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Abstract

We study bipartite, first-order networks where the nodes tak leader or follower roles. Specifically, we let the leatppsitions be
static and assume that leaders and followers communicatarvundirected switching graph topology. This assumpsdnspired by the
swarming behavior of Silkworm moths, where female mothsrimittently release pheromones to be detected by the mBfesmain
result presented here states that if the followers exetdiiear agreement protocol, they will converge to the earwill spanned by
the leaders’ positions as long as the time-vary undirectagtgdefining the communication among all agents is jointignected. The
novelty of this research is that we use Lasalle’s invarigmeeciple for switched systems, and additionally, the lesushown to hold

for arbitrary state dimensions.

Key words: Multi-agent coordination, leader-follower networks, t@inment.

1 INTRODUCTION

The research on multi-agent robotics and decentralized
networked control has drawn significant inspiration from
interaction-rules in social animals and insects [1-3].dn-p
ticular, the widely used nearest-neighbor-based intenact
rules, used for example for formation control (e.g. [5,6]),

consensus (e.g. [7,8]), and coverage control [9,10], have

direct biological counterparts, as pointed out in [1]. Irsth
paper, we follow this line of inquiry by seeing if we can

tual attraction to determine each other’s gender through vi
sual inspection. These two phenomena in essence make the

females act as attractors to the males, but the intermittent

nature of the release and of the individuals’ interactiais p
duces an inherently switched system. Moreover, the spatial
distribution of the females imply that the males are ategdct

to a general area rather than to a particular point, which is
what is believed to cause their characteristic swarming ge-
ometry (see, e.g., [11-14]).

understand how leader-follower systems behave if: (i) the Based on this discussion, in this paper we investigate a first

leaders are only intermittently visible to the followergada
(i) the agents interact over a switching network topol-
ogy. This model is inspired from a particular swarming
phenomenon observed in the silkworm ma&bmbyx Mori

Silkworm moths are known to swarm in tight geometrical
configurations, such as vertical cylindrical structurdssis

caused by the females’ intermittent releasing of a pher@amon
- bombykol to attract male moths, and by the males’ mu-

* This paper was not presented at any IFAC meeting. Pre-
liminary versions of this work with partial results were pre
sented in [18] and [17]. Corresponding author G. Notarstsfa
giuseppe.notarstefano@unile.it.
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order network model in which stationary leaders (the female
moths) and moving followers (the males) are only intermit-
tently visible among each other. This corresponds to apply-
ing a switched control input of varying dimension (since the
number of communicating agents may be changing) to the
system. Our main result is that, asymptotically, the foHow
ers will end up in the convex hull spanned &y the lead-

ers’ positions. For the case in which the leaders are always
visible and no edges appear or disappear between followers,
this is already known [4]. Along a similar line of inquiry,
rendezvous in switching directed networks with at most one
leader has been studied in [15].

The main contribution of this paper is a containment re-
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sult for switched networks with intermittently visible asic Let.” be the set of all switching signals. A p&i(-), o(-)) is
leaders. Using tools from hybrid stability theory, namely a atrajectoryof (1) ifand onlyifo(-) € & andx: [0,T) — R",
hybrid version of LaSalle’s Invariance Principle [16], we 0< T < +oo, is a piecewise differential solution tit) =
show that the convex hull of leaders’ and followers’ posi- f4;)(X(t)), t € [0,T). Note thatT is, in general, a function
tions shrinks to the convex hull of the leaders’ fixed posi- of x(0) anda(-) so that we should writd (x(0), g (-)).

tions, which is proven to be the largest invariant set for the

followers’ positions. Preliminary results were provided i  |n the following we will consider switching signals that leav
[17], where it was shown (under stronger assumptions) thatpositive average dwell-time, i.e. signals for which the rum
the followers end up in a larger ellipsoidal set that corstain  per of discontinuities in any open interval is bounded above

the convex hull of the leaders’ positions, and in [18], where py the length of the interval normalized by an “average
containment under fixed interaction topologies was studied gwell-time” plus a “chatter bound”.

