
Automatic Generation of Persistent Formations for Multi-Agent
Networks Under Range Constraints

Brian S. Smith, Magnus Egerstedt, and Ayanna Howard

Abstract—In this paper we present a collection of graph-based
methods for determining if a team of mobile robots, subjected
to sensor and communication range constraints, canpersistently
achieve a specified formation. What we mean by this is that
the formation, once achieved, will be preserved by the direct
maintenance of the smallest subset of all possible pairwiseinter-
agent distances. In this context, formations are defined by sets
of points separated by distances corresponding to desired inter-
agent distances. Further, we provide graph operations to describe
agent interactions that implement a given formation, as well as
an algorithm that, given a persistent formation, automatically
generates a sequence of such operations. Experimental results are
presented that illustrate the operation of the proposed methods
on real robot platforms.

I. I NTRODUCTION

Due to recent developments in mobile sensing, computation,
and actuation, formation control for multi-agent networkshas
received significant attention during the last decade. (Seefor
example [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11],
[12], [13], [14] for a recent, representative sample.) In fact,
recent research suggests the use of graph-theoretic structures
to represent formations, where vertices represent agents,and
edges represent specific inter-agent distances to be maintained
through decentralized control laws (see [15], [16], [17], [18],
[19], [20], [21], [22], [23], [24], [25], [26]).

This work is part of a National Aeronautics and Space
Administration (NASA) project to implement a multiple-robot
system for research in Antarctica. In this project, a team of
geologists at NASA should be able to use a mobile sensor
network composed of mobile robots to take sensor readings
across ice shelves in order to better understand the impacts
of global climate change on the ice shelves. According to
specifications, the network should be able to automatically
deploy and distribute itself across an area of interest witha
user-defined resolution, and to achieve specific, user-defined
geometric relationships among the members of the network.
The pre-Antarctic stages of this project will be implemented
with a prototype multiple-robot system, shown in Fig. 1.

Based on the NASA project as a motivating application,
we will study graph-based abstractions of formations, and we
define atarget formationas a set of pairwise, desired inter-
agent distances associated with a complete graph, i.e., these
distances are specified with respect to all pairs of agents.
However, it may not be the case that all inter-agent distances

Brian S. Smith, Magnus Egerstedt, and Ayanna Howard are with
the School of Electrical and Computer Engineering, GeorgiaInsti-
tute of Technology, Atlanta, GA, USA. Email:{brian, magnus,
ayanna.howard}@ece.gatech.edu

Fig. 1. The multi-robot network. This network is used in the pre-Antarctic
stages of this project. Its mobility and sensor abilities approximate the
Antarctic network sufficiently to assemble and deploy formations using the
same automatic tools.

are needed, which leads to the study of so-calledpersistent
formations[27].

In a persistent formation, each agent is assigned a set
of constraints, which are specific inter-agent distances to
maintain. These constraints are oriented in the sense that each
constraint is the responsibility of a single agent rather than
two agents. Maintaining a formation may not require all inter-
agent distances to bedirectly maintained by the control laws.
Persistent formations typically involve only a proper subset of
all possible inter-agent constraints. In [28], graph operations
are proposed that, through successive applications, produce a
graph corresponding to a persistent formation.

We want to use such operations in order to build persistent
formations in the presence of constraints on the effective
communication and sensing distances. In fact, these types of
constraints were not considered in [28], and the main contri-
bution of this paper is the sequential construction of persistent
formations that respect the inter-agent range constraints.

The outline of this paper is as follows: In Section II, we
recall some of the basic definitions needed to set up the
problem, followed by a method for determining if a specific
target formation isrigidly feasiblewith respect to the range
constraints, in Section III. Next, in Section IV, we show
how the same method for determining rigid feasibility also
determinespersistent feasibility. We also present a set of graph
operations for building persistent formations with respect to

the range constraints, as well as an algorithm for automatically
generating a sequence of such operations given a persistent
formation graph (Section V). The experimental results are
discussed in Section VI, followed by the conclusions in
Section VII.

II. PRELIMINARIES

In this section, we review some of the basic assumptions
and terminology needed for the development in later sections.
The main object of interest is a persistent formation in which
individual robots are responsible for maintaining specificinter-
agent distances. Qualitatively, we say that a formation is
persistent if, provided that all agents ensure that the distance
constraints they are responsible for are satisfied, then the
formation is preserved in the sense thatall pairwise distances
are preserved [27].

There are two problems addressed in this paper:

1) Determine if a target formation is persistently feasible
given the maximum sensing and communication range
of the agents.

2) If the formation is persistently feasible, generate a
constraint topology for implementing the formation.

A. Network Trajectories

We assume that the multi-agent network consists ofn agents
indexed byN = {1, . . . , n} such thati ∈ N is the index of
agenti. We definet0 as the initial time andT = [t0,∞) as the
time interval over which the system is defined.∀i ∈ N , we
define a statexi : T 7→ R

2 such thatxi(t) is the state of agent
i at timet ∈ T . We represent thetrajectoryof the network as

X : T 7→ R
2n such thatX (t) =

[

x1 (t)
T

, . . . , xn (t)
T
]T

. We
further assume that∀i ∈ N , xi is continuously differentiable
with respect to time and, as such, so isX .

