deaying

Φ = − 4rνNv

(1 + rν)(9rν + 5)

(H
k

)2

a ∝ a−1 , (3.98)
Ψ = −Φ , (3.99)but this does not neessarily mean that perturbation theory breaks down for a → 0. Ingeneral, a solution is onsidered non divergent if it is possible to �nd a gauge in whih all theperturbation variables do no diverge in the limit a → 0. The synhronous gauge potentialsfor the neutrino veloity mode are indeed non-singular at early times (Buher et al., 2000). Infat, even though the Bardeen potential diverge, the gauge invariant urvature perturbation

ζ vanishes to leading order. This is most easily seen by making use of Eq. (2.32d, page 29),�nding
ζ =

1

2
(Ψ + Φ) = 0 , (3.100)and thus the veloity mode is indeed an isourvature mode.The leading order orretions to Smγ = 0 indued by the neutrino modes an be obtainedas partiular solutions to Eq. (3.69, page 57), whih for early times reads

a2 dda2
Smγ + a

[ ddaSmγ − ddaSνγ] = −
(

k

H

)2 rν
3(1 + rν)

Sνγ . (3.101)Summarizing, the early time solutions for neutrino entropy (Nd 6= 0) and neutrino isourva-ture veloity (Nv 6= 0) initial onditions are:Neutrino entropy Neutrino veloity
Sνγ = Nd Sνγ = Nva

D = −
(

k

H

)2 rνN
∗
d

9(1 + rν)
∝ a2 D =

8rνNv

3(1 + rν)(9rν + 5)
a

Smγ = −
(

k

H

)2 rνNd

12(1 + rν)
∝ a2 Smγ = aNv

kV =
1

2

k

HΨ ∝ a kV =
k

HΨ = onst (3.102)
k2Πν =
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k

H

)2 rνN
∗
d

3(7rν + 5)
∝ a2 k2Πν = − 8Nv

9rν + 5
a

Φ =
rνN

∗
d

6(1 + rν)
= onst Φ = − 4rνNv

(1 + rν)(9rν + 5)

(H
k

)2

a ∝ a−1

Ψ = Φ

(

1 − 2rν
7rν + 5

)

= onst Ψ = −Φ

ζ =
rνN

∗
d

1 + rν

(

1

4
− rν

6(7rν + 5)

)

= onst ζ = 0 .



3.3 Neutrinos and initial onditions 633.3.4 The divergent nature of the anisotropi stress modeOne ould ask whether it would be possible to exite a growing �neutrino anisotropi stressmode�, haraterized by initial onditions D = Sνγ = Smγ = Vνγ = Vmγ = 0 and Πν 6= 0for a → 0. Even though highly exoti, suh a mode, if it existed, should be inluded if wewant to onsider the most general type of perturbations. We now show that this mode isdivergent in all gauges, and therefore is non-physial, sine it would lead to the breakdownof perturbation theory for a → 0. Alternatively, we an see it as a deaying mode, whihtherefore does not need to be onsidered sine it quikly disappears.Consider the anisotropi stress equation (2.51, page 32) with Πν = Π0 = onst on theright hand side,
Ψ = Φ − rν

(1 + rν)(1 + a)
H2Π0 . (3.103)Sine H = η−1 to leading order for a ≪ aeq, it follows that Ψ ∝ η−2. The fat that theBardeen potential diverges at early times is not by itself su�ient to disard the orrespondingmode, as we have seen in the example of the neutrino veloity mode. A neessary ondition,however, is the existene of a gauge in whih all of the perturbation variables onstrutedout of A,B,C,E, δ, v, πL are non-divergent. For the neutrino veloity mode, this gauge isthe synhronous gauge. Clearly, sine Ψ is a gauge invariant variable, by onstrution itdoes not hange under a gauge transformation but the variables A,B,C,E do, aording tothe transformation laws (2.18, page 26). If we expand in a Laurent series around η = 0 thede�nition of Ψ, Eq. (2.25b, page 28), and we allow terms ηn with exponent n ≥ −2, beauseof H = 1/η we obtain to leading order

A = Ψ ∝ η−2 . (3.104)In other words, in the radiation dominated universe a metri perturbation of the form A ∝
η−2 is gauge invariant. This an also be seen diretly from the transformation law for A,Eq. (2.18a, page 26): the partHT+Ṫ does not ontain terms∝ η−2 if T is written as a Laurentseries in η. We onlude that Π0 6= 0 indues a divergene of A for early times, whih does notdisappear in any gauge. One ould oneive to ombine A with other diverging variables toonstrut via anellation a non-diverging metri variable: this however would unavoidablyprodue divergent terms in the matter variables. Therefore a neutrino anisotropi stress modeis always deaying in all gauges.In priniple, there is a whole hierarhy of modes oming from setting Θℓ

ν 6= 0 for ℓ ≥ 3as initial onditions in the neutrino Boltzmann hierarhy. As we notied in � 2.2.4, higherorder moments are oupled to the potentials and to the veloity and density perturbations bysuessive powers of kη. By reversing the argument, we see that Θν
ℓ−1 = O (Θν

ℓ /kη) impliesthat in the early Universe and on super-horizon sales, kη ≪ 1, hoosing Θℓ = O(1) for ℓ ≥ 3would produe divergent behavior in the lower-order multipoles of the hierarhy. Sine for
ℓ ≥ 2 the multipole moments are gauge invariant, it follows that there is no gauge in whihsuh a mode is growing. In summary, the adiabati and the general isourvature modespresented above onstitute the most general type of perturbation.



64 Fundamental equations3.4 The role of baryonsIn this setion, we go bak to the model of a Universe ontaining dark matter and photons,and re�ne the treatment given in � 3.2 by taking into aount the role of baryons in thedynami of the osillations. For simpliity, we neglet the orretions indued by the neutrinosanisotropi stress, omitting neutrinos entirely.Before reombination photons interat with eletrons via Thomson sattering (see setion2.2.5). The time-sale for the sattering proess is set by the Compton sattering time τ̇−1,whih represents the typial time between two ollisions. Tight oupling is an expansion inpowers of τ̇−1, assuming that the sattering rate is rapid enough to equilibrate hanges in thephoton-baryons �uid, and in this limit moments ℓ ≥ 2 in the photon distribution funtion aresuppressed by suessive powers of τ̇−1. Therefore to lowest order the photon distributionfuntion is desribed by its zeroth and �rst multipoles only, and we an set Πγ = Θℓ≥3 = 0,whih justi�es the approximation taken in the previous setion. Therefore the trunatedBoltzmann hierarhy (2.127, page 42) gives for photons
Ḋg,γ +

4

3
k2V = 0 , (3.105)

V̇γ −
1

4
Dg,γ − 2Φ = −aσTne(Vγ − Vb) . (3.106)To ensure onservation of the total momentum, we need to supplement the onservationequation for baryons with the Thomson drag fore term oming from the sattering proess,obtained as the �rst moment of the ollision term

F drag
j = aσTneργ

∫ dΩ
4π
njC [f ] . (3.107)The momentum onservation for baryons, Eq. (2.60, page 33), therefore gives

Ḋg,b + k2Vb = 0 (3.108)
V̇b + HVb − Φ = − 1

R
aσTne(Vb − Vγ) , (3.109)and we have de�ned R ≡ 3ρ̄b/(4ρ̄γ), whih an easily be estimated

R ≈
(

670

1 + z

)(

Ωbh
2

0.022

)

. (3.110)The set of Eqs. (3.105�3.106) and (3.108�3.109) desribes the evolution of perturbationsfor the tight-oupled photon-baryon �uid, while the dark matter omponent enters via itsin�uene on the gravitational potential Φ. To lowest order in 1/τ̇ , ollisions fore the baryonsand photons veloities to oinide, Vγ = Vb, whih via Eq. (3.22, page 50) implies Ṡbγ = 0,hene the entropy per baryon is onserved.Equations (3.105, 3.106 and 3.109) an now be ombined into the equation of a damped,fored harmoni osillator:ddη [(1 +R)Ḋg,γ

]

+
k2

3
Dg,γ = −4

3
(2 +R)k2Φ . (3.111)By omparing with Eq. (3.42, page 53), we see that baryons have two e�ets: they hangethe e�etive mass of the system (fator (1 + R) on the left hand side) and they displae



3.5 Damping 65the zero point of the osillation by adding to the potential Φ. Both modi�ations are aonsequene of the fat that baryon add to the mass of the system but not to the restoringpressure, whih is still given by the photons alone.The time dependene of R is of the order of the Hubble time, hene large omparedto the time sale of one osillation. For illustrative purpose, we an then neglet the timedependene of R and obtain from Eq. (3.111)
D̈g,γ + c2sk

2Dg,γ = −4(2 +R)c2sk
2Φ , (3.112)where the sound speed of the oupled �uid is c2s = 1/(3(1 + R)). At early times, c2s → 1/3,as appropriate for radiation, while at late times c2s ≈ 0, when the universe is dominated bymatter. The homogeneous solution is still a superposition of sine and osine osillations, butadding the baryons slows down the period by dereasing c2s with respet to the pure photons�uid. This is responsible for a shift in the aousti peak positions and for a larger distanebetween the peaks in the CMB power spetrum, see the explanations regarding the role ofthe shift parameter on page 89.The adiabati solution (3.56) beomes

Dg,γ =
4

3
(1 +R)Φ cos(cskη) − 4(2 +R)Φ , (3.113)

kVγ =

(

1 +R

3

)1/2

Φ sin(cskη) . (3.114)The amplitude of the osine osillation has inreased by a fator (1 + R), and the potentialwell has deepened by an extra fator (1 + R/2). This displaement of the zero point of theosillations indues a boost (derease) of the odd (even) peaks in the power spetrum some-times denotes as �baryon driving�, whih is disussed in � 4.1.2.2 and shown in Fig. 4.6 onpage 91. Finally, the amplitude of the veloity osillation beomes smaller, sine it is sup-pressed by a fator cs with respet to the density and cs is smaller in the presene of baryons.This leads to a suppression of the Doppler ontribution to the aousti peak struture. FromEq. (3.110) we obtain that at the moment of deoupling, zde ≈ 1100, we have R ≈ 0.6.The solution to (3.111) for time-dependent R an be found in the WKB approximation (Hu& Sugiyama, 1995a), in whih ase the qualitative piture skethed above slightly hanges:the sound speed beomes k ∫ csdη, while the amplitude of the osillations grows in time as
c
1/2
s . This an be seen simply by onsidering the quantity mωA2, whih for an harmoniosillator is an adiabati invariant: sine in our ase the e�etive mass m = (1 + R)1/2dereases in time, it follows that the amplitude A ∼ (1 +R)−1/4 ∼ c

1/2
s .3.5 DampingIn the above disussion, we have negleted the fat that reombination takes a �nite timeto omplete, and the aousti osillations are not frozen instantly. This ��nite thikness� ofthe last sattering surfae has a twofold e�et: photon di�usion and anellation. Di�usiondamping arises beause of the imperfet oupling between photons and baryons, so thatphotons di�use out of over-dense into under-dense regions and erase �ne sale anisotropies;anellation ours for sales whih have the time to osillate through reombination, so



66 Fundamental equationsthat the e�et of photons that last sattered on a rest of the osillation is anelled bythe ontribution of the photons oming from a trough. Canellation produes a power lawdamping of the �utuations (Hu & Sugiyama, 1995a), while di�usion damping is exponentialand is by far the dominant e�et, and the one to whih we now turn our attention. It is oftenreferred to as �Silk damping� (Silk, 1968).In view of obtaining a dispersion relation ω(k) for photons aurate to �rst order in τ̇−1,we look for solutions of the form Vγ ∝ exp ı
∫

ωdη. At this order we need to inlude thephoton anisotropi stress, whih to �rst order in τ̇−1 from Eq. (2.127, page 42) is given by(negleting polarization e�ets)
Πγ = τ̇−1 16

9
Vγ . (3.115)Using the anisotropi stress equation (2.51, page 32) we an substitute in the dipoleequation (2.127b, page 42) Φ = Ψ + H2Πγ . However, we assume that the osillation timesale is muh shorter that the expansion time sale, i.e. ω−1 ≪ H−1, so that we an negletthe term H2Πγ in the photon dipole. By the same token, in the following we also neglet alltime dependenies of the potentials and of R ompared with the osillation time sale.We now expand the baryon momentum onservation equation (3.109) up to seond orderin τ̇−1, and �nd, under the above assumptions

Vb = Vγ − τ̇−1R(ıωVγ − Φ) − τ̇−2(Rω)2Vγ + O(τ̇−3) . (3.116)Inserting this into Eq. (2.127b, page 42) we obtain
ıω(1 +R)Vγ =

1

4
Dg,γ + (2 +R)Φ − τ̇−1Vγ

[

(Rω)2 − 8

27
k2

]

. (3.117)To lowest order in τ̇−1 we have found in � 3.4 that the quantity 1
4Dg,γ+(2+R)Φ osillates withthe same frequeny as Vγ , see Eq. (3.112). Therefore we set 1

4Dg,γ + (2 +R)Φ ∝ exp ı
∫

ωdη,and using the photon monopole equation (3.105) we arrive at
ω2 =

k2

3(1 +R)
+ ıτ̇−1 ω

1 +R

[

R2ω2 +
8

27
k2

]

. (3.118)To zeroth order we �nd as before ω2 = k2/[3(1+R)], whih we an use to obtain the �rstorder solution
ω =

k
√

3(1 +R)
+ ıτ̇−1 k2

6(1 +R)

[

R2

(1 +R)
+

8

9

]

. (3.119)The imaginary term in the frequeny indues an exponential damping of the osillatorysolutions of the form exp(−k2/k2D), with the harateristi damping sale given by
k−1D =

∫

1

6τ̇

[

R2

(1 +R)2
+

8

9(1 +R)

]dη . (3.120)Inluding polarization e�ets via Eqs. (2.132, page 42) and (2.136, page 42) would inreasethe damping, by hanging the numerial fator 8/9 in the above equation to 16/15.



3.6 Observable quantities 673.6 Observable quantities3.6.1 Temperature �utuationsWe now alulate the �utuations in the CMB photon temperature on the sky. When thephoton mean free path beomes larger than the horizon sale, 1/τ̇ ≫ 1/H, the Universebeomes transparent and photons propagate along null geodesis (free streaming regime).In this setion we alulate the photon temperature today with the line of sight method:we formally integrate the Boltzmann equation along the photon path, and obtain the tem-perature measured today as an integral over a time dependent soure term. This approahinludes in priniple all the e�ets due to imperfet photons-eletrons oupling and reion-ization as well, and it is the ore of the fast numerial algorithms for the integration of thephoton Boltzmann equation, suh as CMBfast (Seljak & Zaldarriaga, 1996). Another deriva-tion of the same result based on a more physial understanding of the free streaming regimean be found in Durrer (1990).Consider the ollisional Boltzmann equation for the photons temperature Θ(η, k, µ = k̂·n)(were we neglet polarization)
Θ̇ + ıkµΘ + ıkµ(Ψ + Φ) = −τ̇

[

Θ + ıµkVb − Θ0 −
1

2
P2Θ2

]

, (3.121)and denote with
τ(η) ≡

∫ η0

η
τ̇dη̃ (3.122)the total opaity from the time η until today. Using the equalityddη (Θeıkµηe−τ) = eıkµηe−τ
[

Θ̇ + ıkµΘ + τ̇Θ
] (3.123)we obtain from (3.121)

Θ = −
∫ η0

0
eıkµ(η−η0)e−τ

[

τ̇

(

ıµkVb − Θ0 −
1

2
P2Θ2

)

+ ıkµ(Ψ + Φ)

]

. (3.124)The seond term on the right hand side an be integrated by parts and we drop theboundary term, whih ontributes only to the monopole and is thus unobservable, obtaining
Θ(η0, k, µ) =

∫ η0

0
dηeıkµ(η−η0)g(η)

[

−ıµkVb + Θ0 + 1
2P2Θ2 + Ψ + Φ

]

+

∫ η0

0
dηeıkµ(η−η0)e−τ (Ψ̇ + Φ̇) ,

(3.125)and we have de�ned the visibility funtion
g(η) ≡ τ̇ e−τ . (3.126)Equation (3.125) is an integral system of equations, sine moments ℓ < 3 of the photonstemperature appear on both sides. However, the left hand side an be determined given thetime evolution of an handful of quantities whih at as a soure on the right hand side: thephotons moments ℓ < 3 are alulated from the Boltzmann hierarhy (2.126, page 41), thebaryon and CDM veloity and density perturbation from the �uid onservation equations



68 Fundamental equations(2.62�2.63, page 33), while the Bardeen potentials follow from the Poisson equation (2.49)and either the onstraint equation (2.50) or the anisotropi stress equation (2.51, page 32).Neutrinos an be inluded via a ollisionless Boltzmann hierarhy, Eq. (2.90, page 36). Thegreat advantage is that only the �rst few moments of the ollisional Boltzmann hierarhy forphotons need to be omputed aurately in order to obtain the soures of (3.125), reduingthe number of oupled di�erential equations whih needs solving from several thousands to afew dozens. This line of sight integration approah is the ore algorithm of all modern odesfor the omputation of the CMB power spetrum (Seljak & Zaldarriaga, 1996).The visibility funtion g(η)dη in (3.125) enodes the information regarding the ionizationhistory of the Universe, and an be interpreted as the probability that a given CMB photonwas last sattered between η and η + dη. The sharp drop of the free eletron density neat deoupling makes the visibility funtion sharply peaked around ηde, f. the solid linein Fig. 6.15. When the Universe is reionized at later time, the visibility funtion beomesnon-zero again, and the free streaming regime goes one again over in a ollisional regime(� 4.1.3.2).In the limit of instantaneous reombination, the LSS beomes in�nitely thin and thevisibility funtion a delta funtion peaked at ηde, while we an approximate e−τ with theHeaviside step funtion u(η − ηde). In this limit, the tight oupled �uid approximationfor photons goes over diretly to the free streaming regime, and there is no generation ofphotons anisotropi stress nor polarization. Performing the time integral of (3.125) andsetting to zeroth order Vb = Vγ we �nd
Θ(η0, k, µ) = eıkµ(ηde−η0)

[

Θ(OSW) + Θ(Dpl) + Θ(ISW)] , (3.127)where
Θ(OSW) ≡ [Θ0 + Ψ + Φ] (ηde, k) =

[

1

4
Dg,γ + Φ + Ψ

]

(ηde, k)
=

[

1

4
Ds,γ + Ψ

]

(ηde, k) (3.128)
Θ(Dpl) ≡ −ıµkVγ(ηde, k) (3.129)
Θ(ISW) ≡ ∫ η0

ηde dηeıkµ(η−η0)(Ψ̇ + Φ̇)(η, k) (3.130)The temperature �utuation onsists of three terms:
• The ordinary Sahs-Wolfe (OSW) part, Θ(OSW). The photons temperature monopole

Θ0 on the last sattering surfae, together with the potential terms Φ and Ψ, re�etintrinsi inhomogeneities in the radiation �uid and in the metri at the moment of de-oupling. On large sales, the ordinary SW e�et is responsible for the SW plateau inthe temperature power spetrum, while on intermediate sales the osillations of Dg,γprodue the familiar peak struture.
• The Doppler term Θ(Dpl) ∝ kVb arises beause of the relative veloity of observerand emitter. Its ontribution shows up on the aousti peak sale.
• The integrated Sahs-Wolfe (ISW) e�et produes the term Θ(ISW), and it isindued by a time dependene of the Bardeen potentials along the path of the photons.



3.6 Observable quantities 69The early ISW e�et is due to the fat the the universe is not ompletely matterdominated at reombination and therefore the potentials are not exatly onstant; thelate ISW is generated when the late universe beomes dominated by the urvature or aosmologial onstant term, both of whih indue a time dependene in the potentials.The dependene of the anisotropies on the osmologial parameters is presented in � 4.1.3.6.2 Angular power spetraThe relevant quantities for the omparison of theoretial models and observations are thetemperature and polarization angular power spetra, whih we introdue in this setion. Werefer the reader to � 5.1.1 for preise de�nitions of the terminology. We denote by 〈·〉 thetheoretial ensemble average over realizations.Temperature power spetrumThe temperature �utuation in diretion n on the sky measured by an observer today (η0)and here (x0) is a superposition of plane wave ontributions (in a �at Universe)
Θ(η0,x0,n) =

1

(2π)3/2

∫ d3k Θ(η0,k,n)eıx0k (3.131)and eah Fourier mode an be expanded in spherial harmonis on the 2-sphere as
Θ(η0,k,n) =

∞
∑

ℓ=0

ℓ
∑

m=−ℓ
aℓm(k, η0)Yℓm(n) , (3.132)where the expansion oe�ients aℓm(k) are given by

aℓm(k) =

∫ dΩnΘ(k,n)Yℓm(n) (3.133)
= 4πΘℓ(k)Yℓm(k̂) . (3.134)In deriving the last expression we have expanded the temperature �utuation in Legendrepolynomials as in (2.84, page 36) and used the addition theorem and orthogonality relationfor spherial harmonis:

ℓ
∑

m=−ℓ
Yℓm(n)Y ∗

ℓm(n′) =
2ℓ+ 1

4π
Pℓ(n · n′) , (3.135)

∫ dΩnYℓm(n)Y ∗
ℓ′m′(n) = δℓℓ′δmm′ . (3.136)We an perform the harmoni expansion (3.132) diretly in real spae rather than in Fourierspae, with oe�ients aℓm(x0) (for whih we will neglet the argument x0 from now on),obviously related to aℓm(k) by

aℓm =
1

(2π)3/2

∫ d3 kaℓm(k)eıkx0 . (3.137)We are interested in the 2-point temperature orrelation funtion C on the sky betweentwo diretions n and n′. By hoosing our oordinate system in suh a way that the diretion
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n orresponds to the z-axis, and introduing spherial oordinates we an write n′ = (φ, ϑ)and n · n′ = cos(ϑ). If we assume statistial homogeneity and isotropy for the random�eld Θ, see � 5.1.1, then the orrelation funtion does not depend on the observer's position(homogeneity) nor on the azimutal angle φ (isotropy). Therefore

C(ϑ) ≡ 〈Θ(η0,x0,n) · Θ(η0,x0,n
′)〉

=
1

4π

∑

ℓ

(2ℓ+ 1)CℓPℓ(n · n′) ,
(3.138)where we have de�ned the CMB angular power spetrum by

〈aℓm · a∗ℓ′m′〉 = δℓℓ′δmm′Cℓ . (3.139)The fat that Cℓ does not depend on x0 is a onsequene of the assumption of homogeneity,while isotropy requires that it does not depend on the index m, whih would introdue anazimutal dependene. It is also ustomary to assume that the aℓm's are Gaussian random�elds, as motivated by in�ation, but this is not stritly neessary at this stage. Eq. (3.138)shows that the angular power spetrum is the harmoni transform of the orrelation funtionon the 2-sphere and for Gaussian variables it ontains the full statistial information. If the
aℓm's are Gaussian distributed, then the Fourier oe�ients aℓm(k) are Gaussian randomvariables as well. From the assumption of homogeneity it follows that 〈aℓm(k)〉 = δ(D)(k),where δ(D) denotes the Dira delta funtion. Homogeneity and isotropy together imply that

〈|aℓm|2〉 =
1

(2π)3

∫ d3k〈|aℓm(k)|2〉 . (3.140)We now relate the angular power spetrum to the temperature multipoles: this is doneby observing that the evolution equations (2.126, page 41) for Θℓ are independent of k̂, andtherefore we an write
Θℓ(η,k) = Θℓ(η, k)χ(k) , (3.141)where we assume that χ(k) are the Fourier omponents of a Gaussian, isotropi and homo-geneous random �eld. As a onsequene

〈χ(k) · χ∗(k′)〉 = δ(D)(k− k′) 〈|χ(k)|2〉 . (3.142)Now from (3.139) and using Eqs. (3.141), (3.140) and (3.134) we obtain
Cℓ = 4π

∫ dk
k
Pχ(k) |Θℓ(η0, k)|2 . (3.143)We shall later identify χ with the primordial urvature or entropy perturbation, see Eq. (4.5,page 79), and all

Pχ(k) ≡
k3

2π2
〈|χ|2〉 (3.144)the urvature (or entropy) power spetrum: this quantity gives the ontribution to Cℓ perlogarithmi k-interval of the primordial �utuation.The photons transfer funtionΘℓ(η0, k) in Eq. (3.143) above is an intrinsially 2-dimensionalquantity whih gives information about how the initial power is mapped onto the angular



3.6 Observable quantities 71power spetrum. It an be evaluated from Eq. (3.125, page 67), by observing that the angle
µ = k̂ · n in the integrand an be eliminated by replaing

eıkµ(η−η0)gıkµVb =
ddη (eıkµ(η−η0)gVb

)

− eıkµ(η−η0)ġVb − eıkµ(η−η0)gV̇b (3.145)and dropping the total derivative whih only gives an unobservable monopole term. Thereforewe an rewrite (3.125, page 67) as
Θ(η0, k, µ) =

∫ η0

0
dηeıkµ(η−η0)S(η, k) (3.146)with the soure term of the form

S(η, k) = g

[

V̇b
k

+ Θ0 −
Θ2

4
+ Ψ + Φ

]

− ġ

[

Vb
k

+
3

4

Θ2

k2

]

− g̈
3

4

Θ̇2

k2

+ e−τ (Ψ̇ + Φ̇) .

(3.147)Now we expand the plane wave in radial and angular eigenfuntions, Bessel funtions andLegendre polynomials respetively, using the Rayleigh formula
eıkµ(η−η0) =

∑

ℓ

ıℓ(2ℓ+ 1)jℓ(k(η0 − η))Pℓ(µ) , (3.148)and we obtain for the temperature transfer funtion
Θℓ(η0, k) = ıℓ

∫ η0

0
dηS(η, k)jℓ(k(η0 − η)) . (3.149)This is shown in the top panels of Fig. 3.1 for adiabati and isourvature CDM initial ondi-tions.Together, Eqs. (3.149) and (3.143) allow the omputation of the CMB angular power spe-trum and neatly split the geometri e�ets from the physis: all of the dynamial evolution isenoded in the soure funtion S(η, k), while the Bessel funtion aounts for the projetionfrom 3-dimensional k-spae on the 2-sphere. The generalization of this result for the K 6= 0ase an be found in Zaldarriaga et al. (1998); Zaldarriaga & Seljak (2000); Lewis et al.(2000). The temperature and E-polarization spetra of a onordane model for adiabatiand isourvature CDM initial onditions are displayed in the top left panel of Fig. 4.9 onpage 94.Polarization power spetrumAs mentioned in � 2.2.5.5, polarization of salar modes is onveniently desribed by the Epolarization mode, supplemented by the ross-orrelator between E and T (temperature). Asfor temperature, we an formally integrate the Boltzmann equation for the Stokes parameter

Q, Eq. (2.131, page 42), along the line of sight and obtain
ΘQ(η0, k, µ) = −1

2

∫ η0

0
eıkµ(η−η0)g(η) (1 − P2)

(

Θ2 + ΘQ
2 − ΘQ

0

)

. (3.150)The E-polarization power spetrum and the ET-orrelator (supersript C) are de�ned as
〈aEℓm · a∗Eℓ′m′〉 = δℓℓ′δmm′CEℓ , (3.151)
〈aTℓm · a∗Eℓ′m′〉 = δℓℓ′δmm′CCℓ , (3.152)
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Figure 3.1: Temperature (top) and polarization (bottom) transfer funtion Θℓ(η0, k) and
∆E
ℓ (η0, k) for adiabati (left panels) and isourvature CDM (right panels) initial onditions.The olor sales are arbitrary, and have been hose as too highlight the features of the transferfuntions. In partiular, the olor oding is not in sale between the di�erent plots.and in analogy with the treatment for the temperature spetrum they an be omputed as asuperposition of k modes of a soure funtion integrated over time:

CEℓ = 4π

∫ dk
k
Pχ(k) |∆E

ℓ (η0, k)|2 , (3.153)
∆E
ℓ (η0, k) =

√

(ℓ+ 2)!

(ℓ− 2)!

∫ η0

0
dηSE(η, k)jℓ(k(η0 − η)) , (3.154)

SE(η, k) =
3g(η)

4k2(η0 − η)2

(

Θ2 + ΘQ
2 − ΘQ

0

)

. (3.155)The ross-orrelator spetrum is omputed using (3.149) as
CCℓ = 4π

∫ dk
k
Pχ(k) Θ∗

ℓ(η0, k)∆
E
ℓ (η0, k) . (3.156)The polarization transfer funtion ∆E

ℓ (η0, k) is plotted in Fig. 3.1 for adiabati and isour-vature CDM initial onditions.



3.6 Observable quantities 73The degree of polarization is proportional to the magnitude of the temperature quadrupoleat last sattering. Sine during the tight oupling regime the temperature quadrupole annotgrow, polarization is generated in the relatively short transition between the strong ouplingand the free streaming regime. To �rst order in τ̇−1, the temperature quadrupole is pro-portional to the temperature dipole, see (4.30, page 83). The polarization amplitude is thusproportional to the temperature dipole at reombination times the width of the last sat-tering surfae (Zaldarriaga & Harari, 1995), resulting in a polarization signal two orders ofmagnitude lower than the temperature signal.3.6.3 Matter power spetrumLet δ(η,x) denote the real-spae density ontrast in the matter omponent in the omovinggauge; hene δ orresponds to the gauge invariant variable ∆m de�ned in Eq. (2.37, page 30).We will drop the time dependene when not needed, and write δ instead of ∆m to simplifythe notation. For larity, the Fourier transform of the variables is denoted by a subsript �k�,in this setion only.The real spae orrelation funtion is de�ned as
ξ(r) ≡ 〈δ(x) · δ(x + r)〉 , (3.157)where 〈·〉 denotes an average over realizations, see � 5.1.1 for preise de�nitions. It is theexpetation value of δ2 = δ(x + r) and δ1 = δ(x) under the 2-point probability distributionfuntion for δ1, δ2. We write δ(x) as

δ(x) =
1

(2π)3/2

∫ d3kδke
ıkx (3.158)where we denote by δk the Fourier transform (in �at spae) of δ(x). We postulate that δ(x)is a Gaussian distributed, isotropi and homogeneous random �eld, see � 5.1.1, and thereforethe quantity 〈δ∗

k
·δk′〉 vanishes for k 6= k′ (homogeneity) and it only depends on the modulus,not the diretion of k (isotropy):

〈δ∗k · δk′〉 = (2π)3/2δ(D)(k − k′) Pm(k) (3.159)where δ(D) denotes the Dira delta funtion. We all Pm(k) the matter power spetrum.Replaing (3.158) in (3.157) we obtain
ξ(r) =

1

(2π)3/2

∫ d3kPm(k)eıkr =
2√
2π

∫ dkk2 sin rk

rk
Pm(k) , (3.160)showing that the orrelation funtion is the Fourier transform of the matter power spetrum.Our aim is to ompute the power spetrum today as a funtion of the spetral distributionin the early Universe in the adiabati CDM senario. To this end, we make use of the resultsof linear perturbation theory presented in the previous setions for the growth of matterperturbations in a Universe ontaining CDM and photons only. Clearly, these omputationsare valid only as long as the sale onsidered is in the linear regime, i.e. δk ≪ 1. We onlysketh the elements whih are needed in the following, referring the reader to e.g. Peebles(1980); Padmanabhan (1993); Liddle & Lyth (2000) for a full aount.



74 Fundamental equationsPerturbations δk over a omoving length λ ∼ k−1 behave di�erently depending whetherthey are outside (k < H) or inside (k > H) the Hubble length. For a given sale k, wedenote by ηent the time at whih that sale rosses inside the horizon, i.e. H(ηent) = k andby keq the wavelength whih enters the horizon at the time of matter-radiation equality, i.e.
keq = H(ηeq). We thus need to distinguish two ases: sales k > keq enter the horizon in theradiation dominated epoh, while k < keq enter the horizon after matter domination. Weshall restrit ourselves to length sales λ whih are large enough not to be wiped out by freestreaming, i.e. λ > λFS, see Padmanabhan (1993) for details.For k > keq and ηent < η < ηeq, δk(η) stays approximately onstant after horizon rossingbeause the radiation dominated epoh suppresses the growth of perturbation in a dust-likeomponent; this is alled the Meszaros e�et (Meszaros, 1974). For η > ηeq the Universe ismatter dominated and the situation is analogous to the single �uid ase examined in � 3.1,and the perturbation grows as δk ∝ a, see Eq. (3.14, page 49). Wavelengths whih enterthe horizon in the matter dominated epoh, k < keq, start growing as soon as they ross thehorizon, δk(η) ∝ a for η > ηent, by the same argument given above. Summarizing, we havethat

δk(η > ηent) ∝ 




δk(ηent) a
aeq for k > keq

δk(ηent) aeq
aent aaeq for k < keq , (3.161)and therefore we know δk for all subsequent times one we speify δk(ηent), the value of thedensity ontrast for the wavelength k at the moment when that wavelength rossed inside thehorizon. Sine for a given wavelength ηent ∝ 1/k, horizon rossing happens at a di�erent timefor eah sale. We notie that in the seond line of Eq. (3.161) we an rewrite the fator

aeq/aent as
aeq
aent =

(

ηeq
ηent)2

=

(

k

keq)2

∝ k2 , (3.162)where in the �rst equality we have used the fat that a ∝ η2 in the matter dominated universe.Given that the range of sales of osmologial interest is not too wide, we an make thefollowing power law Ansatz for the sale dependene of the perturbation at horizon rossing
δk(ηent) = Ak−α . (3.163)An important quantity is k3/(2π)3/2Pm(k), whih from (3.160) gives the ontribution perlogarithmi k-interval to the real spae orrelation funtion, and whih with the above Ansatzevaluates to

k3

(2π)3/2
Pm(k)

∣

∣

∣

ηent ∝ k3−2α = onst for α = 3/2 . (3.164)This quantity an also be interpreted as the variane of the mass ontained in spheres ofdiameter λ ∼ 1/k at horizon rossing, see e.g. Padmanabhan (1993); for the value α = 3/2the variane is the same on all sales.We might prefer to speify our Ansatz not at horizon rossing, but rather for some �xedinitial time (the same for all sales) ηi. In order to relate δk(ηi) with δk(ηent), we notiethat on super-horizon sales k < H and for times ηent > η > ηeq we have δk ∝ a ∝ η2 fromEq. (3.14, page 49). For the ase k < H in the radiation epoh, η < ηent < ηeq we an use the



3.6 Observable quantities 75adiabati solution (3.26, page 51) and the relation
δk ≡ ∆m =

3 + 3a

4 + 3a
D +

4

4 + 3a
S ≈ 3

4
D + S ∝ a2 ∝ η2 , (3.165)and the approximation is valid for a < aeq. In onlusion, the omoving dark matter densityontrast grows as η2 at all epohs while outside the horizon. Therefore we obtain (with

ηent > ηi for all sales of interest)
δk(ηent) =

(

ηent
ηi

)2

δk(ηi) ∝ k−2δk(ηi) . (3.166)It is ustomary to make a power law Ansatz for the matter power spetrum at the time ηi ofthe form
Pm(k, ηi) = Bkn (3.167)and by the relation (3.166) the index n is related to α by
n = −2α+ 4 . (3.168)The value α = 3/2 whih yields a onstant-mass-variane on all sales at horizon rossingorresponds to n = 1, the so-alled �sale invariant spetral index�, also known as Harrison-Zel'dovih spetrum (Harrison, 1970; Zel'dovih, 1972). The power spetrum today thenbeomes in terms of n, from (3.161)

δk(η0) ∝
{

kn−4 for k > keq
kn for k < keq . (3.169)The length sale whih rosses the horizon at equality, λeq ≈ 13/(Ωmh

2) Mp orrespondsto a peak in the power spetrum: �utuations on larger sales, k < keq ∼ 1/λeq retain theirprimordial shape, while perturbations on smaller sales have their spetrum multiplied by k−4.The above arguments only apply in the linear region, i.e. for k<∼ 0.3 h/Mp, above whihnon-linear growth of the �utuations invalidate perturbation theory and a full numerialsimulation is required to follow the evolution.Finally, we an easily relate the matter power spetrum to the Bardeen potential byusing the Poisson equation (2.49, page 32). If we onsider the value of Ψk(ηent), the Fouriertransform ofΨ evaluated at horizon rossing, we have from the Poisson equation, notiing that
H(ηent) = 1/k, δk = ∆m ∼ ∆γ ∼ D by the adiabatiity ondition, that Ψk(ηent) ∼ −δk(ηent).Therefore for the power spetrum of the Bardeen potential, de�ned as

PΨ ≡ k3

2π2
〈|Ψk|2〉 (3.170)we have that

PΨ(k)
∣

∣

ηent ∝ k3Pm(k)
∣

∣

ηent ∝ kn−1 , (3.171)and the n = 1 sale invariant spetrum orresponds to PΨ(ηent) = onst. Or we an speify
PΨ at a �xed initial time ηi, in whih ase we obtain again from the Poisson equation

PΨ(k)
∣

∣

ηi
∝ k−1Pm(k)

∣

∣

ηi
∝ kn−1 . (3.172)



76 Fundamental equationsThe fat that there is no evolution in the power spetrum of Ψ until horizon rossing isof ourse a onsequene of the fat that Ψk ≈ onst on super-horizon sales, as shown in� 3.2. The same saling applies for the power spetrum of the gauge invariant urvatureperturbation ζ, whih is onstant on super-horizon sales for adiabati perturbations, andproportional to Ψ.



