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Abstract

We study bipartite, first-order networks where the nodes take on leader or follower roles. Specifically, we let the leaders’ positions be
static and assume that leaders and followers communicate via an undirected switching graph topology. This assumption is inspired by the
swarming behavior of Silkworm moths, where female moths intermittently release pheromones to be detected by the males.The main
result presented here states that if the followers execute the linear agreement protocol, they will converge to the convex hull spanned by
the leaders’ positions as long as the time-vary undirected graph defining the communication among all agents is jointly connected. The
novelty of this research is that we use Lasalle’s invarianceprinciple for switched systems, and additionally, the result is shown to hold
for arbitrary state dimensions.
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1 INTRODUCTION

The research on multi-agent robotics and decentralized,
networked control has drawn significant inspiration from
interaction-rules in social animals and insects [1–3]. In par-
ticular, the widely used nearest-neighbor-based interaction
rules, used for example for formation control (e.g. [5,6]),
consensus (e.g. [7,8]), and coverage control [9,10], have
direct biological counterparts, as pointed out in [1]. In this
paper, we follow this line of inquiry by seeing if we can
understand how leader-follower systems behave if: (i) the
leaders are only intermittently visible to the followers, and
(ii) the agents interact over a switching network topol-
ogy. This model is inspired from a particular swarming
phenomenon observed in the silkworm mothBombyx Mori.

Silkworm moths are known to swarm in tight geometrical
configurations, such as vertical cylindrical structures. This is
caused by the females’ intermittent releasing of a pheromone
- bombykol- to attract male moths, and by the males’ mu-

⋆ This paper was not presented at any IFAC meeting. Pre-
liminary versions of this work with partial results were pre-
sented in [18] and [17]. Corresponding author G. Notarstefano,
giuseppe.notarstefano@unile.it.

tual attraction to determine each other’s gender through vi-
sual inspection. These two phenomena in essence make the
females act as attractors to the males, but the intermittent
nature of the release and of the individuals’ interactions pro-
duces an inherently switched system. Moreover, the spatial
distribution of the females imply that the males are attracted
to a general area rather than to a particular point, which is
what is believed to cause their characteristic swarming ge-
ometry (see, e.g., [11–14]).

Based on this discussion, in this paper we investigate a first-
order network model in which stationary leaders (the female
moths) and moving followers (the males) are only intermit-
tently visible among each other. This corresponds to apply-
ing a switched control input of varying dimension (since the
number of communicating agents may be changing) to the
system. Our main result is that, asymptotically, the follow-
ers will end up in the convex hull spanned byall the lead-
ers’ positions. For the case in which the leaders are always
visible and no edges appear or disappear between followers,
this is already known [4]. Along a similar line of inquiry,
rendezvous in switching directed networks with at most one
leader has been studied in [15].

The main contribution of this paper is a containment re-
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sult for switched networks with intermittently visible, static
leaders. Using tools from hybrid stability theory, namely a
hybrid version of LaSalle’s Invariance Principle [16], we
show that the convex hull of leaders’ and followers’ posi-
tions shrinks to the convex hull of the leaders’ fixed posi-
tions, which is proven to be the largest invariant set for the
followers’ positions. Preliminary results were provided in
[17], where it was shown (under stronger assumptions) that
the followers end up in a larger ellipsoidal set that contains
the convex hull of the leaders’ positions, and in [18], where
containment under fixed interaction topologies was studied.
A similar question to the one under consideration here was
pursued in [19], where the containment problem was studied
for systems with scalar dynamics; whereas in this paper, the
result is proven for arbitrary state dimensions. Furthermore,
the LaSalle-based approach used here is different from [19],
which has the advantage of being directly applicable to non-
scalar systems.

The outline of the paper is as follows: We next establish
some of the basic notation that will be used in the paper. We
then, in Section 2, recall the switched version of LaSalle’s
Invariance Principle, followed by a discussion of the un-
derlying network model in Section 3 and the static case, in
Section 4. The main result for switched systems is given in
Section 5, followed by a simulation study in Section 6.