B. Proximity Range∆

To characterize the sensing and communication abilities of
the agents, aproximity range∆ ∈ (0,∞) is defined, within
which agents can sense and communicate with each other. We
assume that any pairs of agents(i, j) ∈ N × N can directly
sense and communicate with each other at timet if and only
if they are within∆ of each other, i.e.‖xi(t) − xj(t)‖ ≤ ∆.

C. Target Formations

We assume that the desired inter-agent distances are defined
by a set ofn given, relativepositionspi ∈ R2 ∀i ∈ N such
that‖pi−pj‖ describes the desired distances between all pairs
of agents(i, j) ∈ N × N . These positions define atarget
formationP ∈ R2n such thatP =

[

pT
1 , . . . , pT

n

]T
.

D. Network Graph

For the network of sizen, we define graphGn = (V, E)
such that

• V = {v1, . . . , vn} is the vertex set.
• E ⊂ V ×V is the edge set, where each edge in(vi, vj) ∈

E is anordered-pairof vertices such thatvi 6= vj .

In this paper, we utilize a notation such that, for a graphG =
(V, E), V (G) = V ∈ G andE(G) = E ∈ G.

The network graph and a target formationP defines a
weight functionδ : E(Gn) 7→ R

+. Here,δ assigns to each
edge(vi, vj) ∈ E(Gn) the desiredlength, ordistance, between
the corresponding points definingP such thatδ(vi, vj) =
‖pi − pj‖.

The network graphGn can be thus be thought of as repre-
senting a set of constraints associated with a subset of all pairs
of agents, which is why we will refer to this as theconstraint
topologyof the network. Also, each edge(vi, vj) ∈ E(Gn)
implies that agenti must maintain a constant distance‖pj−pi‖
from agentj. As such, each edge inGn models aconstraint
of the network. The direction of the edge implies which agent
has the constraint. For example,∃(vi, vj) ∈ E(Gn) implies
that the control law of agenti depends on agentj.

III. R IGID FEASIBILITY AND RIGID GRAPH GENERATION:
THE MODIFIED “PEBBLE GAME”

In this section, we present rigid feasibility in terms of range
constraints. First, we present rigidity as it has been defined in
previous work. Then, we define rigid feasibility under range
constraints and provide an algorithm for determining if a given
target formationP is rigidly feasible.

A. Rigidity

A trajectoryX represents thecontinuous motionof a multi-
agent network. For a given target formationP , we define a
edge-consistent trajectoryas one such that‖xi(t)− xj(t)‖ =
‖pi − pj‖ ∀(vi, vj) ∈ E(Gn) ∀t ∈ T . We define arigid tra-
jectoryas one such that‖xi(t)−xj(t)‖ = ‖pi −pj‖ ∀(i, j) ∈
N ×N ∀t ∈ T , i.e. the network stays in formation during the
trajectory. Thus, a rigid trajectory represents arigid motion
of the network. For a given formationP and graphGn, the
multi-agent network isrigid if and only if all edge-consistent
trajectories of the network are also rigid trajectories. Ifa
network is not rigid, we say that it isflexible.

The rigidity of the network for a target formationP and
network graphGn implies that the target formation can be
maintained by guaranteeing that the constraints represented
by E(Gn) are maintained. Fig. 2 gives examples of rigid and
flexible multi-agent networks.

B. Infinitesimal Rigidity

Here, we review the concept of infinitesimal rigidity as
presented in [29], [30], [31]. The infinitesimal rigidity of
a network is a stronger condition than rigidity in that all
infinitesimally rigid networks are rigid. While some rigid
networks arenot infinitesimally rigid, the infinitesimal rigidity
of a network is a much easier condition to both test for and
guarantee through our choice in the topology ofGn and target
formationP .

We assume thatxi(t) is continuously differentiable∀i ∈ N .
Since we have defined an edge-consistent trajectory such that

2

x1

x2 x3

x4

(a)

x1

x2 x3

x4

(b)

x1

x2 x3

x4

(c)

Fig. 2. Rigid and flexible networks. 2(a): A flexible network.The dotted
line represents circular motion that agent 4 can perform andstill satisfy its
constraint with agent 3. 2(b): Agent 4 can move in a manner that changes
its distance to agents 1 and 2. 2(c): A rigid network. If all constraints are
satisfied during continuous motion, then the formation doesnot change.

the distance between pointsxi(t) andxj(t) remains constant
all along the trajectory, this implies that

(ẋi (t) − ẋj (t))
T

(xi (t) − xj (t)) = 0 (1)

for all (vi, vj) ∈ E(Gn) ∀t ∈ T . To define a method of
predicting infinitesimal rigidity, we (temporarily) assume that
xi(t0) = pi ∀i ∈ N . The assignment of constant instantaneous
velocitiesui ∈ R2 ∀i ∈ N such thatẋi(t0) = ui satisfies (1)
∀(vi, vj) ∈ E(Gn) whent = t0 is described as aninfinitesimal
motion of the network [31]. LetU ∈ R2n be defined by the
infinitesimal motion such thatU =

[

uT
1 , . . . , uT

n

]T
. Then (1)

is represented in matrix form as

M(P, Gn)U = 0,

where M(P, Gn) is known as therigidity matrix [31]. The
rigidity matrix has|E(Gn)| rows and2n columns. For each
edge(vi, vj) ∈ E(Gn), each rowmij of M(P, Gn) represents
the equation for that edge as a 2n-vector of the form

mij = (0, . . . , (pi − pj)
T , 0, . . . , 0, (pj − pi)

T , . . . , 0). (2)

Here,(pi−pj)
T is in two columns for vertexi, (pj−pi)

T is in
the columns forj, and zeroes are elsewhere [31]. A network
with n ≥ 2 points inR2 and a formationP is infinitesimally
rigid if and only if rank(M(P, Gn)) = 2n− 3 [30], [31].