Chapter 4Parameter dependene
This hapter presents a brief review of the dependene of the CMB power spetra on thestandard osmologial parameters and on general initial onditions, building on the results ofthe previous setions. Understanding the impat of the parameters on the observable spetrabuilds the framework for parameter extration from data, whih is the subjet of Part III.In � 4.1 we onisely review the origin and main parameters dependenies of well knownfeatures of the power spetrum: the large sale Sahs-Wolfe plateau, the aousti osillations,and the damping tail. Introdutory reviews on this topi an be found in e.g. Kosowsky(2002) and Hu et al. (1997). A detailed physial understanding in a fully analytial approahis explained in Hu & Sugiyama (1995a,b, 1996). In view of e�ient and aurate parameterestimation, fundamental degeneraies in the CMB spetra are best understood by introduinga set of analytial funtions of the parameters whih the CMB probes diretly, and upon whihthe spetra dependene is almost linear (Kosowsky et al., 2002). We all this new basis inparameter spae �normal parameters set�, and we illustrate it in � 4.2.In � 4.3 the CMB angular power spetra for general isourvature initial onditions in aUniverse ontaining CDM, baryons, photons and neutrinos are presented. The four modesadiabati, CDM isourvature, neutrino density and neutrino veloity � along with a baryonisourvature mode whih is equal to the CDM mode up to a resaling onstant � span thewhole spae of non-diverging solutions of Einstein's equations at early times (Buher et al.,2000), and thus their superposition onstitutes the most general type of initial onditions forCMB anisotropy.4.1 Standard parametersThe detailed shape of the CMB temperature and polarization spetra depends on the valueof the osmologial parameters and on the type of initial onditions in harateristi ways.However, ertain ombination of parameters lead to very similar spetra: this auses degen-eraies among some parameters, whih annot be reonstruted with CMB alone, but requirethe inlusion of external data-sets.Polarization information helps breaking temperature degeneraies beause of two hara-teristi features: the �rst is that after deoupling the polarization state is preserved by freestreaming, and the polarization spetrum is only modi�ed by resattering due to reionization(� 4.1.3.2). Therefore in a sense polarization is a more lean probe of the deoupling than



78 Parameter dependenetemperature. The seond reason is that while the aousti peaks in temperature are domi-nated by the monopole of the temperature �utuation on the LSS, the peaks in E-polarizationre�et the dipole omponent at deoupling, i.e. the photon bulk veloity (� 4.1.2.1).In the following we revisit the main parameter dependene of the CMB spetra: for thesake of illustrating the physial e�ets involved, we divide the CMB power spetrum inthree distint regions, orresponding to di�erent angular separations on the sky with theapproximate relation ϑ ∼ π/ℓ.
• Large sales: on sales larger than the Hubble radius at deoupling, kηde ≪ 1, per-turbations are dominated by the ordinary Sahs-Wolfe e�et, given by the ombinationof the intrinsi temperature �utuations on the LSS and the gravitational redshift in-dued by limbing out of the potential well. In non-�at osmologies, or models witha onsiderable value of the osmologial onstant, the late ISW e�et also ontributes.This region orresponds roughly to the COBE sale, ℓ<∼ 30 and ϑ>∼ 7◦.Reionization produes a a harateristi inrease of E-polarization on large sales, theso-alled �polarization bump�.
• Aousti region: inside the sound horizon photon pressure annot be negleted,and sales within the sound horizon k ∫ csη >∼ 1 osillate, while gravitational infall be-omes negligible beause of potential deay inside the horizon. On intermediate sales

50<∼ ℓ<∼ 600 the CMB power spetrum displays a rih peak struture, re�eting theontributions of density osillations and Doppler term on the LSS. The early ISW ef-fet ontributes at roughly the 20% level up to the �rst aousti peak (for adiabatimodels). Those sales have a typial angular separation on the sky ranging from about
10◦ down to a few 10′.

• Damping tail: wavelengths smaller than the di�usion damping sale 1/kD given in(3.120, page 66) are exponentially suppressed and this auses a drop in power above
ℓ ∼ 800 or ϑ<∼ 1′. This e�et ombines with resattering due to reionization, whih alsoerases �ne-sale anisotropies.4.1.1 Large salesWe wish to investigate the expeted temperature �utuations on very large sales in the gen-eral ase of a superposition of primordial adiabati and isourvature CDM initial onditions.We look at wavelength k ≪ kde whih at deoupling where still outside the horizon and weonsider a zeroth order approximation whih neglets any anisotropi stress and the baryonin�uene (i.e. set R = 0). If we take deoupling to happen well into matter domination,we an also neglet the ISW ontribution sine the potentials are equal and onstant � seeEq. (3.14, page 49) � and to this level of approximation we an set Vb = Vγ . With thisapproximations we have for eah Fourier mode from Eqs. (3.128, page 68) and (3.129, page68)

Θ(η0, k, µ) = eıkµ(ηde−η0)

[

1

4
Dg,γ + 2Φ − ıkµVγ

]

(ηde, k) . (4.1)In the adiabati ase, we an neglet the ontribution of the Doppler term whih behavesas a sine and hene disappears on large sales, kηde ≪ 1, while the osine osillation of



4.1 Standard parameters 79the density perturbation Dg,γ beomes onstant, see (3.56, page 55). Therefore for adiabatiinitial onditions, from the solution (3.56) it follows
Θ(η0, k, µ) ≈ eıkµ(ηde−η0)

[(

1

3
ΦMD − 2ΦMD)+ 2ΦMD] (adiabati), (4.2)where ΦMD denotes the value of Φ at deoupling well within matter domination. On theright hand side, the term −2ΦMD omes from the solution (3.56), and its negative signre�ets the fat that the temperature is larger inside potential wells (Φ < 0), so that photonsare blushifted when they fall into the well. The term 2ΦMD represents the gravitationalredshift whih photons experiene when they limb out of the potential as they free streamafter deoupling, whih exatly anels the gravitational blueshift term in the absene ofbaryons. In onlusion we have

Θ(η0, k, µ) ≈ eıkµ(ηde−η0) 1

3
ΦMD (adiabati). (4.3)For isourvature initial onditions, we have that Dg,γ(ηde) = 0, whih follows from (3.48,page 54) with the isourvature ondition Φ0 = 0. The Doppler term an again be negletedwith respet to the potential, beause from (3.53, page 55) we have that kVγ ∼ k/HΦ ≪ Φand (4.1) redues to

Θ(η0, k, µ) ≈ eıkµ(ηde−η0)2ΦMD (isourvature), (4.4)the well-known result that isourvature initial onditions produe large sale �utuations sixtimes larger than in the adiabati ase for the same value of the Bardeen potential on the lastsattering surfae.More interestingly, we an relate the large-sale temperature �utuations to the amplitudeof the primordial urvature and entropy spetra. Rewriting (4.3�4.4) in terms of the urvatureand entropy perturbations in the radiation era via Eqs. (3.33�3.36, page 53), yields for thesoure term (3.147, page 71)
S(η, k) = δ(η − ηde) [ζ0

5
ψ(k) − 2

5
S0φ(k)

]

, (4.5)where ψ(k) and φ(k) are the Fourier omponents of random �elds whih we assume areGaussian distributed, isotropi and homogeneous, see � 5.1.1, evaluated at some initial time
ηi deep in the radiation epoh. For their power spetrum we make a power low Ansatz

Pψ(k)
∣

∣

ηi
≡ k3

2π2
〈|ψ(k)|2〉 = ζ2

0

(

k

kP)ns−1

, (4.6)
Pφ(k)

∣

∣

ηi
≡ k3

2π2
〈|φ(k)|2〉 = S2

0

(

k

kP)ne−1

, (4.7)
Pc(k)

∣

∣

ηi
≡ k3

2π2
〈ψ(k) · φ∗(k)〉 = ζ0S0

(

k

kP)nc−1

cos(∆c) . (4.8)The onstants ζ0 and S0 are dimensionless and positive, while the angle ∆c parameterizesthe orrelation between entropy and isourvature perturbations; the onstant kP is a pivotsale, for whih a popular hoie is kP = 0.05 Mp−1, and we have de�ned nc ≡ (ns + ne)/2.



80 Parameter dependeneThe power law index ns is the salar spetral index: ns ≈ 1 is a generi predition ofin�ation, almost independently of the partiular model, and is alled �sale-invariant� orHarrison-Zel'dovih (Harrison, 1970; Zel'dovih, 1972) spetral index. The reason for thename is explained in � 3.6.3. Sine Ψ ∝ ζ up to onstant fators, Ψ and ζ have the samespetrum.From (3.143, page 70) the angular power spetrum on large sales (ℓ<∼ 20) is then givenby
Cℓ =4π

∫ dk
k

[

ζ2
0

25

(

k

kP)ns−1

+
4S2

0

25

(

k

kP)ne−1

− 4

25
ζ0S0 cos(∆c)

(

k

kP)nc−1
]

×

× j2ℓ (k(η0 − ηde)) . (4.9)The integral an be performed analytially provided all the indexes are within the range
−3 < nX < 3 and in the approximation k(η0 − ηde) ≈ kη0 (Gradshteyn & Ryzhik, 1965).The result is

Cℓ = 2π2

[

ζ2
0

25
f(ns, ℓ) +

4S2
0

25
f(ne, ℓ) −

4

25
ζ0S0 cos(∆c)f(nc, ℓ)

]

. (4.10)The funtion f ontains the dependene on the spetral indexes, and it is given by
f(n, ℓ) ≡ (η0kP)1−n

Γ(3 − n)Γ(ℓ− 1
2 + n

2 )

23−nΓ2(2 − n
2 )Γ(ℓ+ 5

2 − n
2 )
, (4.11)where Γ is the gamma funtion, whih for a sale invariant spetrum, n = 1, evaluates to

f(n = 1, ℓ) =
1

π(ℓ(ℓ+ 1))
. (4.12)If both the urvature and entropy spetral indexes are lose to sale invariant (ns = ne =

1), we �nd that the so-alled Sahs-Wolfe (SW) plateau for ℓ<∼ 20 is onstant:
ℓ(ℓ+ 1)

2π
Cℓ =

1

25
ζ2
0 +

4

25
S2

0 − 4

25
cos(∆c)ζ0S0 ≈ 10−10 , (4.13)and the numerial value is the measurement of the DMR instrument aboard the COBEsatellite averaged on sales <∼ 7◦ (Smoot et al., 1992). Clearly, unorrelated entropy andurvature perturbations (i.e. with cos(∆c) = 0) both add to the SW plateau, but a positiveorrelation (de�ned by cos(∆c) > 0) redues the power on large sales, while a negativeorrelation inreases it, as shown in the top left panel of Fig. 4.9 on page 94. If there is noorrelation, the isourvature Sahs-Wolfe plateau from (4.3) and (4.4) is 36 times larger thanthe adiabati one for the same value of Ψ at last sattering, and 4 times larger for the sameamplitude of the primordial urvature and entropy perturbations, Eq. (4.13). In the pureadiabati ase, S0 = 0, we obtain from (4.13) an estimate of the primordial amplitude of theurvature perturbation:

ζ0 ≈ 5 · 10−5 . (4.14)For models with a non-zero osmologial onstant, the Universe beomes Λ dominated for
a/a0 ≥ (Ωm/ΩΛ)1/3, and the potentials start again to deay. This produes a late time ISWwhih ontributes on large sales, where it is dominant with respet to the ordinary SW partdesribed above, produing a rise of the SW plateau at low multipoles. The details di�eronsiderably for adiabati and isourvature models, and also depend on the spetral index,see Hu & Sugiyama (1995b) for a detailed explanation.



4.1 Standard parameters 814.1.2 Aousti regionThe struture of the power spetrum on intermediate sales is the result of several physi-al e�ets, sometimes with ontrasting impats. The most distintive features are aoustiosillations and projetion.4.1.2.1 Peak loationsSales krs = k
∫ ηde
0 csdη > 1 enter the horizon before deoupling and thus Dg,γ osillates as

cos(rsk) � f. (3.56, page 55) � for adiabati perturbations or as sin(rsk) � f. (3.62, page 55)� in the isourvature mode. Thus sales whih at the moment of deoupling have reahedan extremum of their osillation will yield orresponding peaks in the temperature powerspetrum. Notie that sine the power spetrum is a quadrati quantity, both maxima andminima of the osillations give peaks. The k modes whih at reombination are at maximumompression or expansion are
k

(m)ad =
mπ

rs(ηde) , m = 1, 2, 3, . . . (adiabati), (4.15)
k

(m)is =
mπ + 1/2

rs(ηde) , m = 0, 1, 2, . . . (isourvature). (4.16)The orresponding physial sale λphys = adeπ/k subtends an angle ϑ on the sky given bythe angular diameter distane relation (1.32, page 15), and the peaks in the angular powerspetrum show up at ℓ ∼ π/ϑ or
ℓ(m) ∼ mπ

DA

ars
(ηde) (adiabati), (4.17)

ℓ(m) ∼ (1
2 +m)π

DA

ars
(ηde) (isourvature). (4.18)Sine Dg,γ(k = k

(1)ad ) < 0, the �rst adiabati peak orresponds to a ompression maximum,while the �rst �isourvature hump� is an expansion maximum, Dg,γ(k = k
(0)is ) > 0. Inthe literature, ��rst aousti peak� usually designates the ompression peaks, i.e. the �rstadiabati extremum and the seond isourvature one, whih in the notation of (4.15�4.16)orrespond both to the index m = 1. For a �at universe (K = 0) without osmologialonstant (ΩΛ = 0) and a baryon ontent as inferred from BBN (Ωbh

2 ≈ 0.02), the loationof the �rst aousti peak is approximately
ℓ(1) ∼ 220 (adiabati) and (4.19)
ℓ(1) ∼ 330 (isourvature). (4.20)The WMAP data allow a very preise determination of the position of the �rst peak,

ℓ(1) = 220.1 ± 0.8 (Page et al., 2003), thereby on�rming that the adiabati mode is thedominant one. However, subdominant isourvature ontributions annot be ruled out, seeChapter 7.The loation of the peaks depends on the of initial onditions, but the inter-peaks distaneis independent on the type of perturbations, and in the above estimate is ∆ℓ ≈ 220. The peakspaing depends on the baryon ontent, whih sets rs, and on the spatial geometry whih



82 Parameter dependeneenters in DA. A larger baryon ontent slows down the osillations, thus dereasing the soundhorizon and the spaing between peaks grows larger. The dependene of DA is primarily onthe urvature of the universe: in a rude approximation we neglet ΩK ≪ Ωm and ΩΛ whenintegrating (1.34, page 15) up to zde ≈ 1100 ≫ 1 and neglet Ωr as well (whih is not a goodapproximation for a large redshift) and we obtain
DA(zde) ≈ 2ade

H0a0
Ω−1/2
m . (4.21)Therefore the peak position sales as Ω

−1/2
m , whih means that the peaks are shifted tolarger ℓ values in an open universe. Introduing a non-zero osmologial onstant ompliatesmatters, sine it is then possible to obtain the same value of the angular diameter distane,and hene the same peak loation, by ompensating a hange in Ωm with a di�erent value of

ΩΛ, an e�et whih goes under the name of angular diameter distane degeneray (Efstathiou& Bond, 1999; Melhiorri & Gri�ths, 2001). The angular diameter distane test is no longersu�ient to determine alone the urvature of the universe, but an independent measurementof Ωm or ΩΛ is neessary.To illustrate this fundamental degeneray, let us introdue the shift parameter Rshift,whih gives the �rst peak's position (in an adiabati model) with respet to its loation in a�at referene model with Ωm = 1:
ℓ(1) = ℓ

(1)ref /Rshift , (4.22)whih an be evaluated from (4.17). To this end, we need the expliit expression for thesound horizon at deoupling, whih is given by
rs(ade) =

∫ ade
0

cs
dηdãdã

=
1

H0a0

√
3

∫ ade/a0
0

dx
[(

1 + 3Ωb

4Ωγ
x
)

(Ωmx+ Ωr + ΩKx2 + ΩΛx4)
]1/2

(4.23)(where all the ΩX 's are evaluated today). Negleting the urvature and osmologial onstantterm in the early universe (ade/a0 ≪ 1) yields the approximate result
rs(ade) ≈ 1

√
3H0a0Ω

1/2
m

(

aeq/a0

Req )1/2

×

× ln

[

1 +Req + 2Rde + 2
√

(1 +Rde)(Req +R)

1 +Req + 2
√

Req ]

,

(4.24)where
R(a) ≡ 3Ωb

4Ωγ

a

a0
and Req ≡ R(aeq), Rde ≡ R(ade) . (4.25)In order to �nd a simple approximate expression for Rshift, let us ignore the logarithmidependene on the parameters of rs, and neglet the parameter dependene of the fator

(aeq/a0)
1/2/R1/2eq as well; we shall relax those approximations in � 4.2. Then the soundhorizon for K 6= 0 models sales as

rs(ade) ≈ α

√

|ΩK|
Ωm

, (4.26)



4.1 Standard parameters 83while for the referene model with (Ωm,ΩΛ) = (1, 0) we have
DA(ade)
aders(ade) = 2α , (4.27)with α being approximately the same fator as in (4.26). For the shift parameter (4.22) of amodel with arbitrary (Ωm,ΩΛ) we then obtain the simple expression

Rshift ≈ 2

χ(∆η)

√

|ΩK|
Ωm

, (4.28)where ∆η is given in Eq. (1.34, page 15) and χ in Eq. (1.3, page 12). This handy expressiongives the approximate position of the �rst peak as a funtion of Ωm and ΩΛ, with ΩK obtainedfrom the onstrain 1 = Ωm+ΩΛ+ΩK. Here we have ignored the dependene on the radiationontent of the model, whih is expliitly inluded in (Eq. (6.5, page 126)). In the left panelof Fig. 4.1 we plot lines of Rshift = onst in the (Ωm,ΩΛ) plane, whih are not parallel tolines of onstant urvature (diagonal lines).Along with Rshift, two other physial quantities determine the struture of the peaks:the baryon density Ωbh
2 ontrols the relative height of the peaks, see � 4.1.2.2, while theamount of matter Ωmh

2 sets the redshift of equality, for a �xed relativisti energy ontent.Therefore by �xing the three quantities Rshift,Ωmh
2,Ωbh

2 we obtain models with almostindistinguishable power spetra in the aousti region. This is illustrated in the middle panelof Fig. 4.1, where a �at, a losed and an open model result ompletely degenerate, with theonly di�erene showing up on large sales beause of the di�erent amount of late ISW e�et.The right panel shows that onversely the �rst peak's position in three �at models an bevery di�erent if the shift parameters di�er, and therefore the statement that the �rst peakposition alone an determine the urvature of the Universe is impreise.Polarization peaks are displaed by π/2 with respet to temperature peaks, hene polar-ization maxima our at temperature minima. This an be seen by expanding to �rst order in
τ̇−1 the polarization hierarhy (2.132�2.135, page 42), �nding for the polarization monopoleand quadrupole

ΘQ
0 = −5

4
Θ2 and ΘQ

2 = −1

4
Θ2 . (4.29)The temperature quadrupole is found to the same order from the temperature hierarhy,inluding the polarization feedbak as in (2.136, page 42), giving

Θ2 = −τ̇−1 8

15
ıkΘ1 . (4.30)The E-polarization soure term (3.155, page 72) beomes in the instantaneous deouplingapproximation

SE = −τ̇−1(η0 − ηde)−2 ı

k
Θ1(ηde) , (4.31)showing that E-polarization probes the temperature dipole, i.e. the bulk veloity of thephotons-baryons �uid, at deoupling. Sine Θ1 ∝ Vγ ∝ Ḋg,γ we see that polarization os-illations are out of phase of π/2, as visible in the top left panel of Fig. 4.9 on page 94.
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Figure 4.1: Left panel: lines of onstant shift parameter (4.28) in the (Ωm,ΩΛ) plane (inblue) orrespond to models in whih the aousti peaks are in the same position; those linesare not parallel to lines of onstant urvature (in red, the line of Ωtot = 1 is the lous of �atmodels). Middle panel: a losed (blue, long-dashed), a �at (solid, red) and an open model(dotted green) with parameters orresponding to the three olored dots in the left panel onthe Rshift = 1.14 line are almost ompletely degenerate. Right panel: three �at models withdi�erent shift parameters (and values orresponding to the three olored squares in the leftpanel) exhibit a very di�erent peak struture. In partiular, measuring the position of the�rst peak alone is not enough to determine the urvature of the Universe.4.1.2.2 Baryon signatureLet us now examine in more detail the role of baryons in the adiabati senario. The relevantquantity for the �nal temperature �utuations is, from Eqs. (3.128) and (3.129, page 68) with
Φ = Ψ

1

4
Dg,γ + 2Φ − ıµkVγ =

1

3
(1 +R)Φ cos(cskη) − (2 +R)Φ

+ 2Φ − ıµ

√
1 +R√

3
Φ sin(cskη) ,

(4.32)where we have inserted the adiabati solution (3.113�3.114, page 65) and expliitly restoredthe Doppler ontribution. The e�et of baryons, R > 0, is twofold: the amplitude of theosine osillation is larger and the zero point is now displaed to −RΦ, i.e. the gravitationale�ets of falling into and limbing out of the potential at deoupling no longer exatly anelas in Eq. (4.2), where we had taken R = 0. Therefore a larger baryon ontent enhanesompression peaks, whih orrespond to negative extrema of the osine1, while it suppressesexpansion peaks. This leads to a distintive signature of the baryon density on the CMBspetrum: a larger baryon ontent boosts odd peaks and redues the even ones, hene apreise measurement of the �rst three peaks leads to an aurate measurement of the baryonontent, as is evident from Fig. 4.6 on page 91.Up to now we have put aside the Doppler term Vγ ∝ sin(cskη): the sine is out of phaseof π/2 with respet to the density osillation, and its maxima �ll in the zeros of the osine.In the absene of baryons, this would lead to an exat anellation and to the disappearane1Note that Φ < 0 inside potential wells, thus cos(cskη) < 0 indeed gives Dg,γ > 0, aording to Eq. (3.113,page 65), i.e. it orresponds to an overdensity with δT/T > 0.
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Figure 4.2: Contributions to the adiabati temperature spetrum (solid) from the tempera-ture monopole (long-dashed), the temperature dipole (Doppler term, short dashed with label
Θ1), and ISW e�et (reprinted from Hu & Sugiyama, 1995a).of the aousti peaks: adding the density and veloity term inoherently in quadrature for
R = 0 gives a onstant. However, R > 0 suppresses the Doppler term by a fator (1 + R)(in quadrature) with respet to the density term, and the net e�et is that the veloityontribution partially �lls in the minima of the density osillation without erasing the peakstruture, as shown in Fig. 4.2. Also the peak struture for the veloity ontribution getsmore washed out by the free streaming onversion than for the density, a onsequene of thefat that the veloity term is multiplied by µ (Hu & Sugiyama, 1995a).4.1.2.3 Early ISW e�etAt reombination, the Universe is not ompletely matter dominated, sine ade ≈ 3aeq andthus the Bardeen potentials are not exatly onstant. This gives an early ISW ontributionto the anisotropy, whih is spread out over a large multipole range, adding in partiular tothe rise from the large sale plateau to the �rst aousti peak for the adiabati senario,f. Fig. 4.2. Sine most of the ontribution omes from early times, when η ≪ η0, we anapproximatively set jℓ(k(η0 − η)) ≈ jℓ(kη0) and write for the ISW ontribution to (3.149,page 71)

Θ
(ISW)
ℓ = ıℓ

∫ η0

ηde(Ψ̇ + Φ̇)jℓ(k(η0 − η)) ≈ ıℓ
[

Ψ̇ + Φ̇
]η0

ηde jℓ(kη0) . (4.33)The early ISW is more prominent if the epoh of equality is delayed due to a smallermatter ontent or to a larger radiation ontent, for instane in the presene of extra relativistipartiles, as shown in � 6.1.4.1.3 Damping tail4.1.3.1 ReombinationTemperature �utuations on small angular sales are exponentially suppressed by di�usiondamping due to the breakdown of tight oupling at reombination, as disussed in � 3.5. The



86 Parameter dependenee�et an be roughly inorporated into the undamped solution (3.127, page 68) by multiplyingit with the damping fator
D(k) ≡

∫ dηg(η)e−[k/kD(η)]2 ≈ e−[k/kD(ηde)]2 , (4.34)using the damping length sale k−1D of Eq. (3.120, page 66).The main parameter dependene of the damping sale is easy to understand physially:the matter ontent sets the horizon sale at deoupling, while the baryon density ontrols theCompton sattering time ∼ τ̇−1. Before reombination, photons di�use by a random walkover a typial length λD =
√
N/τ̇ , where N is the number of ollisions, N ∼ ητ̇ . Hene thedamping length sales as
λD ∼

√

ηde/τ̇ ∝ ω−1/4
m ω

−1/2
b , (4.35)where the last proportion takes advantage of the fat that ne ∝ ωb (see Eq. (6.17, page137)) and ηde ∝ ω

−1/2
m if deoupling happens in the matter dominated era. A more detailedestimate is given in Eq. (6.19, page 138), whih also inludes the e�et of the helium fration,whih we have ignored here.Clearly, when reombination ours the mean free path goes to in�nity very rapidly, andtherefore the above argument no longer applies, and one has to use a more sophistiatedanalysis. More details and preise �tting formulas for (4.34) an be found in Hu & White(1997), while useful �tting formulas for many relevant reombination quantities are detailedin Hu & Sugiyama, 1996, Appendix E.4.1.3.2 ReionizationWhen the Universe is reionized, the free eletron fration beomes unity again and CMBphotons an be resattered. Fairly little is known about the details of the reionization meh-anism and its redshift dependene (for a review see Haiman, 2004) but the null detetion ofGunn-Peterson troughs indiates that the Universe was ompletely ionized after redshift ≈ 6(Beker et al., 2001), possibly for the seond time (Cen, 2003). The reent WMAP results(Spergel et al., 2003) seem to indiate that reionization happened quite early, at a redshift

zre ≈ 17, orresponding to an optial depth of τre ≈ 0.16 for a standard ΛCDM model.Reionization has two e�ets on the power spetrum: temperature anisotropies on salesbelow the angle subtended by the horizon at reombination get washed out, and on the samesale there is a generation of polarized power. Let us take for simpliity a model in whihall the hydrogen is suddenly reionized at a redshift zre, and ignore helium reionization whihhappens around z ≈ 3 whih only ontributes a few perent. Then the orresponding optialdepth to reionization, τre, is given by
τre =

∫ tre
t0

cσTnedt
=
cσT
H0

∫ zre
0

ne(z)

(1 + z)

dz
[Ωr(1 + z)4 + Ωm(1 + z)3 + ΩK(1 + z)2 + ΩΛ]1/2

.

(4.36)The free eletron density (per m3) an be expressed as (see Eq. (6.17, page 137))
ne(z) = 11.3 · 10−6(1 − Yp)ωb(1 + z)3 , (4.37)



4.1 Standard parameters 87where we have inluded the Helium mass fration Yp for future referene (see � 6.2.2). Fora �at Universe (ΩK = 0) and negleting the ontribution of radiation, whih is a goodapproximation if zre ≪ 100, the integral in (4.36) an be performed analytially, giving (Hu& White, 1997)
τre = 4.6 · 10−2(1 − Yp)

Ωbh

Ωm

[

√

ΩΛ + Ωm(1 + zre)3 − 1
]

. (4.38)From the de�nition of the visibility funtion g, the probability that a photon last satteredbetween today and redshift z is
P (z) =

∫ z

0
g(z̃)dz̃ = 1 − e−τ(z) , (4.39)and therefore the fration of photons whih arrive to us diretly from the reombination epohis 1 − P (zre) = exp(−τre). Above the horizon sale at reionization, all photons ontributeto the anisotropy, while below that sale only the fration exp(−τre) whih did not resatterontribute. Thus power on small sales will be suppressed by a fator exp(−2τre) and thereionization damping fator is given by

Dre(k) =

{

1 for kτre ≪ 1

e−2τre for kτre ≫ 1
. (4.40)The angular sale subtended by the horizon at reionization an be found using (1.32),yielding the approximate saling (Tegmark & Silk, 1995)

ϑ ∝
√

Ωm

z
. (4.41)Without polarization information, reionization is highly degenerate with the spetral tiltand a tensor or isourvature ontribution whih would add power only on large sales: alarger reionization optial depth an easily be aommodated by adding tensors or an isour-vature omponent an reduing at the same time the overall normalization, thereby exatlyompensating the reionization power suppression. This degeneray an be expressed by in-troduing a suitable ombination of τre and the overall normalization, see Eq. (4.48) andompare Fig. 4.7. However, the harateristi signature of reionization is the generation ofpolarized power on the horizon sale of reionization, and the orresponding �polarizationbump�, learly visible in the bottom right panel of Fig. 6.16 on page 158, around ℓ ≈ 20 inthe E-polarization spetrum an be used to break the degeneraies with other parameters.The position and saling of this bump an easily be understood physially (Zaldarriaga,1997): the temperature quadrupole at reionization, whih determines the reionization induedpolarization, is given by the free stream of the temperature monopole at deoupling:

Θ2(ηre) = (Θ0 + 2Φ)(ηde)j2 (k(ηre − ηde)) . (4.42)Given that the k-osillation of the monopole is muh slower than the one of the Besselfuntion, rs ≪ ηre − ηde, the �rst peak orresponds approximately to the maximum of theBessel funtion, whih ours for k ≈ 2/(ηre − ηde). This translates into ℓ ≈ k(η0 − ηre) ≈
2(η0 − ηre)/(ηre − ηde) ≈ 2

√
zre. This peuliar saling of the position of the reionization



88 Parameter dependenebump in the E-spetrum ould potentially be used to distinguish the e�et of a possible timevariation of the �ne-struture onstant, see � 6.3.4.Only one parameter is su�ient to haraterize the simple model of sudden reionizationpresented above, namely the reionization redshift zre or equivalently τre; but it has beenshown that there are up to �ve prinipal reionization modes whih ould be extrated fromCMB measurements (Hu & Holder, 2003). Furthermore, it is possible to link the reionizationhistory to spei� stellar models and try to onstrain the parameters of star formation andevolution modelling using CMB data (Brusoli et al., 2002; Holder et al., 2003; Kaplinghatet al., 2003a).4.2 Normal parametersThe physial understanding of the harateristi signature of the osmologial parametersan be exploited to build a set of analytial funtions whih desribe quantities diretlyprobed by the CMB. We all suh a set a �normal parameter basis�, beause the e�et of thenew parameters is almost orthogonal, in the sense that orrelations among the parametersshould be very small. The normal parameter set has the advantage of taking into aountthe most severe CMB degeneraies, suh as the geometrial degeneray desribed above,a feature whih improves the e�ieny of parameter spae exploration (see � 5.1.7). Thedependene of the CMB spetrum on the normal parameters is almost linear over a widerange of values, a very important property whih makes them ideal as a basis set for theFisher matrix analysis, see the explanations in � 5.2 and � 6.2.5 for an appliation. In termsof the normal parameters, it is easy to disentangle and understand the physial e�ets on theCMB power spetra of eah parameter while keeping the other onstant, to the ontrary ofwhat happens for osmologial parameters.We have seen in � 4.1.2 that the shift parameter Rshift, the baryon and matter densitydetermine the loation and relative height of the aousti peaks. We now expand thoseonsiderations by introduing a normal parameter set, based on the disussion of Kosowskyet al. (2002), to whih the reader is referred for further details. See also Sandvik et al. (2004)for an appliation to parameter estimation tehniques and Jimenez et al. (2004) for reentimprovements inluding the polarization spetrum.
• The position of the peaks is set by the ratio between the angular diameter distanerelation (1.32, page 15) and the physial size of the aousti horizon at deoupling,Eq. (4.24, page 82). Hene a �rst normal parameter whih determines the overallangular sale is

A ≡ DA(ade)
aders(ade) , (4.43)f. Eq. (4.17), whih is just a general expression for the shift parameter. The sale fatorat deoupling ade, or equivalently the redshift of deoupling, depends upon Ωbh

2 andthe Ωm/Ωr, for whih Hu & Sugiyama (1996) provide an aurate analytial �ttingformula. The e�et of a hange in A while keeping the other normal parameters �xedis displayed in Fig. 4.3.
• The radiation/matter ratio sets the epoh of equality, whih in turn determines the
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Figure 4.3: Impat of the shift parameter (4.43) on the CMB temperature (left) and polar-ization (right) spetra, all other normal parameters kept �xed. The geometrial projetione�et a�ets temperature and polarization in the same way. In the bottom panel, we plotthe perent di�erene with respet to the referene model (blak).amount of early ISW, thus we introdue the parameter
R ≡ Ωm

Ωr

ade
a0

, (4.44)whih gives the matter to radiation density ratio at the time of deoupling. The boostof the �rst aousti peak due to the early ISW is visible in Fig. 4.4.
• The geometrial degeneray is along the energy density in the osmologial onstant,whih also gives the amount of late ISW e�et. Thus we use the parameter

V ≡ ΩΛh
2 . (4.45)As shown in Fig. 4.5, the impat is quite small in magnitude and solely on large angularsales, where osmi variane limits our ability to onstrain this parameter, making ofthe osmologial onstant one of the worst determinable parameters with CMB dataalone.

• The parameter A already inludes the e�et of the baryon density on the spaing andloation of the peaks, whih is produed by the dependene of the sound horizon onthe baryon ontent. Therefore keeping the other normal parameters and in partiular
A �xed while varying

B ≡ Ωbh
2 (4.46)isolates the baryon driving e�et on the aousti osillations, whih sets the relativeheight of the peaks. Sine the polarization amplitude is proportional to the temperaturedipole at reombination, whih in turn is suppressed by a fator (1 + R)1/2 with R ∝

Ωbh
2, a larger baryon density redues the height of polarization peaks (Fig. 4.6).
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Figure 4.4: Impat of a hange in the radiation to matter energy density ratio at deoupling(4.44) on the temperature (left) and polarization (right) spetra, all other normal parameterskept �xed. This an more easily be interpreted as a shift in the epoh of matter-radiationequality, whih hanges the amount of early ISW e�et ontribution around the �rst aoustipeak.

Figure 4.5: Impat of the energy density in the osmologial onstant (4.45) on the CMBtemperature (left) and polarization (right) spetra, all other normal parameters kept �xed.The impat is only on large angular sales due to the late ISW e�et, where measurementsare limited by osmi variane and therefore annot onstraint muh this parameter.
• The CMB spetrum turns out to be almost linear in the ombination

M ≡ Ωmh
2

(

1 +
Ω2
r

a2deΩ2
m

)1/2

= Ωmh
2

(

1 +
1

R

)1/2

, (4.47)
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Figure 4.6: Impat of the baryon density (4.46) on the CMB temperature (left) and polariza-tion (right) spetra, all other normal parameters kept �xed. A larger baryon ontent boostsodd peaks and suppresses even ones, see � 4.1.2.2. The height of the polarization peaks isredued by a larger baryon ontent.whih is a re�nement of our previous approah of taking simply Ωmh
2 as a determiningparameter, see Kosowsky et al. (2002) for more details.

• A good way of taking into aount the degeneray between the optial depth to reion-ization and the salar normalization desribed in � 4.1.3.2 is to adopt the parameter
T ≡ As exp(−2τre) , (4.48)where for the adiabati model onsidered here As ≡ ζ2

0 is the salar amplitude of thepower spetrum of the gauge invariant urvature perturbation, f. Eq. (4.6, page 79).When adopting a hange in τre, the normalization As is also hanged as to keep thepower above the third peak unhanged, thus avoiding arti�ial degeneraies with theother normal parameters, whih would disappear if one adopted a di�erent normaliza-tion onvention (Kosowsky et al., 2002), see Fig. 4.7.
• The sale dependene of the initial power spetrum is desribed by the salar spetralindex ns, as in (4.6). A value ns > 1 (�blue index�) inreases the power for wavevetorslarger than the pivot sale, and thus yields more power for large multipoles; the onverseis true for ns < 1 (�red index�), see Fig. 4.8. Therefore the impat on the CMB spetruman be approximately modelled as

CℓT,E(ns) ≈ CℓT,E(ns = 1)

(

ℓ

ℓ0

)ns−1 (4.49)with ℓ0 a pivot point whih should be hosen as to math kP (even though a di�erenthoie will only orrespond to a hange in overall normalization).
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Figure 4.7: Impat of the parameter T de�ned in (4.48) on the CMB temperature (left) andpolarization (right) spetra, all other normal parameters kept �xed. Inreasing τre and theoverall normalization at the same time as to keep the power above the third peak unhangedreveals the degeneray between normalization and reionization. The only measurable e�etis at large sales, where the temperature signal is enhaned for smaller T (and hene larger
τre) as well as the reionization bump in the polarization spetrum.

Figure 4.8: Impat of the salar spetral index on the CMB temperature (left) and polariza-tion (right) spetra, all other normal parameters kept �xed. A blue spetrum (ns > 1) givesmore power at larger multipoles. The glithes are numerial artifats.Given the above orrespondenes, we an transform from the osmologial parameterset (Ωm,ΩΛ,Ωb,Ωr, h) into the normal basis (A,R,V,B,M) and vie-versa by numeriallyinverting the relations (4.43�4.47).