Notation We let N andR≥0 denote the natural numbers
and the nonnegative real numbers, respectively. Given the
setsM, M1 andM2 such thatM ⊂M1×M2, we denoteπ1(M)
(respectivelyπ2(M)) the projection ofM onM1 (respectively
M2), i.e. π1(M1 ×M2) = M1 and π2(M1 ×M2) = M2. We
denote by1d, d ∈ N, the vector of dimensiond with all
entries equal to 1 (e.g.12 = [1 1]T ). Given a vectorv ∈
R

d, d ∈ N, and a setM ⊂ R
d, we denote dist(v,M) the

distance betweenv andM, that is, dist(v,M) = infw∈M ‖v−
w‖2, where‖ · ‖2 is the two norm.

2 A LaSalle’s Invariance Principle for switched systems

In this section, we recall a LaSalle’s Invariance Principle
for switched systems proved in [16] that will be useful to
prove our main result. For the sake of clarity, we will not
use the most general assumptions used in the paper, but we
will impose stronger assumptions that are verified by our
problem formulation.

Given a parameterized family of locally Lipschitz vector
fields{ fγ : Rn → R

n | γ ∈ Γ}, whereΓ is a finite index set,
we consider the switched system

ẋ(t) = fσ(t)(x(t)), (1)

whereσ :R≥0 →Γ is a piecewise constant (continuous from
the right) switching signal.

LetS be the set of all switching signals. A pair(x(·),σ(·)) is
atrajectoryof (1) if and only ifσ(·)∈S andx : [0,T)→R

n,
0< T ≤ +∞, is a piecewise differential solution to ˙x(t) =
fσ(t)(x(t)), t ∈ [0,T). Note thatT is, in general, a function
of x(0) andσ(·) so that we should writeT(x(0),σ(·)).

In the following we will consider switching signals that have
positive average dwell-time, i.e. signals for which the num-
ber of discontinuities in any open interval is bounded above
by the length of the interval normalized by an “average
dwell-time” plus a “chatter bound”.

More formally, we say that a switching signalσ(·) has
an average dwell-timeτD > 0 and a chatter boundN0 ∈ N

if the number of its switching times in any open interval
(τ1,τ2)⊂R≥0 is bounded byN0+(τ2− τ1)/τD. We denote
by Sa[τD,N0] the set of all switching signals with aver-
age dwell-timeτD and chatter boundN0, and byTa[τD,N0]
the subclass of all trajectories of (1) corresponding to some
σ(·) ∈ Sa[τD,N0]. Also, we let

Sa = ∪τD>0,N0∈NSa[τD,N0],

and consequently, we letTa be the corresponding subclass
of trajectories.

In order to deal with a LaSalle’s Invariance Principle it is
useful, following [16], to introduce the following subclasses
of trajectories.

Definition 2.1 (Class of trajectoriesTV) Let V : Ω ⊂
R

n →R be a continuous function.TV is the class of trajec-
tories (x(·),σ(·)) ∈ T which verify the conditions:

i) x(t) ∈ Ω for all t ∈ [0,T);
ii) for any pair of times t, t ′ ∈ [0,T) such that t≤ t ′ and

σ(t) = σ(t ′), then V(x(t),σ(t)) ≥V(x(t ′),σ(t ′)).

T ∗
V is the subfamily of (x(·),σ(·)) ∈ TV verifying

V(x(t),σ(t)) =V(x(t ′),σ(t ′)) for σ(t) = σ(t ′). �

Then, we introduce a suitable notion of a weakly-invariant
set:

Definition 2.2 (Weakly invariant set) Given a familyT ′

of trajectories of (1), a non-empty subset M⊂ R
n ×Γ is

said to be weakly-invariant with respect toT ′ if, for each
(ξ ,γ) ∈ M, there is a trajectory(x(·),σ(·)) ∈ T ′ such that
x(0) = ξ , σ(0) = γ and(x(t),σ(t)) ∈ M for all t ∈ [0,T).�

We are now ready to state (a slightly modified version of) the
LaSalle’s Invariance Principle proved in [16] (Theorem 2.4).