Infinitesimal rigidity implies rigidity, but rigidity doesnot
imply infinitesimal rigidity [29]. Still, the rigidity matrix is an
effective way to demonstrate infinitesimal rigidity, and thus
rigidity, based on the formation and topology of the network.

C. Generic Rigidity

It is clear that the rigidity of a network depends both on the
topology and the formation. Agenerically rigid graphis an
network graph for which there exists a formationP such that
the network is infinitesimally rigid. Note that generic rigidity
is a property of a network graph, not a network graph and a
formation, as is infinitesimal rigidity. Therefore, we refer to
generically rigid graphs asrigid graphswithout confusion.

If Gn is rigid, and the network is infinitesimally rigid with
formation P ∈ R

2n, we say thatP is a generic formation
of Gn. If Gn is rigid, then the generic formations ofGn

form a dense, open subset ofR2n [30]. This implies that,
for any generically rigid graphGn, any formationP ′ can be
well-approximated by a generic formationP such that the
corresponding network is infinitesimally rigid and, therefore,
rigid.

D. Rigid Feasibility

We definerigid feasibility as follows:
Definition 3.1: A target formationP is rigidly feasiblefor

a multi-agent network with proximity range∆ if and only if
there exists a network graphG∆

n such thatG∆
n is rigid, and

δ(e) < ∆ ∀e ∈ E(G∆
n).

It is clear that adding edges to a rigid graph cannot affect its
rigidity. A minimally rigid graphis rigid but does not remain
rigid after the removal of a single edge. By Laman’s theorem
[32], a network with agents defined inR2 with n ≥ 2 vertices
is minimally rigid if and only if

1) it has2n − 3 edges, and
2) each induced subgraph ofn′ ≤ n vertices has no more

than2n′ − 3 edges.
To generate minimally rigid graphs, we utilize the“pebble

game” algorithm[33], which is an algorithm for constructing
minimally rigid graphs, with a worst case performance of
O(n2) [33]. In the pebble game, each vertex is represented
as having two pebbles, each pebble representing a degree of
freedom for that vertex. Apebble coveringexists if each edge
can be covered by a pebble from a vertex incident to that
edge. To keep track of pebbles, the pebble game works with
a directed graph, where a directed edge(vi, vj) indicates that
edge(vi, vj) is covered by a pebble from vertexvi.

The pebble game starts with a directed graph with no edges
and attempts to add each potential edge one at a time to the
pebble covering in a manner that ensures the second part of
Laman’s theorem is satisfied. Since the pebbles of each vertex
limit the number of edges directed out of each vertex, this is
accomplished by modifying the directions of both the edge to
be added and the other edges already in the graph. If part 2
of Laman’s theorem is satisfied, we say that avalid pebble
coveringhas been found. If a valid pebble covering of2n− 3
such edges is found, then this implies that the first part of
Laman’s theorem is satisfied and the graph is minimally rigid.
For more detail on the implementation of this algorithm, see
[33].

To test for a minimally rigid graph that satisfies Definition
3.1, we modify the pebble game algorithm so that it only

3

considers edges of length less than∆. The modified pebble
game is described in Algorithm 1.

Algorithm 1 ModifiedPebbleGame(P, ∆)

Require: P is a formation ofn points
Initialize G∆

n such thatV (G∆
n) := {v1, . . . , vn}, E(G∆

n) :=
∅
Initialize rigid := false
for all possible edgese = (vi, vj) ∈ V (G∆

n) × V (G∆
n)

such thatδ(e) < ∆ andwhile rigid = false do
E(G∆

n) := E(G∆
n) ∪ e;

Rearrange edge directions to try to find a valid pebble
covering;
if a valid pebble covering isnot found then

E(G∆
n) := E(G∆

n) \ e;
end if

end for
if |E(G∆

n)| = 2n − 3 then
rigid := true;

end if
return (rigid, G∆

n);

The following Theorem 3.1 states the effectiveness of the
modified pebble game to test for rigid feasibility.

Theorem 3.1:A target formationP is rigidly feasible for a
multi-agent network with proximity range∆ if and only if the
algorithmModifiedPebbleGame(P, ∆) returns a minimally
rigid graph.
Proof: Definition 3.1 is satisfied for formationP only if
there exists a rigid graphG∆

n such thatδ(e) < ∆ ∀e ∈
E(G∆

n). This implies the existence of a minimally rigid
graph with the same properties. Assume thatG∆

n exists, but
thatModifiedPebbleGame(P, ∆) fails to return a minimally
rigid graph. Note from [33] that the unmodified pebble game
generates a rigid graph by considering each edge and adding it
to a flexible graph until it becomes minimally rigid. Therefore,
the failure ofModifiedPebbleGame(P, ∆) implies that no
such graph can be generated considering only edges such that
their distance in the network would be less than∆. Since
the unmodified pebble game always returns a minimally rigid
graph [33], this implies that all rigid graphs result in a network
with δ(e) ≥ ∆ for somee ∈ E(G∆

n). However, this violates
our assumption thatG∆

n exists. Therefore, the formation is
rigidly feasible only if ModfiedPebbleGame(P, ∆) returns
a minimally rigid graph.