4.3 General initial onditions 934.3 General initial onditionsAs we have seen in � 3.2 and � 3.3, a Universe ontaining photons, massless neutrinos, olddark matter and photons oupled to baryons admits four growing modes for the perturbations.To this set, one should add a baryon isourvature entropy mode, whih we have not desribed,but whih behaves exatly as the old dark matter mode, only resaled by an overall onstant
Ωb/Ωdm (Gordon & Lewis, 2003). Thus without loss of generality, we an treat the CDMand baryon isourvature modes as one single mode, and restrit our onsiderations to thefour modes: adiabati, CDM isourvature, neutrino entropy and neutrino veloity.4.3.1 Angular power spetra for all modesThe numerial integration of the evolution equations is neessary to go beyond the earlytime approximative solutions derived earlier and obtain the full angular power spetra forthe di�erent types of initial onditions. Reent versions of amb inlude the possibilityof speifying neutrino entropy and veloity initial onditions, along with the adiabati andisourvature CDM ones. The resulting temperature and E-polarization spetra are displayedin Figures 4.9 and 4.10. Analogously to the adiabati-CDM isourvature ase disussed in� 4.1.1, in the most general ase the modes are arbitrarily orrelated with eah other, andeah of them possesses its own spetral index. In the �gures we plot the orrelators for totalpositive orrelation between the modes, take sale invariant spetral indexes for all modes,
n = 1 and we �x the other osmologial parameters to a �at, onordane ΛCDM model withearly reionization, as emerged from the WMAP data for the pure adiabati ase.The olletion of modes presents a wide variety of osillatory strutures, and very di�erentamplitude ratios between the large-sale plateau and the peaks. Sine the perturbationequations are linear, the most general CMB power spetrum is a positive de�nit superpositionof all the modes. From a phenomenologial point of view, we expet that widening the initialondition spae to inlude all of the four possible modes, will lead to large degeneraiesbetween initial onditions and osmologial parameters. We dediate � 7.2 to a thoroughinvestigation of this issue. On the other hand, if the neutrino isourvature modes were non-zero, their ontribution ould oneivably allow to �t the CMB data without the need for aosmologial onstant, a possibility whih we analyze and rejet in � 7.3.4.3.2 Modes superpositionIn the purely adiabati senario, initial onditions for salar perturbations are desribed bytwo parameters, namely the overall normalization and the spetral index of the urvatureperturbation power spetrum, as in Eq. (4.6, page 79). By enlargening the initial onditionsspae to inlude all of the four possible modes, we add nine amplitudes (three for the CDMisourvature, neutrino density and veloity modes, and six for the orrelators between thefour modes) and three spetral indexes, for a total of 14 parameters desribing the mostgeneral initial onditions.Although the dependene of the modes on the amplitudes is trivial, the numerial searh inthe initial onditions parameter spae is ompliated by the positive de�niteness onditionson the total spetrum. The total temperature (or polarization) angular power spetrum
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Figure 4.9: Temperature and E-polarization angular power spetra for the four modes onsti-tuting the most general initial onditions for CMB anisotropies, Figure 1 of 2. The orrelatorsare for positive total orrelation between the modes, and we take all spetral indexes to beunity. The remaining osmologial parameters are �xed to a onordane, �at ΛCDM model.In the lower panel, the orrelators are plotted in absolute value. The four modes are: ad(adiabati), i (CDM isourvature), nd (neutrino density/entropy), nv (neutrino veloity).obtained by superposing the modes must be positive
Cℓ =

4
∑

i,j=1

MijC
ij
ℓ ≥ 0 ∀ ℓ , (4.50)with the modes orrelation matrix M ∈ Pn, where Pn denotes the spae of n × n real,positive semi-de�nite, symmetri matries with in our ase n = 4, and the Cijℓ are omputedfor a �xed hoie of osmologial parameters when only the orresponding element of the
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Figure 4.10: Temperature and E-polarization angular power spetra for the four modes on-stituting the most general initial onditions for CMB anisotropies, Figure 2 of 2.orrelation matrix is non-zero, i.e. for Mij = 1, all others vanishing. The elements of theorrelation matrix are arranged so that the amplitudes of the pure modes are along thediagonal (so that Mii ≥ 0 for i = 1, . . . , 4) while the o�-diagonal elements are the orrelatorsamplitudes. Eah orrelator amplitude must satisfy Shwartz' inequality
M2
ij ≤MiiMjj i, j = 1, . . . , 4 (4.51)beause of the positive de�niteness ondition (see Trotta, 2001, Appendix A for a proof), butin general the orrelators amplitudes an of ourse be negative. Finally, Shwartz' inequalitybetween all pairs i 6= j of M is a neessary but not su�ient ondition for the positivede�niteness of the orrelation matrix. A su�ient ondition is that all sub-determinants of

M are positive or zero (see e.g. Heuser, 1993, proposition 172.5), giving the four su�ientonditions on the elements of M:
M11 ≥ 0 , (4.52a)
M11M22 −M2

12 ≥ 0 , (4.52b)
M11M22M33 + 2M12M23M

2
13M22 −M2

13M33 −M2
12M33 −M2

23M11 ≥ 0 , (4.52)
detM ≥ 0 . (4.52d)When numerially searhing the initial onditions parameter spae, the onditions (4.52)must be imposed by hand to avoid regions whih would lead to non-physial (i.e. negative)angular power spetra. This approah is used in Trotta et al. (2001) and some related issuesare disussed in � 7.2.A more onvenient parametrization of the orrelation matrix is employed in Trotta et al.(2003), where the matrix M ∈ Pn is written as

M = UDUT , (4.53)
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U ∈ SOn, D = diag(d1, d2, . . . , dn) and di ≥ 0, i ∈ {1, 2, . . . , n}. Here SOn is the spae of
n×n real, orthogonal matries with det = 1 and n = 4. We an write U as an exponentiatedlinear ombination of generators Hi of SOn:

U = exp





(n2−n)/2
∑

i=1

αiHi



 , (4.54)with
H1 =













0 1 0 . . .

−1 0 0 . . .

0 0 0 . . .... ... ... . . .  , (4.55)and so on, with −π/2 < αi < π/2, i ∈ {1, 2, . . . , (n2 − n)/2}. In analogy to the Euler anglesin three dimensions, we an re-parameterize U in the form
U =

(n2−n)/2
∏

i=1

exp (ψiHi) , (4.56)with some other oe�ients −π/2 < ψi < π/2, i ∈ {1, 2, . . . , (n2 − n)/2}, whose funtionalrelation with the αi's does not matter. The diagonal matrix D an be written as
D = diag (tan(θ1), . . . , tan(θn)) , (4.57)with 0 ≤ θi < π/2, for i ∈ {1, 2, . . . , n}. In this way, the spae of initial onditions for

n modes is e�iently parameterized by the (n2 + n)/2 angles θi, ψj . In our ase, n = 4and the initial onditions are desribed by the ten dimensional hyperube in the variables
(θ1, . . . , θ4, ψ1, . . . , ψ6). This is of partiular importane for the numerial searh in theparameter spae. One an then go bak to the expliit form of M using Eqs. (4.56), (4.57)and (4.53). This more e�ient parametrization is employed in � 7.3.There is no optimal solution for an e�ient and physially motivated parametrizationof the initial amplitudes; another possibility, based on a ten-dimensional hypersphere, isemployed in the analysis of Buher et al. (2004).



The fundamental problem of sienti�progress, and a fundamental one of ev-eryday life, is that of learning from expe-riene. Knowledge obtained in this wayis partly merely desription of what wehave already observed, but part onsistsof making inferenes from past experieneto predit future experiene.Harold JeffreysTheory of probability
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Chapter 5Statistis and data analysis
We are now in a position to attak the task of atually determining the values of osmologialparameters from the observed CMB anisotropy. To this end, we need several statistial tools,whih we introdue in � 5.1.1. The emphasis is on their appliation to the CMB: we workout the osmi variane limit from �rst priniples in � 5.1.2, and we present the MaximumLikelihood priniple and its appliation to data analysis in � 5.1.3; we fous on the di�erenesbetween the frequentist (� 5.1.4) and Bayesian approah (� 5.1.5) to statistis, explaining theproedures to assess likelihood and on�dene intervals and their interpretation; we thendisuss the implementation of two popular methods to sample the parameters spae, thetraditional gridding method (� 5.1.6) and the more e�ient Monte Carlo sampling (� 5.1.7).In � 5.2 we explain the details of the Fisher matrix analysis, an handy and aurate tehniqueto produe foreasts for the expeted apabilities in terms of parameters extration of futureCMB observations. In the last setion, � 5.3, we o�er a brief historial review of the lastdeade of CMB observation, presenting the data-sets whih are then exploited in Chapters 6and 7.5.1 Elements of probability and statistis5.1.1 Some onepts of probability theoryWe work in real, three-dimensional spae, and we onsider a �eld X whih is de�ned in allpoints r ∈ R3 in suh a way that the probability of obtaining the value X at the point ris P(X, r). We all X an in�nite dimensional random �eld and P its 1-point probabilitydistribution funtion (pdf). In order to fully desribe the random �eld X, we need to speifynot only P, but also the 2-point pdf, denoted by P2(X1, r1,X2, r2), whih desribes theprobability of getting the value X1 at the point r1 and the value X2 at the point r2; then theprobability distribution for all triples of points, P3, and so on for an arbitrarily large numberof points.From the de�nition of probability, the n-point pdf's are not all independent, obeying therelations

Pn(X1, . . . ,Xn) =

∫

Pn+1(X1, . . . ,Xn,Xn+1)dXn+1 . (5.1)The �eld X is said to be statistially homogeneous if its 1-point pdf is the same in all points



100 Statistis and data analysisof spae:
P(X, r) = P(X) (statistial homogeneity), (5.2)and statistially isotropi if the 2-point pdf depends only on the distane between the pointsbut not on the diretion of the vetor joining them:

P2(X1, r1,X2, r2) = P2(X1,X2, r) (statistial isotropy), (5.3)with r ≡ |r1 − r2|. In osmology, all random �elds are assumed to be homogeneous andisotropi. From now on we will always make this assumption. We denote with 〈·〉 theensemble average over realizations of the �eld X (expetation value). For a funtion f(X),its expetation value is
〈f(X)〉 ≡

∫

Ω
f(X)P(X)dX , (5.4)where the integration goes over all possible realizations of X de�ning the sample spae Ω.The expetation value of f(X) = X is alled the mean of X. Under the assumption ofisotropy, 〈X〉 is a onstant independent on r. Therefore in osmologial perturbation theorywe an always take the perturbations to have zero mean, sine a onstant o�set an alwaysbe reabsorbed in a rede�nition of the orresponding bakground quantity.Consider X(k), the harmoni transform of X with respet to the eigenfuntions of theLaplae operator; in R3 this is the usual Fourier transform. Then as a onsequene ofhomogeneity and isotropy, X(k) has the following properties:

〈X(k)〉 = δ(D)(k)〈X〉 (5.5)
〈X(k) ·X(k′)〉 = δ(D)(k − k′)g(k) (5.6)The real spae orrelation funtion is de�ned as

ξ(r) ≡ 〈X(r1) ·X(r1 + r)〉 . (5.7)It is the expetation value of X1 ≡ X(r1) and X2 = X(r1 + r) under the 2-point pdf,
ξ(r) =

∫ dX1

∫ dX2 P2(X1,X2, r)X1X2 , (5.8)where in writing ξ(r) instead of ξ(r) we have assumed statistial isotropy.The �eld X is alled spae ergodi if we an perform a spatial average instead of anensemble average and obtain the same result:
lim
R→∞

(

4

3
πR3

)−1 ∫

|r|<R
f [X(r)] d3r = 〈f [X]〉 . (5.9)Notie that ergodiity requires that the �eld is de�ned over an in�nite spae, suh as R3.The temperature �eld of the CMB however lives on the two-sphere S2, whih is a ompatmanifolds and therefore not ergodi. Therefore even if we ould measure the anisotropieswith no experimental error, we still would not be able to perform the ensemble average withperfet auray, see � 5.1.2.We denote by f̂ the estimator for f(X), i.e. a proedure applied to a random sampleof X to produe a numerial value for f , whih is alled the estimate. When applied to a



5.1 Elements of probability and statistis 101set of observations Xobs
1 ,Xobs

2 , . . . Xobs
n whih onstitute a random sample, the estimator f̂produes a distribution of estimates, and as suh it too is a random variable.An important partiular ase is the Gaussian random �eld, for whih all the n-point pdf'sare Gaussian. The 1-point pdf is then

P(X) =
1√
2πσ

exp

(

−X2

2σ2

)

, (5.10)while the 2-point pdf is given in terms of the �eld's orrelation funtion ξ as
P2(X1,X2, r) =

1

2πσ2
√

1 − ξ2(r)
exp

(

−X
2
1 +X2

2 − 2ξ(r)X1X2

2σ2 [1 − ξ2(r)]

) (5.11)and the 2-point pdf (or equivalently, the orrelation funtion) ontains the full statistialinformation.The statement that the orrelation funtion determines the 2-point pdf ompletely is trueonly for a Gaussian �eld; in general, from (5.8) it is lear that after the integration ξ(r)only ontains part of the information enoded in P2. For instane, Jones (1997) gives aninteresting ounter-example of a Gaussian and a non-Gaussian distribution with the sameorrelation funtion and yet with two di�erent 2-point pdf's.5.1.2 The origin of osmi varianeIt is instrutive to ompute expliitly the variane of the observed Cℓ starting from basipriniples. If we assume that the temperature �utuation Θ is an isotropi and homogeneousrandom �eld, then the oe�ients of the harmoni expansion on the 2-sphere, the aℓm's, havezero mean and variane given by the true Cℓ's:
〈aℓm〉 = 0 (5.12)

〈a∗ℓm · aℓ′m′〉 = δℓℓ′δmm′Cℓ . (5.13)In�ation predits that the aℓm's are very lose to Gaussian variables, so we make the assump-tion of Gaussianity and for the pdf of aℓm we take
P(aℓm) =

1√
2πCℓ

e
−
a2
ℓm

2Cℓ . (5.14)The true aℓm's are of ourse inaessible to us, but from the measured temperature �utuationwe obtain an estimate whih we denote by âℓm. As an estimator for the power spetrum wede�ne
Ĉℓ ≡

1

2ℓ+ 1

ℓ
∑

m=−ℓ
|â2
ℓm| =

Cℓ
2ℓ+ 1

V , (5.15)where we have introdued the variable
V ≡

ℓ
∑

m=−ℓ

|â2
ℓm|
C2
ℓ

. (5.16)Eq. (5.15) implies an ergodi hypothesis, sine in the estimator we replaed the expetationvalue in (5.13) by an average over independent azimutal diretions by summing over m.



102 Statistis and data analysisThe variable V is a sum of 2ℓ + 1 squared Gaussian variables with unit variane, andtherefore (Kendall & Stuart, 1977) its pdf is the hi-square pdf with 2ℓ + 1 = l degrees offreedom (dof):
Pχ2

l
(V ) =

V
l−2

l

2l/2Γ(l/2)
e−V/2 . (5.17)From this we an write down the pdf for the estimator Ĉℓ, whih is

P(Ĉℓ) =
l

Cℓ
Pχ2

l

(

lĈℓ
Cℓ

) (5.18)whih shows that our estimator is distributed aording to a hi-square pdf. For l → ∞ theCentral Limit Theorem guarantees that the distribution will beome Gaussian, hene
lim
ℓ→∞

Ĉℓ = Cℓ (5.19)and the estimator is said to be onsistent. From (5.18) we an alulate the expetation valueof Ĉℓ, �nding
〈Ĉℓ〉 = Cℓ (unbiasedness), (5.20)and its variane

〈Ĉ2
ℓ 〉 − 〈Ĉℓ〉2 =

2

2ℓ+ 1
C2
ℓ (e�ieny). (5.21)We onlude that the fat that there are only 2ℓ+ 1 independent diretions on the sky for agiven multipole ℓ limits the e�ieny of our estimator for the power spetrum with variane

〈Ĉ2
ℓ 〉 − 〈Ĉℓ〉2
Cℓ

=
2

2ℓ+ 1
(osmi variane). (5.22)Despite the fat that osmi variane is a fundamental statistial limit, an ingeniousmethod to irumvent it and to measure the temperature quadrupole with better than osmivariane preision has reently been proposed by Skordis & Silk (2004).5.1.3 The priniple of Maximum LikelihoodThe estimation problem an be generally stated as follows: starting from a limited number ofobservations, whih onstitute a random sample, one wants to reonstrut some properties ofthe underlying pdf. It is simpler to think of the properties of the pdf as unknown parameters,whih we seek to determine. Consider a set of n observations d =

{

dobs1 , dobs2 , . . . , dobsn

} ofthe variable X and a set of p parameters θ =
{

θobs1 , θobs2 , . . . , θobsp

}. The measurements havea onditional probability P(di|θ) to be observed given the value θ for the parameters. Theproblem at hand is to estimate the joint onditional probability
L(d|θ) ≡

n
∏

i=1

P(di|θ) (5.23)from the observations d. In the above de�nition, we thought of L as a funtion of the randomvariable X; however, one the observations have been done, we an think of L rather as afuntion of the unknown parameters θ for a given value of d and all it the likelihood funtion(LF).



5.1 Elements of probability and statistis 103The maximum likelihood (ML) priniple a�rms that as an estimate for θ we should hoosethe value θ∗ whih makes the probability of the atual result obtained, d, as large as it anbe, i.e.
L(d|θ∗) ≥ L(d|θ) (Maximum Likelihood) (5.24)for all possible values of θ.Instead of maximizing the LF, one an minimize the quantity

L ≡ −2 lnL , (5.25)whih we will all lognormal LF.If the pdf is Gaussian, then the ML estimation redues to the usual least square �t:suppose that the measured dobsi are independent from eah other and Gaussian distributedaround their (unknown) true values di(θ), with variane given by the experimental error σobsi .Then minimizing L is equivalent to minimization of the quantity
χ2(θ) ≡

n
∑

i=1

(

dobsi − di(θ)

σobsi

)2

, (5.26)whih is alled the hi-square.Applied to the problem of parameter extration from CMB data, the ML presriptionmeans that, given the measured power spetrum, Cobs
ℓ , with errors σℓ, we have to minimizethe value of the hi-square by varying the osmologial parameters of interest. This proedureonly gives information about the set of parameters whih are the �most probable� to havegenerated the measurements at hand. However, quantifying the error on our estimate forthe parameters is a more subtle business, sine it involves dwelling into the exat de�nitionof what probability means. There is a long dispute going on among speialists about theorret interpretation of probability, and some fundamental issues are still unresolved. Onean take fundamentally two di�erent point of views on the subjet, the orthodox (frequentist)approah or the Bayesian point of view, as we now explain. A good introdution to Bayesianmethods and a omparison with the sampling theory approah an be found in Box & Tiao(1973), while Kendall & Stuart (1977) give full details about frequentist theory alulations.Jaynes (2003) is a very enjoyable book, whih provides a wider perspetive on the logiof siene and probability theory. A useful textbook with many stimulating examples ofBayesian inferene is MaKay (2003). Frodesen et al. (1979) � written by experimentalistswho have used on the �eld the methods desribed � is more praxis-oriented, and explains ina pratial way the statistial mambo-jumbo.5.1.4 Orthodox probabilities � Con�dene intervalsThe orthodox de�nition of probability � also known as �sampling theory� approah � is basedon the empirial repeatability of the experiment, see e.g. Jaynes (2003). If an experiment isperformed N times and the outome A ours in M of this ases, then the probability of theoutome A is

P (A) ≡ lim
N→∞

M

N
. (5.27)In the ase of ontinuous variables, the onept of probability is de�ned as the limitingproess (5.27) reahed from a �nite subdivision in N equiprobable intervals of the sample



104 Statistis and data analysisspae (Kendall & Stuart, 1977, Setion 7.11, Vol. 1). The frequentist approah allows thede�nition and interpretation of exlusion regions or on�dene intervals for the parameters,see below. It is the point of view usually adopted in partile physis, where an experiment anbe repeated many times under the same irumstanes. It is not very popular in osmologythough, where there is only one partiular realization to observe.Con�dene intervals � frequentistCon�dene intervals in the frequentist approah have a straightforward interpretation: on-sider a random variable X whose pdf depends on the parameter θ whih we wish to estimatefrom a random sample {xobs1 , xobs2 , . . . , xobsN

} with an estimator θ̂. For instane, one anthink of θ as the true mean µ of a normal distribution, and the estimator as the samplemean, µ̂ = N−1
∑

i x
obs
i .The estimates are distributed aording to some pdf, whih we denote by Pe. Then a

100γ% on�dene interval for the estimated parameter θ̂ is the range [θ1; θ2] suh that theprobability ontent for the estimator is γ, i.e.
P (θ1 < θ̂ < θ2) ≡

∫ θ2

θ1

Pedθ = γ . (5.28)Notie that this is a statement about the probability of our estimate θ̂ to lie in a ertainrange, with the interpretation that, if we would draw the N samples L times under identialirumstanes, then the estimates produed by θ̂ fall in the range [θ1; θ2] γL times. Thereforeat this stage we are merely making a statement of the distribution of our estimator. If wewant to onvert this into a on�dene statement for the true value θ, we an say that there isa probability γ that the random interval [θ1; θ2] will over the true value θ. In other words,in the long run the limits θ1 and θ2 are suh that the statement
θ1 < θ < θ2 (5.29)will be true in 100γ% of the ases.Unfortunately, the above interpretation is unappliable to osmology, where we annotdraw new samples at will from the underlying distribution, but we have to ontent ourselveswith the only realization we happen to observe. However, we an still use as an estimatorthe least-square �t to the observed value, and interpret the result in frequentist's terms.Consider the least-square �t of (5.26), whih applied to the CMB power spetrum is

χ2(θ) ≡
∑

ℓ

(

Cobs
ℓ − Cℓ(θ)

σobsℓ

)2

, (5.30)where the observed Cobs
ℓ are estimated using the estimator (5.15): sine eah term is a sumof 2ℓ+ 1 Gaussian variables squared (the âℓm's), its distribution beomes Gaussian by virtueof the Central Limit Theorem only for large ℓ. The σobsℓ are the estimated errors from theobservations for eah multipole, and θ is the vetor ontaining the p osmologial parametersof interest. The funtional dependene of Cℓ(θ) is given by the underlying theory, whih wetry to falsify by omparing its preditions with the atual observations.The least-square estimate for θ � whih is equivalent to the ML estimator for Gaussianvariables � is the value θ∗ for whih the χ2 reahes the minimum value χ2∗, whih is alled



5.1 Elements of probability and statistis 105least square estimate. Until this point, the least-square estimation makes no assumptionsabout the underlying pdf for the variables. To the extent to whih the Ĉℓ's an be onsideredas independent Gaussian variables, then the quantity χ2∗ is distributed as a hi-square pdfwith f = n− p dof, denoted by Pχ2
f
, see (5.17). Here n is the number of multipoles observedand p the number of �tted parameters.Under these assumptions, the distribution Pχ2

f
provides a measure of the goodness of �t:assume that a given parameter set θ0 is the orret one, and that the measured hi-square inour Universe for θ0 is χ2

0; then if the measurement would be repeated many times in di�erentrealizations, the probability that the outome will be equal or larger than the true value χ2
0is

P (χ2 > χ2
0) =

∫ ∞

χ2
0

Pχ2
f
(u)du ≡ 1 − γ0 . (5.31)The interpretation in frequentist terms is straightforward: if some other parameters θ1 have

χ2(θ1) = χ2
1 ≫ χ2

0, the hane that θ1 is the orret set and we are atually seeing arealization far out in the tail of the distribution is very small.It now remains to de�ne on�dene intervals for the parameters basing on the above fre-quentist interpretation: a 100γ% on�dene interval enompasses parameters whose measured
χ2 is smaller than the value of orresponding to the quantile1 of 1−γ for the distribution Pχ2

f
.In other words, if the measurements ould be repeated many times, in the long run the aboveon�dene interval would inlude the true value of the parameters 100γ% of the time. Thusthe parameter spae outside the estimated on�dene interval is a proper exlusion regionat the given on�dene level. Notie that the frequentist on�dene levels depend both onthe total number of parameters �tted and on the number of independent data points we areusing.We onlude this setion with two remarks: �rstly, the above assumptions of Gaussianityand independeny are only partially ful�lled by the Ĉℓ's, therefore the outome of suha frequentist analysis is only approximative (see Abroe et al., 2002 for a stritly orretfrequentist parameter estimation, whih involves the numerial sampling of the pdf whih wesimply took as a hi-square); and seond, the lean interpretation of the frequentist approahis somewhat weakened by the fat that we are ompelled to invoke measurements in otherrealizations whih annot take plae, not even in priniple. Bayesian statistis takes insteada more pragmati approah, by dealing only with atual observations.5.1.5 Statistial inferene � Likelihood intervalsBayesian statistis does not onsider possible outomes of measurements whih are never per-formed. Instead, it exploits the atual data to update our knowledge about the probabilityof a ertain statement, starting from our prior degree of belief. Critiism has been raisedagainst this approah beause the �nal inferene depends on the prior information available,and therefore seems to su�er from a ertain degree of subjetivity. However, Bayesian infer-ene an be applied to theories whih are not repeatable and are unsienti� in the frequentistpoint of view (e.g. the probability that it will rain tomorrow). It is based on Bayes' Theorem2,1Given the pdf P , x is said to be the quantile of q if it satis�es ∫∞

x
P(u)du = q.2Rev. Thomas Bayes, 1763.



106 Statistis and data analysiswhih is nothing more than rewriting the de�nitions of onditional probability:
P(A|B) =

P(B|A)P(A)

P(B)
(Bayes' Theorem). (5.32)In order to larify the meaning of this relation, let us write θ for A and d for B, obtaining

P(θ|d) =
L(d|θ)P(θ)

∫ dθP(d|θ)P(θ)
=
L(d|θ)P(θ)

P(d)
, (5.33)whih relates the posterior probability P(θ|d) for the parameters θ given the data d to thelikelihood funtion L(d|θ) if the prior pdf P(θ) for the parameters is known. The quantityin the denominator is independent of θ and it is alled the evidene of the data for a ertainmodel (MaKay, 2003). It is important for model omparison, but here we shall regard itjust as a normalization onstant. In shortposterior =

likelihood× priorevidene . (5.34)The prior distribution ontains all the (subjetive) knowledge about the parameters beforeobserving the data: our physial understanding of the model, our insight into the experimentalsetup and its performane, in short the amount of all our prior sienti� experiene. Thisinformation is then updated via Bayes theorem to the posterior distribution, by multiplyingthe prior with the LF whih ontains the information oming from the data. The posteriorprobability is the base for inferene about θ: the most probable value for the parameters isthe one for whih the posterior probability is largest.Bayes' postulate3 states that in absene of other arguments, the prior probability shouldbe assumed to be equal for all values of the parameters over a ertain range, θmin ≤ θ ≤ θmax.This is alled a ��at prior�, i.e.
P(θ) = [H(θ − θmin)H(θmax − θ)]

p
∏

i=1

[θmax,i − θmin,i]−1 , (5.35)where H is the Heaviside step funtion and θmax,i > θmin,i ∀ i. This is one of the prinipaloneptual di�ulties of Bayesian inferene: a �at prior on θ does not orrespond to a �atprior on some other set f(θ), obtained via a non-linear transformation f . Therefore the resultof Bayesian inferene do depend on the hoie of priors, even though this usually does notonstitue a major obstale in pratial problems � see however Buher et al. (2004) for aninstrutive example of the role of priors.We see from Eq. (5.33) that the Maximum Likelihood priniple is equivalent to Bayesianinferene in the ase of �at priors. We will always work with �at, top-hat priors unlessotherwise stated. There is however an important oneptual di�erene. By writing theposterior distribution as
P(θ|d) =

P(θ,d)

P(d)
, (5.36)it follows that Bayes' Theorem imposes to maximise the joint probability P(θ,d) of θ,d, whileMaximum Likelihood requires that the onditional probability L(d|θ) should be maximised.3Bayes' postulate is also known � perhaps with an hint of sarasm � as the Postulate of Equidistribution ofIgnorane.



5.1 Elements of probability and statistis 107Likelihood intervals � BayesianBayesian statistis use the LF to perform an interval estimation for θ: basing on Bayes'Theorem, Eq. (5.33), we not only onsider the ML point in parameter spae as the �mostlikely� value of the unknown parameter; we shall also interpret values further and furtheraway as less and less likely to have generated the partiular measurement at hand. Henelikelihood intervals drawn from the LF measure our �degree of belief� that the partiular setof observations was generated by a parameter belonging to the estimated interval. This isradially di�erent from the frequentist interpretation skethed above.Let us simplify the notation by writing L(θ) instead of L(d|θ), sine now we onsiderthe LF as a funtion of the parameters given a data set d. Assume further that the LF is amultivariate Gaussian distribution in the p parameters θ, i.e.
L(θ) = (detC)−1/2(2π)−p/2 exp(−L/2) , (5.37)

L = −2 lnL = (θ − µ)TC−1(θ − µ) (5.38)where T denotes transposition, µ is the expetation value of the parameters µ ≡ 〈θ〉 and Cis the ovariane matrix
Cij ≡ 〈(θi − µi)(θj − µj)〉 . (5.39)From the likelihood one an then obtain the posterior distribution via (5.33), one the prioris spei�ed. For the prior distribution P(θ) a simple hoie are so-alled ��at� priors, amultidimensional top-hat funtion over some range whih is supposed to enompass all thevalues of interest. Usually, in grid-based method the prior oinides with the extension ofthe grid, so that the prior is just a multipliative onstant and we an identify the likelihoodwith the posterior. As mentioned, this hoie is somewhat arbitrary, sine it depends on thebasis hosen for the parameters.We an Taylor expand a general LF around its maximum whih is given by our MLestimate θ∗ of µ, whih on average oinides with the true mean for a normal distribution,

〈θ∗〉 = µ. By de�nition of the ML point the �rst derivatives vanish, ∂L/∂θi(θ∗) = 0, and weobtain
L(θ) ≈ L(θ∗) +

1

2

∑

ij

(θi − θ∗i )
∂2L
∂θi∂θj

(θj − θ∗j ) . (5.40)If the LF is sharply peaked around θ∗, i.e. the errors on the parameters are small enough,then third order terms are unimportant and the above Gaussian form is a good enoughapproximation everywhere in parameter spae. By omparing with (5.38) we �nd that theovariane matrix an thus be estimated as
Ĉ = F−1 where Fij ≡

〈1

2

∂2L
∂θi∂θj

〉





θ
∗

(5.41)is alled Fisher information matrix (Kendall & Stuart, 1977, Chap.15, Vol.1).Aording to our understanding of the LF as a measure of our degree of belief for thepossible values of θ, the probability that parameters within a ertain region from the MLpoint have generated the observations should be proportional to the likelihood ontent of theregion. The probability ontent depends on whether we are estimating all parameters jointly,or keeping some of them �xed to their ML value, or rather disregarding a ertain subset byintegrating over them (marginalization). We onsider eah ase in turn.



108 Statistis and data analysisEstimation of all p parameters jointly.Without loss of generality we an take in the following µ = 0 in Eq. (5.38), whih an alwaysbe ahieved by shifting the origin of the oordinate system in parameter spae. Contours ofonstant likelihood de�ne hyperellipses in parameter spae with some probability ontent wewish to determine. To this aim we onsider the quadrati form
Q(θ) ≡ θTC−1θ (5.42)and for the LF (5.37) the ondition Q(θ) = Qsγ for some onstant Qsγ gives the ontoursof onstant likelihood. We write Qsγ to indiate that the numerial value of the onstantdepends on the number of parameters under onsideration, s, and on the desired probabilityontent of the hyperellipse, γ. It an be shown (Kendall & Stuart, 1977, Chap.8, Vol.1) thatthe quadrati form Q is hi-square distributed with s dof, whih allows us to relate Qsγ withthe probability ontent of the ellipse.If we want a on�dene region ontaining 100γ% of the joint probability for all p param-eters, then s = p and Qpγ is determined by solving
∫ Qp

γ

0
Pχ2

p
(u)du = γ . (5.43)The projetion (not the intersetion) of the hyperellipse Q(θ) = Qpγ onto eah of the param-eter axis gives the orresponding likelihood interval for eah parameter when all parameterare estimated simultaneously (whih we will all �joint likelihood interval�).It is a simple geometrial problem to �nd an analytial expression for the joint likelihoodinterval for eah parameter: for the parameter 1 ≤ d ≤ p, the intersetion of the hyperellipsewith the hyperplane de�ned by θd = c, with c a onstant, gives either an hyperellipse in p−1dimensions, or a point or else an empty set. The extrema of the joint likelihood interval forthe parameter d are given by the values of c for whih the p− 1 dimensional ellipse reduesto a point.To �nd the equation of the p−1 dimensional ellipse we proeed as follows: de�ne C−1 ≡ Mand write Q(θ) = Qpγ in the form

θ̃
T
M̃θ̃ + 2c

∑

j 6=d
mdj θ̃j = Qpγ −mddc

2 , (5.44)where we have de�ned
θ̃ ≡ (θ1, . . . , θd−1, θd+1, . . . , θp) ∈ Rp−1 (5.45)

M̃ ≡























m11 . . . m1,d−1 m1,d+1 . . . m1p... ...
md−1,1 . . . md−1,1

md+1,1 . . . md+1,1... ...
mp1 . . . mpp























∈ R(p−1×p−1). (5.46)
Now we diagonalize the submatrix M̃,diag (λ1, . . . , λp−1) ≡ Λ = UTM̃U (5.47)



5.1 Elements of probability and statistis 109�nding the eigenvalues λi, i ≤ 1 ≤ p− 1 and eigenvetors (u1, . . . , up−1), and after some alge-brai manipulations of (5.44) we arrive at the equation of the p− 1 dimensional hyperellipse
p−1
∑

i=1

λiz
2
i = Qpγ −mddc

2 +

p−1
∑

i=1

c2

λi





∑

j 6=d
mdjuji





2

, (5.48)where we have de�ned the new variables
zi ≡ (θ̃Ũ)i +

c

λi

∑

j 6=d
mdjuji , 0 ≤ i ≤ p− 1 . (5.49)The above hyperellipse beomes degenerate if

p−1
∑

i=1

λiz
2
i = 0 (5.50)from whih we obtain a quadrati equation for c with solutions

cmin, max =
±
√

Qpγ
[

mdd −
∑p−1

i=1 λ
−1
i

(

∑

j 6=dmdjuji

)2
]1/2

. (5.51)It is easy to show that the positive de�niteness ondition for the Fisher matrix guaranteesthat the quantity under the square root in the denominator is always ≥ 0. In onlusion, thejoint likelihood interval for the parameter θd with likelihood ontent γ is given by
cmin ≤ θd ≤ cmax . (5.52)Estimation of k < p parameters, the others �xed.We are sometimes interested in giving on�dene intervals for some subset k < p of theparameters, while assuming the other p− k parameters as (exatly) known. Without loss ofgenerality we shall take the �rst k parameters as the one we are interested in, and we splitthe parameter vetor as

θ =

(

t

u

) (5.53)with t ∈ Rk and u ∈ Rp−k. Correspondingly we write the ovariane matrix in (5.38) as theFisher matrix estimate of (5.41),
C−1 = F =

(

A G

GT B

) (5.54)where A ∈ Rk×k, B ∈ Rp−k×p−k and G ∈ Rp−k×k.If the known parameters u are held �xed at their ML value, the LF for the parameters ofinterests t is simply the full LF restrited to the k subspae,
L (t|u∗) ∝ exp(−1

2
tTAt) , (5.55)



110 Statistis and data analysiswith an appropriate normalization onstant, and the new ovariane matrix V ∈ Rk×k forthe k parameters of interest is
V = A−1 (onditional). (5.56)In partiular, we often onsider the best ase senario in whih all parameters but one aresupposed to be known exatly, say from independent observations or theoretial prejudie,and therefore k = 1. Then the 1σ likelihood interval for the �rst parameter only is the squareroot of the ovariane matrix element, and it is given by (all others �xed to their ML value)

σ1 =
1√
f11

. (5.57)Estimation of k < p parameters, the others marginalized.Instead of �xing some parameters, we may prefer to disregard them ompletely, by integratingover them in order to obtain the marginalized likelihood in the k parameter of interest:
L(t) ∝

∫

Ωu

L(t,u)du , (5.58)with a suitable normalization onstant so that the probability ontent of the marginalizedLF is equal to unity.The marginal LF for t is still a multivariate Gaussian, with the same ovariane matrixas the full LF, only with the last p− k rows and olumns deleted:
Vij =

[

F−1
]

ij
0 ≤ i, j ≤ k (marginalized). (5.59)This result an be obtained by performing expliitly the integration (5.58) or more elegantlyby using the properties of the harateristi funtion (Kendall & Stuart, 1977, Chap.4, Vol.1).In terms of the splitting (5.54), the ovariane matrix for the marginalized distribution is

V =
[

A− GB−1GT
]−1

. (5.60)Very often one quotes marginalized likelihood intervals for one parameter alone, k = 1with all other parameters marginalized, in whih ase the 1σ error is given by
σ1 =

√

(F−1)11 . (5.61)If the parameters are unorrelated, then F is diagonal, and �xing u or marginalizing overthem is equivalent, otherwise the resulting likelihood intervals for the parameter(s) of interestare in general di�erent, with the marginalized interval being broader.5.1.6 Gridding methodIn the numerial �t to the data, the shape of the LF is determined by evaluating the least-square estimator (5.26, page 103) at eah point on a grid in the p dimensional parameterspae and the minimization of the hi-square in the desired range of parameters gives the MLestimate.