Theorem 2.1 (LaSalle’s IP for switched systems, [16])
Let V : Ω×Γ → R, with Ω an open subset ofRn, be con-
tinuous. Suppose that(x(·),σ(·)) is a trajectory belonging
to TV ∩Ta[τD,N0] for someτD > 0 and N0 ∈ N, such that
for some compact subset B⊂ Ω, x(t) ∈ B for all t ≥ 0. Let
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M ⊂R
n×Γ be the largest weakly invariant set with respect

to T ∗
V ∩Ta[τD,N0] contained inΩ×Γ. Then x(t) converges

to π1(M) as t→ ∞. �

3 Network Model

In this section, we introduce a mathematical model, based
on the model in [17], that describes the swarming behav-
ior encountered among the silkworm moths. Informally, we
consider a network with agents of two sorts: leaders (rep-
resenting the female moths) and followers (representing the
males). Leaders and followers are both described as first or-
der integrators, but they apply different control laws. In this
paper we assume the leaders to be stationary, that is, their
control input is identically zero. Also, we assume they may
be active or inactive, equivalently visible or invisible tothe
followers. The followers apply a Laplacian based averaging
control law. They communicate among themselves and with
active leaders according to a switching undirected commu-
nication graph.

More formally, we consider a network of agents labeled by
a set of identifiers{1, . . . ,n}, n ∈ N, such that the labels
{1, . . . ,nf }, nf ∈ N, correspond to the followers and the
remaining ones to the leaders. The agents live in state space
R

d, d ∈ N, and obey first order, continuous time dynamics,
that is, ẋi = ui, for all i ∈ {1, . . . ,n}, wherexi ∈ R

d and
ui ∈R

d are respectively the state and the input of agenti. In
order to distinguish between follower and leader dynamics,
we will use the notationxf

i andxl
j for the states of followeri

and leaderj respectively. It is worth noting that the dynamics
are decoupled; thus along each direction the dynamics is
exactly the dynamics of a system withd = 1.

The agents communicate according to a switching undi-
rected communication graph. Formally, we let{1, . . . ,n} be
the set of nodes of the graph andσ : R≥0 → Γ := {0,1}2n

be a switching signal with positive average dwell-time, that
is σ(·) ∈Ta[τD,N0] for someτD > 0 andN0 ∈N. The com-
munication graphGσ(·) = ({1, . . . ,n},Eσ(·)) is defined as
follows. An edge(i, j) ∈ {1, . . . ,n}×{1, . . . ,n} belongs to
Eσ(t) if agentsi and j communicate at timet. For any ad-
missibleσ(·), we assume that the graphGσ(·) is jointly con-
nected. That is, lettk, k∈N, denote thek-th switching time
of σ(·) greater than or equal to a given timet0 ∈ R≥0, we
assume that, for anyt0 ∈ R≥0, ∪k∈NGσ(tk) is connected.

We let Ni(t) be the set of neighbors of followeri. If the
graph is fixed the set of neighbors does not depend on time,
thus we will denote it simplyNi .

The dynamics of the followers is given by

ẋf
i (t) =− ∑

j∈Ni(t)

(xf
i (t)− x j(t)), i ∈ {1, . . . ,nf }.

It is useful to highlight the contribution of neighboring lead-
ers and followers separately. LetN f

i (t) and Nl
i (t) respec-

tively be the set of followers and leaders communicating
with follower i at instantt. Thus, the follower dynamics can
be rewritten as

ẋf
i (t) =− ∑

j∈N f
i (t)

(xf
i (t)− xf

j (t)) − ∑
j∈Nl

i (t)

(xf
i (t)− xl

j(t)),

for i ∈ {1, . . . ,nf }.

The leaders are stationary, that is, their dynamics is simply

ẋl
i (t) = 0, i ∈ {nf +1, . . . ,n}.

Next, we introduce some compact notation to write the dy-
namics along each direction inRd. We recall that the dy-
namics along different directions are decoupled and coin-
cide with the dynamics of the scalar system (d = 1). In or-
der to avoid the introduction of extra indices, we present
such compact form assumingd = 1, that is,xi ∈ R for all
i ∈ {1, . . . ,n}. It is well known that for the scalar case the
state matrix of the linear system obtained by stacking all
the agents’ states is the graph Laplacian. Recall that, for the
undirected graphGγ = ({1, . . . ,n},Eγ) the Laplacian matrix
Lγ := (ℓi, j)n×n is defined as:

ℓi, j :=







deg(i) if i = j
−1 if i 6= j and(i, j) ∈ Eγ
0 otherwise,

where deg(i) is the degree of nodei (i.e., the number nodes
sharing an edge with nodei). Although leaders do not apply
a “Laplacian control law” (as followers do), it is useful to
consider the dynamics obtained as if all the agents (both
leaders and followers) did. Indeed, the dynamics would be

ẋ(t) =−Lσ(t)x(t),

wherex(t) = [x1(t), . . . ,xn(t)]T andLσ(t) is the Laplacian of
the graphGσ(t) at instantt.