If the modified pebble game produces such a minimally
rigid graph such thatδ(e) < ∆ ∀e ∈ E(G∆

n), then the
conditions of Definition 3.1 are satisfied.

IV. PERSISTENTFEASIBILITY AND PERSISTENTGRAPH

GENERATION

In this section, we present persistent feasibility in termsof
range constraints. First, we present persistence as it has been
defined in previous work. Then, we define persistent feasibility
under range constraints. Further, we demonstrate that rigid

x1

x3

x4

x2

(a)

x1

x3

x4

x2?

(b)

x1

x3

x4

x2

(c)

x1

x3

x4

x2

(d)

Fig. 3. Persistence example. 3(a): A network that is not persistent. Here,
agent 4 can perform circular motion around agent 3. 3(b): If agent 4 moves,
agent 2 cannot move in a way that preserves the distances between agent 2
and agents 1, 3, and 4. 3(c): A persistent network. It is constraint consistent
and rigid. Agents 3 and 4 are a leader-follower pair. 3(d): Ifagent 4 satisfies
its constraint, the other agents maintain formation duringcontinuous motion.

feasibility and persistent feasibility are equivalent. Wealso
show that the modified pebble game algorithm generates
minimally persistent graphs.

A. Persistence

Persistence is a quality of networks that is very closely
related to the concept ofconstraint consistence. Informally,
we say that constraint consistence means that all constraints
are satisfied as long as all agents satisfy their individual
constraints, i.e., no subset of agents can satisfy their constraints
in a manner which prevents another agent from satisfying a
constraint. Constraint consistence is determined by the number
and orientation of the constraints. Fig. 3 shows constraint
consistent and inconsistent networks. For a more rigorous
definition, see [27]. A network is persistent if and only if it
is rigid and constraint consistent [27]. Fig. 3(c) and Fig. 3(d)
show a persistent network.

B. Persistent Feasibility

Similar to generic rigidity, we say that an network graph
Gn is generically persistentif there exists a target forma-
tion P for which the network is infinitesimally rigid and
constraint consistent, implying that the network is persistent.
Like generic rigidity, generic persistence applies to graphs, not
networks. Therefore, we refer to generically persistent graphs
as persistent graphs without confusion. A persistent graphis
minimally persistentif it is persistent and if no edge can be
removed without losing persistence [27].

4

We definePersistent feasibilityas follows:
Definition 4.1: A target formation defined by configuration

P is persistently feasiblefor a multi-agent network with
proximity range∆ if and only if a exists an network graph
G∆

n such thatG∆
n is persistent, andδ(e) < ∆ ∀e ∈ E(G∆

n).
For any minimally rigid graph, it is possible to assign

directions to the edges such that the obtained directed graph
is minimally persistent [28]. Therefore, we have the following
Theorem 4.1 describing necessary and sufficient conditionsfor
a target formation to be persistently feasible.

Theorem 4.1:For a multi-agent network with proximity
range∆, a target formationP is persistently feasible if and
only if it is rigidly feasible.
Proof: If P is rigidly feasible, then, by Definition 3.1, there
exists a minimally rigid graphG∆

n such that the network is
rigid and, for all edgesδ(e) < ∆ ∀e ∈ E(G∆

n). This implies
that the directions of the edges ofG∆

n such that it is a persistent
graph, implying that rigidly feasible formations are persistently
feasible. Since a network is persistent if and only if it is rigid
and constraint consistent, thenP is not persistently feasible if
it is not rigidly feasible.

Theorem 4.1 shows that the modified pebble game tests for
both rigid and persistent feasibility.

C. Persistent Graph Generation

Here, we show that the pebble game algorithm also gener-
ates minimally persistent graphs.

A graph is minimally persistent if and only if it is minimally
rigid and no vertex has an out-degree larger than 2 [27]. We
denote the out-degree of vertexvi by deg−(vi). Note that the
pebble game produces a directed graphG∆

n , where each edge
(vi, vj) is covered by one of two pebbles from vertexvi. Thus,
we have the following theorem:

Theorem 4.2:The pebble game and modified pebble game
algorithms generate minimally persistent graphs.
Proof: Assume thatG∆

n is a rigid graph successfully generated
by the pebble game. In [33], it is shown that the pebble game
generates a minimally rigid graph. Since each directed edge
(vi, vj) ∈ E(G∆

n) represents the edge being covered by a
pebble from vertexvi, this implies thatdeg−(vi) ≤ 2 ∀vi ∈
V (G∆

n). This implies thatG∆
n is minimally persistent. This

also holds for the modified pebble game.

V. GRAPH OPERATIONS

In this section, we describe methods for representing and
choosing leader-follower pairs of a persistent formation.We
present graph operations that represent agent interactions that
execute a persistent formation. We also present an algorithm
for generating a sequence of graph operations, which repre-
sents a sequence of agent interactions to execute a persistent
formation.

A. Leader-follower pairs

We define aleader-follower pair [16] as a pair of adja-
cent vertices(vl, vf) ∈ V (G∆

n) × V (G∆
n) such that vertex

deg−(vl) = 0, deg−(vf) = 1, and∃(vf , vl) ∈ E(G∆
n). We

say that vertexvl is the leader vertex, and vertexvf is the
follower vertex.