5.1 Elements of probability and statistis 111
100γ% 68.3% 95% 95.4% 99% 99.7%Likelihood ontent (1σ) (1.96σ) (2σ) (2.58σ) (3σ)1 parameter, Q1

γ 1.00 3.84 4.00 6.63 9.002 parameters, Q2
γ 2.30 5.99 6.17 9.21 11.80Table 5.1: ∆χ2 = Qkγ for marginalized likelihood intervals in one parameter (k = 1) ormarginalized likelihood ontours in two parameters (k = 2) for the given joint likelihoodontent.Assuming that the measurements are normally distributed around their true value wehave

L(d|θ) = Lmax exp
[

−χ2(θ)/2
]

. (5.62)From this we an use the above presriptions to determine likelihood or on�dene intervalsfrom real data.In the frequentist analysis, the boundaries of the on�dene regions represent exlusionplots at the given on�dene level: they are found as the ontours of onstant χ2 using therelation (5.31, page 105), independently of the value of the hi-square at the ML point. InBayesian statistis, the likelihood intervals are instead drawn around the ML point, henetheir extension depends on the best �t value. This applies only to the gridding method, not tothe Monte Carlo sampling desribed below in � 5.1.7. It is ustomarily to quote marginalizedlikelihood intervals for one parameter only or to plot two-dimensional likelihood ontours toshow degenerate diretion between two parameters (also see below the paragraph disussingthe maximization approah instead of marginalization); for these two ases, the ook-bookpresription for Bayesian (Maximum Likelihood) statistis on a grid of samples in parameterspae is:
• �nd the ML point Lmax in the grid of parameters by minimizing the χ2 of Eq. (5.30,page 104) and mark this point as χ2min, your least-square estimate of the best �t;
• determine the boundaries of the region ontaining 100γ% of likelihood as the values ofthe parameters for whih the χ2 has inreased by an amount ∆χ2 = Qkγ (k = 1, 2 thenumber of parameters onsidered) with respet to χ2min.
• The values of Qkγ an be found for every desired likelihood ontent using the relation,f. (5.31, page 105)

γ =

∫ Qk
γ

0
Pχ2

k
(u)du . (5.63)Table 5.1 displays the values of ∆χ2 for k = 1, 2 and for some popular hoies oflikelihood ontent.In a real situation, the LF omputed using (5.62) will not be exatly a multivariateGaussian, and the likelihood intervals obtained with this method will only approximativelyenompasses the stated probability ontent. There are methods whih improve on the as-sumption of a normal distribution presented here, see for instane Bond et al. (2000); Bartlettet al. (2000); Wandelt et al. (2001); Ja�e et al. (2003).



112 Statistis and data analysisFinally, notie that likelihood (Bayesian) ontours are usually muh tighter than theon�dene ontours drawn from the frequentist point of view. This is a onsequene of the MLpoint having often a χ2/f muh smaller than 1, beause the data-sets are highly onsistentwith eah other and also beause usually not all points are ompletely independent. For theCMB, this was the ase when one onsidered a ombination of several data-sets before WMAP,as we disuss in � 7.2. If we onsider the usual situation in whih likelihood ontours aredrawn in a two dimensional plane with all other parameters marginalized over, the frequentistapproah is more onservative than Bayesian statistis: the region orresponding to thedesired on�dene level (frequentist) or likelihood ontent (Bayesian) γ, has bounds givenby χ2(θ) = Qγk, with k = 2 for Bayesian statistis and two-dimensional plots, and k =

f for frequentist statistis independently on the number of parameters onsidered. Sinein general and for reasonably good ML values χ2
min

<∼O(f) and f > 2, we have that theprobability/likelihood ontent is the same, i.e.
∫ ∞

Qγ
f

Pχ2
f
(u)du =

∫ ∞

Qγ
2

Pχ2
2
(u)du (5.64)only for Qγf > Qγ2 . When looking at Bayesian likelihood ontours one should thus keepin mind that a point more than, say, 3σ away from the ML point is not neessarily ruledout by data. In order to establish this, one has to look at on�dene ontours, i.e. ask thefrequentist's question. This is pointed out in a penetrating way by Gawiser (2001).Maximization instead of marginalizationIn pratial appliations, involving up to a dozen parameters, it is an exeptionally demandingtask to perform the multidimensional integral of Eq. (5.58). A omputationally more feasiblealternative whih avoids the time onsuming integration is to maximize the parameters weare not interested in, u, for eah value of the parameters of interest, t, obtaining

L(t) ∝ max
u

L(t,u) . (5.65)If the distribution is Gaussian, then the two proedures give the same result: maximizing
L(t,u) orresponds to minimization over u of the quadrati form θTC−1θ, with the notationsof (5.53) and (5.54). Di�erentiating with respet to u, we �nd that the minimum of thequadrati form lies at

u = −B−1GT t , (5.66)and therefore
L(t) ∝ exp−1

2
tT
[

A− GB−1GT
]

t , (5.67)whih is the same result we found by marginalizing over u, Eq. (5.60). Numerial investiga-tions have found that maximization tends to underestimate errors when the assumption of aGaussian distribution is not aurately ful�lled (Efstathiou et al., 1999).5.1.7 Markov hain Monte CarloA big pratial limitation to grid based parameter extration tehniques is that the numberof CMB spetra needed sales exponentially with the dimensionality of the parameter spae



5.1 Elements of probability and statistis 113onsidered. Even with fast parallel omputing, the required omputational time quikly be-omes very large, even for a moderate number of points in eah dimension. Interpolationalgorithms and other optimization tehniques have been employed to irumvent this funda-mental limitation, allowing the handling of up to a dozen parameters (Tegmark et al., 2001).Nevertheless, this method shows a lak of �exibility if one wants to add new data-sets orinorporate new parameters or theoretial priors. At the latest with the oming of WMAPdata, the days of grid-based parameter extration seem to be over, sine the auray ofWMAP-like data annot be exploited with the insu�ient resolution and �exibility o�eredby this tehnique.Markov hain Monte Carlo (hereafter MCMC) methods are now beoming the standardtool to determine parameters from CMB data, ombine it with large sale struture on-straints or investigate the e�et of di�erent priors. As advoated e.g. by Christensen et al.(2001), MCMC is a method to generate a sequene of (orrelated) samples, alled a Markovhain, from the posterior pdf of the parameters given the data, (5.33, page 106). The greatadvantages are that the omputational time sales approximately linearly with the number ofdimensions of the parameter spae, and that one the hain has properly onverged (see be-low for more details), the marginalized posterior distribution for the parameter(s) of interestan be simply reovered by plotting histograms of the sample list, thus avoiding ompletelythe ostly integration. It is easy to adjust the prior information or to inlude new data-setsinto an existing hain without having to reompute it, with a proedure alled �importanesampling�.One an think of the MCMC algorithm as an e�ient integration tehnique to evaluate theposterior distribution in Bayes' Theorem, Eq. (5.33, page 106). The Monte Carlo samplingdoes not rely on the assumption of Gaussian pdf's: indeed, the diret sampling of the posteriorpermits to reveal features due to its non-Gaussian distribution, and therefore vastly improveson the methods based on hi-square goodness-of-�t desribed above. Besides those undeniableadvantages over the grid method, the popularity of MCMC in the osmology ommunity hasbeen boosted by the timely publi release of the osmom pakage (Lewis & Bridle, 2002),whih integrates the ode amb for the omputation of the CMB power spetra4 and severaluseful tools for the generation and interpretation of Markov hains using CMB and otherosmologial data-sets. Further details about MCMC methods an be found e.g. in Gilkset al. (1996); MaKay (2003).The Metropolis-Hastings algorithm (Metropolis et al., 1953; Hastings, 1970) is the ore ofthe sample generation, and produes a Markov hain whose equilibrium distribution is thetarget probability density, here the posterior P(θ|d). The hain is started from a randompoint in parameter spae, θ0, and a new point θ1 is proposed with an arbitrarily proposaldensity distribution q(θn,θn+1). The transition kernel T (θn,θn+1) gives the onditionalprobability for the hain to move from θn to θn+1, and it must satisfy the �detailed balane�
P(θn+1|d)T (θn+1,θn) = P(θn|d)T (θn,θn+1) (5.68)so that the posterior P(θ|d) is the stationary distribution of the hain. This is ahieved by4Both odes are available at: http://osmologist.info.



114 Statistis and data analysisde�ning the transition kernel as
T (θn,θn+1) ≡ q(θn,θn+1)α(θn,θn+1) , (5.69)
α(θn,θn+1) ≡ min

{

1,
P(θn+1|d)q(θn+1,θn)

P(θn|d)q(θn,θn+1)

}

, (5.70)where α(θn,θn+1) gives the probability that the new point is aepted. Sine P(θ|d) ∝
L(d|θ)P(θ) and for the usual ase of a symmetri proposal density, q(θn,θn+1) = q(θn+1,θn),the new step is always aepted if it improves on the posterior, otherwise it is aepted withprobability L(d|θn+1)P(θn+1)/L(d|θn)P(θn).The result is a sample list from the target distribution, from whih all the statistialquantities of interest an readily be evaluated. The samples are orrelated with eah other,a fat whih does not onstitute a problem for the statistial inferene on the parameters;however, importane sampling does require unorrelated samples, whih an be obtained fromthe original hain by suitably �thinning� the hain, i.e. by retaining only one sample every
N , with N of the order of a few thousands. Other important pratial issues in working withMCMC methods involve:

• Burn in period: the initial samples need to be disarded, sine the hain is not yetsampling from the equilibrium distribution. The burn in an roughly be assessed bylooking at the evolution of the posterior and at the position of the hain in parameterspae as a funtion of the step number. When the hain is started at a random point ofthe parameter spae, the logarithm of the posterior pdf is large (and thus the posteriorprobability is small), and beomes smaller at every step as the hain approahes theregion where the �t to the data is better. Only when the hain has moved in theneighborhood of the ML point the urve of the log posterior as a funtion of the stepnumber �attens around the best �t value. This is illustrated in the left panel of Fig. 5.1.Another useful diagnosti is the evolution in parameter spae of multiple hains, whihare started from di�erent points. In a well-behaved situation all of the hains onvergeafter the burn-in period to the same region around the ML point, see the right panelof Fig. 5.1 for an illustration.
• Convergene: assessing onvergene of the hain essentially means to know whenwe an stop, having gathered a number of samples large enough to orretly derive thestatistial quantities of interest. This is in general a di�ult question, see e.g. Cowles &Carlin (1996); Mengersen et al. (1999) and referenes therein. The osmom pakageo�ers several useful diagnosti tools, inluding the Raftery & Lewis (1996) statistisand the Gelman & Rubin (1992b) riterion.
• Multiple hains: there is a debate among experts about the best strategy betweenhaving one long hain or rather several shorter ones running in parallel, see e.g. Gelman& Rubin (1992a,b); Raftery & Lewis (1996). Multiple independent hains o�er theadvantage of being omputed in parallel, and an be started in di�erent points ofthe parameter spae to ensure good mixing, i.e. an adequate exploration of the wholeparameter spae.
• Starting points: after the burn in period, the onverged hains do not depend on theinitial starting points. However, it is onvenient to start the hains in the proximity of
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Figure 5.1: Illustration of the burn-in period. Left panel: the logarithm of the (non-normalized) posterior, − lnP(θ|d), as a funtion of the step number for four Monte Carlohains. After the burn-in period (dotted, vertial lines), the value �attens and the hains aresampling from the target distribution. Right panel: the four hains (in di�erent olors) arestarted in di�erent points of a 6-dimensional parameter spae and all onverge to the sameregion after the burn-in. The vertial axis gives the number of steps.the parameter region where the best �t is supposedly loated, so that onvergene willbe quikly ahieved, and the sophistiated hoie of the starting points proposed byGelman & Rubin (1992b) is usually not neessary in osmologial appliations. Alsoone has to take into aount the fat that the MCMC is a loal algorithm, whih anbe trapped inside loal minima far away from the global minimum of the posterior, anissue whih is intimately related with the hoie of the proposal density. The use ofsimulated annealing algorithm via the introdution of a �nite temperature for the MCan sometimes help in ahieving onvergene in a weird-shaped parameter spae.
• Proposal density: the optimal hoie of the proposal density is the key parameterfor an e�ient implementation of the MCMC method. A simple possibility for the pro-posal density q(θn,θn+1) is a Gaussian with step size si along the parameter diretion
i, independently on the hain position. Finding the optimal value of si is a trade-o� be-tween a large step size, whih will result in almost all step being rejeted and thereforein low e�ieny, and a too small value, for whih the hain performs a random walkand the tails of the distribution will not be adequately sampled, giving serious underes-timate of the likelihood intervals for the parameters. One an also roughly sample thedistribution with a short hain, onstrut from the samples the ovariane matrix ofthe posterior distribution and use this information to onstrut a new parameter basisapproximately aligned with the degeneray diretions (Lewis & Bridle, 2002), whihensures a more e�ient exploration. A sampling method whih exploits the knowndegeneraies of the CMB and uses normal parameters as basis has been proposed by



116 Statistis and data analysisSlosar & Hobson (2003), and it an dramatially enhane the e�ieny of the MCMCalgorithm, espeially for large data-sets as the one expeted for the Plank satellite.5.2 Fisher matrix foreastsAn important issue is to assess quantitatively the expeted performane of future CMB ex-periments in terms of the preision reahed in the determination of osmologial parameters:this helps in understanding whether an observed degeneray is a onsequene of the lak ofpreision in the data, or else it is of fundamental nature and will not be lifted by upomingor even ideal (i.e. osmi variane limited) measurements; it also gives estimates of the nees-sary instrumental harateristis to ahieve a ertain preision, and on the optimal observingstrategies, e.g. full sky overage versus high resolution mapping of a path only.It is possible and indeed neessary at the development stage of a CMB experiment toinvestigate in detail the above questions by produing mok realizations of the CMB sky andrun Monte Carlo simulations of the observations. From the theorist's point of view, however,it is often su�ient and preferable to resort to a simpler alternative, whih gives quantitativeand aurate results with very small omputational requirements: a Fisher matrix analysis(FMA) (Knox, 1995; Kosowsky et al., 1996; Tegmark et al., 1997; Zaldarriaga et al., 1997;Bond et al., 1997; Eisenstein et al., 1998b; Efstathiou & Bond, 1999; Tegmark et al., 2000).5.2.1 Experimental parametersAs explained in � 5.1.5, if the LF is a multivariate Gaussian then the Fisher informationmatrix de�ned in Eq. (5.41) is an estimate of the inverse of the ovariane matrix for theparameters under srutiny. Sine any LF an be expanded up to seond order in the viinityof the ML point as in (5.40), the goal is to ompute the Fisher matrix for the CMB powerspetrum, inluding the noise of the future experiment, and estimate from it the ovarianematrix using the results for Bayesian statistis presented in � 5.1.5.The estimator (5.15) for the CMB temperature power spetrum (below we generalize theresult to inlude polarization information as well, � 5.2.2) needs to be modi�ed to subtrato� the noise ontribution and orret for the fat that the measured aℓm's are a smeared outversion of the true ones, resulting from the onvolution of the signal with the experimentalbeam, giving (Knox, 1995; Bond et al., 1997)
Ĉℓ ≡

(

1

2ℓ+ 1

ℓ
∑

m=−ℓ
|â2
ℓm| − w−1

b

)

eℓ(ℓ+1)/ℓ2b . (5.71)In the above expression, the two experimental parameters are the inverse weight per solidangle wb, whih aounts for the experimental noise, and the beam width ℓb, whih orretsthe smoothing due to the Gaussian pro�le of the beam. These two parameters are written interms of the fundamental spei�ations of the experiments, namely the rms pixel noise (orsensitivity per resolution element) σb and the angular resolution θb (FWHM) expressed indegrees as
w−1
b = (σbθb)

2 and ℓb =
√

8 ln 2/θb . (5.72)In the limit of in�nite resolution, θb → 0, and no experimental noise, σb → 0, we reover theosmi variane limited estimator (5.15).



5.2 Fisher matrix foreasts 117As in � 5.1.2, we an now �nd the pdf for (5.71),
P(Ĉℓ) =

l

Cℓ + w−1
b eℓ(ℓ+1)/ℓ2

b

Pχ2
l

(

l
Ĉℓ + w−1

b eℓ(ℓ+1)/ℓ2b

Cℓ + w−1
b eℓ(ℓ+1)/ℓ2

b

)

, (5.73)realling l ≡ 2ℓ + 1 and the hi-square distribution displayed in Eq. (5.17). The orretionfor the noise and the beam size makes this estimator biased, i.e.
〈Ĉℓ〉 = Cℓ + w−1

b eℓ(ℓ+1)/ℓ2b , (5.74)whih is exatly what we need to ompensate for the experimental noise and beam width.From this it follows from (5.23) and (5.38) that the log-normal LF has the form
L(θ) =

∑

ℓ

l

[

ln
(

Cℓ(θ) + w−1
b eℓ(ℓ+1)/ℓ2b

)

+
Ĉℓ

Cℓ(θ) + w−1
b eℓ(ℓ+1)/ℓ2b

] (5.75)and we have dropped several normalization fators whih do not depend on θ. Using (5.74)we then obtain for the Fisher information matrix de�ned in (5.41)
Fij =
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∂θi

∂Cℓ
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∗

, (5.76)where the quantity (∆Cℓ)
2 is the standard deviation on the estimate of Cℓ, and takes intoaount both the osmi variane and the experimental error,
(∆Cℓ)

2 =
2

2ℓ+ 1

(

Cℓ + w−1
b eℓ(ℓ+1)/ℓ2b

)2
. (5.77)The sum over multipoles runs over the multipole overage of the experiment, between ℓminand ℓmax.Thus one the experimental parameters are spei�ed, the omputation of the Fisher ma-trix only requires the knowledge of the derivatives of the power spetrum with respet to theosmologial parameters. The derivatives are determined numerially as double sided deriva-tives, see � 5.2.3, and this requires the omputation of 2p+ 1 spetra only for p parameters,whih is a very small omputational e�ort ompared with the full numerial exploration ofthe likelihood surfae.5.2.2 GeneralizationsIn this setion, we develop the neessary general mahinery whih re�nes the above resultsinluding a more detailed experimental parametrization and polarization information.Most experiments present several frequeny hannels, eah of them haraterized by itsown sensitivity σT,Pc and angular resolution θT,Pc , both for temperature (T ) and E-polarization(P ). Furthermore, even full-sky experiments only over a fration of the sky, sine pointsoure subtration, foreground removal and galati plane uts have to be performed onthe full-sky maps. This an be approximately taken into aount by assigning a �lean�fration fsky to the experimental overage. These fators are aounted for by generalizingthe expression (5.77) to (Efstathiou & Bond, 1999)

(∆Cℓ)
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ℓ
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, (5.78)



118 Statistis and data analysiswhere the inverse noise term Bℓ is given by
B2
ℓ ≡

∑

c

wce
−ℓ(ℓ+1)/ℓ2c (5.79)and wc, ℓc are given by (5.72) for eah hannel c.In the more general ase, we also want to inlude E polarization and temperature-polarization orrelation (C) along with temperature information: then instead of a singlederivative we have a vetor of three derivatives with the weighting given by the the inverseof the ovariane matrix of the spetra, and the Fisher matrix is given by (Zaldarriaga &Seljak, 1997),

Fij =
ℓmax
∑

ℓ=ℓmin∑X,Y ∂CXℓ∂θi
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∂CY ℓ
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(5.80)where Cov−1 is the inverse of the ovariane matrix for the spetra evaluated at the MLpoint θ∗, θi are the osmologial parameters we want to estimate and X,Y stands for T(temperature), E (polarization mode), or C (ross-orrelation of the power spetra for T and
E).For eah ℓ one has to invert the ovariane matrix and sum over X and Y . The diagonalterms of the ovariane matrix between the di�erent estimators are given by
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, (5.83)and the o� diagonal terms are
Cov(CTℓCEℓ) =

2

(2ℓ+ 1)fsky
C2
Cℓ (5.84)

Cov(CTℓCCℓ) =
2

(2ℓ+ 1)fsky
CCℓ(CTℓ +B−2

Tℓ ) (5.85)
Cov(CEℓCCℓ) =

2

(2ℓ+ 1)fsky
CCℓ(CEℓ +B−2

Pℓ ) , (5.86)where B−2
Tℓ = B−2

ℓ given in Eq. (5.79) and B2
Pℓ is obtained using a similar expression butwith the experimental spei�ations for the polarization hannels.5.2.3 Auray issuesThe auray of the Fisher matrix preditions for the errors depends on a number of issues:

• The FMA assumes that the true values of the parameters are in the viinity of the MLpoint θ∗. The validity of the results therefore depends on this assumption, as well ason the assumption that the aℓm's are independent Gaussian random variables.
• This is a loal method based on a quadrati expansion of the LF. Only if the FMApredited errors are small enough, the method is self-onsistent and we an expet the



5.3 CMB observations: a brief historial aount 119FMA predition to orretly reprodue the exat behavior, and in partiular the or-relations between parameters, thus revealing the degeneray diretions. The expansionup to seond order is exat if the dependene of the Cℓ on the parameters is linear,therefore great importane is attahed to the hoie of the parameter set with respetto the FMA is performed. As shown in Kosowsky et al. (2002), employing the normalparameters set disussed in � 4.2 as a base, the auray of the FMA preditions isgreatly enhaned. This is beause the spetra are almost linear in the normal parame-ters in the viinity of the best �t.
• Speial are must be taken when omputing the derivatives of the power spetrum withrespet to the osmologial parameters. This di�erentiation strongly ampli�es anynumerial errors in the spetra, leading to larger derivatives, whih would arti�iallybreak degeneraies among parameters. Double�sided derivatives redue the trunationerror from seond order to third order terms, but the orret hoie of the step size isa trade-o� between trunation error and numerial inauray dominated ases (Presset al., 1992).5.3 CMB observations: a brief historial aountThe experimental status of CMB observations has made giant leaps over the last ten years,thanks to spetaular advanements in detetor tehnology. As demonstrated in Chapter 6,CMB data nowadays provide stringent tests whih severely onstrain osmologial modelbuilding, and all for more re�ned theoretial and omputational approahes whih take intoaount subtle physial e�ets whih were so far ignored or thought to be irrelevant. Herewe provide a personal seletion of a few milestones of this development, in order to put theurrent and future experimental ahievements into a wider perspetive.The �rst detetion of temperature anisotropy ame in 1992 with the Di�erential MirowaveRadiometer (DMR) aboard the COBE satellite after one year of observations on angularsales larger than 7◦ (Smoot et al., 1992; Wright et al., 1992) or multipoles <∼ 20. The keyresults of the full four year DMR observations are summarized in Bennett et al. (1996, seereferenes therein): the quadrupole amplitude was measured for the �rst time, the spetraltilt of the large sale spetrum was found to be ompatible with an Harrison-Zel'dovihspetrum and no evidene of non-Gaussianity of the �utuations was disovered in the data.The FIRAS instrument was devoted to the study of the CMB spetrum (Fixsen et al., 1996),and obtained a preision measurement of its temperature (T = 2.728 ± 0.002 K), whileonstraining deviations from a perfet blak body spetrum to be less than about one partin 105 with 95% on�dene.The Saskatoon and Too data provided the �rst hint for the presene of the �rst adiabatipeak (Netter�eld et al., 1997; Miller et al., 1999; Knox & Page, 2000), but at the turningof the millennium several groups independently reported measurements of the temperatureanisotropy with a resolution of a few arminutes, su�ient to unambiguously reveal the �rstpeak and start exploring the subsequent ones: BOOMERanG (de Bernardis et al., 2002; Net-ter�eld et al., 2002) and Maxima (Hanany et al., 2000; Lee et al., 2001), both balloon-bornebolometri experiments, mapped the multipole region 80<∼ ℓ<∼ 1000; the CBI (Padin et al.,2001) and DASI (Halverson et al., 2002) ground based interferometers overed a similar mul-



120 Statistis and data analysistipole range but with a ompletely di�erent tehnology, whih had the advantage of being freefrom the alibration unertainty of bolometri reeivers. The Arheops experiment (Benoitet al., 2003a), oneived as a balloon-borne preursor of the HFI bolometri instrument forthe Plank satellite, observed a larger portion of the sky, and thus provided an estimation ofthe temperature power spetrum whih for the �rst time enompassed the �rst peak regionand also partially overlapped with the COBE measurement, in the range 15 ≤ ℓ ≤ 350. Giventhe experimental alibration unertainty of the bolometers, whih is about 10 − 20%, thispermits to test the relative alibration between COBE and the other experiments with datain the ℓ>∼ 50 region, and perform a omparison of the height of the �rst peak with respet tothe large sale plateau. All of this data generally agrees well on the position and shape of the�rst peak, but their resolution is insu�ient to permit the reonstrution of the subsequentones with high on�dene (de Bernardis et al., 2002; Durrer et al., 2003b).From the point of view of parameter extration, eah of the above data sets by its ownas well as their ombination leads to a broad agreement of an approximately �at Ωtot ∼ 1universe with sale invariant spetral index ns ∼ 1, with the 1σ likelihood intervals beingof the order of 10% and somewhat depending on the ompilation of data and on the priorassumed (Stompor et al., 2001; Lange et al., 2001; Pryke et al., 2002; Netter�eld et al.,2002). The estimation of the baryon density proved to be more ontroversial, beause ofdisrepanies and a lak of resolution at the level of the seond and third peak: in partiular,the BOOMERanG 1998 and MAXIMA data seem to favor a baryon ontent about 50%larger than predited by BBN, around Ωbh
2 ∼ 0.03 (Tegmark & Zaldarriaga, 2000; Langeet al., 2001; Stompor et al., 2001), a disrepany whih disappears with the improved beamreonstrution of the BOOMERanG 2000 observations (Netter�eld et al., 2002). Inlusion ofsupernovæ data or the Hubble Spae Telesope prior for the Hubble onstant, together withthe �atness determination, points toward a universe dominated by a osmologial onstant.Before the WMAP satellite delivered its results, ground based instruments pressed onand opened up two new observational diretions: very small sale observations (4′ − 5′)and E-polarization detetion. The CBI interferometer, in two di�erent on�gurations alled

Figure 5.2: The small sale temperature angular power spetrum observed by CBI �mosai�during two years and by ACBAR. The shaded region shows the exess power at small sale,ompatible with the SZ e�et. Reprinted from Readhead et al. (2004).
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Figure 5.3: The spetaular inrease of the auray of CMB observations: in the left panel,a ompilation of pre-WMAP temperature power spetrum measurements obtained between1996 (COBE) and 2003 (CBI) is ompared with the WMAP �rst year data in the right panel,released in February, 2003. The error-bars give the 1σ unertainty due to the measurementerrors, while the shaded region represent the osmi variane limit. Both �gures reprintedfrom Hinshaw et al. (2003a).�mosai� and �deep �eld�, obtained measurements of the temperature power spetrum up to
ℓ = 3500 (Sievers et al., 2003; Mason et al., 2003), and it was argued that the exess powerobserved at high multipoles ould be due to the SZ e�et, from whih a preise determinationof σ8 ould possibly be obtained (Bond et al., 2002). The ACBAR experiment, a bolometriinstrument installed at the South Pole, found small sale power onsistent with the results ofCBI, without however being able to plae tighter onstraints on its origin (Goldstein et al.,2003; Kuo et al., 2004). More reently, the results of two years of observations with theCBI �mosai� on�guration, give smaller errors in the ℓ ∼ 2000 region, due to the longerintegration time and to an improved absolute alibration derived from the WMAP data, seeFig. 5.2. Beside revealing e�ets due to seondary anisotropies as the SZ e�et, the smallsale measurements are helpful in better onstraining ns, τre and possible features in thepower spetrum (like a �running�, i.e. a sale dependene of ns) beause of the larger leverarm they o�er when ombined with WMAP and large sale struture data (Readhead et al.,2004).The DASI interferometer reported in the seond half of 2002 the �rst detetion of E-polarization, whih was observed on degree angular sales with almost 5σ on�dene (Kovaet al., 2002), thereby opening the epoh of polarization measurements.The �rst year WMAP data, unveiled in February 2003 (Bennett et al., 2003; Hinshawet al., 2003a), essentially on�rmed the piture whih had emerged from pre-WMAP obser-vations, see Fig. 5.3: the height of the �rst peak was orreted by about 10%, showing morepower than in the previous data, while the large sale spetrum on�rmed the DMR results.The seond peak is now aurately outlined, while the full four years data should allow toobtain good resolution up to ℓ ∼ 1000 in temperature. The low power of the quadrupoleremains troublesome, sine it is still not lear whether it is pointing to new physis or just aonsequene of systematial errors. The observation of the temperature-polarization orrela-



122 Statistis and data analysistion up to ℓ ∼ 500 (Kogut et al., 2003) has proved very useful in order to better onstrainparameters. The exquisite quality of the power spetra has tightened the 1σ likelihood inter-vals to a few perent for most osmologial parameters (Spergel et al., 2003), and the entralvalue has remained in the region preferred by earlier data, with two interesting exeptions:the TE data favor a muh larger reionization optial depth than previously thought, andthere seems to be a slight preferene for a �running� (i.e. sale dependent) spetral index(Peiris et al., 2003).A omplete overview of the evolution of data and of the osmologial parameters derivedfrom it an be found in the review by Bond et al. (2003).



Chapter 6Beyond standard parameters
This hapter is devoted to the investigation of three senarios involving non-standard osmo-logial parameters, and fouses on the ability of onstraining them using present and futureCMB observations: the existene of extra relativisti partiles (� 6.1); the determination ofthe primordial helium mass fration (� 6.2); and possible time variations of the �ne strutureonstant (� 6.3).Until reently, the e�ets indued by these parameters on the CMB where onsidered toosmall to be observable, or else irrelevant; however, the era of preision osmology that weare entering requires on one hand that we hek the onsequenes of our assumptions on thestandard results for other parameters (as in the ase of the neutrino families and the heliumfration); on the other hand, it allows us to put under lose srutiny very subtle e�ets whihould previously be safely negleted beause of the less auray of the data sets.6.1 Extra relativisti partilesThis setion is based on the work published in Bowen et al. (2002), whih was arried outfor the most part during my stay in Oxford. We investigate one possible modi�ation tothe standard senario, namely variations in the parameter ωrel = Ωrelh

2 whih desribes theenergy density of relativisti partiles. The original work has been performed in 2001, andtherefore the results presented here of the pre-WMAP data analysis are nowadays somewhatoutdated. However, the fous is on the degeneraies involving ωrel and as suh the onlusionsdrawn are still valid. Furthermore, the subsequent analysis by several groups of the atualWMAP data permits a omparison between the foreasts obtained with the Fisher matrixtehnique in 2001 and the real ase, showing a very satisfatory agreement and validatingthe method used.After o�ering the motivations for our study in � 6.1.1, we review various physial meha-nisms that an lead to a hange in ωrel with respet to the standard value in � 6.1.2. In � 6.1.3,we illustrate how the CMB angular power spetrum depends on this parameter and identifypossible degeneraies with other parameters, then present in � 6.1.4 a likelihood analysisfrom pre-WMAP CMB data and show whih of the onstraints on the various parametersare a�eted by variations in ωrel. Setion 6.1.5 foreasts the preision in the estimation ofosmologial parameters for the spae missions WMAP and Plank, and then ompares thepreditions with atual data analysis performed on the �rst year WMAP data.