A similar question to the one under consideration here was

pursued in [19], where the containment problem was studied \jore formally, we say that a switching signai(-) has

for systems with scalar dynamics; whereas in this paper, thegp average dwell-timep > 0 and a chatter bountlp € N

result is proven for arbitrary state dimensions. Furtheemo it the number of its switching times in any open interval

the LaSalle-based approach used here is different from [19] (1, r,)  R. is bounded byNo + (12 — 1)/ Tp. We denote

which has the advantage of being directly applicable to non- py, o 175 No| the set of all switching signals with aver-

scalar systems. age dwell-timerp and chatter bounblp, and by.Z4[1p, No]
the subclass of all trajectories of (1) corresponding toesom

The outline of the paper is as follows: We next establish g(.) € .%4[1p,No]. Also, we let

some of the basic notation that will be used in the paper. We

then, in Section 2, recall the switched version of LaSalle’s Fa = Uy =0NgeN-7al 1o, No],

Invariance Principle, followed by a discussion of the un- '

Section 4. The main result for switched systems is given in of trajectories.

Section 5, followed by a simulation study in Section 6.

In order to deal with a LaSalle’s Invariance Principle it is
useful, following [16], to introduce the following subckes

. of trajectories.
Notation We letN andR>q denote the natural numbers ]

and the nonnegative real numbers, respectively. Given the
setsM, M; andM, such thaM C Mz x My, we denoten (M)
(respectivelyrn(M)) the projection oM onM;j (respectively
Mz), i.e. 7T1(Ml X Mz) =M and T[z(Ml X Mz) = My. We
denote byly, d € N, the vector of dimensiomd with all . )
entries equal to 1 (e.dl, = [1 4JT). Given a vectow € ) fx(t) € Q for alfl 'f[.e [0’1:[2’ 0
RY, d € N, and a setM c RY, we denote dig,M) the D gEt?rlyopg!; Othé?\e/(sxﬁt)ea[(t’)
distance betweemandM, that is, distv,M) = infyem ||V — N ' ’
w||2, where|| - |2 is the two norm.

Definition 2.1 (Class of trajectories%/) Let V : Q C
R" — R be a continuous functionZ; is the class of trajec-
tories (X(-),0(-)) € .7 which verify the conditions:

T) such that t< t’ and
) =V (x(t'),a(t)).

Z; is the subfamily of (x(-),0(:)) € A verifying
V(x(t),ot)) =Vx({t),ot)) for o(t) = a(t’). O

2 AlLaSalle’s Invariance Principle for switched systems ) ) , ) )
Then, we introduce a suitable notion of a weakly-invariant

. . _ o set
In this section, we recall a LaSalle’s Invariance Principle

for switched systems proved in [16] that will be useful 0 pefinition 2.2 (Weakly invariant set) Given a family 7
prove our main result. For the_ sake of c!arlty, we will not of trajectories of (1), a non-empty subset M R" x T is
use .the most general assumptions used in the Paper, but Wegig 1o be Weakly-in’variant with respect 3’ if, for each
will impose stronger assumptions that are verified by our (£.,y) € M, there is a trajectory(x(-), a(-)) € 7" such that

problem formulation. x(0) = &, 0(0) = y and (x(t), a(t)) € M for all t € [0,T).

Given a parameterized family of locally Lipschitz vector \ye are now ready to state (a slightly modified version of) the
fields {f,: R" — R" | y €T}, wherel" is a finite index set, | asalle’s Invariance Principle proved in [16] (Theorem)2.4
we consider the switched system

) Theorem 2.1 (LaSalle’s IP for switched systems, [16])

X(t) = fou) (X(1)), 1) LetV:Qx T — R, with Q an open subset &", be con-

tinuous. Suppose th&x(-),o(-)) is a trajectory belonging

whereo : R — T is a piecewise constant (continuous from to % N Z4[1p, Np| for sometrp > 0 and Ny € N, such that
the right) switching signal. for some compact subsetBQ, x(t) € B for allt > 0. Let



M C R"x T be the largest weakly invariant set with respect It is useful to highlight the contribution of neighboringald-

to %/ N Ja[To,No] contained inQ x . Then Xt) converges  ers and followers separately. LB (t) and N! (t) respec-

to 75(M) as t— oo. U tively be the set of followers and leaders communicating
with follower i at instant. Thus, the follower dynamics can
be rewritten as