The leader agent has no constraints, and thus has two
degrees of freedom, implying that the persistent formationwill
follow the leader agent inR2. Similarly, the follower agent has
one constraint, and thus one degree of freedom, implying that
the persistent formation will rotate around the leader agent
as the follower agent performs circular motion around the
leader. For a persistent graph, edge-reversing operationscan
make any pair of adjacent agents a leader-follower pair with
the graph remaining persistent [28]. A leader-follower pair is
demonstrated in Fig. 3(c) and Fig. 3(d).

B. Persistent Graph Operations

In an actual multi-agent network, achieving a persistent
formation requires agents with no constraints to interact and
establish constraints. Such a sequence of agent interactions, if
successful, results in a persistent formation, with inter-agent
distances corresponding to the target formation.

Graph operations can be used to represent such a sequence
of agent interactions. [28] presents graph operations for as-
sembling and modifying persistent graphs. These operations
consist of directed vertex addition and edge-splitting oper-
ations. Consider a graphG such that{vi, vj , vp} ∈ V (G),
(vp, vj) ∈ E(G), andvk /∈ V (G). A vertex addition consists
of addingvk to V (G) and adding edges(vk, vi), (vk, vj) to
E(G). Fig. 4(a) and Fig. 4(b) show a vertex addition operation.
An edge-splitting operation consists of addingvk to V (G) and
adding edges(vk, vi), (vk, vj) to E(G), while also removing
edge (vp, vj) from E(G). Fig. 4(c) and Fig. 4(d) show
an edge-splitting operation. Graph operation sequences for
assembling minimally persistent graphs are typically generated
by performing inverse graph operations on the graph to be
assembled, along with edge reversing operations.

In [28], it is shown that any persistent graph can be decon-
structed by a combination of these inverse operations, and then
reconstructed by a reverse sequence of non-inverse operations.
Additionally, [28] guarantees that each intermediate graph
is persistent. However, these methods are completely graph
based, and do not take into account a proximity range for
a multi-agent network. Consider Fig. 5. This network has a
minimally rigid graph. An inverse vertex addition cannot be
performed. Also, note that any inverse edge-splitting operation
will introduce a new edge into the network which has a length
longer than any other edge. This new edge could violate the
proximity range of the mobile agent network.Therefore, given
a formation and a proximity range limit on the edge lengths of
a network, certain network graphs cannot be deconstructed by
these traditional operations without introducing a constraint
that violates the proximity range.

C. Persistent-∆ Operations

In this section we present two new graph operations to
construct persistent graphs. These, combined with traditional

5

vk

vi

vj

(a)

vk

vi

vj

(b)

vk

vi

vj

vp

(c)

vk

vi

vj

vp

(d)

Fig. 4. Persistent graph operations. Fig. 4(a) and Fig. 4(b)show the results
of a vertex addition operation. Fig. 4(c) and Fig. 4(d) show the results of an
edge-splitting operation. In this figure, the shaded area represents a minimally
persistent graph before the operation. The resulting graphis always minimally
persistent, as well.

x1

x2 x3 x4 x5

x6 x7

Fig. 5. An example network where performing an inverse edge-splitting
operation introduces a new edge whose length is greater thanall pre-existing
edges. This new edge could violate the proximity range of thenetwork.

vertex addition, allow any persistent graph with a leader-
follower pair to be constructed without using any edges that
are not contained in the final graph. We call this set of three
graph operationspersistent-∆ operations.

Each operation is represented by a doubleop = (V, E),
where V (op) = V ∈ op is a set of vertices to add to the
graph, andE(op) = E ∈ op is a set of edges to add to the
graph.

A vertex addition as a persistent-∆ operation defined
as in Section V-B. A vertex addition is represented as
vertexAddition(vi, vj , vk) = ({vk}, {(vk, vi), (vk, vj)}).

vk

vi

vj

(a)

vk

vi

vj

(b)

vj vi

(c)

vj vi

(d)

vi

vj

(e)

vi

vj

(f)

Fig. 6. Persistent-∆ graph operations. 6(a), 6(b): a vertex addition. 6(c), 6(d):
a single-vertex addition. 6(e), 6(f): an edge insertion operation. As before, the
shaded area represents a minimally persistent graph beforethe operation.

Consider a directed graphG such that vi ∈ V (G),
vj /∈ V (G). Single-vertex additionconsists of adding a vertex
vj to V (G) and adding edge(vj , vi) to E(G). A single-
vertex addition is represented assingleV ertex(vi, vj) =
({vj}, {(vj, vi)}). Note that this operation doesnot preserve
persistence. In fact, it guarantees a loss of persistence, since
this new vertex has one degree of freedom.

Consider a directed graphG∆
n such that(vi, vj) ∈ V (G)×

V (G) and(vj , vi) /∈ E(G). Edge insertionconsists of adding
edge (vj , vi) to E(G). An edge insertion is represented as
edgeInsertion(vi, vj) = (∅, {(vj , vi)}). Fig. 6 shows these
operations.

6

D. Persistent-∆ Sequence Generation

This section describes how persistent-∆ operations can be
used to construct any persistent graph with a leader-follower
pair.