124 Beyond standard parameters6.1.1 MotivationCMB data analysis taking into aount variations in the density of relativisti partiles hasbeen previously undertaken by many authors (Hannestad, 2000; Esposito et al., 2001; Knelleret al., 2001; Hannestad, 2001; Hansen et al., 2002; Zentner & Walker, 2002), giving ratherrude upper bounds, whih are signi�antly improved only by inluding priors on the ageof the universe or by inluding supernovae (SN) or large sale struture (LSS) data. It isworth emphasizing that there is little di�erene in the bounds on Neff , the e�etive numberof relativisti speies, obtained from old and reent CMB data beause of the degeneraydesribed in detail below. We fous here on the e�ets that the inlusion of this parameter,
ωrel, has on the onstraints of the remaining parameters in the ontext of purely adiabatimodels.As shown below � and as observed previously, see e.g. Hu et al. (1999) � there is a strongdegeneray between ωrel and the physial density of non-relativisti matter, ωm ≡ Ωmh

2.This is important, beause an aurate determination of ωm from CMB observations (and of
Ωm by inluding the Hubble Spae Telesope result h = 0.72± 0.08) an be useful for a largenumber of reasons. First of all, determining the old dark matter ontent, ωcdm = ωm−ωb anshed new light on the nature of dark matter. The thermally averaged produt of ross-setionand thermal veloity of the dark matter andidate is related to ωm, and this relation an beused to analyze the impliations for the mass spetra in versions of the SupersymmetriStandard Model, see e.g. Barger & Kao (2001); Djouadi et al. (2001); Ellis et al. (2001).The value of Ωm an be determined in an independent way from the mass-to-light ratios oflusters, and the present value is 0.1 < Ωm < 0.2 (Carlberg et al., 1997; Bahall et al., 2000).Furthermore, a preise measurement of Ωm will be a key input for determining the redshiftevolution of the equation of state parameter w(z) and thus disriminating between di�erentquintessential senarios, see e.g. Weller & Albreht (2002).6.1.2 E�etive number of relativisti speiesThe energy density of relativisti partiles an onveniently be parameterized via the e�etivenumber of relativisti speies, Neff : in the standard model ωrel inludes photons and neutrinos,and it an be expressed as

ωrel = ωγ +Neff · ων (6.1)where ωγ is the energy density in photons and ων is the energy density in one ative neutrinofamily. In geometrial units, where G = ~ = c = 1, one has ωx = 4π3/45 · gxT 4
x , where

gx and Tx are the relativisti degrees of freedom and the temperature of speies x = γ, ν,respetively. Measuring ωrel thus gives a diret observation of the e�etive number of neu-trinos, Neff . Naturally there are only three ative neutrinos, and Neff is simply a onvenientparametrization for the extra possible relativisti degrees of freedom
Neff = 3 + ∆N . (6.2)Thus ωrel inludes energy density from all the relativisti partiles: photons, neutrinos, andadditional hypothetial relativisti partiles suh as a light majoron or a sterile neutrino.Suh hypothetial relativisti partiles are strongly onstrained from standard Big-Bang nu-leosynthesis (BBN), where the allowed extra relativisti degrees of freedom typially are



6.1 Extra relativisti partiles 125expressed through the e�etive number of neutrinos, Neff = 3 + ∆NBBN. BBN bounds aretypially about ∆NBBN < 0.2 − 1.0 (Burles et al., 1999; Lisi et al., 1999).One should, however, be areful when omparing the e�etive number of neutrino degreesof freedom at the time of BBN (neutrino deoupling) and at the formation of the CMBR(photon deoupling). This is beause the energy density in relativisti speies may hangefrom the time of BBN (T ∼ MeV) to the time of last resattering (T ∼ eV), as explainedin Hansen et al. (2002). For instane, if one of the ative neutrinos has a mass in therange eV < m < MeV and deays into sterile partiles suh as other neutrinos, majoronset. with lifetime t(BBN) < τ < t(CMBR), then the e�etive number of neutrinos atCMBR would be substantially di�erent from the number at BBN (White et al., 1995). Suhmassive ative neutrinos, however, do not look very natural any longer in view of the reentexperimental results on neutrino osillations (Fogli et al., 2001; Gonzalez-Garia et al., 2001),showing that all ative neutrinos are likely to have masses smaller than 0.1 eV. One ouldinstead onsider sterile neutrinos mixed with ative ones whih ould be produed in theearly universe by sattering, and subsequently deay. The mixing angle must then be largeenough to thermalize the sterile neutrinos, and this an be expressed through the sterile toative neutrino number density ratio ns/nν ≈ 4·104 sin2 2θ (m/keV)(10.75/g∗)3/2 (Dolgov &Hansen, 2002), where θ is the mixing angle, and g∗ ounts the relativisti degrees of freedom,suh that ns/nν = 1 or ∆g∗ = 7/8 inreases Neff by one unit. With ns/nν of order unitywe use the deay time, τ ≈ 1020(keV/m)5/ sin2 2θ se, and one �nds, τ ≈ 1017(keV/m)4 yr,whih is muh longer than the age of the universe for m ∼ keV, so they would ertainlynot have deayed at t(CMBR). A sterile neutrino with a mass of a few MeV would seem tohave the right deay time, τ ∼ 105 yr, but this is exluded by standard BBN onsiderations(Kolb et al., 1991; Dolgov et al., 1998). More inventive models with partiles deaying duringlast resattering annot simply be treated with an NCMB that is onstant in time, see e.g.Kaplinghat et al. (1999), and we will not disuss suh possibilities further here.Even though the simplest models predit that the relativisti degrees of freedom are thesame at BBN and CMB times, one ould onstrut models suh as quintessene (Albreht &Skordis, 2000; Skordis & Albreht, 2002) whih e�etively ould hange ∆N between BBNand CMB (Bean et al., 2001). Naturally ∆N an be both positive and negative. For BBN,
∆N an be negative if the eletron neutrinos have a non-zero hemial potential (Kang &Steigman, 1992; Kneller et al., 2001), or more generally with a non-equilibrium eletronneutrino distribution funtion (Hansen & Villante, 2000). To give an expliit (but highlyexoti) example of a di�erent number of relativisti degrees of freedom between BBN andCMB, one ould onsider the following senario. Imagine another two sterile neutrinos, oneof whih is essentially massless and has a mixing angle with any of the ative neutrinos justbig enough to bring it into equilibrium in the early universe, and one with a mass of mνs = 3MeV and deay time τνs = 0.1 se, in the deay hannel νs → νe + φ, with φ a light salar.The resulting non-equilibrium eletron neutrinos happen to exatly anel the e�et of themassless sterile state, and hene we have ∆NBBN = 0. However, for CMB the piture is muhsimpler, and we have just the stable sterile state and the majoron, hene ∆NCMB = 1.57.For CMB, one an imagine a negative ∆N from deaying partiles, where the deay produtsare photons or eletron/positrons whih essentially inreases the photon temperature relativeto the neutrino temperature (Kaplinghat & Turner, 2001). Suh a senario also naturally



126 Beyond standard parametersdilutes the baryon density, and the agreement on ωb from BBN and CMB gives a bound onhow negative ∆NCMB an be. Considering all these possibilities, we will therefore not makethe usual assumption, ∆NBBN = ∆NCMB, but instead onsider ∆NCMB as a ompletely freeparameter in the following analysis.The standard model value for Neff with three ative neutrinos is 3.044. This small or-retion arises from the ombination of two e�ets arising around the temperature T ∼ MeV.These e�ets are the �nite temperature QED orretion to the energy density of the ele-tromagneti plasma (Hekler, 1994), whih gives ∆N = 0.01 (Lopez & Turner, 1999; Lopezet al., 1999). If there are more relativisti speies than ative neutrinos, then this e�et willbe orrespondingly higher (Steigman, 2001). The other e�et omes from neutrinos sharing inthe energy density of the annihilating eletrons (Dius et al., 1982), whih gives ∆N = 0.034(Dolgov et al., 1997; Esposito et al., 2000). Thus one �nds Neff = 3.044. An aurateanalysis whih takes into aount both of this e�ets simultaneously has been performed byMangano et al. (2002) and the result indiates that the ombined e�et is slightly smaller,
Neff = 3.0395.6.1.3 CMB theory and degeneraiesAs explained in detail in Chapter 4, the struture of the Cℓ spetrum depends on a restritedombination of osmologial parameters, whih are physially probed by the CMB; simpli-fying somewhat the normal parameters set introdued in � 4.2, we fous here on the fourosmologial parameters

ωb , ωm , ωrel and Rshift , (6.3)the physial baryoni density ωb ≡ Ωbh
2, the energy density in matter ωm ≡ (Ωcdm + Ωb)h

2,the energy density in radiation ωrel and the shift parameter Rshift ≡ ℓref/ℓ, whih gives theposition of the aousti peaks with respet to a �at, ΩΛ = 0 referene model, see Eq. (4.22,page 82). In previous analysis (Efstathiou & Bond, 1999; Melhiorri & Gri�ths, 2001), theparameter ωrel has been kept �xed to the standard value, while here we will allow it to vary.It is therefore onvenient to write
ωrel = 4.13 · 10−5(1 + 0.135 · ∆NCMB) (6.4)(taking TCMB = 2.726 K), where ∆NCMB is the exess number of relativisti speies withrespet to the standard model, Neff = 3 + ∆NCMB, and we drop the subsript CMB fromnow on. The shift parameter Rshift depends on Ωm ≡ Ωcdm + Ωb, on the urvature Ωκ ≡

1 − ΩΛ − Ωm − Ωrel, and on Ωrel = ωrel/h
2 through

Rshift =

(

1 − 1√
1 + zdec

)

√

|Ωκ|
Ωm

2

χ(∆τ)

[

√

Ωrel +
Ωm

1 + zde −
√

Ωrel

]

, (6.5)where zdec is a funtion of the physial baryon density and χ(∆τ) is given in Eq. (1.33, page15). Eq. (6.5) generalizes the expression for Rshift given in (4.28, page 83) to the ase ofnon-onstant Ωrel.By �xing the four parameters given in (6.3), or equivalently the set ωb, the redshift ofequality zeq ≡ ωm/ωrel, ∆N and Rshift, one obtains a perfet degeneray for the CMBanisotropy power spetra on degree and sub-degree angular sales. On larger angular sales,
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Figure 6.1: Left panel: CMB degeneraies between osmologial models. Keeping zeq, ωb and
R �xed while varying ∆N produes nearly degenerate power spetra. The referene model(solid line) has ∆N = 0, Ωtot = 1.00, ns = 1.00; the nearly degenerate model (dotted) has
∆N = 10, Ωtot = 1.05, ns = 1.00. The urves are normalized to the �rst peak. The positionof the peaks is perfetly mathed, only the relative height between the �rst and the otheraousti peaks is somewhat di�erent in this extreme example, due to the early ISW e�et.The degeneray an be further improved, at least up to the third peak, by raising the spetralindex to ns = 1.08 (dashed). Right panel: the matter power spetra of the models plotted inthe top panel together with the observed deorrelated power spetrum from the PSCz survey(Hamilton & Tegmark, 2002). The geometrial degeneray is now lifted.the degeneray is broken by the late ISW e�et beause of the di�erent urvature and osmo-logial onstant ontent of the models. From the pratial point of view, however, it is stillvery di�ult to break the degeneray, sine measurements are limited by osmi variane onthose sales, and beause of the possible ontribution of gravitational waves.Allowing ∆N to vary, but keeping onstant the other three parameters ωb, zeq, and Rshift,we obtain nearly degenerate power spetra whih we plot in Fig. 6.1, normalized to the�rst aousti peak. The degeneray in the aousti peaks region is now slightly spoiledby the variation of the ratio Ωγ/Ωrel: the di�erent radiation ontent at deoupling induesa larger (for ∆N > 0) early ISW e�et, whih boosts the height of the �rst peak withrespet to the other aousti peaks. Nevertheless, it is still impossible to distinguish betweenthe di�erent models with present (pre-WMAP) CMB measurements and without externalpriors. Furthermore, a slight hange in the salar spetral index, ns, an reprodue a perfetdegeneray up to the third peak.The main result is that, even with a measurement of the �rst three peaks in the angularspetrum, it is impossible to put bounds on ωrel alone, even when �xing other parameterssuh as ωb. Furthermore, sine the degeneray is mainly in zeq, the onstraints on ωm fromCMB are also a�eted, see � 6.1.4.In Fig. 6.2 we plot the shift parameter Rshift as a funtion of ∆N , while �xing Ωm = 0.3and ΩΛ = 0.7. Inreasing ∆N moves the peaks to smaller angular sales, even though thedependene of the shift parameter on ∆N is rather mild. In order to ompensate this e�et,one has to hange the urvature by inreasing Ωm and ΩΛ. We therefore onlude that thepresent bounds on the urvature of the universe are weakly a�eted by ∆N . Nevertheless,
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Figure 6.2: The shift parameter Rshift as a funtion of ∆N with ΩΛ = 0.7 and Ωm = 0.3.The position of the peaks is only weakly a�eted by ∆N .when a positive (negative) ∆N is inluded in the analysis, the preferred models are shiftedtoward losed (open) universes.6.1.4 Pre-WMAP onstraints from CMB and other data-setsIn this setion, we ompare pre-WMAP CMB observations with a set of models with os-mologial parameters sampled as follows: 0.1 < Ωm < 1.0, 0.1 < Ωrel/Ωrel(∆N = 0) < 3,
0.015 < Ωb < 0.2; 0 < ΩΛ < 1.0 and 0.40 < h < 0.95. We vary the spetral index ofthe primordial density perturbations within the range ns = 0.50, ..., 1.50 and we re-sale the�utuation amplitude by a pre-fator C10, in units of CCOBE

10 . We also restrit our analysisto purely adiabati, �at models (Ωtot = 1) and we add an external Gaussian prior on theHubble parameter h = 0.65 ± 0.2.Constraints from CMB onlyThe theoretial models are omputed using the publily available mbfast program (Seljak& Zaldarriaga, 1996) and are ompared with the BOOMERanG-98, DASI and MAXIMA-1 data. The power spetra from these experiments were estimated in 19, 9 and 13 binsrespetively, spanning the range 25 ≤ ℓ ≤ 1100. We approximate the experimental signal
CexB inside the bin to be a Gaussian variable, and we ompute the orresponding theoretialvalue CthB by onvolving the spetra omputed by mbfast with the respetive windowfuntions. When the window funtions are not available, as in the ase of Boomerang-98, weuse top-hat window funtions. The likelihood for a given osmologial model is then givenby

L = (CthB − CexB )MBB′(CthB′ − CexB′) (6.6)
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Figure 6.3: Two-dimensional likelihood plots from analysis of CMB data.where CthB (CexB ) is the theoretial (experimental) band power andMBB′ is the Gaussian ur-vature of the likelihood matrix at the peak. This expression is a generalization of Eq. (5.30,page 104) for the ase of orrelated experimental points. We onsider 10%, 4% and 4% Gaus-sian distributed alibration errors (in µK) for the BOOMERanG-98, DASI and MAXIMA-1experiments respetively. We also inlude the COBE data using Lloyd Knox's RADPakpakage (RADPak Website, 2001).In order to show the e�et of the inlusion of ωrel on the estimation of the other parameters,we plot likelihood ontours in the ωrel − ωm, ωrel − ωb, ωrel − ns planes. Proeeding as inMelhiorri et al. (2000), we alulate a likelihood ontour in those planes by maximizingthe other parameters as explained in � 5.1.5. In Fig. 6.3 we plot the likelihood ontoursfor ωrel vs ωm, ωb and ns. As an be seen, ωrel is very weakly onstrained to be in therange 1 ≤ ωrel/ωrel(∆N = 0) ≤ 1.9 at 1σ l.. in all plots1. The degeneray between ωreland ωm is evident in the left panel of Fig. 6.3. Inreasing ωrel shifts the epoh of matter-radiation equality and this an be ompensated only by a orresponding inrease in ωm. It isinteresting to note that even if we are restriting our analysis to �at models, the degenerayis still present and that the bounds on ωm are strongly a�eted. We �nd ωm = 0.2 ± 0.1, tobe ompared with ωm = 0.13± 0.04 when ∆N is kept to zero. It is important to realize thatthese bounds on ωrel appear beause of our prior on h and beause we onsider �at models.When one allows h and Ωm to be free parameters, then the degeneray is almost ompleteand there are no bounds on ωrel.In the entral and right panel of Fig. 6.3 we plot the likelihood ontours for ωb and ns. Aswe an see, these parameters are not strongly a�eted by the inlusion of ωrel. The boundon ωb, in partiular, is ompletely una�eted by ωrel. There is however, a small orrelationbetween ωrel and ns: the boost of the �rst peak indued by the ISW e�et an be ompensated(at least up to the third peak) by a small hange in ns (right panel).Sine the degeneray is mainly in zeq, it is useful to estimate the onstraints we an puton this variable. In Fig. 6.4 we plot the likelihood urve on zeq alone obtained by maximizingover all other parameters. By integration of this probability distribution funtion we obtain
zeq = 3100+600

−400 at 68% l.. (6.7)1Here as in the following, the abbreviation �l..� stands for �likelihood ontent�, in the Bayesian senseexplained in � 5.1.5.
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Figure 6.4: Likelihood probability distribution funtion for the redshift of equality.Adding other data-setsIt is interesting to investigate how well the onstraints from CMB-independent data-setsan break the degeneray between ωrel and ωm. The supernovae luminosity distane is veryweakly dependent on ωrel � see however Zentner & Walker (2002) � and the bounds obtainedon Ωm an be used to break the CMB degeneray. Inluding the SN-Ia onstraints on the
Ωm − ΩΛ plane, 0.8Ωm − 0.6ΩΛ = −0.2 ± 0.1 (Perlmutter et al., 1999), we �nd

ωrel/ωrel(∆N = 0) = 1.120.35
−0.42 at 2σ% l.. (6.8)It is also worth inluding onstraints from galaxy lustering and loal luster abundanes.The degeneray between ωm and ωrel in the CMB annot be broken trivially by inlusion oflarge-sale struture (LSS) data, beause a similar degeneray a�ets the LSS data as well(Hu et al., 1999). However, the geometrial degeneray is lifted in the matter power spetrum,and aurate measurements of galaxy lustering at very large sales an distinguish betweenvarious models. This is exempli�ed in the right panel of Fig. 6.2, where we plot three matterpower spetra with the same osmologial parameters as in the top panel, together with thedeorrelated matter power spetrum obtained from the PSCz survey.The shape of the matter power spetrum in the linear regime for galaxy lustering an beharaterized by the shape parameter

Γ ∼ Ωmh√
1 + 0.135∆N

e−(Ωb(1+
√

2h/Ωm)−0.06) . (6.9)From the observed data one has roughly (Bond & Ja�e, 1999) 0.15 ≤ Γ + (ns − 1)/2 ≤ 0.3.The inlusion of this (onservative) value on Γ gives
ωrel/ωrel(∆N = 0) = 1.400.49

−0.56 at 2σ% l.. (6.10)a bound whih is less less restritive than the one obtained using the SN-Ia prior.A better onstraint an be obtained by inluding a prior on the variane of matter per-turbations over a sphere of size 8h−1 Mp, derived from luster abundane observations.Comparing with σ8 = (0.55 ± 0.05)Ω−0.47
m , we obtain

ωrel/ωrel(∆N = 0) = 1.270.35
−0.43 at 2σ% l.. (6.11)
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ωrel/ωrel(∆N = 0) NeffCMB only 1.50+0.90

−0.90 0.04 . . . 13.37CMB + SN-Ia 1.12+0.35
−0.42 0.78 . . . 6.48CMB + PSCz 1.40+0.49
−0.56 1.81 . . . 9.59CMB + σ8 1.27+0.35
−0.43 1.82 . . . 7.59Table 6.1: Data analysis results: 2σ likelihood intervals on the e�etive energy density of rel-ativisti partiles, ωrel/ωrel(∆N = 0), and on the orresponding e�etive number of neutrinospeies, Neff , for di�erent data set ombinations. Note that the bounds obtained with CMBdata only mainly re�et the priors used in the analysis.Our results are summarized in Table 6.1. Combination of present day CMB data withSN and with LSS data yields a lower bound Neff > 0.8 and > 1.8, respetively, with 2σlikelihood ontent. Our result is in good agreement with the analysis of Hannestad (2001),whih onsidered similar data sets. It is worth emphasizing the fat that Neff = 0 is exludedat muh more than 2σ: this an be onsidered as a strong osmologial evidene of thepresene of a neutrino bakground, as predited by the Standard Model. The upper boundsfor the ombined sets an be expressed as Neff < 6.5 for CMB+SN and Neff < 9.6 forCMB+LSS, at 2σ l..6.1.5 Fisher matrix foreastIn this setion we perform a Fisher matrix analysis with the tehnique explained is � 5.2 inorder to estimate the preision with whih forthoming satellite experiments will be able toonstrain the parameter zeq.Table 6.2 summarizes the experimental parameters for WMAP and Plank employed inthe analysis, whih onsiders temperature information only. For both experiment we takea sky overage fsky = 0.50. These values are indiative of the expeted performane of theexperimental apparatus, but the atual values may be somewhat di�erent, espeially for thePlank satellite.As base parameters for the Fisher matrix analysis, we use the following nine dimensionalparameter set:

θ =
{

ωb, ωc, ωΛ,Rshift, zeq, ns, nt, r,Q} . (6.12)Here ns, nt are the salar and tensor spetral indies respetively and r ≡ CT2 /C
S
2 is the tensorto salar ratio at the quadrupole. We adopt a phenomenologial normalization parameter,given by

Q ≡
(

ℓmax
∑

ℓ=2

ℓ(ℓ+ 1)Cℓ

)1/2

, (6.13)so that Q e�etively measures the mean power seen by the experiment. The shift parameter
Rshift, inluding the radiation ontent as in Eq. (6.5) takes into aount the geometrialdegeneray. Our purely adiabati referene model has parameters: ωb = 0.0200 (Ωb =

0.0473), ωc = 0.1067 (Ωc = 0.2527), ωΛ = 0.2957 (ΩΛ = 0.7000), (h = 0.65), Rshift = 0.953,
zeq = 3045, ns = 1.00, nt = 0.00 , r = 0.10, Q = 1.00. This is a �duial, onordane model,whih we believe to be in good agreement with most reent determinations of the osmologial
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ν (GHz) 40 60 90 100 150 220 350

θc (degrees) 0.46 0.35 0.21 0.18 0.13 0.09 0.08

σc/10
−6 6.6 12.1 25.5 1.7 2.0 4.3 14.4

w−1
c /10−15 2.9 5.4 6.8 0.028 0.022 0.047 0.44

ℓc 289 385 642 757 1012 1472 1619

ℓmax 1500 2000Table 6.2: Experimental parameters used in the Fisher matrix analysis for WMAP (�rst 3hannels) and Plank (last 4 hannels).parameters (�at universe, sale invariant spetral index, BBN ompatible baryon ontent,large osmologial onstant). Furthermore, we allow for a modest, 10% tensor ontributionat the quadrupole in order to be able to inlude tensor modes in the Fisher matrix analysis.We plot the derivatives of Cℓ with respet to the di�erent parameters in Fig. 6.5. Generally,we note that derivatives with respet to the ombination of parameters desribing the matterontent of the universe (ωb and ωc, Rshift, zeq) are large in the aousti peaks region, ℓ > 100,while derivatives with respet to parameters desribing the tensor ontribution (nt, r) areimportant in the large angular sale region. Sine measurements in this region are osmivariane limited, we expet unertainties in the latter set of parameters to be large regardlessof the details of the experiment. The urve for ∂Cℓ/∂Q is of ourse idential to the Cℓ'sthemselves. The osmologial onstant is a notable exeption: variation in the value of ωΛkeeping all other parameters �xed produes a perfet degeneray in the aousti peaks region.Therefore we expet the derivative ∂Cℓ/∂ωΛ to be zero in this region. Small numerial errorsin the omputation of the spetra, however, arti�ially spoil this degeneray, erroneouslyleading to smaller predited unertainties. In order to suppress this e�et, we set ∂Cℓ/∂ωΛ =

0 for ℓ > 200. From Eq. (5.76, page 117) we see that a large absolute value of ∂Cℓ/∂θileads to a large Fii and therefore to a smaller 1σ error (roughly negleting non-diagonalontributions). If the derivative along θi an be approximated as a linear ombination of theothers, however, then the orresponding diretions in parameter spae will be degenerate, andthe expeted error will be important. This is the ase for mild, featureless derivatives suhas ∂Cℓ/∂r, while strongly varying derivatives (suh as ∂Cℓ/∂Rshift) indue smaller errors inthe determination of the orresponding parameter. Therefore the hoie of the parameter setis very important in order to orretly predit the standard errors of the experiment.Error foreastThe quantity ǫi ≡ 1/
√
λi, where λi is the i-th eigenvalue of the Fisher matrix, is sometimesused as a rough indiation of the resolving power of an experiment. It expresses the au-ray with whih the i-th eigenvetor of the Fisher matrix an be determined. The prinipalomponents desribe to a good approximation whih linear ombinations of the osmologialparameters an be diretly measured with the CMB. In fat, they represent linear approxi-mations to the orthogonal normal parameters introdued in � 4.2. For WMAP (Plank) thenumber of eigenvetors with ǫi < 10−3 is 1 out of 9 (3 out of 9) and with ǫi < 10−2 is 3/9(6/9).



6.1 Extra relativisti partiles 133Parameter WMAP PlankRedshift of equality δzeq/zeq 0.23 0.02Relativisti energy δωrel/ωrel 0.43 0.03E�etive ν families ∆Neff 3.17 0.24Baryons density δωb/ωb 0.12 < 0.01CDM density δωc/ωc 0.50 0.04Cosmologial onstant δωΛ/ωΛ 3.40 1.71Shift parameter δRshift < 0.01 < 0.01Salar spetral index δns 0.15 0.01Tensor spetral index δnt 1.96 1.08Salar-to-tensor ratio δr/r 5.22 2.67Normalization δQ 0.01 < 0.01Table 6.3: Fisher matrix analysis results: expeted 1σ errors for the WMAP and Planksatellites. See the text for details and disussion.Table 6.3 shows the results of our analysis for the expeted 1σ error on the physialparameters. Determination of the redshift of equality an be ahieved by WMAP with
23% auray, while Plank will pinpoint it down to within 2% relative error. From ωrel =

(ωb+ωc)/zeq it follows that the energy density of relativisti partiles, ωrel, will be determinedwithin 43% by WMAP and 3% by Plank. This translates into an impossibility for WMAPalone of measuring the e�etive number of relativisti speies (∆Neff ≈ 3.17 at 1σ), whilePlank will be able to trak it down to ∆Neff ≈ 0.24. As for the other parameters, while theaousti peak' positions (through the value of Rshift) and the matter ontent of the universean be determined by Plank with high auray (of the order of or less than one perent),the osmologial onstant remains (with CMB data only) almost undetermined, beause ofthe e�et of the geometrial degeneray. One ould also see this as a onsequene of aninappropriate parameterization of the problem: we should in fat use the parameters whihthe physis of the CMB measures best, i.e. the prinipal omponents. The salar spetralindex ns and the overall normalization will be well onstrained already by WMAP (within
15% and 1%, respetively), while beause of the reasons explained above the tensor spetralindex nt and the tensor ontribution r will remain largely unonstrained by both experiments.Generally, an improvement of a fator ten is to be expeted between WMAP and Plank inthe determination of most osmologial parameters.Our analysis onsiders temperature information only. Inlusion of polarization measure-ments would tighten errors, espeially for the �primordial� parameters ns, nt and r (Zal-darriaga et al., 1997; Buher et al., 2001). This is espeially important for a WMAP-typeexperiment, sine a preise determination of ns and an higher auray in ωm would greatlyimprove the preision on Neff whih an be obtained with temperature only. By the timePlank will obtain his �rst results, polarization measurements will hopefully have been per-formed. Combination of polarization information with the WMAP temperature data wouldthen onsiderably improve the preision of the extrated parameter values.A Fisher matrix analysis for ∆Neff was previously performed by Lopez et al. (1999)and repeated by Kinney & Riotto (1999) with the equivalent hemial potential ξ, ∆N =

15/7(2(ξ/π)2 + (ξ/π)4), and a strong degeneray was found between Neff , h and ΩΛ, and to



134 Beyond standard parameterslesser extent with Ωb. We have seen here that the degeneray really is between ωrel, ωm and
ns, and the degeneray previously observed is thus explained beause they onsidered �atmodels, where a hange in ΩΛ is equivalent to a hange in ωm, ωm = (1 − ΩΛ − Ωb)h

2. Theresults regarding how preisely the future satellite missions an extrat the relativisti en-ergy density, an be translated into approximately ∆Neff = 3.17 (ξ = 2.4) and ∆Neff = 0.24(ξ = 0.73) for WMAP and Plank respetively. However, inluding neutrino osillation leadsto equilibration of the di�erent hemial potentials, and hene BBN leads to the strongerbound |ξ| < 0.07 for all neutrino speies (Dolgov et al., 2002).Comparison with WMAP data analysisAfter the release of the WMAP �rst year observations, several groups have independentlyarried out an analysis similar to the one presented above (Crotty et al., 2003b; Hannestad,2003; Pierpaoli, 2003). Unfortunately, none of these works inludes tensor modes as in ourforeasts, and one has to keep in mind that the FMA assumed temperature information onlyand experimental parameters as appropriate for the original mission spei�ations, whihmay be slightly di�erent from the e�etive parameters for the �rst year only. Despite the fatthat the details of the data inluded and the prior assumptions vary for eah work, the overallagreement of their �ndings with our foreasts for WMAP is nonetheless very satisfatory. Webrie�y review their onlusions and ompare them with the above preditions.In Crotty et al. (2003b) the 1σ error on Neff is found to be ∆Neff = 3.4 using WMAP dataonly (but inluding the TE-spetrum) and a weak top-hat prior on the Hubble parameter,
0.5 < h < 0.9, with the analysis limited to �at models only. This result has to be ontrastedwith the predition above, whih for the full WMAP data gives (at 1σ) ∆Neff = 3.17. Aspredited, the WMAP observations improve dramatially on the bounds for Neff from CMBonly, whih beome with the above assumptions −2.1 < ∆Neff < 6.9 (at 2σ likelihoodontent).These �ndings are in good onordane with the more general set-up of Pierpaoli (2003),where urved models are onsidered as well, the CBI data are used together with the WMAPobservations and onstraints from the 2dF matter power spetrum are also inluded. In thisase the results do not ompare diretly with our preditions beause of the inlusion ofexternal onstraints in the form of the matter power spetrum. The 95% likelihood intervalis then tighter beause of the more powerful observational data used, giving (without Hubbleprior) ∆Neff = 5.5.The quite omplete investigation of Hannestad (2003) also derives onstraints on theneutrino masses, and onsiders the e�ets of the inlusion of further observational onstraints,suh as a prior on the Hubble parameter, a prior on Ωm from supernovæ data, a BBN prioron ωb and the 2dF matter power spetrum. Where omparable, the �ndings are entirelyompatible with the other two works; in partiular, for the ase of massless neutrinos andWMAP data only, the 95% likelihood interval for �at models only and a weak top-hat prior
0.5 ≤ h ≤ 0.85 is ∆Neff = 8.9.
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Figure 6.5: Derivatives of Cℓ with respet to the 9 parameters evaluated at the referenemodel desribed in the text. The numerial prefator indiates that the orresponding urvehas been resaled: thus 0.1ωb means that the displayed urve is 0.1 ·∂Cℓ/∂ωb. The derivative
∂Cℓ/∂ωΛ has been set to 0 for ℓ > 200 in order to suppress the e�et of numerial errors,thus taking into aount the geometrial degeneray.



136 Beyond standard parameters6.2 The primordial helium frationThis setion is based on the work Trotta & Hansen (2004), where the �rst determinationof the helium abundane from CMB data alone was presented. After giving the motivationunderlying this investigation in � 6.2.1, we disuss in � 6.2.2 the role of the helium massfration for CMB anisotropies, and in partiular the details of the ionization history of theUniverse whih are relevant for onstraining the helium abundane with the CMB. We thenreview the standard Big-Bang Nuleosynthesis senario for the abundane of light elementsand ompare its preditions with urrent astrophysial measurements in � 6.2.3; the presentonstraints from CMB data are presented in � 6.2.4, while the future potential of using theCMB as an independent way of determining the helium abundane is eluidated in � 6.2.5.There we also explore the impat of helium for future aurate determination of the baryonabundane.6.2.1 MotivationOur understanding of the baryon abundane has inreased dramatially over the last fewyears, oming from two independent paths, namely BBN and CMB. Absorption featuresfrom high-redshift quasars allow us to measure preisely the deuterium abundane, D/H,whih ombined with BBN alulations provides a reliable estimate of the baryon to photonratio,
η10 ≡ nb

nγ
1010 . (6.14)An independent determination of the baryon ontent of the universe from CMB anisotropiesomes from the inreasingly preise measurements of the aousti peaks, via the harater-isti signature of the photon-baryon �uid osillations disussed in � 4.1.2.2. The agreementbetween these two ompletely di�erent approahes is both remarkable and impressive (seedetails below). The time is therefore ripe to proeed and test the agreement between otherlight elements whih are also probed both by BBN and CMB.Helium being the most abundant of the light elements, it is natural to fous on this elementby exploring the dependeny of CMB anisotropies on the value of the primordial helium massfration Yp, de�ned as

Yp ≡ 4
nHe
nb

, (6.15)where nHe and nb denote the number densities of 4He atoms and baryons, respetively. If wedenote by nN and nP the number densities of neutrons and protons, respetively, and assumethat all neutrons are in He nulei, then a simple ounting argument gives the estimate
Yp =

2nN/nP
1 + nN/nP

≈ 0.25 , (6.16)where the numerial value omes from a rough approximation to the freeze-out value of theneutron to proton ratio nN/nP ≈ 1/7, see e.g. Kolb & Turner (1990). The detailed value of
Yp is predited by BBN as a funtion of two parameters only, the baryon abundane and thenumber of relativisti degrees of freedom at BBN (Fields & Sarkar, 2004).The hope is that the CMB observations might provide an independent measurement of
Yp, aurate enough to help larify the present-day disrepanies between diret observations



6.2 The primordial helium fration 137of the helium fration derived from astrophysial systems, whose errors are seemingly domi-nated by systematis whih are hard to assess. The latest CMB data are preise enough toallow taking this further step, and in view of the emerging �baryon tension� between BBNpreditions from observations of di�erent light elements (Cyburt et al., 2003) possibly requirestaking suh a step. The advantage of using CMB anisotropies rather than the traditionalastrophysial measurements, is that the CMB provides a lear measurement of the primordialhelium fration before it ould be hanged by any astrophysial proess. On the other handthe dependene of the CMB power spetrum on the primordial helium fration is rather mild,a fat whih makes it presently safe to set the helium mass fration to a onstant for thepurpose of CMB data analysis of other osmologial parameters, but will have an impat onthe baryon abundane determination from Plank quality data, as we show in � 6.2.5.6.2.2 The impat of helium on the CMB: ionization history revisitedWe now resume our disussion of the reombination epoh and reionization history of theUniverse skethed in � 4.1.3, and fous on the role of the helium mass fration, onsidered hereas a free parameter. In a seond step, the aim will be to ombine the CMB results with theBBN preditions and ompare the result with the independent astrophysial determinationsof the light elements abundane. We thus have at our disposal three di�erent tools, eah ofwhih probes the same quantities at three vastly di�erent epohs of the osmi history. Itis important to stress that a good agreement among the three is by no means trivial, andthat testing their onordane is a powerful way to hek the onsisteny of the standardosmologial senario. On the other hand, signi�ant disrepanies would neessary implythe need for new physis.The reent WMAP data allow us to determine with very high preision the epoh of pho-ton deoupling, zdec, i.e. the epoh at whih the ionized eletron fration, xe(z) = ne/nH ,has dropped from 1 to its residual value of order 10−4. Here ne denotes the number densityof free eletrons, while nH is the total number density of H atoms (both ionized and reom-bined). The redshift of deoupling has been determined to be zdec = 1088+1
−2 (Spergel et al.,2003), whih orresponds to a temperature of about 0.25 eV. Helium reombines earlier thanhydrogen, roughly in two steps: around redshift z = 6000 HeIII reombines to HeII, whileHeII to HeI reombination begins around z < 2500 and �nishes just after the start of Hreombination (Libarskii & Sunyaev, 1983; Hu et al., 1995; Seager et al., 1999, 2000).The baryon number density per m3 nb(z) is related to the baryon energy density today,

ωb, by
nb = 11.3(1 + z)3ωb (6.17)and we have nH = nb(1 − Yp). Usually, the ionization history is desribed in terms of

xe(z) = ne/(nb(1 − Yp)). However, for the purpose of disussing the role of Yp, it is moreonvenient to onsider the quantity
fe(z) ≡ ne/nb (6.18)instead, the ratio of free eletrons to the total number of baryons. For brevity, we will all

fe the free eletron fration. One the baryon number density has been set by �xing ωb,one an think of Yp as an additional parameter whih ontrols the number of free eletrons
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Figure 6.6: Evolution of the number density of eletrons normalized to the number densityof baryons, fe = ne/nb, as a funtion of redshift for di�erent values of the helium fration
Yp. The blak-solid urve orresponds to the standard value Yp = 0.24. The labels (a) to (d)indiate the four di�erent phases disussed in the text.available in the tight oupling regime. The CMB power spetrum depends on the full detailedevolution of the free eletron fration, but we an qualitatively desribe the role of helium infour di�erent phases of the ionization/reombination history, displayed in Fig. 6.6.(a) Before HeIII reombination, all eletrons are free, therefore fe(z > 6000) = 1 − Yp/2.(b) HeII progressively reombines and just before H reombination begins, fe has droppedto the value fe(z ≈ 1100) = 1 − Yp.() After deoupling, a residual fration of free eletrons freezes out, giving fe(30<∼ z <∼ 800) =

f rese ≈ 2.7 · 10−5√ωm/ωb.(d) Reionization of all the H atoms gives fe(z <∼ 20) = 1 − Yp.During phase (a), the photon-baryons �uid is in the tight oupling regime. Howeverthe presene of ionized He inreases di�usion damping, therefore having an impat on thedamping sale in the aousti peaks region: the di�usion damping length (3.120, page 66)inluding helium an be approximated as (Hu & Sugiyama, 1995a)
λ2D ≈ 1.7 × 107

(

1 − Yp
2

)−1

ω−1
b ω−1/2

m a5/2 1

3
√

aeq/a+ 2
Mp2 . (6.19)As expeted, a larger helium fration implies an inreased damping length, and thus an extrapower suppression on small sales.



6.2 The primordial helium fration 139When the detailed energy level struture of HeII is taken into aount (Seager et al., 2000),the transition to phase (b) is smoother than in the Saha equation approximation. Thereforethe plateau with fe = 1 − Yp is not visible in Fig. 6.6. Before H reombination, He atomsremain tightly oupled to H atoms through ollisions, with the same dynamial behavior. Inpartiular, it is the total ωb whih determines the amount of gravitational pressure on thephoton-baryons �uid, and whih sets the aousti peak enhanement/suppression, see � 4.1.2.Hene we do not expet the value of Yp to have any in�uene on the boosting (suppression)of odd (even) peaks. The redshift of deoupling (transition between (b) and ()) dependsmildly on Yp in a orrelated way with ωb, sine the number density of free eletrons in thetight oupling regime (just before H reombination) sales as ne = fenb = nb(1− Yp). Henean inrease in ωb an be ompensated by allowing for a larger helium fration. An analytialestimate along the same lines as in e.g. Kolb & Turner (1990) indiates that a 10% hange in
Yp a�ets zde by roughly 0.1%, whih orresponds to ∆zde ≈ 1. This is of the same orderas the urrent 1σ errors on zde, obtained by �xing Yp = 0.24.After H reombination, the residual ionized eletron fration f rese does not depend on Yp,but is inversely proportional to the total baryon density (phase ()). As the CMB photonspropagate, they are oasionally resattered by the residual free eletrons. The orrespondingoptial depth, τ res is given by

τ res =

∫ tde
t0

nrese cσTdt
≈ 1.86 · 10−6

√

Ωm

∫ zde
0

(1 + z)2

[(1 + z)3 + ΩΛ/Ωm]1/2
dz .