If we partition the Laplacian with respect to leaders and
followers as

Lσ(t) =





L f
σ(t) l f l

σ(t)

l l fσ(t) Ll
σ(t)





the followers dynamics turns to be

ẋf (t) =−L f
σ(t)x

f (t)− l f l
σ(t)x

l , (2)

wherexf (t) = [xf
1(t), . . . ,x

f
nf (t)]

T is the vector of follower

positions at timet andxl = [xl
nf +1

, . . . ,xl
n]

T is the constant
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vector of leaders positions. It is worth noting thatL f
σ(t) is

not the follower’s Laplacian, but depends on active leaders
as well. However, it can be written in terms of the Laplacian
of the follower’s subgraph,L f

0(t), as

L f
σ(t) = L f

0(t)+Dl(t)

whereDl (t) is a diagonal matrix whose entries are the de-
grees of the followers with respect to the active leaders only.

4 Problem Statement and Static Case

Before stating and proving the main result, i.e. that the fol-
lowers communicating according to a switching graph end
up in the convex hull spanned by the static and only in-
termittently visible leaders, we first need to investigate and
recall what happens under static network topologies.

Next, we prove two lemmas that are useful to prove the
convergence result for fixed topology (see for example [5]
for other versions of the proofs). The results of the next two
lemmas deal with the dynamics along each direction. As in
the previous section, rather than overloading the notation
with extra indices, we just state the result ford = 1.

Lemma 4.1 If the graph is connected, then Lf is positive
definite. �

Proof: We know thatL is positive semi-definite,L � 0. In
addition, if the graph is connected, we have that null(L) =
span{1n}. Since

xf T
L f xf = [xf T

0]L

[

xf

0

]

and[xf T
0]T /∈ null(L), we have that

[xf T
0]L

[

xf

0

]

> 0 ∀ xf 6= 0.

This lemma allows us to state the following lemma (also
available in [5]).

Lemma 4.2 Given fixed leader positions xl , then

xf
eq=−L f −1

L f l xl (3)

is a globally asymptotically stable equilibrium point.

Proof: The proof follows directly by the fact thatL f is
invertible.

We are now ready to recall the result from [4] (formulated
in a slightly different way) stating that for a leader-follower
network with fixed topology, the followers’ positions will
converge to the convex-hull of the leaders’ positions. We
provide a different and simpler proof. We stress the fact
that the result holds (and is proven) for arbitrary dimension
d ∈ N.

Lemma 4.3 (Containment for a static topology)Given a
connected, static network topology with multiple static lead-
ers, the followers will asymptotically end up in the convex
hull, ΩL, spanned by the leaders’ positions, i.e.

xf
i,eq∈ ΩL, i = 1, . . . ,nf .

Proof: As a result of Lemma 4.2, we have that if the leaders
are stationary (located atxl

i , i ∈ {1, . . . ,n}), the followers will
asymptotically approach the equilibrium pointxf

eq whose
component along each direction can be computed by using
the scalar expression in (3).

Now, sincexf
eq is an equilibrium, we must have that

ẋf
i, eq= 0=− ∑

j∈Ni

(xf
i, eq− x j , eq)

for all follower agents. (Here we have used the notation
that if agentj is a leader,x j , eq is the static position of that
leader.) This means that

xf
i, eq=

1
|Ni |

∑
j∈Ni

x j , eq.

In other words, the equilibrium pointxf
i, eq for follower

agenti lies in the convex hull spanned by agenti’s neighbors
- may they be leaders or followers.

Now, if every follower ends up in the convex hull spanned
by its neighbors’ positions, and the only agents who do not
need to satisfy this condition are the leaders, every follower
will end up in the convex hull spanned by the leaders’ po-
sitions.