If G∆
n is a minimally persistent graph such that vertex

deg−(vi) ≥ 1 and vertexdeg−(vj) ≤ 1, then there is a
directed path fromvi to vj [28]. Also, if vl, vf ∈ V (G∆

n)
are a leader-follower pair, respectively, then, for all vertices
v ∈ V (G∆

n) \ {vl, vf}, deg−(v) = 2 [27]. This leads to the
following lemma:

Lemma 5.1:Let G∆
n be a minimally persistent graph such

that vertexvl is the leader vertex and vertexvf is the follower
vertex of a leader-follower pair. This implies the existence of
a directed path from all verticesv ∈ V (G∆

n) \ vl to vl.
Proof: Assume thatG∆

n exists as in Lemma 5.1. Sincevl and
vf are a leader-follower pair, this implies a directed path from
vf to vl and thatdeg−(vl) < deg−(vf) ≤ 1. This implies that
all verticesv ∈ V (G∆

n) \ {vl, vf}, deg−(v) = 2. Then there
is a directed path fromv to vf andvl. This implies that there
exists path from all vertices inV (G∆

n) \ vl to vl.

This leads us to an algorithm for constructing a sequence
of graph operations to construct a minimally persistent graph.
We define aleader-follower seedas a graphG2 such that
V (G2) = {vl, vf} andE(G2) = {(vf , vl)}. Here, vertexvl is
the leader vertex, and vertexvf is the follower vertex.

Any minimally persistent graph can be constructed from
a leader-follower seed by a sequence of persistent-∆ graph
operations. First, given a minimally persistent graphG∆

n , a
graphG is initialized to the leader-follower seedG2 using the
leader and follower vertices inG∆

n . Until all vertices and edges
of G∆

n are present inG, the following process is performed:
1) Generate each possible edge insertion.
2) Generate each possible vertex addition.
3) If no vertex additions were performed, generate each

possible single-vertex addition.
The condition for single-vertex addition is due to the fact that
single-vertex addition does not preserve persistence. Directed
vertex addition does. Therefore, these are preferred. Edge
insertions are necessary to complete the graph after single-
vertex additions are performed. After this process, each ofthe
generated graph operations is executed on the graphG. This
process is repeated until all vertices and edges have been added
to the graph. Algorithm 2 describes this process. In Algorithm
2, we represent concatenating elements to the end of sequence
S by S · s.

Fig. 7 shows a resulting sequence of this algorithm. We have
the following theorem for the effectiveness of this method:

Theorem 5.1:For a minimally persistent graphG∆
n with

a leader-follower pair, the persistent-∆ generation algorithm
will generate a sequence of graph operations that construct
G∆

n from a leader-follower seed.
Proof: Assume thatG∆

n exists, withvl, vf as the leader and
follower of a leader-follower pair, and thatG is the initialized
leader-follower seed. If the graph has only two vertices, the
graph is constructed.

Algorithm 2 Persistent∆Generation(~Gn)

Require: GraphG∆
n exists such thatG∆

n is minimally persis-
tent with leader-follower pair(vl, vf).
Initialize leader-follower seedG := G2 such thatV (G) :=
V (G2) = {vl, vf} andE(G) := E(G2) = {(vf , vl)};
Initialize sequence of graph operationsS := ∅;
while |V (G)| < |V (G∆

n)| or |E(G)| < |E(G∆
n)| do

Initialize sequence of graph operationsSi := ∅;
for all (vi, vj) ∈ V (G) × V (G) do
{Generate all possible edge insertions}
if (vj , vi) ∈ E(G∆

n) and (vj , vi) /∈ E(G) then
ei := edgeInsertion(vi, vj);
Si := Si · ei;

end if
end for
Initialize vertexAdded := false;
for all vk ∈ V (G∆

n) such thatvk /∈ V (G) do
{Generate all possible vertex additions}
if ∃(vi, vj) ∈ V (G) × V (G) such that
(vk, vi), (vk, vj) ∈ E(G∆

n) then
va := vertexAddition(vi, vj , vk)
Si := Si · va;
vertexAdded := true;

end if
end for
if vertexAdded = false then

for all vj ∈ V (G∆
n) such thatvj /∈ V (G) do

{Generate all possible single-vertex additions}
if ∃vi ∈ V (G) such that(vj , vi) ∈ E(G∆

n) then
sva := singleV ertex(vi, vj);
Si := Si · sva;

end if
end for

end if
for all operationsop ∈ Si do
{Perform all determined graph operations}
V (G) := V (G) ∪ V (op);
E(G) := E(G) ∪ E(op);

end for
S := S · Si;

end while
return S;

If there are more than two vertices, then, by Lemma 5.1,
there exists a path from all vertices inV (G∆

n)\ {vl} to vertex
vl. This implies that there exists a pair of vertices(vi, vj) such
that vj ∈ V (G∆

n), vj /∈ V (G), vi ∈ V (G), (vj , vi) ∈ E(G∆
n).

This implies that a single-vertex addition is possible (there
may also be vertex additions possible, but this is unnecessary
for the proof).