(6.20)Performing the integral we an safely neglet the ontribution of the osmologial onstantat small redshift, sine zde ≫ ΩΛ/Ωm. Retaining only the leading term, the approximatedoptial depth from the residual ionization fration is estimated to be
τ res ≈ 1.24 · 10−6(1 + zde)3/2 ≈ 0.045, (6.21)independent of the osmologial parameters and of the helium fration. Therefore after lastsattering we do not expet any signi�ant e�et on CMB anisotropies oming from theprimordial helium fration, until the reionization epoh, phase (d).As pointed out in � 4.1.3.2, CMB anisotropies are sensitive only to the integrated reionizedfration if temperature information only is available, while spei� signatures are imprintedon the E-polarization and ET-ross orrelation power spetra by the detailed shape of thereionization history. There are several physially motivated reionization senarios, whih how-ever annot be learly distinguished at present (Haiman & Holder, 2003; Hansen & Haiman,2004). Therefore at the present level of auray it is safe for our purpose to assume an abruptreionization, i.e. that at the reionization redshift zre all the hydrogen was quikly reionized,thus produing a sharp rise of ne from its residual value to nH . More preisely, zre is theredshift at whih xe(zre) = 0.5. In our treatment we neglet HeII reionization, for whih thereis evidene at a redshift z ≈ 3 (see Theuns et al., 2002 and referenes therein). This e�et issmall, sine one extra eletron released at z ≈ 3 would hange the reionization optial depthonly by about 1%. The e�et of HeIII reionization, whih happens still later, is even smaller.We also neglet the inrease of the helium fration due to non-primordial helium prodution,
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Figure 6.7: CMB temperature (left panel) and polarization (right panel) power spetra andperentage hange (bottom panels) for a 10% larger (smaller) value of the helium massfration, Yp. The solid-blak line in the top panels orresponds to a standard ΛCDM model,with Yp = 0.24. The impat is at the perent level, and is almost indistinguishable in thetop panels. All other parameters are �xed to the value of our �duial model (Table 6.4), inpartiular, we have τre = 0.166.whih has a negligible e�et on CMB anisotropies. Those approximations do not a�et theresults at today's level of sensitivity of CMB data: for WMAP noise levels, even inlusion ofthe polarization spetra is not enough to distinguish between a sudden reionization senarioand a more omplex reionization history. At the level of Plank a more re�ned modelling ofthe reionization mehanism will be neessary (Holder et al., 2003; Doroshkevih et al., 2003).In the sudden reionization senario adopted here, the relation between reionization redshiftand reionization optial depth, τre, is given by Eq. (4.38, page 87). One again, sine thenumber density of reionized eletrons sales as ωb(1 − Yp), the redshift of reionization ispositively orrelated with Yp (for �xed optial depth and baryon density).As a result of the physial mehanism desribed above, a 10% hange in Yp has a net impaton the CMB power spetrum at the perent level. The impat on the CMB temperature andpolarization power spetra is highlighted in Fig. 6.7. In the temperature panel, we notiethat a larger helium fration slightly suppresses the peaks beause of di�usion damping,while it has no impat on large sales. Polarization is indued by the temperature quadrupoleomponent at last sattering and the reionization bump indued in the polarization spetrum(see � 4.1.3.2) is learly visible in the polarization panel of Fig. 6.7 in the ℓ ≈ 15 region. Ahange in the helium fration implies a shift of the redshift of reionization for a given (�xed)optial depth, and a onsequent shift of the position of the reionization bump via Eq. (4.41,page 87). The value of Yp does not a�et the height of the bump, whih is ontrolled by theoptial depth and is proportional to τ2. This e�et is highlighted in the polarization panel ofFig. 6.7: a 10% hange in Yp indues roughly a 10% hange in the position of the bump. The



6.2 The primordial helium fration 141subsequent two osillatory features for ℓ<∼ 50 re�et the displaement of further seondaryreionization indued polarization osillations. However, sine the value of polarized power isvery low in that region, suh seondary osillations are very hard to detet preisely.In priniple, given an aurate knowledge of the reionization history, the e�et of Yp onthe polarization bump would assist in the determination of the helium abundane. However,our ignorane of the reionization history prevents us from reovering useful information outof the measured reionization bump. The displaement indued by Yp is in fat degeneratewith a partial reionization, or with other, more omplex reionization mehanisms. Heneonstraints on Yp ome e�etively from the damping tail in the ℓ>∼ 400 region of the temper-ature spetrum, whih needs to be measured with very high auray. Other light elementslike deuterium and helium-3 are muh less abundant, and will therefore have even smallere�et on the CMB power spetrum, at the order of 10−5.6.2.3 Astrophysial measurements and BBN preditionsOne we �x the number of relativisti degrees of freedom by speifying the number of masslessneutrino families, the standard model of Big-Bang Nuleosynthesis (BBN) has only one freeparameter, namely the baryon to photon ratio η10 de�ned in (1.47, page 19), whih for longhas been known to be in the range 1 − 10 (Kolb & Turner, 1990). Thus by observing justone primordial light element one an predit the abundanes of all the other light elements.Astrophysial measurementsThe deuterium to hydrogen abundane, D/H, is observed by Ly-α features in several quasarabsorption systems at high redshift, D/H = 2.78+0.44
−0.38 × 10−5 (Kirkman et al., 2003), whihin BBN translates into the baryon abundane, η10 = 5.9± 0.5. Using BBN one thus preditsthe helium mass fration to be in the range 0.2470 < Yp < 0.2487. The dispersion in variousdeuterium observations is, however, still rather large, ranging from D/H = 1.65 ± 0.35 ×

10−5 (Pettini & Bowen, 2001) to D/H = 3.98+0.59
−0.67×10−5 (Kirkman et al., 2003), whih mostprobably indiates underestimated systemati errors.The observed helium mass fration omes from the study of extragalati HII regionsin blue ompat galaxies. A areful study by Izotov & Thuan (1998) gives the value YP =

0.244±0.002; however, also here there is a large satter in the various observed values, rangingfrom Yp = 0.230±0.003 (Olive et al., 1997) over Yp = 0.2384±0.0025 (Peimbert et al., 2002)and Yp = 0.2391±0.0020 (Luridiana et al., 2003) to Yp = 0.2452±0.0015 (Izotov et al., 1999).Besides the large satter there is also the problem that the helium mass fration preditedfrom observations of deuterium ombined with BBN, 0.2470 < Yp < 0.2487, is larger than(and seems almost in disagreement with) most of the observed helium abundanes, whihprobably points towards underestimated systemati errors, rather than the need for newphysis (Cyburt et al., 2003; Barger et al., 2003b). Figure 6.8 is a ompilation of the abovemeasurements, and o�ers a diret omparison with the urrent (large) errors from CMBobservations, presented in � 6.2.4, and with the potential of future CMB measurements,disussed in � 6.2.5.The observed abundane of primordial 7Li using the Spite plateau is possibly spoiled byvarious systemati e�ets (Ryan et al., 2000; Salaris & Weiss, 2001). Therefore it is moreappropriate to use the BBN preditions together with observations to estimate the depletion
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Figure 6.8: In the top panel we plot a few urrent diret astrophysial measurements of thehelium mass fration Yp as Gaussian likelihood urves with standard deviation orrespondingto the given 1σ (statistial) error (blue/dark gray urves, on the left of the diagram), and thevalue inferred from deuterium measurements ombined with BBN (yellow/light gray urve,on the far right), see the text for referenes. In the bottom panel, a diret omparison withCMB present-day auray (atual CMB data, blak dashed line, this work; the 1σ likelihoodinterval is 0.16 < Yp < 0.50) and with its future potential (Fisher matrix foreast for Plank� green/light gray urve � and a Cosmi Variane Limited experiment � orange/dark grayurve).fator f7 = 7Liobs/7Liprim instead of using 7Liobs to infer the value of η10 (Burles et al., 2001;Hansen et al., 2002).The numerial preditions of standard BBN (as well as various non-standard senarios)have reahed a high level of auray (Lopez & Turner, 1999; Esposito et al., 2000a,b; Burleset al., 2001), and the preision of these odes is well beyond the systemati errors disussedabove.BBN and the need for new physisIf the CMB-determined helium mass fration turns out to be as high as suggested by BBNalulations together with the CMB observation of Ωbh
2 (as disussed above), this ouldindiate a systemati error in the present diret astrophysial helium observations.Alternatively, if the CMB ould independently determine the helium value with su�ientpreision to on�rm the present helium observations, then this would be a smoking gun fornew physis. In fat, one ould easily imagine non-standard BBN senarios whih wouldagree with present observations of η10, while having a low helium mass fration. All whatis needed is additional non-equilibrium eletron neutrinos produed at the time of neutrino



6.2 The primordial helium fration 143deoupling whih would alter the n− p reation. This ould alter the resulting helium massfration while leaving the deuterium abundane unhanged. One suh possibility would be aheavy sterile neutrino whose deay produts inlude νe. A sterile neutrino with life-time of
1 − 5 se and with deay hannel νs → νe + φ with φ a light salar (like a majoron), wouldleave the deuterium abundane roughly untouhed, but an hange the helium mass frationbetween ∆Yp = −0.025 and ∆Yp = 0.015 if the sterile neutrino mass is in the range 1 − 20MeV (Dolgov et al., 1999). A simpler model would be standard neutrino osillation betweena sterile neutrino and the eletron neutrino. The lifetime is about 1 se when the sterile statehas mass about 10 MeV, and the deay hannel is νs → νe + l + l̄ (with l any light lepton),and suh masses and life-times are still unonstrained for large mixing angle (Dolgov et al.,2000). Related BBN issues are disussed by Shi et al. (1999); Di Bari & Foot (2001); Kirilova(2003). Suh possibilities are hard to onstrain without an independent measurement of thehelium mass fration.Another muh studied e�et of neutrinos is the inreased expansion rate of the universe ifadditional degrees of freedom are present (for BBN), and the degeneray between the totaldensity in matter and relativisti partiles (for CMB), whih is presented in detail in � 6.1.The more general set-up would then be to allow Ne� as a further free parameter both in theCMB and BBN analysis, but beause of the very weak dependene of the CMB on Yp thiswould spoil any hope of being able to onstrain the helium fration with the CMB; thereforewe hoose to �x Ne� = 3.04.Also, an eletron neutrino hemial potential ould potentially alter the BBN predi-tions (Kang & Steigman, 1992; Lesgourgues & Pastor, 1999), however, with the observedneutrino osillation parameters the di�erent neutrino hemial potentials would equilibratebefore the onset of BBN (Dolgov et al., 2002; Wong, 2002; Abazajian et al., 2002), henevirtually exluding this possibility (see however Barger et al., 2003a).6.2.4 WMAP Monte Carlo analysisWe use a modi�ed version of the publily available Markov Chain Monte Carlo pakageosmom as desribed in Lewis & Bridle (2002) in order to onstrut Markov hains (see� 5.1.7) in our seven dimensional parameter spae. We sample over the following set ofosmologial parameters: the physial baryon and CDM densities, ωb ≡ Ωbh

2 and ωc ≡ Ωch
2,the osmologial onstant in units of the ritial density, ΩΛ, the salar spetral index andthe overall normalization of the adiabati power spetrum, ns and As ≡ ζ2

0 , f. Eq. (4.6, page79), the redshift at whih the reionization fration is a half, zre, and the primordial heliummass fration, Yp. We restrit our analysis to �at models, therefore the Hubble parameter isa derived parameter,
h = [(ωc + ωb)/(1 − ΩΛ)]1/2 . (6.22)We onsider purely adiabati initial onditions and three massless neutrino families for thereason given above. We do not onsider either gravitational waves or massive neutrinos. Weinlude the WMAP data from Kogut et al. (2003); Hinshaw et al. (2003b) (temperature andpolarization) with the routine for omputing the likelihood supplied by the WMAP team(Verde et al., 2003). We make use of the CBI (Pearson et al., 2003) and of the deorrelatedACBAR (Kuo et al., 2004) band powers above ℓ = 800 to over the small angular sale regionof the power spetrum.
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Figure 6.9: One-dimensional posterior likelihood distribution for the helium mass fration,
Yp, using CMB data only. The solid-blak line is for all other parameters marginalized, thedashed-red line gives the mean likelihood.Sine Yp is a rather �at diretion in parameter spae with present-day data, we �nd thata muh larger number of samples is needed in order to ahieve good mixing and onvergeneof the hains in the full 7D spae. We use M = 4 hains, eah ontaining approximately
N = 3 · 105 samples. The mixing diagnosti is arried out along the same lines as in Verdeet al. (2003), by means of the Gelman and Rubin riterion (Gelman & Rubin, 1992b). Theburn-in of the hains also takes longer than in the ase where Yp is held �xed, and we disard6000 samples per hain.ResultsMarginalizing over all other parameters, we �nd that the helium mass fration from CMBalone is onstrained to be

Yp < 0.647 at 99% l.. (1 tail limit) (6.23)and 0.160 <Yp < 0.501 at 68% l.. (2 tails). (6.24)Thus, for the �rst time the primordial helium mass fration has been observed using theosmi mirowave bakground. However, present-day CMB data do not have by far su�ientresolution to disriminate between the astrophysial helium measurements, Yp ∼ 0.244, andthe deuterium guided BBN preditions, Yp ∼ 0.248, whih would require perent preision.In Fig. 6.9 we plot the marginalized and the mean likelihood of the Monte Carlo samplesas a funtion of Yp. If the likelihood distribution is Gaussian, then the 2 urves should beindistinguishable. The di�erene between marginalized and mean likelihood for Yp indiatesthat the marginalized parameters are skewing the distribution, and therefore that orrelations
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Figure 6.10: Joint 68% and 99% likelihood ontours in the (ωb, Yp)-plane from CMB dataalone. The solid-blue line gives the BBN predition (Burles et al., 1999), whih on this �gurealmost looks like a straight line.play an important role. Although the mean of the 1D marginalized likelihood is ratherhigh, 〈L(Yp)〉 = 0.33, the mean likelihood peaks in the region indiated by astrophysialmeasurements, Yp ∼ 0.25. In view of this di�erene, it is important to understand the roleof orrelations with other parameters, and we will turn to this issue now.In Fig. 6.10 we plot joint 68% and 99% on�dene ontours in the (ωb, Yp)-spae. Fromthe Monte Carlo samples we obtain a small and negative orrelation oe�ient between thetwo parameters, orr(Yp, ωb) = −0.14. Baryons and helium appear to be antiorrelated sim-ply beause present-day WMAP data do not map the peaks struture to su�iently high ℓ.Preise measurements in the small angular sale region should reveal the expeted positiveorrelation between the baryon and helium abundanes, whih is potentially important in or-der to orretly ombine BBN preditions and CMB measurements of the baryon abundane.We turn to this question in more detail in the next setion. In BBN the baryon frationand helium fration are orrelated along a di�erent diretion, f. Fig. 6.10. However, thisorrelation is very weak, and the BBN relation gives pratially a �at line. Sine the twoparameters are not independent from the CMB point of view, it is in fat not ompletelyaurate to perform the CMB analysis with �xed helium mass fration of Yp = 0.24 to get theerror-bars on the baryon fration, and then re-input this baryon fration (and error-bars) topredit the helium mass fration from BBN. The most aurate proedure is to analyse theCMB data leaving Yp as a free parameter, thereby obtaining the orret (potentially larger)error-bars on ωb upon marginalization over Yp.In view of the emerging baryon tension between CMB and BBN, it is important to hekwhether allowing helium as a free parameter an signi�antly hange the CMB determination



146 Beyond standard parametersof the baryon density or its error. In order to evaluate in detail the impat of Yp on the error-bars for ωb, we onsider the following three ases.(a) The usual ase, when the helium fration for the CMB analysis is assumed to be knowna priori and is �xed to the anonial value Yp = 0.24.(b) A ase with a weak astrophysial Gaussian prior on the helium fration, whih wetake to be Yp = 0.24 ± 0.01. As disussed above, the error-bars of the astrophysialmeasurements are typially a fator 5 tighter than this, but our prior is hosen toenompass the systemati spread between the di�erent observations.() The ase in whih we assume a uniform prior for Yp in the range 0 ≤ Yp ≤ 1, i.e. Yp isonsidered as a totally free parameter.We do not �nd any signi�ant hange in the error-bars for ωb in the three di�erent ases.The on�dene intervals on ωb alone are determined to be (ase ()) 0.0221 < ωb < 0.0245 at68% l.. (0.0204 < ωb < 0.0276 at 99 % l..). The standard deviation of ωb as estimated fromthe Monte Carlo samples is found to be σ̂b = 1.3 · 10−3. This is in omplete agreement withthe error-bars on ωb obtained by the WMAP team for the standard ΛCDM ase (Spergelet al., 2003). We onlude that at the level of preision of present-day CMB data, it is stillsafe to treat the baryon abundane and the helium mass fration as independent parameters.This result is non-trivial, sine the fat that the damping tail is not yet preisely measuredabove the seond peak would a priori suggest that degeneraies between Yp, ωb and ns ouldpotentially play a role one the assumption of zero unertainty on Yp is relaxed. The impatof Yp is small enough, and the error-bars on ωb large enough that a uniform prior on Yp anstill be aommodated within the unertainty in the baryon abundane obtained for ase (a).However, the Yp−ωb orrelation will have to be taken into aount to orretly analyze futureCMB data, with a quality suh as Plank. We disuss this potential in the next setion.We observe the expeted orrelation between the redshift of reionization and the heliumfration (Fig. 6.11), whih is disussed above. The orrelation oe�ient between the twoparameters is found to be rather large and positive, orr(Yp, zre) = 0.40. This orrelationprodues a notieable hange in the marginalized 1D-likelihood distribution for zre as we gofrom ase (a) to ase (). Marginalization over the additional degree of freedom given by
Yp broadens onsiderably the error-bars on zre. In fat, the 68% on�dene interval for zreinreases by roughly 20% (and shifts to somewhat higher values), from 10.2− 20.9 (ase (a))to 10.6− 23.3 (ase ()). Case (b) exhibits similar error-bars as ase (a). On the other hand,the determination of the reionization optial depth is not a�eted by the inlusion of heliumas a free parameter, giving in all ases 0.08 < τre < 0.23. Correspondingly, the orrelationis less signi�ant, orr(Yp, τre) = −0.11. We therefore onlude that the di�erenes in thedetermination of zre are due only to the variation of the amount of eletrons available forreionization as Yp is hanged.Leaving Yp as a free parameter also has an impat on the relation between ωb and thesalar spetral index, ns. The extra power suppression on small sales whih is produed bya larger Yp an be ompensated by a blue spetral index, f. Fig. 6.12.
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Figure 6.11: Joint 68% and 99% likelihood ontours in the (Yp, zre)-plane (upper panel)and in the orresponding (Yp, τre)-plane (bottom panel) from CMB data alone. In the upperpanel, the solid-red line is the relation zre(Yp) from Eq. (4.38, page 87), obtained by �xing thereionization optial depth to the value τre = 0.166, while the other parameters are those of our�duial ΛCDM model. Although learly the exat shape of zre(Yp) depends on the partiularhoie of osmology, it is apparent that the Yp − zre degeneray is along this diretion. Theorrelation between Yp − τre is almost negligible with present-day data (bottom panel).6.2.5 Potential of future CMB observationsIn order to estimate the preision with whih future satellite CMB measurements will beable to onstrain the helium mass fration we perform a Fisher matrix analysis along thelines presented in � 5.2. As already emphasized, in order to obtain a reliable predition, it isextremely important to hoose a parameter set whose e�et on the CMB power spetrum isas linear and unorrelated as possible. Here we improve upon the hoie made in � 6.1.5 byadopting the full set of normal parameters introdued in � 4.2. Our nine dimensional basisparameter set is then
θ = {A,B,V,R,M,T , As, ns, Yp} , (6.25)where the salar power spetrum normalization onstant is As = ζ2

0 , see (4.6, page 79). Thequantities A,B,V,R,M,T are de�ned in Eqs. (4.43�4.47, page 90). It has been shown thatthe normal parameter set is very well adapted to the FMA, whih give aurate preditions(Kosowsky et al., 2002). Sine here we are interested in the preditions for B = Ωbh
2 and Yp,we do not need to expliitly map the FMA foreasts in the normal parameter spae onto theosmologial parameter spae.The hoie of the physial parameter set makes it easy to implement in the FMA interest-ing theoretial priors. For instane, we are interested in imposing �atness in our foreast, in
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Figure 6.12: Satter plot in the ωb − ns plane, with the value of Yp rendered following theolor sale. Green orresponds roughly to the BBN preferred value.order to be able to diretly ompare present-day auray on Yp with the potential of Plankand of and ideal CMB experiment (see below). The prior on the urvature of the universeis imposed in the FMA by �xing the value of the parameter A to the one of the �duialmodel. In fat, the parameter A is a generalization of the shift parameter, whih desribesthe sideways shift of the aousti peak struture of the CMB power spetrum as a funtion ofthe geometry of the universe and its ontent in matter, radiation and osmologial onstant.Although imposing A = onst is not the same as having a onstant spatial urvature overthe full range of osmologial parameters, for the purpose of evaluating derivatives the twoonditions redue to the same. The fat that our �duial model is atually slightly open(see below), does not make any substantial di�erene in the results, apart from reduing thenumerial inauraies whih would arise had we omputed the derivatives around an exatly�at model. We an also easily impose a prior knowledge of the helium fration, by �xingthe value of Yp, as is usually the ase for present CMB analyses, and investigate how thismodi�es the expeted error on the the baryon density.Auray issuesWe numerially ompute double sided derivative of the power spetrum around the �duialmodel with osmologial parameters given in Table 6.4. We �nd it neessary to inreasethe auray of amb by a fator of 3 in eah of the �auray boost� values. As a �duialmodel, we use the best �t model to the WMAP data for the standard ΛCDM senario, asgiven in Table 1 of Spergel et al. (2003). However, in order to avoid numerial inauraieswhih arise when di�erentiating around a �at model, we redue slightly the value of ΩΛ by



6.2 The primordial helium fration 149Parameter ValueBaryons Ωb 0.046Matter Ωm 0.270Dark Energy ΩΛ 0.720Radiation Ωrad 7.95 · 10−5Massless ν families Nν 3.04Total density Ωtot 0.990Hubble onstant h 0.72Optial depth τre 0.166Spetral index ns 0.99Normalization As 2 · 10−9Table 6.4: Cosmologial parameters for the �duial ΛCDM model around whih the FMA isperformed. We hoose a slightly open model to avoid numerial inauraies in the derivatives.imposing an open universe, Ωtot = 0.99.We perform the FMA for the expeted apabilities of Plank's High Frequeny Instru-ment (HFI) and for an ideal CMB measurement whih would be osmi variane limited(CVL) both in temperature and in E-polarization (and we do not onsider the B-polarizationspetrum), and therefore represents the best possible parameter measurement from CMBanisotropies alone. The ompliated issues oming from foreground removals, point souresubtration, et. are assumed to be already (roughly) taken into aount by the experi-mental parameters, see � 5.2.1 for de�nitions. These are the e�etive perentage sky ov-erage fsky, the number of hannels, the sensitivity of eah hannel σT,Ec for temperature(T) and E-polarization (E) in µK and the angular resolution θT,Ec (in armin). For PlankHFI, we take the three hannels with frequenies 100, 143 and 217 GHz, with respetively
σTc=1,2,3 = 5.4, 6.0, 13.1 and σEc=2,3 = 11.4, 26.7 and we have fsky = 0.85 (Plank Website,2004) Sine the CVL is an ideal experiment, we put its noise to zero and assume perfetforegrounds removal, so that fsky = 1. In order to test the auray of our preditionsand ompare present-day results with the foreasts, we also perform an FMA with WMAP�rst year parameters, obtaining exellent agreement between the FMA results and the error-bars from atual data. For the purpose of omparison, we inlude foreasts for the fullWMAP four year mission, whih will also measure E-polarization and redue present-dayerrors on the temperature spetrum by a fator of two. We limit the range of multipolesto ℓ < 2000, beause at smaller angular sales non-primary anisotropies begin to dominate(Sunyaev-Zeldovih e�et). Seljak et al. (2003b) disuss the issue of numerial preision ofthree di�erent CMB odes and onlude that they are aurate to within 0.1%. While thisis enouraging, it is not of diret relevane to this work, sine what matters in the omputa-tion of derivatives is not muh the absolute preision of the spetra, but rather their relativeauray.Foreasts and disussionTable 6.5 summarizes our foreasts for the future measurements and ompares them with theresults obtained from WMAP atual data.



150 Beyond standard parametersTemperature + TE-ross + E-polarizationNo priors Flatness Flatness and
Yp = 0.24
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∆ωb

ωb

∆Yp

Yp

∆ωb

ωb

∆ωb

ωbWMAP 4yrs 1 ∼ 50 2.92 ∼ 40 2.86 2.86Plank 7.60 1.31 4.96 1.26 0.70CVL 2.59 0.34 1.52 0.32 0.13Temperature + TE-rossWMAP 1st yr 2 N/A N/A 71.25 5.04 5.04WMAP 4yrs 1 ∼ 75 4.10 ∼ 60 3.94 3.94Plank 8.91 1.74 6.60 1.63 0.74CVL 5.18 0.55 2.84 0.55 0.19Table 6.5: Fisher matrix foreasts and omparison with present-day results for di�erent priorsand using di�erent ombinations of temperature and polarization CMB spetra. Errors arein perent with respet to the values of the �duial model, Yp = 0.24 and ωb = 0.0238 (1σl.. all other marginalized).We notie that when the WMAP full four year data will be available (inluding E-polarization), the error on the baryon density is expeted to derease by a fator of twoto about 3%, ompared to today's 5% (assuming �atness). Nevertheless, inlusion of Yp asa free parameter will still have no e�et on the determination of ωb for WMAP, i.e. Yp willremain an essentially �at diretion when marginalized over. While the determination of thehelium fration will improve, the FMA annot reliably assess quantitatively how muh, sinefor suh large errors the likelihood distribution is not Gaussian and the quadrati approxi-mation breaks down. In the table we therefore give the FMA estimation as an indiation,with the aveat that the Fisher approximation is likely to be inaurate for the real errorson Yp from WMAP's four year data-set.It is interesting that for Plank, the e�et of the helium fration an no longer be negleted.Inlusion of the helium fration inreases the error on ωb by roughly 80%, from 0.7% to 1.3%.The orrelation between the two parameters will have to be taken into aount, as is evidentfrom Fig. 6.13. The expeted orrelation oe�ient is orr(Yp, ωb) = 0.84 (0.91) for Plank(for CVL). The expeted 1σ error on Yp is about 5% for Plank, or ∆Yp ∼ 0.01. This is of thesame order as the spread in urrent astrophysial measurements. We onlude that in Plank-auray data analysis, it will be neessary to inlude the unertainty in the determinationof the helium mass fration, at least in the form of a Gaussian prior over Yp of the type weused in the CMB data analysis presented above.Finally, measuring CMB temperature and polarization with osmi variane auraywould allow Yp to be onstrained to within 1.5%, or ∆Yp ∼ 0.0036 (assuming �atness). Suhan ideal measurement would be able to disriminate between the BBN-guided, deuteriumbased helium value and the urrent lowest, diret helium observations (f. Fig. 6.8).Our foreasts for the unertainty in the Helium mass fration from future observations arein exellent agreement with the �ndings of Kaplinghat et al. (2003b). There, the standard
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Figure 6.13: FMA foreast for the expeted errors from WMAP four year mission (dotted-blak), Plank (dashed-red) and a CVL experiment (solid-green). The ellipses enompass
1σ and 3σ joint likelihood regions for ωb − Yp (all other parameters marginalized). The axisvalues give the error in with respet to the �duial model values. This foreast is for the fullCMB information (Temperature, TE-ross, E-polarization) and assumes �atness.deviation on Yp for Plank is estimated to be ∆Yp = 0.012. Kaplinghat et al. (2003b)also onsider an experiment (CMBPol) with harateristis similar to our CVL, for whihthey foreast ∆Yp = 0.0039, again in lose agreement with our result. In an earlier work,Eisenstein et al. (1998a) found for Plank (temperature and polarization) ∆Yp = 0.013, alsoin satisfatory onordane with our result. It should be notied that the foreast reportedfor MAP in Table 2 of Eisenstein et al. (1998a), namely ∆Yp = 0.02, is nothing but theGaussian prior Yp = 0.24 ± 0.02 whih was assumed in their analysis.The main soure of improvement for the determination of Yp will be the better sampling ofthe temperature damping tail provided by Plank and the CVL. Polarization measurementshave mainly the e�et of reduing the errors on other parameters. In fat, we have hekedthat exluding from our FMA the 2 ≤ ℓ ≤ 50 region of the E-polarization and ET-orrelationspetra hanges the foreast preision on Yp less than about 10-15% for Plank and less thana few perent for CVL. This supports the onlusion that the low-ℓ reionization bump is notvery useful in measuring the helium abundane, beause of the degeneray with zre.



152 Beyond standard parameters6.3 Time variations of the �ne-struture onstantThe searh for observational evidene for time or spae variations of the `fundamental' on-stants that an be measured in our four-dimensional world is an extremely exiting area ofurrent researh, with several independent laims of detetions in di�erent ontexts emergingin the past few years. In partiular, possible time variations of the �ne-struture onstantan be tested with the CMB, and represent another line of investigation going beyond thestandard desription of osmology. The ontents of this setion summarize the latest result ofa rather large ollaboration I have been involved with, aimed at onstraining time variationsof the �ne-struture onstant using CMB anisotropy. We thoroughly studied the issue ofruial degeneraies with other osmologial parameters and disussing what improvementsan be expeted with forthoming data-sets (Martins et al., 2002, 2004; Roha et al., 2004).We motivate the searh for time variations of the �ne-struture onstant in � 6.3.1, andreview the urrent observational status of observations other than the CMB in � 6.3.2. Afterpresenting the relevane of the �ne-struture onstant for CMB anisotropies in � 6.3.3 and� 6.3.4, in � 6.3.5 we provide up-to-date WMAP onstraints on the value of α at the epoh ofdeoupling; � 6.3.6 is dediated to a detailed Fisher matrix analysis whih enompasses thestandard parameters plus the �ne-struture onstant for the full WMAP four year data, forthe Plank satellite and for a osmi variane limited, ideal experiment.6.3.1 MotivationCosmology and astrophysis play an inreasingly important role as testing ground for ourunderstanding of fundamental physis, sine they provide us with extreme onditions (thatone has no hope of reproduing in terrestrial laboratories) in whih to arry out a plethora oftests and searh for new paradigms. Perhaps the more illuminating example is that of mul-tidimensional osmology: urrently preferred uni�ation theories (Polhinski, 1998; Damour,2003a) predit the existene of additional spae-time dimensions, whih will have a num-ber of possibly observable onsequenes, inluding modi�ations in the gravitational laws onvery large (or very small) sales (Will, 2001) and spae-time variations of the fundamentalonstants of nature (Martins, 2002; Uzan, 2003).The most promising ase, and the one that has been the subjet of most reent work andspeulation, is that of the �ne-struture onstant
α =

e2

~c
(6.26)where e is the eletron harge, c the speed of light and ~ Plank's onstant.There have been a number of reent reports of evidene for a time variation of fundamentalonstants (Webb et al., 2001, 2003; Murphy et al., 2001; Ivanhik et al., 2003), whih wereview below. Apart from their obvious diret impat if on�rmed, they are also ruial in adi�erent, indiret way, sine they provide us with an important (and possibly even unique)opportunity to test a number of fundamental physis models, suh as string theory. Indeedhere the issue is not if suh a theory predits suh variations, but at what level it does so,and hene if there is any hope of deteting them in the near future, or if we have done italready.



6.3 Time variations of the �ne-struture onstant 153On the other hand, the theoretial expetation in the simplest, best motivated model isthat α should be a non-dereasing funtion of time (Damour & Nordtvedt, 1993; Santiagoet al., 1998; Barrow et al., 2002). This is based on rather general and simple assumptions,in partiular that the osmologial dynamis of the �ne-struture onstant is governed by asalar �eld whose behavior is akin to that of a dilaton. If this is so, then it is partiularlyimportant to try to onstrain it at earlier epohs, where any variations relative to the present-day value should be larger. However, one of the interpretations of the Oklo results is that αwas larger at an epoh orresponding to a redshift of about z ∼ 0.1 than today, whereas thequasar results indiate that α was smaller at z ∼ 2−3 than today, see below for more details.If both results are validated by future experiments, then the above theoretial expetationmust learly be wrong, whih would be a perfet example of using astrophysis to learn aboutfundamental physis. Playing devil's advoate, one ould ertainly oneive that osmologialobservations of this kind ould one day prove string theory wrong. Indeed, it has been argued(Damour, 2003a,b) that even the results of Webb and ollaborators may be hard to explainin the simplest, best motivated models where the variation of the �ne-struture onstant isdriven by the spaetime variation of a very light salar �eld.Cosmi mirowave bakground anisotropies provide a tool to measure the �ne-strutureonstant at high redshift, being mostly sensitive to the epoh of deoupling, z ∼ 1100.6.3.2 The observational statusThe reent explosion of interest in the study of varying onstants is mostly due to the resultsof Webb and ollaborators (Murphy et al., 2001b; Webb et al., 2001; Murphy et al., 2001,a)of a 4σ detetion of a �ne-struture onstant that was smaller in the past,
∆α

α
= (−0.72 ± 0.18) × 10−5 , z ∼ 0.5 − 3.5 ; (6.27)indeed, more reent work (Murphy et al., 2003; Webb et al., 2003) provides an even strongerdetetion. These results are obtained through omparisons of various transitions (involvingvarious di�erent atoms) in the laboratory and in quasar absorption systems, using the fatthat the size of the relativisti orretions goes as (αZ)2. A number of tests for possiblesystemati e�ets have been arried out, all of whih have been found either not to a�et theresults or to make the detetion even stronger if orreted for.A somewhat analogous (though simpler) tehnique uses moleular hydrogen transitionsin damped Lyman-α systems to measure the ratio of the proton and eletron masses, µ =

mp/me (using the fat that eletron vibro-rotational lines depend on the redued mass ofthe moleule, and this dependene is di�erent for di�erent transitions). The latest results(Ivanhik et al., 2002) using two systems at redshifts z ∼ 2.3 and z ∼ 3.0 are
∆µ

µ
= (5.7 ± 3.8) × 10−5 , (6.28)or

∆µ

µ
= (12.5 ± 4.5) × 10−5 , (6.29)depending on whih of the (two) available tables of �standard� laboratory wavelengths isused. This implies a 1.5σ detetion in the more onservative ase, though it also asts some



154 Beyond standard parametersdoubts on the auray of the laboratory results, and on the in�uene of systemati e�etsin general.We should also mention a reent re-analysis (Fujii, 2002) of the well-known Oklo bound(Damour & Dyson, 1996). Using new Samarium samples olleted deeper underground (aim-ing to minimize ontamination), these authors again provide two possible results for both αand the analogous oupling for the strong nulear fore, αs,
α̇

α
∼ α̇s
αs

= (0.4 ± 0.5) × 10−17yr−1 (6.30)or
α̇

α
∼ α̇s
αs

= −(4.4 ± 0.4) × 10−17yr−1 . (6.31)Note that these are given as rates of variation, and e�etively probe timesales orrespondingto a osmologial redshift of about z ∼ 0.1. Unlike the ase above, these two values orrespondto two possible physial branhes of the solution. See Fujii (2002) for a disussion of whythis method yields two solutions (and also note that these results have opposite signs relativeto previously published ones, Fujii et al., 2000). While the �rst of these branhes provides anull result, (6.31) is a strong detetion of an α that was larger at z ∼ 0.1, that is a relativevariation that is opposite to Webb's result (6.27). Even though there are some hints (omingfrom the analysis of other Gadolinium samples) that the �rst branh is preferred, this is byno means settled and further analysis is required to verify it.Still we an speulate about the possibility that the seond branh turns out to be theorret one. Indeed this would de�nitely be the most exiting possibility. While in itselfthis wouldn't ontradit Webb's results (sine Oklo probes muh smaller redshift and thesuggested magnitude of the variation is smaller than that suggested by the quasar data), itwould have striking e�ets on the theoretial modelling of suh variations. In fat, proof that
α was one larger than today's value would sound the death knell for any theory whih modelsthe varying α through a salar �eld whose behaviour is akin to that of a dilaton. Examplesinlude Bekenstein's theory (Bekenstein, 1982) or simple variations thereof (Sandvik et al.,2002; Olive & Pospelov, 2002). Indeed, one an quite easily see (Damour & Nordtvedt, 1993;Santiago et al., 1998) that in any suh model having sensible osmologial parameters andobeying other standard onstraints, α must be a monotonially inreasing funtion of time.Sine these dilatoni-type models are arguably the simplest and best-motivated models forvarying α from a partile physis point of view, any evidene against them would be extremelyexiting, sine it would point towards the presene of signi�antly di�erent, yet undisoveredphysial mehanisms.Finally, we also mention that there have been reent proposals (Braxmaier et al., 2001)of more aurate laboratory tests of the time independene of α and µ using monolithiresonators, whih ould improve urrent bounds by an order of magnitude or more.However, given that there are both theoretial and experimental reasons to expet thatany reent variations will be small, it is important to develop tools allowing us to measure
α in the early universe, as variations with respet to the present value ould be muh largerthen.