Remark 4.1 Two straightforward results follow from the
previous lemma and are well known results in the consen-
sus literature, see, e.g., [15]. First, the convex hull of the
followers’ positions is a decreasing function of time. Sec-
ond, if there are no leaders, then the agents rendezvous at
a common point. �

It should be pointed out again that the main result presented
in this section is previously known. For the remainder of the
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paper, we extend Lemma 4.3 to hold also for a switching
topology, which thus constitutes the main contribution in the
paper.

5 Containment under switching topology

In this section, we prove the main result of the paper, i.e.
that in a leader-follower network with switching topology
the followers asymptotically converge to the convex hull
spanned by the all stationary leaders’ positions.

Lemma 5.1 (Boundedness of followers’ trajectories)
Consider a leader-follower first order network as in Sec-
tion 3 (with stationary leaders and followers’ dynamics
as in (2)). Suppose that for anyσ(·) ∈ Sa[τD,N0], τD > 0
and N0 ∈ N, the communication graph Gσ(·) is jointly con-

nected. Then, for any xf (0) ∈ R
dnf

, there exists a compact

set B⊂ R
dnf

such that xf (t) ∈ B for all t ≥ 0.

Proof: Regardless of the connectivity, each follower exe-
cutes

ẋf
i (t) =− ∑

j∈Ni(t)

(xf
i (t)− x j(t)), i ∈ {1, . . . ,nf },

which means that at each timet, xf
i moves towards the

convex-hull of the agents in its neighborhood setNi(t),
which was shown, for example, in [4]. We call this the
convex-hull-seeking property.

Now, letΩ(t) be the convex hull spanned by all the leaders’
(active as well as inactive at timet) and followers’ posi-
tions. We will show that the volume ofΩ(t) is uniformly
non-increasing and thus thatΩ(0) will serve as the compact
setB in which the followers are uniformly confined. In fact,
the only way an agent can increase the volume ofΩ(t) is
by being placed on the boundary of the convex hull,∂Ω(t),
and moving away fromΩ(t), which is contradicted by the
convex-hull-seeking property. As such,|Ω(t)| never in-
creases, andB= Ω(0) above, which concludes the proof.

We are now ready to state the main result:

Theorem 5.1 (Containment for switching topology)
Consider a leader-follower first order network as in Sec-
tion 3 (with stationary leaders and follower dynamics as in
(2)). Suppose that for anyσ(·) ∈ Sa[τD,N0], τD > 0 and
N0 ∈N, the communication graph Gσ(·) is jointly connected.
Let ΩL be the convex hull spanned by all the leaders’ posi-
tions. Then, each follower asymptotically converges toΩL.
In other words, for anyε > 0, there exists̄t > 0 such that,
for any j∈ {1, . . . ,nf },

dist
(

xf
j (t),ΩL

)

< ε

for all t ≥ t̄ .

Proof: We prove the result by using the Lasalle’s invariant
principle stated in Theorem 2.1. First of all, observe that
from Lemma 5.1 there exists a compact setB⊂ R

dnf
such

that for any(xf (·),σ(·)) ∈Ta[τD,N0], x(t) ∈ B for all t ≥ 0.
Next, letV(xf ,γ) be the volume of the convex hull of the
agents (leaders and followers) for any value ofγ. Notice that,
since the leaders are stationary, the volume is only a function
of the followers positions, while the leaders’ positions can
be considered as fixed parameters. First, we show thatV
is non increasing between two switching intervals for all
followers trajectories, i.e., we show thatTV = Ta[τD,N0].
Second, we prove that the setM = (ΩL)

nf
×Γ is the largest

weakly invariant set for the family of trajectoriesT ∗
V , i.e.,

the subfamily of trajectories inTV for which V is constant
between two switching intervals.

To prove thatV is non increasing between two switching
intervals, consider the agents (being them leaders or fol-
lowers) inside the convex hull and the ones on it. Now, be-
tween two switching intervals each agent is connected to
other agents (possibly none) via a connected component of
the graphGσ(tk). By the results proven in the previous sec-
tion, we know that each follower has two possibilities to
evolve. It will either evolve so to shrink the convex hull of
the agents in the same connected components ofGσ(tk) or
remain stationary if it is not connected to any one. Also,
we know that leaders are stationary. Therefore, if an agent
(leader or follower) is inside the convex hull it will remain
inside or become part of the boundary because the convex
hull is shrinking. If it is outside it will either remain sta-
tionary (it is a leader or a disconnected follower) or it will
contribute to shrink the convex hull. Therefore the volume
of the convex hull cannot increase.