Assume that a single-vertex operation is performed, increas-
ing the size ofV (G) andE(G). Note thatG always has the
leader-follower pair. Therefore, if there are remaining vertices
v ∈ V (G∆

n) such thatv /∈ V (G), then Lemma 5.1 also shows

7

x1

x2 x3 x4 x5

x6 x7

(a)

x1

x2 x3 x4 x5

x6 x7

(b)

x1

x2 x3 x4 x5

x6 x7

(c)

x1

x2 x3 x4 x5

x6 x7

(d)

Fig. 7. A sequence of Persistent-∆ operations constructing a framework. 7(a):
The initial leader-follower seed. 7(b): Two vertex additions are performed.
7(c): No more vertex additions are possible. Three single-vertex additions are
performed. 7(d): Three edge insertions are performed, one for each single-
vertex addition.

that more single-vertex additions are possible. In fact, more
single-vertex additions will always be possible until there does
not exist av ∈ V (G∆

n) such thatv /∈ V (G). Since we have
not added any verticesv /∈ V (G∆

n) to V (G), this implies that,
at this point,V (G∆

n) = V (G).
For all edges (vj , vi) ∈ E(G∆

n), either (vj , vi) =
(vf , vl),the leader-follower edge, or(vj , vi) is not the leader-
follower edge. If (vj , vi) is the leader-follower edge, then
it was added toE(G) when the leader-follower seed was
initialized. If it is not the leader-follower edge, note that
we have already proven that all verticesV (G∆

n) are added
to V (G) such thatV (G∆

n) = V (G). This implies that, for
any remaining edges not added by vertex or single-vertex
additions, there exists a pair of vertices(vi, vj) ∈ V (G) such
that (vj , vi) ∈ E(G∆

n) and (vj , vi) /∈ E(G). These edges are
added by edge insertions.

Since the algorithm uses these conditions to search for
single-vertex additions and edge-insertions, all such opera-
tions are performed, guaranteeing thatV (G∆

n) = V (G) and
E(G∆

n) = E(G). qed

VI. I MPLEMENTATION SCENARIO AND RESULTS

Here, we demonstrate the assembly of formations on a
multi-robot network using graph operations.

In [34], we consider automatic methods for implementing a
subset of minimally persistent formations with leader-follower
pairs. Specifically, we consider minimally persistent forma-
tions that correspond tostably rigid graphs[35], [36]. Since
stably rigid graphs are acyclic, the implementation of these

w

vi

vj

vk

vi

vj

Fig. 9. A vertex addition rule. Here, robots whose labels correspond tovi

and vj imply that these robots have been assigned to positionsi and j in
the formation. Each vertex addition graph operation (as depicted in Fig. 6)
defines a vertex addition rule as shown in this figure. These rules allow the
formation to be assembled.

formations with control laws is simplified. As a consequence,
these graphs can be assembled from a leader-follower seed by
sequences of vertex additions only.

We implement the following scenario: We have a network
of six robots with data collection sensors, and we wish to
distribute them in a 5 m triangular coverage pattern over an
area of interest. Triangular coverage patterns occur frequently,
since they dictate an equal distance (in this case, of 5 m) be-
tween each adjacent robot in the coverage pattern. Therefore,
we enter a triangulation pattern of positions in our graphical
program discussed in Section II and shown in Fig. 8.

The points entered in the GUI define our target formation
P . The modified pebble game is used to define the minimally
persistent graphG∆

n shown in Fig. 8, as well as a leader-
follower seedG2 (here, with vertices 1 and 2), and a sequence
of vertex addition operations that define a Henneberg sequence
S.

To implement these graph operations with the network, we
us anEmbedded Graph Grammar (EGG)system. In this sys-
tem, arule is defined for each graph operation, as well as the
assembly of the leader-follower seed graph. The EGG system
deals with labeled graphs where each label corresponds to the
position in the formation assigned to each robot. Each rule has
a left graphL and aright graph R, and this pair in ruler is
denoted as(L ⇀ R) ∈ r. We defineGn as the network graph
corresponding to the actual robot network. When an induced
subgraph ofGn is a label-preserving isomorphism ofL, it can
be replaced byR. Thus, we can define rules that correspond
to vertex additions for implementing formation assembly. Fig.
9 shows how each vertex addition graph operation (Fig. 6)
define vertex addition rules in the EGG system.

Initially, each robot begins with a label ofw, indicating
that the robot is not assigned a position. First, the leader-
follower rule assigns the leader and follower position to two
robots. After this, vertex addition rules (corresponding to
vertex addition operations) assign other positions to other
robots. As such, the topology ofGn changes as the system
evolves. Finally, each robot is assigned a position, and the

8

Fig. 8. The Graphical User Interface (GUI) for specifying formations. By defining the formationP and the proximity range∆, the software uses our
methods to determine if the formation is persistently feasible. If so, it automatically generates a sequence of persistent-∆ graph operations for assembling
such a formation, as well as analogous rules for an Embedded Graph Grammar (EGG) system to assemble the formation. The EGGrules are used by the
network to assemble formations with the multi-robot network in 10.

labeling ofGn is an isomorphism fromGn to G∆
n , the desired

network graph for our target formationP . The EGG system
also describes themodeof each robot, corresponding to the
vertex it is assigned inG∆

n . The topology ofG∆
n and the

geometry defined by the target formationP define the control
laws for each robot according to the position it is assigned
in the formation. This combination of assembly rules and
control laws result in the geometry of the assembled formation
corresponding to the target formationP , with a topology
corresponding toG∆

n (For a more detailed explanation of the
definition of this EGG system, see [34]).

Fig. 10 shows the execution results of the scenario. In this
figure, each robot is labeled with eitherw, indicating that it is
a wanderer, or with the number corresponding to its vertex in
Fig. 8. In Fig. 10(a), we see the initial setup, where each robot
is a wanderer. First, a leader-follower pair is formed such that
one of the robots is now a leader (labeled1), and the other
is a follower (labeled2), and the follower begins moving to
reach a distance of5 m from the leader, as shown in Figs.
10(b) and 10(c).