6.3 Time variations of the �ne-struture onstant 1556.3.3 E�ets of α on the ionization historyThe reason why the CMB an be used as a probe of variations of the �ne-struture onstant isthat these alter the ionization history of the universe. Here we present the dominant e�ets,see Hannestad (1999); Kaplinghat et al. (1999) for a detailed treatment.The impat of the �ne-struture onstant on the CMB omes from the dependene of thedi�erential optial depth τ̇ (2.117, page 40) on the Thomson sattering ross setion, whihis
σT =

8πα2
~

2

3m2
ec

2
, (6.32)where we have reintrodued the speed of light c and the Plank onstant ~, and me is the ele-tron mass. Now the equilibrium eletron ionization fration xeqe ≡ ne/nH goes approximatelyas

xeqe ∝
(me

T

)3/2
exp(−B/T ) , (6.33)where B is the Hydrogen binding energy

B = α2mec
2/2 (6.34)(see e.g. Kolb & Turner, 1990). If we ignore the fat that xe(z) does not preisely trak itsequilibrium value, and sine the exponential fator dominates near reombination, we wouldsimply expet from T ∝ 1/a ∝ z that the reionization fration be just a funtion of z/α2.This turns out to be approximately orret, even if the e�et of the fator (me/T )3/2 andthe departure of xe from xeqe need to be taken into aount for a more preise estimation(Kaplinghat et al., 1999).In general, around the deoupling epoh relevant for the CMB, the �ne-struture onstantan be expeted to evolve with redshift, α = α(z), but we an take a onstant value αde ≡

α(zde) instead and onsider it as an e�etive value averaged over the reombination proess.Summarizing, there are two important hanges in the reionization history brought about by ahange in αde, the value of α at the reombination epoh, whih are best disussed in termsof hanges on the visibility funtion g(z), de�ned in Eq. (3.126, page 67). A larger value of
αde with respet to α0, its value today, implies:

• an inreased redshift of last sattering: as estimated above, this follows from resalingthe reionization frations as z/α2de, hene deoupling happens earlier for a larger αde,whih means that the sound horizon rs(zde), see Eq. (4.24, page 82), is smaller. Asa onsequene, we expet a shift of the peaks' struture to larger ℓ values, aordingto (4.17, page 81). This e�et will be degenerate with the shift parameter Rshift (4.22,page 82) or equivalently with the normal parameter A, Eq. (4.43, page 88), as shownin Fig. 6.14. There will also be a boost of the �rst aousti peak due to the inreasedearly ISW e�et, see � 4.1.2.3.
• A narrower peak of the visibility funtion: by inreasing αde the peak of the visibilityfuntion is moved to a larger redshift, when the expansion rate is faster

Ṫ ∝ −H ∝ −(1 + z) (6.35)and thus the temperature and therefore xe drop faster, whih makes g(z) narrower, seeFig. 6.15. This leads to a smaller damping sale, f. Eq. (4.34, page 86), hene thesmall-sale power of the CMB spetrum inreases for αde/α0 > 1.
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Figure 6.14: Left panel: derivatives of the temperature spetrum with respet to αde and theshift parameter Rshift. We plot −∂Cℓ/∂αde to failitate the omparison with ∂Cℓ/∂Rshift.The two derivatives are perfetly in phase: this is responsible for the degeneray betweenthe orresponding parameters (right panel, Fisher matrix analysis). Only the di�erent am-plitudes allow an experiment whih maps su�iently high multipoles with high auray todistinguish between them, in partiular revealing the hange in the damping sale broughtabout by hanges in αde. In the right panel, the Fisher matrix results ontain 1σ of thelikelihood (inluding temperature only), and learly indiate a strong orrelation betweenthe two parameters (see Martins et al., 2002).In Fig. 6.16 we plot the resulting CMB temperature spetrum, where the above mentionedhanges are readily distinguishable.6.3.4 The role of reionizationAfter deoupling, the CMB is essentially insensitive to how α varies, until the reionizationepoh is reahed, at whih point Thomson sattering beomes e�etive again. If the value of αat reionization, αre ≡ α(zre), is di�erent from its value today, it will a�et the CMB spetrumthrough a hange in the reionization optial depth τre. However, τre is itself dependent on theosmologial model and possibly on a number of relevant non-linear physial proesses relatedto the astrophysial mehanisms responsible for the reionization. In general, this problem issolved by treating τre as a free parameter, whih aounts for the relatively poor knowledgeof the details of the reionization history and in our ase for the unertainty about the exatvalue of α during the reionization epoh. We onlude that provided we treat τre as a freeparameter the lak of a preise knowledge of the value of α during the epoh of reionizationis unimportant, and we an take αre = α0. On the more phenomenologial side, the resultsof Webb and ollaborators for the value of α at a redshift of 2− 3 would suggest that at theepoh of reionization the possible hanges in α relative to the present day are already verysmall. Therefore one an alulate the e�et of a varying α by simply assuming two values
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Figure 6.15: Ionization fration as a funtion of redshift (left panel) and visibility funtion asa funtion of onformal time (right panel) for di�erent values of the �ne-struture onstantat deoupling: αde/α0 = 1 (solid), αde/α0 = 1.03 (dotted), αde/α0 = 0.97 (dashed).Deoupling happens earlier and the last sattering surfae is narrower for αde/α0 > 1.for the �ne-struture onstant, one at low redshift, z <∼ 20, for whih we take today's valueby the above argument, and one around the epoh of deoupling, αde, whih we want todetermine.As shown in � 4.1.3.2, reionization hanges the amplitude of the aousti peaks in thetemperature spetrum, without a�eting their position and spaing, while introduing thereionization bump at low ℓ in the polarization spetrum. If the value of αde is di�erent fromthe value today (whih orresponds to αre), then the peaks in the polarization power spetrumat small angular sales will be shifted sideways, while the reionization bump on large angularsales will remain �xed. This is illustrated in Fig. 6.16 (lower right panel). It follows that bymeasuring the separation between the aousti peaks and the bump, one ould in priniplemeasure both α and the reionization optial depth τre, as shown in Fig. 6.17. This holdstrue as long as one assumes a spei� reionization history, suh as the sudden reionizationsenario used here. However, if we would allow for a more realisti reionization modelling,the detailed dependene of the reionization bump on the new reionization parameters is likelyto wash out this e�et. Nevertheless, with present-day auray the CMB data are sensitiveonly to the optial depth of reionization, as pointed out in � 6.2.2, whih justify the use ofthe simplest reionization modelling. Within this framework, the fat that τre unexpetedlyturned out to be as large as 0.16 as derived from the WMAP data (Spergel et al., 2003) makesthe prospets of onstraining α with the CMB muh better beause of the above e�et.Finally, we point out that the modi�ations disussed above are diret onsequenes of an
α variation, and that indiret e�ets are usually present as well sine any variation of α isneessarily oupled with the dynamis of the Universe (Mota & Barrow, 2004). Here we takea pragmati approah and say that, sine the CMB is insensitive to the details of α variationsfrom deoupling to the present day, we do not in fat need to speify a redshift dependenefor this variation � although we ould have spei�ed one if we so hose. At this stage,we prefer to fous on model-independent onstraints, and hene do not attempt to inlude
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Figure 6.16: Contrasting the e�ets of varying αde (left) and reionization optial depth τre(right) on the CMB temperature (top) and polarization (bottom). The reionization bumpis not hanged by variations of αde/α0. The blak lines are for the WMAP best �t model,with αde/α0 = 1 and τre = 0.17.an expliit modelling for the redshift dependene α(z). Nevertheless, given some model-independent onstraints one an always translate them into onstraints on the parametersof one's favorite model. Beside possible time variations of α, investigated here, one ouldalso envisage searhing for spatial variations on the last sattering surfae (Sigurdson et al.,2003).6.3.5 CMB onstraints on α from WMAP aloneWe use a modi�ed version of mbfast whih inludes the e�ets of varying α desribedabove, to analyse the reent WMAP temperature and ross-polarization data adopting thelikelihood estimator method desribed in Verde et al. (2003). The models are sampled on anuniform grid in a 7 dimensional parameter spae as follows:
0.05 < Ωch

2 < 0.20 (0.01) ,

0.010 < Ωbh
2 < 0.028 (0.001) ,

0.500 < ΩΛ < 0.950 (0.025) ,

0.900 < αde/α0< 1.050 (0.005) , (6.36)
0.06 < τre < 0.30 (0.02) ,

0.880 < ns < 1.08 (0.005) ,

−0.15 <
dnsd ln k

< 0.05 (0.01) .The numbers between parentheses give the step size along eah diretion; ns is the salarspetral index of the primordial power spetrum, and dns/d ln k is the spetral index running,
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Figure 6.17: The separation in ℓ between the reionization bump and the �rst (solid lines),seond (dashed) and third (dotted) peaks in the polarization spetrum, as a funtion of αat deoupling and τ . A (somewhat idealized) desription of how α and τre an be measuredusing CMB polarization.i.e. we introdue a sale dependene of the spetral index of the form
ns(k) = ns(kP) +

dnsd ln k
ln

(

k

kP) , (6.37)where ns ≡ ns(kP) is a onstant and the pivot sale kP is hosen to be kP = 0.002Mp−1.We only inlude �at models, so that the Hubble parameter H0 ≡ 100h km s−1 Mp−1 is aderived quantity. We don't onsider gravity waves or isourvature modes sine these furthermodi�ations are not required by the WMAP data.The likelihood distribution funtion for αde/α0, obtained after marginalization over theremaining parameters, see � 5.1.5, is plotted in Fig. 6.18, and gives the marginalized on�-dene interval
0.95 < αde/α0 < 1.02 (at 95% l..). (6.38)If we impose dns/d ln k = 0 we obtain instead
0.94 < αde/α0 < 1.01 (at 95% l..). (6.39)It is interesting to onsider the orrelations between a α/α0 and the other parameters inorder to see how this modi�ation to the standard model an hange our onlusions aboutosmology. In Fig. 6.19 we plot the likelihood ontours in the α/α0 − τre plane for two ases:using the temperature only WMAP data and inluding the TE ross orrelation data. Thereis a lear degeneray between these two parameters if one uses only temperature information:inreasing the optial depth allows for an higher value of the spetral index nS and a lowervalue of α/α0. Inlusion of the TE data is already able to partially break this degeneray,but, as we explain below, more detailed measurements of the polarization spetra are neededto onstraint separately the two parameters,
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Figure 6.18: Marginalized likelihood distribution funtion for variations in the �ne-strutureonstant at the time of deoupling obtained by an analysis of the WMAP data (TT+TE,one-year).One of the most unexpeted results from the WMAP data is the hint for a sale-dependeneof the spetral index ns (see e.g. Peiris et al., 2003; Kinney et al., 2004). Suh a dependeneshould not be detetable in most of the viable single �eld in�ationary models and, if on-�rmed, would have strong onsequenes on the possibilities of reonstruting the in�ationarypotential. For this reason we inluded the running of the spetral index in our parameterset. In Fig. 6.20 we plot likelihood ontours in the α/α0 − dns/d ln k plane, showing that alower value of α/α0 would prefer the absene of running. As already pointed out in Beanet al. (2003), a modi�ation of the reombination sheme an therefore provide a possibleexplanation for the large value of dns/d ln k found from WMAP data.In previous (pre-WMAP) work, CMB-based onstraints on α were obtained with the helpof additional osmologial data-sets and priors, as in Martins et al. (2002). This proedurewas exposed to the ritiism that di�erent data-sets ould possibly have di�erent systematierrors that are impossible to ontrol and ould oneivably onspire to produe the resultsquoted. The above results are obtain from WMAP only, and therefore eliminate this possibleunertainty. For earlier works and pre-WMAP onstraints, see also Avelino et al. (2000,2001); Battye et al. (2001); Hannestad (1999).6.3.6 Fisher matrix foreasts and degeneraiesWe apply the Fisher matrix analysis (FMA) tehnique explained in � 5.2 to the problem offoreasting the expeted preision in the determination of αde with CMB anisotropy. Forthe auray reasons presented at length in � 5.2, � 6.1.5 and � 6.2.5, we hoose to employthe following 8 dimensional base parameter set
θ =

{

Ωbh
2,Ωmh

2,ΩΛh
2,Rshift, ns, Q, τre, αde/α0

} (6.40)whih takes into aount the severe geometrial degeneray via the shift parameter Rshift,de�ned in Eq. (4.22). The quantity ns is the salar spetral index (without running) and Q
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Figure 6.19: Likelihood ontour plot in the αde/α0 − τre plane inluding temperature infor-mation only (TT) and TT+TE together from WMAP (68% and 95% l.. from the insideout). The inlusion of polarization data partially breaks the degeneray between these twoparameters.a phenomenologial normalization parameter as in (6.13, page 131). We restrit ourselves tosalar modes and adiabati initial onditions.The maximum likelihood model around whih the FMA for Plank and the CVL isperformed has parameters ωb = 0.0200, ωm = 0.1310, ωΛ = 0.2957 (and h = 0.65),
Rshift = 0.9815, ns = 1.00, Q = 1.00, τ = 0.20 and α/α0 = 1.00. We di�erentiate arounda slightly losed model (as preferred by WMAP) with Ωtot = 1.01 to avoid extra souresof numerial inauraies, sine open and losed models are omputed by mbfast usingdi�erent numerial tehniques whih would introdue unwanted inauraies.Regarding numerial auray issues in the omputation of the Fisher matrix, we imple-ment in the present work double�sided derivatives, whih redue the trunation error fromWMAP Plank

ν (GHz) 40 60 90 100 143 217

θc (armin) 31.8 21.0 13.8 10.7 8.0 5.5

σcT (µK) 19.8 30.0 45.6 5.4 6.0 13.1

σcE (µK) 28.02 42.43 64.56 n/a 11.4 26.7

w−1
c · 1015 (K2 ster) 33.6 33.6 33.6 0.215 0.158 0.350

ℓc 254 385 586 757 1012 1472

ℓmax 1000 2000

fsky 0.80 0.80Table 6.6: Experimental parameters for WMAP and Plank (nominal mission). Note thatwe express the sensitivities in µK. See � 5.2.1 for de�nitions.
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Figure 6.20: Likelihood ontour plot in the αde/α0 − dns/d ln k plane, from WMAP tem-perature and ET orrelation data (68%, 95% and 99% l.. from the inside out). A zero saledependene, as expeted in most of the in�ationary models, seems to be more onsistent witha value of αde/α0 < 1.seond order to third order terms. The hoie of the step size is a trade-o� between trunationerror and numerial inauray dominated ases. For an estimated numerial preision of theomputed models of order 10−4, the step size should be approximately 5% of the parametervalue (Press et al., 1992), though it turns out that for derivatives in diretion of α and nsthe step size an be hosen to be as small as 0.1%. After several tests, we have hosen stepsizes varying from 1% to 5% for ωb, ωm, ωΛ and Rshift. This hoie gives derivatives withan auray of about 0.5%. The derivatives with respet to Q are exat, being the powerspetrum itself.Preditions for WMAP's four year dataWe present here the main results of the Fisher matrix foreasts; the full tables and moredetailed omments an be found in Roha et al. (2004). We �rst onentrate on the potentialof the WMAP four year data, and we ompare in Tables 6.7 and 6.8 the expeted errors fortwo ases, for the base set of parameters (6.40) with and without inlusion of αde/α0. Inboth ases, we take as referene model for the Fisher matrix the WMAP best �t model ofTable 1, in Spergel et al. (2003), but with a slightly larger osmologial onstant whih gives
Ωtot = 1.01, for the auray reasons explained above.Table 6.7 gives aurate preditions for the errors on standard osmologial parameters, formodels inluding non-�at osmologies. Clearly, with the WMAP sensitivity, E-polarizationalone will not onstrain muh the parameters, but ombining temperature information withthe polarization hannels will redue the errors on the baryon and matter density and on theshift parameter by about a fator of three, with all other parameters marginalized over. Theerror on the osmologial onstant will remain of order unity, sine this is an expression of



6.3 Time variations of the �ne-struture onstant 163Quantity 1σ errors (%)WMAP four yearmarg. �xed joint marg. �xed jointPolarization (EE) Temperature (TT)baryon density ωb 110.64 16.58 316.44 7.33 0.81 20.96matter density ωm 49.48 17.16 141.52 8.91 0.77 25.49
Λ density ωΛ 622.34 97.58 1779.93 113.30 83.39 324.06spetral index ns 69.43 4.89 198.58 6.68 0.53 19.11normalization Q 79.22 13.51 226.58 0.90 0.32 2.58shift parameter Rshift 46.52 13.04 133.06 9.25 0.59 26.47reionization optial depth τre 100.84 8.21 288.40 102.72 16.70 293.79Temp+Pol (TT+EE) All (TT+EE+TE)baryon density ωb 2.14 0.80 6.11 2.13 0.80 6.08matter density ωm 3.09 0.77 8.85 3.08 0.77 8.81
Λ density ωΛ 90.70 63.84 259.41 86.97 62.69 248.75spetral index ns 1.46 0.52 4.18 1.45 0.52 4.15normalization Q 0.52 0.32 1.48 0.52 0.32 1.48shift parameter Rshift 2.86 0.59 8.17 2.84 0.59 8.12reionization optial depth τre 10.52 7.45 30.08 10.41 7.44 29.78Table 6.7: Fisher matrix analysis results for a standard model with inlusion of reionization(for the WMAP best �t model as the �sher analysis �duial model, with τre = 0.17): expeted

1σ errors from the WMAP-four year data. The olumn marg. gives the error with all otherparameters being marginalized over; in the olumn �xed the other parameters are held �xedat their ML value; in the olumn joint all parameters are being estimated jointly.the geometrial degeneray whih is fundamentally unbreakable without external priors. Thespetaular improvement of about a fator 10 in determining τre with polarization informa-tion is a onsequene of the expeted measurement of the reionization indued polarizationbump, whih breaks the degeneray with normalization present with temperature alone. Thespetral index auray thus inreases by a fator 4, beause the better determination ofthe reionization optial depth assists into breaking the small sale degeneray with ns. Theolumn ��xed� gives the best ase senario in whih all other parameters are assumed to beknown and �xed to their �duial model value. In this ase, the errors obtained by ombiningall hannels are below 1% for all parameters but the osmologial onstant.Let us now ompare this foreasts with the orresponding entries in Table 6.8, where theparameter αde/α0 has been added. The addition of a varying �ne-struture onstant opensup new degeneray diretions, hene the marginalized and joint error foreasts get worse (butnot the errors with all other parameters �xed, of ourse). The most degenerate diretion iswith the shift parameter (marginalized errors larger by a fator 7 with all hannels), asexpeted from the above onsiderations. Due to its e�et on the peak heights, the �ne-struture onstant is largely degenerate with ωb up to the seond aousti peak; an auratemapping of the large multipole temperature spetrum an nevertheless lift this degeneray,also onstraining better ns, see Martins et al. (2002) for details. This explains the larger



164 Beyond standard parametersQuantity 1σ errors (%)WMAP four yearmarg. �xed joint marg. �xed jointPolarization (EE) Temperature (TT)baryon density ωb 173.74 16.58 496.91 14.09 0.81 40.30matter density ωm 260.62 17.16 745.40 13.76 0.77 39.36
Λ density ωΛ 637.28 97.58 1822.66 133.73 83.39 382.47spetral index ns 108.18 4.89 309.41 7.86 0.53 22.47normalization Q 96.60 13.51 276.30 2.33 0.32 6.67shift parameter Rshift 133.23 13.04 381.04 26.29 0.59 75.19�ne struture onstant αde 69.10 2.48 197.62 5.83 0.12 16.66reionization optial depth τre 228.69 8.21 654.07 103.86 16.70 297.05Temp+Pol (TT+EE) All (TT+EE+TE)baryon density ωb 7.50 0.80 21.44 7.41 0.80 21.18matter density ωm 5.48 0.77 15.66 5.46 0.77 15.62
Λ density ωΛ 91.57 63.84 261.91 87.48 62.69 250.20spetral index ns 2.03 0.52 5.82 2.03 0.52 5.81normalization Q 1.31 0.32 3.73 1.30 0.32 3.71shift parameter Rshift 14.34 0.59 41.01 14.17 0.59 40.53�ne struture onstant αde 3.08 0.11 8.80 3.05 0.11 8.71reionization optial depth τre 10.65 7.45 30.46 10.52 7.44 30.08Table 6.8: Fisher matrix analysis results for the model of Table 6.7 with inlusion of αde.errors on the baryon density and on the spetral index as we inlude α in the parameter set.However, the optial depth determination remains almost una�eted, as a onsequene ofthe simultaneous measurement of the reionization bump's position and of the aousti peaksangular sale, thereby validating our method for the restrited lass of sudden reionizationmodels onsidered here.Preditions for Plank and an ideal experimentWe now fous on the Fisher matrix foreasts for the expeted performane of the Planksatellite, and ompare them with the results for an ideal CMB experiment, whih wouldmap both temperature and E-polarization with osmi variane limited (CVL) auray upto ℓ = 2000. Clearly, suh a measurement is not feasible in pratie, beause of foregroundremoval and limited instrumental sensitivity, but it represents in priniple the best possibleparameters determination using CMB alone. The full results are tabulated in Table 6.9 andTable 6.10. In order to larify the role of orrelations between parameters, we plot in Figures6.21 and 6.23 the 2σ joint likelihood ontours for all ouples of parameters for Plank, andin Figures 6.22 and 6.24 for the CVL experiment.The �rst important fat is that E-polarization data alone from Plank will onstrain thestandard parameters better than the four year WMAP temperature data alone, ompareTable 6.7 with Table 6.9. This follows from the fat that the polarization spetrum is less



6.3 Time variations of the �ne-struture onstant 165plagued by large sale degeneraies than the temperature spetrum. Furthermore, as apparentfrom Fig. 6.21, degeneray diretions for the temperature spetrum are in many ases almostorthogonal to the diretions in the polarization hannel. This is espeially the ase for τre, andin fat ombining temperature and polarization information redues its marginalized errorfrom 16% (6%) for temperature (polarization) alone to 4%. In general, the WMAP four yearerror-bars will be approximately halved for all parameters by Plank. Another signi�antaspet is that by omparing the temperature only olumn for Plank to the one for the CVLexperiment, we onlude that Plank will be essentially osmi variane limited as far as thetemperature spetrum is onerned. This is not the ase for the polarization hannel, forwhih there will still be room for a substantial improvement over Plank's apabilities: theCVL experiment an do better than Plank by a fator 5 or more on average. The omparisonof Figures 6.21 and 6.22 immediately on�rms this onlusion, whih makes a strong ase fora post-Plank, polarization-dediated experiment.When we add the �ne-struture onstant to the Plank parameter set, the ellipses for tem-perature and polarization get larger for all the ouples of parameters involving degeneratediretions with α, ompare Fig. 6.23 with Fig. 6.21. As before, this happens mostly for the
Rshift, ns and τre using temperature information only. The degradation of the auray onthose parameters is less dramati than for WMAP, beause Plank will map the spetrumto larger multipoles. It is remarkable that the ombined temperature and polarization errordoes not grow very muh when we add α, beause the degeneraies are in di�erent dire-tions for the two hannels. The �ne-struture onstant is the only parameter whih Plankwill onstrain better with temperature only (0.7%) than with polarization only (2.7%, allothers marginalized), while the situation is opposite for τre, 27% for temperature and 9%for polarization. Combining the two hannels again lifts most of the degenerate diretions,and we onlude that Plank will ahieve an auray on αde of order 0.3% (1σ, all othersmarginalized), thus improving by about a fator of 10 on the expeted performane of thefour year WMAP mission and a fator of 5 on the urrent upper bound (obtained howeverunder the assumption of �atness). At the same time, the reionization optial depth will beonstrained to about 4.5%. Our �ndings for αde/α0 and τre are summarized in Fig. 6.25,where we ompare degeneray diretions in the αde/α0, τre plane for temperature alone, po-larization alone and the ombined hannels, for Plank and the CVL experiment. We alsosuperimpose the orresponding foreast for the WMAP four year mission (all hannels) inorder to failitate the omparison.The olumns in Table 6.10 regarding the CVL experiment and the orresponding Fig. 6.24give information about further improvements on Plank's parameter auray. As mentioned,a osmi variane limited measurement of polarization ould further redue Plank's error-bars by a fator 2 to 3, reahing the highest possible auray from CMB alone. In partiular,our analysis indiate that CMB alone an onstrain variations of α up to O(10−3) at z ∼ 1100.Going beyond will require additional priors on the other parameters.
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Quantity 1σ errors (%)Plank HFI CVLmarg. �xed joint marg. �xed jointPolarization only (EE)baryon density ωb 6.21 1.11 17.75 0.48 0.25 1.38matter density ωm 3.37 0.39 9.64 0.70 0.03 1.99osmologial onstant density ωΛ 37.37 22.87 106.89 11.40 9.99 32.61spetral index ns 1.53 0.96 4.38 0.30 0.08 0.86normalization Q 2.23 0.51 6.38 0.24 0.07 0.67shift parameter Rshift 3.33 0.35 9.52 0.65 0.03 1.86reionization optial depth τre 5.74 2.78 16.42 1.81 1.52 5.18Temperature only (TT)baryon density ωb 0.86 0.60 2.46 0.57 0.38 1.64matter density ωm 1.51 0.13 4.31 1.10 0.08 3.14osmologial onstant density ωΛ 110.15 96.15 315.03 98.15 86.00 280.72spetral index ns 0.54 0.13 1.56 0.36 0.07 1.04normalization Q 0.20 0.11 0.56 0.17 0.07 0.50shift parameter Rshift 1.47 0.12 4.21 1.05 0.07 3.01reionization optial depth τre 16.50 8.28 47.20 14.02 5.89 40.09Temperature and Polarization (TT+EE)baryon density ωb 0.80 0.53 2.30 0.32 0.21 0.92matter density ωm 1.24 0.12 3.55 0.55 0.03 1.58osmologial onstant density ωΛ 30.58 22.04 87.46 10.72 9.85 30.65spetral index ns 0.43 0.13 1.23 0.20 0.05 0.58normalization Q 0.19 0.10 0.53 0.14 0.05 0.41shift parameter Rshift 1.22 0.11 3.48 0.52 0.03 1.49reionization optial depth τre 4.04 2.65 11.56 1.73 1.48 4.96Table 6.9: Fisher matrix analysis results inluding reionization (τre = 0.20): expeted 1σerrors for the Plank satellite and for osmi variane limited (CVL) experiment.
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Figure 6.21: Ellipses ontaining 95.4% (2σ) of joint on�dene (all other parameters marginal-ized) using temperature alone (red), E-polarization alone (yellow), and both jointly (white),for a standard model with inlusion of reionization (τre = 0.20). Fisher matrix foreast forthe Plank HFI instrument.
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Figure 6.22: Ellipses ontaining 95.4% (2σ) of joint on�dene (all other parameters marginal-ized) using temperature alone (red), E-polarization alone (yellow), and both jointly (white),for a standard model with inlusion of reionization (τre = 0.20). Fisher matrix foreast foran ideal osmi variane limited (CVL) experiment.
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Quantity 1σ errors (%)Plank HFI CVLmarg. �xed joint marg. �xed jointPolarization only (EE)baryon density ωb 6.46 1.11 18.47 1.09 0.25 3.12matter density ωm 7.75 0.39 22.17 1.61 0.03 4.60osmologial onstant density ωΛ 41.61 22.87 119.01 11.60 9.99 33.17spetral index ns 4.14 0.96 11.85 0.77 0.08 2.22normalization Q 2.99 0.51 8.55 0.24 0.07 0.68shift parameter Rshift 9.56 0.35 27.33 1.19 0.03 3.40�ne struture onstant αde 2.66 0.06 7.62 0.40 < 0.01 1.14reionization optial depth τre 8.81 2.78 25.19 2.26 1.52 6.45Temperature only (TT)baryon density ωb 1.09 0.60 3.12 0.83 0.38 2.37matter density ωm 3.76 0.13 10.74 2.64 0.08 7.55osmologial onstant density ωΛ 111.61 96.15 319.21 98.97 86.00 283.05spetral index ns 2.18 0.13 6.24 1.49 0.07 4.26normalization Q 0.20 0.11 0.57 0.18 0.07 0.50shift parameter Rshift 1.58 0.12 4.53 1.06 0.07 3.04�ne struture onstant αde 0.66 0.02 1.88 0.41 0.01 1.18reionization optial depth τre 26.93 8.28 77.02 20.32 5.89 58.11Temperature and Polarization (TT+EE)baryon density ωb 0.91 0.53 2.61 0.38 0.21 1.09matter density ωm 1.81 0.12 5.17 0.67 0.03 1.91osmologial onstant density ωΛ 30.89 22.04 88.36 10.79 9.85 30.85spetral index ns 0.97 0.13 2.77 0.33 0.05 0.93normalization Q 0.19 0.10 0.54 0.14 0.05 0.41shift parameter Rshift 1.43 0.11 4.08 0.60 0.03 1.72�ne struture onstant αde 0.34 0.02 0.97 0.11 < 0.01 0.32reionization optial depth τre 4.48 2.65 12.80 1.80 1.48 5.15Table 6.10: Fisher matrix analysis results as in Table 6.9 but inluding αde.
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Figure 6.23: Ellipses ontaining 95.4% (2σ) of joint on�dene (all other parameters marginal-ized) using temperature alone (red), E-polarization alone (yellow), and both jointly (white),for a standard model with inlusion of reionization (τre = 0.20) and time variations of the�ne-struture onstant. Fisher matrix foreast for the Plank HFI instrument.
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Figure 6.24: Ellipses ontaining 95.4% (2σ) of joint on�dene (all other parameters marginal-ized) using temperature alone (red), E-polarization alone (yellow), and both jointly (white),for a standard model with inlusion of reionization (τre = 0.20) and time variations of the�ne-struture onstant. Fisher matrix foreast for an ideal osmi variane limited (CVL)experiment.
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Figure 6.25: Ellipses ontaining 95.4% (2σ) of joint likelihood in the αde/α0 − τre plane (allother parameters marginalized), for the Plank and osmi variane limited (CVL) experi-ments, using temperature alone (red), E-polarization alone (yellow), and both jointly (white).The dashed ontour represents the WMAP - 4years foreast using (TT+EE+TE) jointly.



Chapter 7Testing the paradigm of adiabatiity
Combination of today's high quality CMB data with other osmologial data sets allows usto onstrain the eight parameters

θ = {Ωdm,Ωb,ΩΛ, Nν , h, τre, ns, As} (7.1)with an auray of a few perent (Tegmark et al., 2004b), if we assume �atness, i.e. byimposing ΩK = 0. This is a spetaular ahievement, even more so given the fat that manyompletely independent measurements seem to be onverging towards the same values. Inthe previous setions we have disussed the determination of most of the above parameters;here we highlight that the auray of parameter extration depends ruially on the assump-tion that the initial onditions for the perturbations are purely adiabati, and explore theonsequenes of relaxing this strong assumption by inluding the most general type of initialonditions in the problem.This hapter is organized as follows: we �rst present an introdutory survey on reentCMB analysis involving isourvature modes, � 7.1; we then investigate in a spei� examplehow the inlusion of isourvature modes spoils the preise determination of the baryon densityfrom pre-WMAP CMB data in � 7.2; in � 7.3 we ask whether the presene of non-adiabationtribution an reprodue CMB and large sale struture observations without the need for aosmologial onstant, and we onlude that ΩΛ 6= 0 is robust with respet to the inlusion ofisourvature modes and to the use of a frequentist (rather than Bayesian) approah; �nally, in� 7.4 we give the future prospets for the determination by WMAP and Plank of osmologialparameters independent of any assumption about the type of initial onditions.7.1 Introdutory surveyUntil reently, most of the literature has foused on parameter extration assuming purelyadiabati initial onditions, beause the evidene for a �rst aousti peak around ℓ ≈ 220very soon ruled out the possibility of the simplest alternative, namely purely isourvatureCDM initial onditions, see e.g. Enqvist et al. (2000). Nevertheless, subdominant CDMisourvature ontributions annot be exluded, and the onstraints are even less stringentif one allows for a orrelated mixture, in whih ase the orrelator an anel out mostof the isourvature ontribution on large sale (Langlois & Riazuelo, 2000; Amendola et al.,



174 Testing the paradigm of adiabatiity2002). This qualitative onlusion holds even after the more preise measurements of WMAP(Valiviita & Muhonen, 2003).In the works of Buher et al. (2001, 2002) the onsequenes for parameter extration areexamined when the most general initial onditions are allowed, with the onlusion that onlya preise measurement of polarization would allow for the simultaneous reonstrution ofosmologial parameters and of the initial onditions orrelation matrix. The �rst attempt ofinluding all the modes in a numerial parameter determination from real data is performedin Trotta et al. (2001), as illustrated in � 7.2, with the result that the pre-WMAP CMB dataan not onstrain to any extent the value of the baryon density and the Hubble parameterin the general initial onditions ase. After the release of the WMAP �rst-year data, twogroups have re-investigated the question of the most general initial onditions in the wakeof the improved measurements: Crotty et al. (2003a) onsider a orrelated mixture of theadiabati mode with eah of the isourvature modes in turn, �nding that the pre-WMAPonstraints on the isourvature ontribution are signi�antly improved; Buher et al. (2004)re�ne the analysis of Trotta et al. (2001) by using Monte Carlo methods, and simultaneouslyinluding all the isourvature modes and six osmologial parameters, but the onlusionsremained qualitatively the same. The bottom line is that the relaxing the assumption ofadiabatiity spoils our ability to do preision osmology.The phenomenologial approah gives useful hints on the �sti�ness� of urrent data, andindeed the possibility of aommodating isourvature modes has been onsiderably reduedby WMAP. Although independent of any model for the generation of perturbations, thisapproah has the disadvantage of introduing many new free parameters in the desription ofthe power spetrum. To redue this number somewhat, all analyses so far have assumed thesame spetral index for all modes, an assumption whih is not really motivated. Sine theurrent CMB data are in exellent agreement with purely adiabati initial onditions, it is notsurprising however that there is no statistial evidene that suh extra parameters should benon-zero. Oam's razor would therefore ditate to stik to the simplest adiabati desription,laking any evidene for a more ompliated model. However, there is no ompelling reasonwhy the physis of the early universe should boil down to only one degree of freedom.A seond reason why model-independent onstraints should be regarded with are is thatin any spei� implementation, some of the parameters will be orrelated. For instane, inthe urvaton senario (Moroi & Takahashi, 2001; Lyth & Wands, 2002; Enqvist & Sloth,2002; Lyth et al., 2003), the adiabati and residual isourvature modes are always totallyorrelated or anti-orrelated. Therefore, not only the number of extra degrees of freedom isredued, but possibly the parameter spae of the model is a highly onstrained subspae of themodel-independent parameter spae. For this reason it is interesting to derive model-spei�onstraints, whih are more stringent than those obtained with a general phenomenologialparametrization. For instane, WMAP onstraints for the urvaton model have been derivedfor the ase of CDM and baryons isourvature �utuations (Gordon & Lewis, 2003; Lyth& Wands, 2003). The neutrino density mode an be generated from perturbations of theneutrino hemial potential (Lyth et al., 2003), and bounds have reently been derived forthis ase (Gordon & Malik, 2004). It seems more di�ult to produe a neutrino veloitymode: a working model is at present still laking.Despite these di�ulties, the CMB represents the most promising data set to learn about



7.2 Preision osmology and general initial onditions 175the type of initial onditions realized in the observed Universe: it is our window to the veryearly universe.7.2 Preision osmology and general initial onditionsIn this setion, based on the work published in Trotta et al. (2001), we investigate the extentto whih the determination of osmologial parameters depends on the assumptions aboutinitial onditions. We show in a spei� example how the allowed parameter range is enlargedwhen the usual requirement for purely adiabati initial onditions is relaxed. In order to limitthe omputational e�ort, we have hosen to vary some osmologial parameters and keep theothers �xed. We onsider �at models only, and we �x the total density parameter, the totalmatter density and the osmologial onstant density parameter as follows:
Ωtot ≡ ΩΛ + Ωm = 1 ,

Ωm ≡ Ωdm + Ωb = 0.3 , (7.2)
ΩΛ = 0.7 ,where Ωdm and Ωb are the density parameters of old dark matter (CDM) and baryonsrespetively, and ΩΛ denotes the density parameter due to a osmologial onstant, ΩΛ ≡

Λ/3H2
0 , and H0 ≡ 100h km s−1 Mpc−1 is the Hubble parameter today. With ΩΛ �xed tothe above values, we then vary the Hubble parameter h, the baryon density ωb ≡ Ωbh

2and the orrelation matrix M whih desribes the most general (i.e. mixed adiabati andisourvature) initial onditions, as explained in � 4.3. We also �x to unity the salar spetralindex, ns = 1 for all modes and ross-orrelators. Even by varying only two osmologialparameters, our parameters spae is still 12-dimensional, sine the initial ondition orrelationmatrix introdues ten free amplitudes.We also investigate the following question: what is the preferred isourvature ontributionto the perturbations? We shall see that, with pre-WMAP CMB data, this question annotbe answered without strong assumptions about the osmologial parameters.7.2.1 Pre-WMAP data analysisOur analysis uses the COBE (Tegmark & Hamilton, 1997) and BOOMERanG (Netter�eldet al., 2002) data. For the latter, we take into aount the alibration and the beam sizeunertainties whih treated just like two additional (normally distributed) parameters of theproblem (�nuisane parameters�). The two osmologial parameters h, ωb are sampled on auniform grid as follows (the number in parenthesis is the step size):
0.50 < h < 0.80 (0.05) , (7.3)