3 Network Model

In this section, we introduce a mathematical model, based jeN' (t) IS
on the model in [17], that describes the swarming behav-
ior encountered among the silkworm moths. Informally, we for j ¢ {1,... nf}.
consider a network with agents of two sorts: leaders (rep-
resenting the female moths) and followers (representiag th
males). Leaders and followers are both described as first or-
der integrators, but they apply different control laws.Hist I _ .
paper we assume the leaders to be stationary, that is, their % (t) =0, fe{n'+1,....n}.
control input is identically zero. Also, we assume they may
be active or inactive, equivalently visible or invisiblettoe
followers. The followers apply a Laplacian based averaging Next, we introduce some compact notation to write the dy-
control law. They communicate among themselves and with namics along each direction iR9. We recall that the dy-
active leaders according to a switching undirected commu- namics along different directions are decoupled and coin-
nication graph. cide with the dynamics of the scalar systetn{1). In or-

der to avoid the introduction of extra indices, we present

More formally, we consider a network of agents labeled by Such compact form assumirng= 1, that is,x € R for all

a set of identifiers{1,...,n}, n€ N, such that the labels ~ | € {1-..,n}. Itis well known that for the scalar case the
{1 n'}, nf € N, correspond to the followers and the state matrix of the linear system obtained by stacking all

remaining ones to the leaders. The agents live in state spacéhe agents’ states is the graph Laplacian. Reca_lll thath@”
RY, d € N, and obey first order, continuous time dynamics, undirected grap®, = ({1,...,n}, Ey) the Laplacian matrix

that is, X = u;, for all i € {1,...,n}, wherex € RY and Ly = (£ij)nxn is defined as:
u € RY are respectively the state and the input of ageimt

The leaders are stationary, that is, their dynamics is simpl

order to distinguish between follower and leader dynamics, degdi) ifi=]

we will use the notation! andx| for the states of follower Gji=q-1 ifi#jand(i,j) €Ey

and leadej respectively. It is worth noting that the dynamics 0 otherwise

are decoupled; thus along each direction the dynamics is

exactly the dynamics of a system with= 1. where degj) is the degree of nodi(i.e., the number nodes

sharing an edge with nodg Although leaders do not apply
The agents communicate according to a switching undi- @ “Laplacian control law” (as followers do), it is useful to
rected communication graph. Formally, we {ét ... n} be consider the dynamics obtained as if all the agents (both

the set of nodes of the graph aodt R-¢ — I := {0, 1}2“ leaders and followers) did. Indeed, the dynamics would be
be a switching signal with positive average dwell-timettha
is o(-) € Ja[tp,No] for sometp > 0 andNp € N. The com- X(t) = —Lg@X(t),

munication graphGg () = ({1,...,n},E4(,)) is defined as
follows. An edge(i, j) € {1,...,n} x {1,...,n} belongs to  wherex(t) = [x.(t),...,%(t)]” andLs is the Laplacian of

Eq(y) if agentsi and j communicate at timé. For any ad- the graphGg at instant.
missibleo(-), we assume that the gra@y is jointly con-
nected. That is, leti, k € N, denote theé-th switching time | we partition the Laplacian with respect to leaders and
of o(-) greater than or equal to a given tirhigc R>q, we followers as
assume that, for any € Rx>o, UkenGoyt,) is connected. L
Lo = |1 7
We let Ni(t) be the set of neighbors of follower If the Ia(t) Low)

graph is fixed the set of neighbors does not depend on timetne followers dynamics turns to be
thus we will denote it simplyN;.

. f f f flo
t)=-L t)—1 2
The dynamics of the followers is given by X o O~ lowX: @
if (t)=— (Xif (t)—x(t)), ie (1,....nf}. wherex' (t) = [x{(t),...,xrf]f (t)]" is the vector of follower
' N positions at time andx = [foJrl, ..., X7 is the constant



vector of leaders positions. It is worth noting thac;t

Proof: The proof follows directly by the fact thdtf is

not the follower's Laplacian, but depends on actlve Ieaders invertible. u

as well. However, it can be written in terms of the Laplacian
of the follower’s subgraph,(f) (t), as

o0 = Lo®+D'(1)

whereD!(t) is a diagonal matrix whose entries are the de-
grees of the followers with respect to the active leaderg.onl

4 Problem Statement and Static Case

Before stating and proving the main result, i.e. that the fol

lowers communicating according to a switching graph end

up in the convex hull spanned by the static and only in-
termittently visible leaders, we first need to investigatd a
recall what happens under static network topologies.

Next, we prove two lemmas that are useful to prove the are stationary (located xi,t, ie{l,..

We are now ready to recall the result from [4] (formulated
in a slightly different way) stating that for a leader-failer
network with fixed topology, the followers’ positions will
converge to the convex-hull of the leaders’ positions. We
provide a different and simpler proof. We stress the fact
that the result holds (and is proven) for arbitrary dimensio
deN.

Lemma 4.3 (Containment for a static topology) Given a
connected, static network topology with multiple statade
ers, the followers will asymptotically end up in the convex
hull, Q, spanned by the leaders’ positions, i.e.

f

f .
X'ieq€ QL, i=1....n".