Now, we need to prove thatM is the largest weakly in-
variant set forT ∗

V . Clearly,M is weakly invariant forT ∗
V .

Indeed, take any(ξ ,γ) ∈ M, with ξi = xf
i (0) ∈ ΩL for all

i ∈ {1, . . . ,nf } and Gγ the initial (possibly disconnected)
communication graph. Using the results for the static case,
it follows easily that forσ(·) ≡ γ each follower trajectory
remains inΩL so that(x(t),σ(t)) ∈ M for all t ≥ 0 with
(x(·),σ(·)) ∈ T ∗

V . To prove thatM is the largest weakly in-
variant set, let, by contradiction,M′ ⊃ M be a larger weakly
invariant set. SinceM′ is weakly invariant with respect to
T ∗

V , then for any(xf (0),γ) ∈ M′ there exists a trajectory
(xf (·),σ(·)) such that the volume ofπ1(M′) stays constant
andxf (t) ∈ π1(M′) for all t ≥ 0. Now, sinceM′ ⊃ M there
existsi ∈ {1, . . . ,nf } such thatxf

i (0) /∈ ΩL andxf
i (0) on the

boundary ofπ1(M′). The contradiction follows by the joint
connectivity ofGσ(·). Indeed, the only way for the volume

of π1(M′) to remain constant is thatxf
i (t) = xf

i (0) for all t.
But, from the previous arguments we know that for this to
happen agenti must be isolated (not connected to any other
agent) for allt. This gives the contradiction and concludes
the proof.
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Remark 5.1 (Extensions of the main result)The convex
hull of any subgroup of the leaders’ positions is a subset of
the entire convex hull. Thus, our result remains true under
the milder assumption that each follower is connected to a
leader. Also, if starting from a given time istant a subgroup
of the leaders remains disconnected from the followers,
then the followers will converge to the convex hull of the
remaining leaders’ positions. �

Remark 5.2 (Average dwell-time assumption)The as-
sumption that the communication graph switches according
to a signal with bounded average dwell-time is introduced
for the sake of analytical treatment. How to provide bounds
on dwell-time and chatter bound in real practice on the
basis of biological data is an interesting issue. Notice, how-
ever, that, to prove our main result we do not need to know
these bounds. �

6 Simulations

We simulate the leader-follower network using 50 follower
agents (dots) and 4 leader agents (squares), as shown in Fig-
ure 1. Leaders from this network that influence all the fol-
lowers are selected at random. The simulation illustrates the
fact that the followers in the network converge to locations
inside the convex hull spanned by the static leader agents.

7 Conclusions

In this paper we studied leader-follower first order networks.
We showed that the subset of follower agents converge to
the convex hull spanned by the positions of the stationary
leader agents. This is the case even if leaders and follow-
ers communicate only intermittently. The main result in this
paper relies on recent advances in the switched LaSalle’s
Invariance Principle, and it can help explain the swarming
behaviors observed in the silkworm moth, where the male
moths are attracted to the female moths that only intermit-
tently release pheromones. Future directions of this work
include the analysis of the convergence rate of the followers
to the convex hull and more complex models for the system
dynamics that allow us to capture other interesting phenom-
ena observed in the silkworm moth.
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t = 0.038sec

(a) Three leaders are visible to the followers.

t = 0.114sec

(b) One leader is visible to the followers.

t = 0.152sec

(c) One leader is visible to the followers.

t = 0.19sec

(d) One leader is visible to the followers.

t = 0.266sec

(e) Four leaders are visible to the followers.

t = 0.379sec

(f) Two leaders are visible to the followers.

Fig. 1. Simulation of the follower agents (dots) convergingto a convex hull spanned by the static leader agents (squares). The convex
hull is shown by the line segments connecting the leader agents, while lines between follower agents denote edges. Also,a leader agent
visible to the follower agents in the network is depicted as afilled-in box.
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