0.015 < ωb< 0.085 (0.005) . (7.4)For eah grid point, we searh the initial ondition spae by minimizing the hi-square, asexplained in � 5.1.5. We look for the best �t point by using a downhill simplex method (Presset al., 1992) initiated after hoosing a starting point randomly. The positive semi-de�nitenessof the orrelation matrix M is ensured by penalty funtions whih guarantee that the on-ditions (4.52, page 95) are satis�ed (more details are given in Trotta, 2001). The best �t is
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Figure 7.1: CMB anisotropy temperature spetrum for di�erent values of the osmologialparameters ωb and h. We plot the best-�t orresponding to a purely adiabati ase (dashedline) and allowing general initial onditions, mixed models (solid line). The alibration andthe beam size of the BOOMERanG data have been optimized to �t the mixed model (soliderror bars) or the adiabati model (dotted error bars). The parameter hoie in the left panel(ωb = 0.02, h = 0.65) an be �tted by both models while the values ωb = 0.042, h = 0.65(right panel), an only be �tted by a mixed model.then estimated after 15, 000 minimization runs using this proedure. It turns out that thetopology of the χ2 surfae on our 14-dimensional parameter spae (inluding the two abovenuisane parameters) is quite ompliated with many loal minima and large degeneraies,whih onsiderably ompliates the numerial searh. We assume that the likelihood funtionis Gaussian, and we maximize instead of marginalize over the parameter we are not interestedin, see � 5.1.5.In Fig. 7.1 we show the best-�t spetra for two di�erent hoies of the osmologial pa-rameters ωb and h. Both of them are good �ts if we allow for mixed initial onditions.On the plot we have also indiated the redued χ2, i.e. the value of χ2/F , where F is thenumber of degrees of freedom of the �t. For a �xed hoie of ωb, h the purely adiabatimodel has only three parameters (the amplitude of the adiabati mode, and the two nuisaneparameters). With 26 data points (7 from COBE and 19 from BOOMERanG) this leads to
FAD = 26 − 3 = 23 degrees of freedom. The mixed models have a symmetri 4 × 4 matrixdetermining the initial amplitude, leading to a total of 12 parameters and hene FMIX = 14degrees of freedom. If we also vary ωb and h, the number of degrees of freedom is lowered bytwo. It is not surprising that for �xed values h = 0.65, ωb = 0.02, whih are well �tted bythe adiabati model, the redued χ2 of the adiabati model is somewhat lower than the oneof the mixed model, sine FMIX < FAD (as an example, see top panel of Fig. 7.1). For themixed model, the absolute χ2 is always lower.For both models we determine the likelihood funtions of the osmologial parameters ωband h by maximizing the initial onditions orrelation matrix and the nuisane parameters.
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Figure 7.2: Left panel: the ontours of 68%, 95%, 99% likelihood ontent in the (ωb, h) planefor purely adiabati models (shadows of green, smaller ontours) and for mixed models (red toyellow, large ontours). The likelihoods are obtained by maximizing the nuisane parameters,and the initial onditions orrelation matrix M for mixed (i.e. general isourvature) models.For mixed models, the lowest χ2 orresponds to even higher values of ωb and h than thoseshown in the plot. Right panel: the isourvature ontent γ de�ned in (7.5) of the best �t mixedmodel as funtion of the parameters (ωb, h). A larger value for γ indiates a predominaneof the isourvature modes on the adiabati one.The result is shown in the left panel of Fig. 7.2 where the likelihood ontours in the (ωb, h)plane are indiated for purely adiabati and for mixed (general isourvature) models. Itis remarkable the extent to whih the innermost 1σ ontour opens up, one we allow forisourvature omponents. Strangely, the least likely region is the upper left orner whihontains the value of ωb = 0.019 ± 0.02 inferred from BBN (Burles et al., 2001) and theHubble spae telesope key projet value for the Hubble parameter (Freedman et al., 2001)of h = 0.72 ± 0.08. Moreover, there is absolutely no upper limit for ωb within the rangeinvestigated here! This is explained by the fat that the strongest features of a high baryondensity universe, the asymmetry between even and odd aousti peaks and the shift of thepeak position due to the hange in the sound veloity, an be fully ompensated by anadmixture of isourvature modes (see left panel of Fig. 7.1). A very high baryon density antherefore easily be aommodated into this framework. However, for high ωb and low h, itis di�ult to �nd a good �t beause there is not enough power in the seondary peak regiondue to the early integrated Sahs-Wolfe e�et boosting the �rst peak.We de�ne the isourvature ontent of a mixed model as
γ ≡ M22 +M33 +M44trM , (7.5)where M11 denotes the adiabati mode amplitude. The isourvature ontent of the modelshown in the left panel of Fig. 7.1 is only γ = 0.12, while for the parameter hoie in the rightpanel one has γ = 0.69. Hene, if the osmologial parameters are lose to those hosen inthe left panel, we an onlude that the osmi perturbations are predominantly adiabati.In the right panel of Fig. 7.2 we plot the isourvature ontent, γ, of the best �t modelobtained by minimizing χ2 by variation of the initial onditions for given values of the os-mologial parameters. Clearly, the further away we move from the region of parameter spae



178 Testing the paradigm of adiabatiitywell �tted by the purely adiabati model, the higher the isourvature ontribution needed to�t the data beomes.The main non-adiabati omponent of our best �ts is the neutrino entropy mode. Thiswas to be expeted, sine this mode and its orrelator with the adiabati mode an shift thepeak positions and an substantially add or subtrat power from the seond peak (Buheret al., 2000). A ruial point is, therefore, to know whether suh a mode an appear ina realisti struture formation senario. It is known that for interating speies the non-adiabati part of the perturbations tends to deay with time. Therefore, the generation of aneutrino entropy omponent an only our after neutrino deoupling, that is at T . 1 MeV(see Gordon & Malik, 2004 for a disussion). A neutrino isourvature perturbation ould alsobe due to a fourth speies of sterile neutrinos whih may have deoupled very early in thehistory of the Universe. The same remark also applies of ourse to the CDM isourvaturemode. Note that the energy density of this fourth neutrino type annot be very high, in ordernot to ontradit the light element abundanes, but there is nothing whih prevents (at leastin priniple) the presene of large perturbations in this omponent.7.2.2 How important is the assumption of adiabatiity?We have shown that in allowing for isourvature perturbations, one an �t very well pre-WMAP CMB data with osmologial parameters whih di�er onsiderably from the onespreferred by adiabati perturbations alone. More importantly, allowing for generi initialonditions, the ranges of osmologial parameters whih an �t the CMB anisotropy dataopen up to an extent to beome nearly meaningless. On the other hand, assuming measure-ments of osmologial parameters from other methods like diret measurements of the Hubbleparameter whih yield h ∼ 0.65 and BBN whih implies ωb ∼ 0.02, we an use the CMB tolimit the isourvature ontribution in the initial onditions (or other unonventional features)and thereby learn something about the very early universe, i.e., the in�ationary phase whihhas generated these initial onditions. For osmologial parameters in the range preferredby other CMB independent measurements (ΩΛ ∼ 0.7, Ωm ∼ 0.3, h ∼ 0.65, ωb ∼ 0.02) theisourvature ontribution in the initial onditions has to be relatively modest (γ . 0.3). Wehave also heked expliitly that, given these osmologial parameters, a purely isourvaturemodel, i.e. one with M11 = 0, annot �t the data.Finally, and most importantly, our work shows the danger of alling parameter estimationby CMB anisotropy experiments a �parameter measurement� sine the results depend so sen-sitively (and quite unexpetedly) on the underlying model assumptions. We rather onsiderCMB anisotropies as an exellent tool to test model assumptions or onsisteny. In the lightof these �ndings, non-CMB measurements of osmologial parameters aquire even more im-portane. In short, CMB is the ideal tool to investigate the primordial parameters for osmistruture formation (i.e. the initial onditions), while there are many other possibilities toonstrain osmologial parameters (ΩX , h, et), whih we have to use in order to obtain goodlimits for possible isourvature perturbations.As shown in Buher et al. (2001) and disussed in � 7.4, CMB temperature anisotropiesalone, even if measured with optimal preision limited by osmi variane, do not allow thedegeneray between osmologial parameters and initial onditions to be removed. Polariza-tion measurements represent an additional non-trivial means to lift this degeneray and might



7.2 Preision osmology and general initial onditions 179onstrain the ontribution of the isourvature modes to about 10% auray (Buher et al.,2001). The main reason for this is that polarization is mostly sensitive to the quadrupoleof the photon distribution rather than the photon density perturbation, these two quantitiesdepending in a di�erent way on the initial onditions. In the same vein, using the normal-ization of the matter power spetrum (provided it an be measured aurately) also helps tobreak some of the degeneraies indued by the isourvature modes, as we show in the nextsetion.



180 Testing the paradigm of adiabatiity7.3 The osmologial onstant problemEver sine the beginning of modern osmology, one of the most enigmati ingredients hasbeen the osmologial onstant. Einstein (1917) introdued it to �nd stati osmologialsolutions (whih are, however, unstable). Later, when the expansion of the Universe hadbeen established, he reportedly alled it his �greatest blunder�. In relativisti quantum �eldtheory, for symmetry reasons the vauum energy momentum tensor is of the form ǫgµν forsome onstant energy density ǫ. The quantity Λ = 8πGǫ an be interpreted as a osmologialonstant. Typial values of ǫ expeted from partile physis ome, for example, from thesuper-symmetry breaking sale whih is expeted to be of the order of ǫ>∼ 1 TeV4 leading to
Λ>∼ 1.7×10−26 GeV2, and orresponding to ΩΛ>∼ 1058. Reall that for the density parameter
ΩΛ ≡ ǫ/ρcrit = Λ/(8πGρcrit), where ρcrit = 8.1×10−47 h2 GeV4 is the ritial density and thefudge fator h is de�ned by H0 = 100h km s−1 Mpc−1, lying in the interval 0.5 . h . 0.8.
H0 is the Hubble parameter today.Suh a result is learly in ontradition with kinematial observations of the expansionof the universe, whih tell us that the value of Ωtot, the density parameter for the totalmatter-energy ontent of the universe, is of the order of unity, O(Ωtot) ∼ 1. For a long time,this apparent ontradition has been aepted by most osmologists and partile physiists,onvined that there must be some deep, not yet understood reason that vauum energy� whih is not felt by gauge-interations � does not a�et the gravitational �eld either,and hene we measure e�etively Λ = 0. This slightly unsatisfatory situation beamereally disturbing in 1998, as two groups, whih had measured luminosity distanes to typeIa supernovae, independently announed that the expansion of the universe is aeleratedin the way expeted in a universe dominated by a osmologial onstant (Riess et al., 1998;Perlmutter et al., 1999). More reent measurements, whih extend to higher redshift, seemto strengthen this onlusion (Tonry et al., 2003; Riess et al., 2004), obtaining values of theorder O(Ωm) ∼ O(ΩΛ) ∼ 1 and annot be explained by any sensible high energy physismodel. Traking salar �elds or quintessene (Ratra & Peebles, 1988; Wetterih, 1988) andother similar ideas (Ferreira & Joye, 1997) have been introdued in order to mitigate thesmallness problem � i.e., the fat that ǫ ∼ 10−46 GeV4. However, none of those is ompletelysuessful and really onvining at the moment, see Straumann (2003); Sahni (2004) forreviews.7.3.1 Does struture formation need a osmologial onstant?After the supernovae Ia results, osmologists have found many other data-sets whih alsorequire a non-vanishing osmologial onstant. The most prominent fat is that CMBanisotropies indiate a �at universe, Ωtot = Ωm + ΩΛ = 1, while measurements of lus-tering of matter, e.g., the galaxy power spetrum, require Γ ≡ hΩm ≃ 0.2. But also CMBdata alone, with some reasonable prior on the Hubble parameter, point to ΩΛ > 0 at highsigni�ane (Spergel et al., 2003).This osmologial onstant problem is probably the greatest enigma in present osmology.The supernova results are therefore under detailed srutiny, and there has been a signi�antamount of work aiming at �nding an alternative explanation for the data, see e.g. Meszaros(2002); Blanhard et al. (2003); Alam et al. (2004). Cosmologial observations are usually



7.3 The osmologial onstant problem 181very sensitive to systemati errors whih are often very di�ult to disover. Therefore, inosmology an observational result is usually aepted by the sienti� ommunity only ifseveral independent data-sets lead to the same onlusion. But this seems to be exatly thease for the osmologial onstant.It is therefore imperative to investigate in detail whether present struture formation datadoes require a osmologial onstant, by asking whether enlarging the spae of models forstruture formation does mitigate the osmologial onstant problem. There are several waysto enlarge the model spae, e.g. one may allow for features in the primordial power spetrum,like a kink (Barriga et al., 2001). Here we study the osmologial onstant problem in relationto the initial onditions for the osmologial perturbations.In a �rst step we disuss one more the usual results obtained assuming purely adiabatimodels and we investigate the extent to whih pre-WMAP CMB data alone or ombined withlarge-sale struture measurements require ΩΛ 6= 0 in a �at universe, presenting the �ndingspublished in Trotta et al. (2003). We shall �rst proeed with the usual Bayesian analysis,but we also disuss the results whih are obtained in a frequentist approah. We �nd thateven if ΩΛ = 0 is outside the high likelihood region in a Bayesian approah this is no longerthe ase from the frequentist point of view. In other words the probability that a model withvanishing ΩΛ leads to the present-day observed CMB and large-sale struture data is notexeedingly small.We then study how the results are modi�ed if we allow for general isourvature ontribu-tions to the initial onditions. In this �rst study of the matter power spetrum from generalisourvature modes we disover that a COBE-normalized matter power spetrum reproduesthe observed amplitude only if it is highly dominated by the adiabati omponent. Hene theisourvature modes annot ontribute signi�antly to the matter power spetrum and do notlead to a degeneray in the initial onditions for the matter power spetrum when ombinedwith CMB data.7.3.2 CMB and large sale struture data analysisThe pre-WMAP CMB measurements, from BOOMERanG (Netter�eld et al., 2002), MAX-IMA (Lee et al., 2001), DASI (Halverson et al., 2002), VSA (Sott et al., 2003; Taylor et al.,2003), CBI (Pearson et al., 2003) and Arheops (Benoit et al., 2003a) are in very good agree-ment up to the third peak in the angular temperature power spetrum of CMB anisotropies,
ℓ ∼ 1000. In our analysis we therefore use the COBE data (Smoot et al., 1992; Bennett et al.,1994) in the deorrelated ompilation of Tegmark & Hamilton (1997) (7 points exluding thequadrupole) for the ℓ region 3 ≤ ℓ ≤ 20 and the BOOMERanG data to over the higher
ℓ part of the spetrum (19 points in the range 100 ≤ ℓ ≤ 1000). Sine Arheops has thesmallest error bars in the region of the �rst aousti peak, we also inlude this data-set (16points in the range 15 ≤ ℓ ≤ 350). Inluding any of the other mentioned data does not in�u-ene our results signi�antly. The BOOMERanG and Arheops absolute alibration errors(10% and 7% at 1σ, respetively) as well as the unertainty of the BOOMERanG beam sizeare inluded as additional Gaussian nuisane parameters, and are maximized over. We makeuse of the Arheops window funtions available from the Arheops Website (2003), whilefor BOOMERanG a top-hat window is assumed. For the matter power spetrum, we usethe galaxy-galaxy power spetrum from the 2dF data whih is obtained from the redshift of



182 Testing the paradigm of adiabatiityabout 105 galaxies (Tegmark et al., 2002). We inlude only the 22 deorrelated points in thelinear regime, i.e., in the range 0.017 ≤ k ≤ 0.314 [h Mpc−1], and the window funtions ofTegmark et al. (2002) whih an be found at Tegmark's Website (2003).Our grid of models is restrited to �at universes and we assume purely salar perturbations.Sine the goal here is more to make a oneptual point than to onsider the most generimodel, we �x the baryon density to the BBN preferred value Ωbh
2 ≡ ωb = 0.020 (Burleset al., 2001) and we investigate the following 3-dimensional grid in the spae of osmologialparameters:

0.35 < h < 1.00 (0.025) ,

0.00 < ΩΛ< 0.95 (0.05) , (7.6)
0.80 < ns < 1.20 (0.05) ,where ns is the salar spetral index, whih again we take to be the same for all modes, and thenumbers in parenthesis give the step size we use. The total matter ontent Ωm ≡ Ωdm + Ωbis Ωm = 1 − ΩΛ, and Ωdm indiates the old dark matter ontribution. For all models theoptial depth of reionization is τ = 0 and we have three families of massless neutrinos. Foreah grid point we ompute the ten CMB and matter power spetra, one for eah independentset of initial onditions, as explained in � 4.3. The initial ondition orrelation matrix M isparameterized using the ten dimensional hyperube parameters presented on page 96.For a given initial onditions orrelation matrix M and spetral index ns, we quantifythe isourvature ontribution to the CMB temperature anisotropy by the phenomenologialparameter β de�ned as

β ≡
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, (7.7)where the average 〈·〉 is taken in the ℓ range of interest, in our ase 3 ≤ ℓ ≤ 1000, andwhere C(X,X)

ℓ stands for the auto-orrelator of the CMB anisotropies with initial onditions
X. This quantity measures the average power of the adiabati and isourvature modes overthe full multipole range, and therefore it gives a more phenomenologial desription of theisourvature ontribution than the parameter γ used in the previous setion, and de�ned inEq. (7.5, page 177).As highlighted in � 5.1.5, the orret interpretation of Bayesian statistis is in terms ofmost likely regions in parameter spae, while the frequentist approah is required in order toobtain exlusion intervals for the parameters. In order to answer the question of whether theCMB and large sale struture data exlude with a given on�dene the value ΩΛ = 0, weuse the frequentist statistis, and ompare the result with the usual Bayesian approah.7.3.3 Adiabati perturbationsWe �rst �t CMB data only (N = 42) by maximizing M = 7 parameters, i.e., the threenuisane parameters, ns, h, ΩΛ and the overall amplitude of the adiabati spetrum, and we�nd (Bayesian likelihood intervals on ΩΛ alone):

ΩΛ = 0.80+0.10
−0.35 at 2σ and +0.12

−0.80 at 3σ. (7.8)
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Figure 7.3: Joint likelihood ontours (Bayesian, left panel) and on�dene ontours (frequen-tist, right panel), with CMB only (solid lines,1σ, 2σ, 3σ ontours) and CMB+2dF (�lled)for purely adiabati initial onditions. In the right panel, the number of e�etive degrees offreedom is Feff = 31 for CMB alone Feff = 50 for CMB+2dF.The asymmetry in the intervals arises beause the value of ΩΛ for our maximum likelihood(ML) model is relatively large. One ould ahieve a better preision in determining the MLvalue of ΩΛ by using a �ner grid and varying ωb as well, whih has extensively been done inthe literature and is not the sope of this work. Moreover, the position of the aousti peaksin CMB anisotropies is mostly sensitive to the age of the universe at reombination, whihdepends only on Ωmh
2, and to the angular diameter distane, whih depends on Ωm, ΩΛand the urvature of the universe. When the universe is �at, the angular diameter distaneis weakly dependent on the relative amounts of Ωm and ΩΛ as long as ΩΛ is not too large,see � 4.1.2 and Fig. 4.1 on page 84. Hene, one an ahieve a su�iently low value of Ωmh

2either via a large osmologial onstant or via a very low Hubble parameter, h<∼ 0.45.We now inlude the matter power spetrum Pm, assuming Pm = b2Pg, where Pg is theobserved galaxy power spetrum and b some unknown bias fator (assumed to be sale in-dependent), over whih we maximize. Inlusion of this data in the analysis breaks the ΩΛ,
h degeneray, sine Pm is mainly sensitive to the shape parameter Γ ≡ Ωmh. We thereforeobtain signi�antly tighter overall likelihood intervals for ΩΛ:

ΩΛ = 0.70+0.13
−0.17 at 2σ and +0.15

−0.27 at 3σ . (7.9)We plot joint likelihood ontours (Bayesian) for ΩΛ, h with purely adiabati initial onditionsin the left panel of Fig. 7.3. From the Bayesian analysis, one onludes that CMB and 2dFtogether require a non-zero osmologial onstant at very high signi�ane, more than 7σfor the points in our grid! Note that the ML point has a redued hi-square χ̂2
F=56 = 0.59,signi�antly less than unity.The frequentist analysis, however, exludes a muh smaller region of parameter spae, f.the right panel of Fig. 7.3. The frequentist ontours must be drawn for the e�etive numberof degrees of freedom, i.e., using the number of e�etively independent data points. We antherefore roughly take into aount a 10% orrelation, whih is the maximum orrelationbetween data points given in Netter�eld et al. (2002); Benoit et al. (2003a), by replaing F



184 Testing the paradigm of adiabatiityby the e�etive number of degrees of freedom, Feff = 0.9N −M , and rounding to the nextlarger integer (to be onservative). One ould argue that the BOOMERanG and Arheopsdata points are not ompletely independent, sine BOOMERanG observed a portion of thesame sky path as measured by Arheops. This possible orrelation is di�ult to quantify,but should not be too important sine the sky portion observed by Arheops is a fator of10 larger than BOOMERanG's and therefore we ignore it here. The right panel of Fig. 7.3is drawn with Feff = 31 for CMB alone and Feff = 50 for CMB+2dF, but we have hekedthat our results do not hange muh if we use a 5% orrelation.It is interesting to note that there are regions in the left panel whih are exluded witha ertain on�dene by CMB data alone but are no longer exluded at the same on�denewhen we inlude the 2dF data. In other words, it would seem that taking into aount moredata and therefore more knowledge about the universe, does not systematially exlude moremodels, i.e., the CMB+2dF ontours are not always ontained in the CMB alone ontours.This apparent ontradition vanishes when one realizes that the on�dene limits on, e.g.,
ΩΛ alone in the frequentist approah are just the projetion of the on�dene ontours ofthe right panel on the ΩΛ axis. One an readily verify in the right panel that the on�denelimits for the ombined data-set are always smaller than the ones for CMB data alone. Thereare points with ΩΛ = 0 and h ≃ 0.40 whih are still ompatible within 2σ with both 2dFand CMB data, at the prie of pushing somewhat the other parameters. In the best �t with
ΩΛ = 0 shown in Fig. 7.4, one has to live with a red spetral index ns = 0.80. Furthermore,the alibration of the BOOMERanG and Arheops data points is redued in this �t by 34%and 26%, respetively, i.e., more than 3 times the quoted 1σ systemati error.In both ases, it is lear that one an exploit the ΩΛ, h degeneray to �t CMB dataalone with a model having ΩΛ = 0. For a �at universe like the one we are onsidering,one has then to use a muh smaller value of the Hubble parameter than the one indiatedby other measurements, most notably the HST Key Projet (Freedman et al., 2001), whihgives h = 0.72 ± 0.08. The 2dF data are mainly sensitive to the shape parameter Γ ∼ 0.2,hene 2dF with Ωm = 1.0 would require an even lower value of h whih is not ompatible withCMB. Therefore inlusion of 2dF data tends to exlude any �at model without a osmologialonstant. Summing up, for purely adiabati initial onditions the Bayesian approah givesvery strong support to ΩΛ 6= 0; in the more onservative frequentist point of view, while ΩΛ 6=
0 annot be exluded with very high on�dene, the ombination of 2dF and pre-WMAPCMB data start to be inompatible with a �at universe with vanishing osmologial onstant.These onlusions are in qualitative agreement with previous works using omparable data(Netter�eld et al., 2002; Pryke et al., 2002; Lewis & Bridle, 2002; Wang et al., 2002; Durreret al., 2003b; Rubino-Martin et al., 2003; Benoit et al., 2003b). In the next setion weinvestigate the stability of these well known results with respet to inlusion of non-adiabatiinitial onditions.7.3.4 Mixed adiabati and isourvature perturbationsWe now enlarge the spae of models by inluding all possible isourvature modes with ar-bitrary orrelations among themselves and the adiabati mode as desribed in the previoussetion, but with the restrition that all modes have the same spetral index. We �rst onsiderCMB data only and maximize over initial onditions. The number of parameters inreases
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Figure 7.4: Best �t with ΩΛ = 0 and purely adiabati initial onditions, ompatible withCMB and 2dF data within 2σ on�dene level (frequentist). In the right panel, only the 2dFdata points left of the vertial, dotted line � i.e., in the linear region � have been inludedin the analysis. Note the low CMB �rst aousti peak in the left panel due to the joint e�etof the red spetral index and of the absene of early ISW e�et. In this �t, the alibration ofBOOMERanG (red/dark gray errorbars) and Arheops (green/light gray errorbars) has beenredued by 34% and 26%, respetively. To appreiate the di�erene, we plot the non real-ibrated value of the BOOMERanG and Arheops data points as diagonal/magenta rossesand vertial/light blue rosses, respetively. Even though the �t is �by eye� very good, itseems highly unlikely that the alibration error is so large.by nine and the number of degrees of freedom dereases orrespondingly with respet to thepurely adiabati ase onsidered above.Likelihood (Bayesian, left panel of Fig. 7.5) and on�dene (frequentist, right panel ofFig. 7.5) ontours widen up somewhat along the degeneray line. The enlargement is lessdramati than in the ase of the baryon density presented in � 7.2. This is partially due toour prior of �atness whih redues the spae of models to those whih are almost degeneratein the angular diameter distane. Most of our models have the �rst aousti peak of theadiabati mode already in the region preferred by experiments, hene in most of the �ts,isourvature modes play a modest role, espeially in the parameter regions with large ΩΛ,
h (f. Fig. 7.9 and the disussion below). Nevertheless, beause of the ΩΛ, h degeneray,even a modest widening of the ontours along the degeneray line results in an importantenlargement of the likelihood limits. The ML point does not depart very muh from thepurely adiabati ase, but now we annot onstrain ΩΛ at more than 1σ (Bayesian, CMBonly):

ΩΛ = 0.85+0.05
−0.35 at 1σ , (7.10)and no limits for 0.0 ≤ ΩΛ ≤ 0.95 at higher on�dene.In Fig. 7.6 we plot the dark matter power spetra of the di�erent auto- (left panel) and
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Figure 7.5: Joint likelihood ontours (Bayesian, left panel) and on�dene ontours (frequen-tist, right panel), with CMB only (solid lines) and CMB+2dF (�lled) after maximization overgeneral isourvature initial onditions. The likelihood/probability ontent is 1σ, 2σ, 3σ, fromthe enter to the outside. The disonneted 1σ region in the left panel is an arti�ial featuredue to the grid resolution. In the right panel, the number of e�etive degrees of freedom is
Feff = 22 for CMB alone Feff = 41 for CMB+2dF.ross-orrelators (right panel) for a onordane model. The norm of eah pure mode (AD, CI,ND, NV) is hosen suh that the orresponding CMB power spetrum is COBE-normalized.The ross-orrelators are normalized aording to totally orrelated spetra, i.e.

M(X,Y) =
√

MXMY/2 , (7.11)where M(X,Y) denotes the norm of the ross-orrelator between the modes X,Y and MXthe norm of the pure mode X. A ruial result is that the COBE-normalized amplitudeof the adiabati matter power spetrum is nearly two orders of magnitude larger than theisourvature ontribution. The main reason for this is the amplitude of the Sahs-Wolfeplateau whih is about 1
3Φ for adiabati perturbations and 2Φ for isourvature perturbations,where Φ is the gravitational potential at last sattering, see Eq. (4.3) and Eq. (4.4, page 79).This di�erene of a fator of about 36 in the power spetrum on large sales is learly visiblein the omparison of PAD and PCI (the di�erene inreases at smaller sales). The ase ofthe neutrino modes is even worse sine they start with vanishing dark matter perturbations.That the CDM isourvature matter power spetrum is muh lower than the adiabati onehas been known for some time (see e.g. Stompor et al., 1996; Pierpaoli et al., 1999). However,it was not reognized before that the same holds true for the neutrino isourvature matterpower spetra as well, and � more importantly � that this leads to a way to break the strongdegeneray among initial onditions whih is present in the CMB power spetrum alone.In an analysis with general initial onditions inluding the 2dF data only we obtain verybroad likelihood and on�dene ontours whih exlude only the lower right orner of the

(ΩΛ, h) plane. In ontrast to the CMB power spetrum, the matter power spetrum an be�tted with extremely high adiabati and isourvature ontributions, whih are then typiallyanelled by large anti-orrelations between the spetra. This behavior is exempli�ed fora model with general isourvature initial onditions and ΩΛ = 0.70, h = 0.65, ns = 1.0
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Figure 7.6: Dark matter power spetra of the di�erent auto- (left panel) and ross-orrelators(right panel) for a onordane model with ΩΛ = 0.70, h = 0.65, ns = 1.0, ωb = 0.020,with the orresponding CMB power spetrum COBE-normalized. The olor and line styleodes are as follows: in the left panel, adiabati (AD): solid/blak line; CDM isourva-ture (CI): dotted/green line; neutrino density (ND): short-dashed/red line; neutrino ve-loity (NV): long-dashed/blue line; in the right panel, AD: solid/blak line (for ompari-son), 〈AD,CI〉: long-dashed/magenta line, 〈AD,ND〉: dotted/green line, 〈AD,NV〉: short-dashed/red line, 〈CI,ND〉: dot-short dashed/blue line, 〈CI,NV〉: dot-long dashed/light-blueline, and 〈ND,NV〉: dot-short dashed/blak line. The adiabati mode is by far dominantover all others.in Fig. 7.7. The best �ts with 2dF data only are dominated by large isourvature ross-orrelations. Clearly, the resulting CMB power spetrum is highly inonsistent with theCOBE data. Hene suh �bizarre� possibilities are immediately ruled out one we inludeCMB data. Conversely, moderate isourvature ontributions an help �tting the CMB data,and do not in�uene the matter power spetrum, whih is ompletely dominated by theadiabati mode alone.Combining CMB and 2dF data we �nd now (Bayesian, mixed isourvature models):
ΩΛ = 0.65+0.22

−0.25 at 2σ and +0.25
−0.48 at 3σ . (7.12)The likelihood limits are larger than for the purely adiabati ase but it is interesting that theBayesian analysis still exludes ΩΛ = 0 at more than 3σ even with general initial onditions,for the lass of models onsidered here. Beause of the above explained reason, the wideningof the limits is not as drasti as one might fear. Therefore, ombination of CMB and LSSmeasurements turn out to be an ideal tool to onstrain the isourvature ontribution to theinitial onditions.From the frequentist point of view, one noties that the region in the ΩΛ, h plane whihis inompatible with data at more than 3σ is nearly independent on the hoie of initialonditions (ompare the right panels of Fig. 7.3 and Fig. 7.5). Enlarging the spae of initial
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Figure 7.7: Conordane model �t with general isourvature initial onditions and 2dF dataonly. The total spetrum (solid/blak) is the result of a large anellation of the purelyadiabati part (long-dashed/red) by the large, negative sum of the various orrelators (dot-ted/magenta, plotted in absolute value). The short-dashed/green urve is the sum of thethree pure isourvature modes, CI, ND and NV. Note that the resulting total spetrum isless than one tenth of the purely adiabati part.onditions seemingly does not have a relevant bene�t on �tting CMB and 2dF data with orwithout a osmologial onstant. The reason for this is that the (COBE-normalized) matterpower spetrum is dominated by its adiabati omponent and therefore the requirement
Ωmh ∼ 0.2 remains valid. In Fig. 7.8 we plot the best �t model with general initial onditionsand ΩΛ = 0. We summarize our likelihood and on�dene intervals on ΩΛ (this parameteronly) in Table 7.1.In Fig. 7.9 we plot the isourvature ontribution to the best �t models with CMB and 2dFin terms of the parameter β de�ned in (7.7). The best �t with ΩΛ = 0 has an isourvatureontribution of about 40%. We an put a onstraint on the maximal isourvature ontributionallowed by ombining this plot with the exlusion plot obtained with the frequentist approah,Fig. 7.5 right panel. The result is that frequentist statistis limits the isourvature ontent
β to be

β <∼ 0.4 (2σ .l.). (7.13)7.3.5 Do isourvature perturbations mitigate the Λ problem?There are three main onlusions we an draw from these results. The �rst one is not new, butseems to be dangerously forgotten in reent osmologial parameters estimation literature:namely that likelihood ontours annot be used as �exlusion plots�. The latter are usually
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Figure 7.8: Best �t with general isourvature models and ΩΛ = 0. As for the purely adiabatiase, even with general initial onditions the absene of the osmologial onstant suppressesin an important way the height of the �rst peak. In both panels we plot the best total spe-trum (solid/blak), the purely adiabati ontribution (long-dashed/red), the sum of the pureisourvature modes (short-dashed/green) and the sum of the orrelators (dotted/magenta,multiplied by −1 in the left panel and in absolute value in the right panel). The matterpower spetrum is ompletely dominated by the adiabati mode, while the orrelators playan important role in anelling unwanted ontributions in the CMB power spetrum at thelevel of the �rst peak and espeially in the COBE region. For this model we have an isour-vature ontent β = 0.39, while the BOOMERanG and Arheops alibrations are redued by
28% and 12%, respetively. The olor odes for the error-bars are the same as in Fig. 7.4.substantially wider, less stringent. A more rigorous possibility are frequentist probabilities,whih however su�er from the dependene on the number of really independent measurementswhih is often very di�ult to ome by.Seondly, we have found that in COBE-normalized �utuations, the matter power spe-trum has negligible isourvature ontributions and is essentially given by the adiabati mode.Hene the shape of the observed matter power spetrum still requires Ωmh ≃ 0.2, indepen-dent of the hoie of initial onditions. Due to this behavior, the ondition Ω = ΩΛ +Ωm = 1requires either a osmologial onstant or a very small value for the Hubble parameter, inde-pendently from the isourvature ontribution to the initial onditions.The third onlusion onerns the presene of a osmologial onstant from pre-WMAPCMB data ombined with the 2dF matter power spetrum: For �at models, a likelihood(Bayesian) analysis strongly favors a non-vanishing osmologial onstant. Even if we allowfor isourvature ontributions with arbitrary orrelations, a vanishing osmologial onstantis still outside the 3σ likelihood range. It is possible that there are open models, whih we didnot onsider here, in whih the NV mode would be dominant,: this beause it presents a �rstaousti peak at ℓ = 170 in �at models, whih would be displaed to a larger multipole value,as preferred by data, in an open Universe, thereby possibly giving a good �t to CMB data
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Figure 7.9: Isourvature ontent 0.0 ≤ β ≤ 1.0 of best �t models with CMB and 2dF data.The ontours are for β = 0.20, 0.40, 0.60, 0.80 from the enter to the outside.Purely adiabatiBayesian1 Frequentist2Data-sets ΩΛ 1σ 2σ 3σ 1σ 2σ 3σ F χ2/FCMB 0.80 +0.08
−0.08

+0.10
−0.35

+0.12
− < 0.93 − − 35 0.58CMB +2dF 0.70 +0.05

−0.05
+0.13
−0.17

+0.15
−0.27 ΩΛ

<0.90
>0.15 < 0.92 < 0.92 56 0.59General isourvatureCMB 0.85 +0.05

−0.35 − − − − − 26 0.74CMB+2dF 0.65 +0.15
−0.10

+0.22
−0.25

+0.25
−0.48 < 0.90 < 0.92 < 0.95 47 0.67

1 Likelihood interval.
2 Region not exluded by data with given on�dene.Table 7.1: Likelihood (Bayesian) and on�dene (frequentist) intervals for ΩΛ alone (all otherparameters maximized). A bar, −, indiates that at the given likelihood/on�dene level theanalysis annot onstraint ΩΛ in the range 0.0 ≤ ΩΛ ≤ 0.95. Where the quoted interval issmaller than our grid resolution, an interpolation between models has been used.and allow for the observed shape parameter Γ with a reasonable value of h. This questionremains to be investigated in detail.The situation hanges onsiderably in the frequentist approah. There, even for purelyadiabati models, ΩΛ = 0 is still within 3σ for a value of h ≤ 0.48 whih is marginallydefendable. The onlusion does not hange very muh when we allow for generi initialonditions.



7.4 Preision osmology independent of initial onditions 1917.4 Preision osmology independent of initial onditionsAs we have seen, it is di�ult to simultaneously onstrain both the type of initial onditionsand the osmologial parameters using CMB alone. The future high auray measurementsof CMB polarization will help substantially in breaking degeneraies between initial ondi-tions. The degeneraies in the parameter dependene of temperature and polarization arealmost orthogonal, and polarization an therefore lift ��at diretions� in parameter spae.To determine osmologial parameters independently on the initial onditions, one in-ludes general isourvature modes, and then marginalize over them. Buher et al. (2002,2001) onsidered foreasts for WMAP and Plank, and found that admitting isourvaturemodes would ruin the ability of WMAP to determine the osmologial parameters with tem-perature information only. They also highlighted that polarization measurements would bedeisive in assisting into the reonstrution of the osmologial parameters when allowingfor general isourvature initial onditions. Their results were obtained with a Fisher matrixanalysis on a osmologial parameter set whih, aording to Kosowsky et al. (2002), leads tolarge overestimates of the expeted errors. We have reprodued their study (Trotta & Durrer,2004), using for the Fisher matrix foreast the normal parameter set desribed in � 4.2 sothat we obtain foreasts not for the highly degenerate diretions de�ned by the osmologialparameters, but rather for orthogonal ombinations whih are well measured by the CMB.Along these diretions, foreasts are muh more reliable. The main features are summarizedin Fig. 7.10, where we plot the expeted 1σ error in perent for the six quantities whih arediretly probed by the CMB with good auray (see �gure aption). We omit the energydensity in the osmologial onstant, whih is ill-determined with CMB alone beause of the

0.1

1

10

100

%
 1

σ 
 e

rr
or

AD/TT
AD/T+P
iso/TT
iso/T+P

 ω
b D

A
z

eq n
S A

Ad e
-2τ

WMAP 4 years

0.1

1

10

100

%
 1

σ 
 e

rr
or

AD/TT
AD/T+P
iso/TT
iso/T+P

D
A

z
eq n

S A
Ad e

-2τz
eq n

S e
-2τ

Planck

 ω
b

z
eq n

S e
-2τFigure 7.10: Fisher matrix foreast for the perent 1σ errors on six quantities whih arewell determined by CMB alone with and without inlusion of general isourvature initialonditions. The left (right) panel is a foreast for WMAP four year mission (Plank). Fromleft to right, on the absissa axis: the baryon density, ωb, the angular diameter distane
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192 Testing the paradigm of adiabatiitygeometrial degeneray. We do not restrit our analysis to �at models, but inlude spaeswith non-zero urvature.For WMAP the errors on normal parameters will inrease roughly by a fator ten withrespet to the purely adiabati senario if one marginalizes over general initial onditions,when temperature information alone is onsidered (f. �rst and third bar in the left panel).When the full polarization information is inluded, however, the errors will still be withinapproximately 10 to 30% even in the general isourvature senario. From the right panel, wededue that for the Plank experiment the worsening of the errors will be muh less if the highquality polarization information is inluded. Roughly speaking, by inluding isourvaturemodes we expet errors whih are larger than in the adiabati ase by about a fator of two,but mostly still within the few perent auray. These �ndings are in qualitative agreementwith Buher et al. (2001), while providing a quantitatively more reliable estimate of theexpeted auray.This shows that the CMB alone will be able to provide high preision osmology even ifthe strong assumption of purely adiabati initial onditions will be relaxed. Combining CMBresults with other observation whih independently onstrain the osmologial parameters,will enable us to fully open this window to the mysterious epoh of the very early universe.
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