Proof: As aresult of Lemma 4.2, we have that if the leaders
.,n}), the followers will

convergence result for fixed topology (see for example [5] asymptotically approach the equ|||br|um poixlteq whose
for other versions of the proofs). The results of the next two component along each direction can be computed by using
lemmas deal with the dynamics along each direction. As in the scalar expression in (3).

the previous section, rather than overloading the notation

with extra indices, we just state the result tbe 1.

Lemma 4.1 If the graph is connected, therf lis positive
definite. O

Proof: We know thatl is positive semi-definitel, > 0. In
addition, if the graph is connected, we have that (b=
spar{1,}. Since

Xf
LI = xfT O]L[O]

and[x’" 0T ¢ null(L), we have that

X' O]Llﬂ >0V x' £0.

This lemma allows us to state the following lemma (also
available in [5]).

Lemma 4.2 Given fixed leader positions,xhen
X' oq = _LfIfy

3)

is a globally asymptotically stable equilibrium point.

Now, sincexfeq is an equilibrium, we must have that
0 a f )
X eq=0=— Z‘ (Xi, eq— Xj, eq)
Ny

for all follower agents. (Here we have used the notation
that if agentj is a leaderx;, ¢qis the static position of that
leader.) This means that

R AUUNINE T i
i eq= . eqt

IN] IR\

In other words, the equilibrium point’j ¢4 for follower

agent lies in the convex hull spanned by agé&atheighbors
- may they be leaders or followers.

Now, if every follower ends up in the convex hull spanned
by its neighbors’ positions, and the only agents who do not
need to satisfy this condition are the leaders, every falow
will end up in the convex hull spanned by the leaders’ po-
sitions. [ |

Remark 4.1 Two straightforward results follow from the
previous lemma and are well known results in the consen-
sus literature, see, e.g., [15]. First, the convex hull of th
followers’ positions is a decreasing function of time. Sec-
ond, if there are no leaders, then the agents rendezvous at
a common point. O

It should be pointed out again that the main result presented
in this section is previously known. For the remainder of the



paper, we extend Lemma 4.3 to hold also for a switching
topology, which thus constitutes the main contributiorhia t

paper.
5 Containment under switching topology

In this section, we prove the main result of the paper, i.e.
that in a leader-follower network with switching topology

the followers asymptotically converge to the convex hull
spanned by the all stationary leaders’ positions.

Lemma 5.1 (Boundedness of followers’ trajectories)
Consider a leader-follower first order network as in Sec-
tion 3 (with stationary leaders and followers’ dynamics
as in (2)). Suppose that for ang(-) € .%4[1,No], 0 >0
and N € N, the communication graph £, is jointly con-

nected. Then, for any'x0) € RA" | there exists a compact
set Bc RY"" such that %(t) € B for all t > 0.

Proof: Regardless of the connectivity, each follower exe-
cutes

XO=- 3 6O-x(), ie{l..,nY,

JeNi(t)

which means that at each tine xif moves towards the
convex-hull of the agents in its neighborhood $&tt),
which was shown, for example, in [4]. We call this the
convex-hull-seeking property.

Now, letQ(t) be the convex hull spanned by all the leaders’
(active as well as inactive at timg and followers’ posi-
tions. We will show that the volume d2(t) is uniformly
non-increasing and thus th@{0) will serve as the compact
setB in which the followers are uniformly confined. In fact,
the only way an agent can increase the volum&) is

by being placed on the boundary of the convex hadit),
and moving away fronf)(t), which is contradicted by the
convex-hull-seeking property. As suclQ(t)| never in-
creases, anB = Q(0) above, which concludes the pros.

We are now ready to state the main result:

Theorem 5.1 (Containment for switching topology)
Consider a leader-follower first order network as in Sec-
tion 3 (with stationary leaders and follower dynamics as in
(2)). Suppose that for ang(-) € .#a[tp,Np], ™o > 0 and

No € N, the communication graph &, is jointly connected.
Let Q. be the convex hull spanned by all the leaders’ posi-
tions. Then, each follower asymptotically convergeQto

In other words, for any > 0, there existg > 0 such that,
forany je {1,...,n"},

dist(xjf (t),QL) <&

forallt >t.

Proof: We prove the result by using the Lasalle’s invariant
principle stated in Theorem 2.1. First of all, observe that

from Lemma 5.1 there exists a compact Bet RI"" such
that for any(x'(-), a(-)) € Za[tp,No], X(t) € Bfor allt > 0.
Next, letV (xf,y) be the volume of the convex hull of the
agents (leaders and followers) for any valugdfiotice that,
since the leaders are stationary, the volume is only a foncti
of the followers positions, while the leaders’ positions ca
be considered as fixed parameters. First, we show\that
is non increasing between two switching intervals for all
followers trajectories, i.e., we show th&, = Z4[1p, No).

Second, we prove that the 9dt= (QL)”f x I is the largest
weakly invariant set for the family of trajectorie/, i.e.,
the subfamily of trajectories ifk, for whichV is constant
between two switching intervals.

To prove thatV is non increasing between two switching
intervals, consider the agents (being them leaders or fol-
lowers) inside the convex hull and the ones on it. Now, be-
tween two switching intervals each agent is connected to
other agents (possibly none) via a connected component of
the graphGyy,). By the results proven in the previous sec-
tion, we know that each follower has two possibilities to
evolve. It will either evolve so to shrink the convex hull of
the agents in the same connected componenG,qf, or
remain stationary if it is not connected to any one. Also,
we know that leaders are stationary. Therefore, if an agent
(leader or follower) is inside the convex hull it will remain
inside or become part of the boundary because the convex
hull is shrinking. If it is outside it will either remain sta-
tionary (it is a leader or a disconnected follower) or it will
contribute to shrink the convex hull. Therefore the volume
of the convex hull cannot increase.

Now, we need to prove tha¥l is the largest weakly in-
variant set for.%/. Clearly,M is weakly invariant for%;.
Indeed, take anyé,y) € M, with & = xif (0) € Q for all
ie{1...,n"} and Gy the initial (possibly disconnected)
communication graph. Using the results for the static case,
it follows easily that foro(-) = y each follower trajectory
remains inQ so that(x(t),o(t)) € M for all t > 0 with
(x(),a(-)) € &/. To prove thaM is the largest weakly in-
variant set, let, by contradictioM’ > M be a larger weakly
invariant set. SincéM’ is weakly invariant with respect to
X, then for any(x'(0),y) € M’ there exists a trajectory
(x'(-),a(-)) such that the volume af(M’) stays constant
andx'(t) € m(M’) for all t > 0. Now, sinceM’ > M there
existsi € {1,...,n"} such that' (0) ¢ Q_ andx' (0) on the
boundary ofrs (M’). The contradiction follows by the joint
connectivity ofGg(). Indeed, the only way for the volume

of y(M’) to remain constant is thaqf(t) = xl-f (0) for all t.
But, from the previous arguments we know that for this to
happen ageritmust be isolated (not connected to any other
agent) for allt. This gives the contradiction and concludes
the proof. [ |



Remark 5.1 (Extensions of the main result)The convex
hull of any subgroup of the leaders’ positions is a subset of
the entire convex hull. Thus, our result remains true under
the milder assumption that each follower is connected to a [3]
leader. Also, if starting from a given time istant a subgroup

of the leaders remains disconnected from the followers,
then the followers will converge to the convex hull of the
remaining leaders’ positions. O

[2]

Remark 5.2 (Average dwell-time assumption)The as-
sumption that the communication graph switches according
to a signal with bounded average dwell-time is introduced
for the sake of analytical treatment. How to provide bounds
on dwell-time and chatter bound in real practice on the (6]
basis of biological data is an interesting issue. Noticeyho
ever, that, to prove our main result we do not need to know
these bounds. O

(5]

[7]

6 Simulations
(8]
We simulate the leader-follower network using 50 follower
agents (dots) and 4 leader agents (squares), as shown in Fig-
ure 1. Leaders from this network that influence all the fol- ]
lowers are selected at random. The simulation illustrédtes t
fact that the followers in the network converge to locations
inside the convex hull spanned by the static leader agents.

7 Conclusions

In this paper we studied leader-follower first order netvgork
We showed that the subset of follower agents converge to
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(a) Three leaders are visible to the followers. (b) One leader is visible to the followers.
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(c) One leader is visible to the followers. (d) One leader is visible to the followers.

t=0.266sec t=0.379sec

(e) Four leaders are visible to the followers. () Two leaders are visible to the followers.

Fig. 1. Simulation of the follower agents (dots) convergioga convex hull spanned by the static leader agents (squdies convex
hull is shown by the line segments connecting the leadertagerile lines between follower agents denote edges. Addeader agent
visible to the follower agents in the network is depicted d#led-in box.