As shown in Figs. 10(d) and 10(e), two vertex addition
position operations are applied simultaneously (robots labeled
3 and4). Similarly, Figs. 10(f) and 10(g) show two concurrent
vertex addition operations being applied (robots labeled5 and
6). Finally, the formation is successfully completed, as shown
in Fig. 10(h).

VII. C ONCLUSIONS

In this paper, we presented a method for determining if
given target formations for multi-agent networks are persis-
tently feasible in the sense that they can be realized by a team
of mobile agents with limited sensing and communication
range. We introduced an algorithm for generating minimally

persistent graphs under such proximity constraints and we
also presented new graph operations to construct a persistent
graph that represents a formation under range constraints,as
well as a method for automatically generating a sequence of
these operations for any formation in question. These graphs
and operations describe the control and coordination strategies
necessary to allow the desired formation to emerge in a multi-
agent network. Experimental results were given that show that
the developed methods can be implemented on a real robot
network.

VIII. A CKNOWLEDGEMENTS

This work was partially supported under a contract with the
National Aeronautics and Space Administration. We also thank
Julien Hendrickx for helpful discussions about graph rigidity and
persistence.

REFERENCES

[1] T. Balch and R. C. Arkin, “Behavior-based formation control for
multirobot teams,”IEEE Trans. Robot. Automat., vol. 14, no. 6, pp.
926–939, Dec. 1998.

[2] J. Cortés, S. Martı́nez, and F. Bullo, “Robust rendezvous for mobile
autonomous agents via proximity graphs ind dimension,” to appear.

[3] J. Desai, J. Ostrowski, and V. Kumar, “Modeling and control of forma-
tions of nonholonomic mobile robots,”IEEE Trans. Robot. Automat.,
vol. 17, no. 6, pp. 905–908, Dec. 2001.

[4] K. D. Do and J. Pan, “Nonlinear formation control of unicycle-type
mobile robots,”Robotics and Autonomous Systems, vol. 55, no. 3, pp.
191–204, March 2007.

[5] M. Egerstedt and X. Hu, “Formation constrained multi-agent control,”
IEEE Trans. Robot. Automat., vol. 17, no. 6, pp. 947–951, Dec. 2001.

[6] S. Kalantar and U. R. Zimmer, “Distributed shape controlof homoge-
neous swarms of autonomous underwater vehicles,”Autonomous Robots,
vol. 22, no. 1, pp. 37–53, January 2007.

[7] G. A. Kaminka and R. Glick, “Towards robust multi-robot formations,”
in Conference on International Robotics and Automation, 2006, pp. 582–
8.

9

wwwwww

(a)

1

2

wwww

(b)

1

2

wwww

(c)

1

2

3
4

ww

(d)

1

23

4

ww

(e)

1

23

45 6

(f)

1

23

45

6

(g)

1

23

4

5

6

(h)

Fig. 10. EGG execution of the graph operations on the multi-robot network. Fig. 10(a) shows each robot labeled asw. Fig. 10(b) shows the results of the
leader-follower seed graph being generated. Now a follower(robot 2) begins to satisfy the constraint indicated by the edge to the leader (robot1, shown in
Fig. 10(c). Once the follower has finalized its position, twovertex additions are executed, shown in Fig. 10(d). Robots labeled3 and4 begin to satisfy their
constraints with the robots labeled1 and 2, as shown in Fig. 10(e). Similarly, Figs. 10(f) and Fig. 10(g) show two more concurrent vertex additions. Fig.
10(h) shows the completed formation.

10

[8] J. Lawton, R. Beard, and B. Young, “A decentralized approach to
formation maneuvers,”IEEE Trans. Robot. Automat., vol. 19, no. 6,
pp. 933–941, Dec. 2003.

[9] N. E. Leonard and E. Fiorelli, “Virtual leaders, artificial potentials and
coordinated control of groups,” inProceedings of the IEEE Conference
on Decision and Control 2001, Orlando, Florida, Dec. 2001, pp. 2968–
2973.

[10] J. Lin, A. Morse, and B. Anderson, “The multi-agent rendezvous
problem,” in Proceedings of the 42nd IEEE Conference on Decision
and Control, Maui, Hawaii USA, Dec. 2003, pp. 1508–1513.

[11] K. Sugihara and I. Suzuki, “Distributed motion coordination of multiple
robots,” inProceedings of IEEE Int. Symp. on Intelligent Control, 1990,
pp. 138–143.

[12] L. Vig and J. A. Adams, “Multi-robot coalition formation,” IEEE
Transactions on Robotics, vol. 22, no. 4, pp. 637–49, August 2006.

[13] L. Yuan, C. Weidong, and X. Yugeng, “Energy-efficient aggregation
control for mobile sensor networks,” inInternational Conference on
Intelligent Computing, vol. 344. Kunming, China: Intelligent Control
and Automation, August 2006, pp. 188–93.

[14] T. Zhijun and U. Ozguner, “On non-escape search for a moving target
by multiple mobile sensor agents,” inAmerican Control Conference,
American Automatic Control Council. Minneapolis, MN, USA:IEEE,
June 2006, p. 6.

[15] H. Ando, Y. Oasa, I. Suzuki, and M. Yamashita, “Distributed mem-
oryless point convergence algorithm for mobile robots withlimited
visibility,” IEEE Trans. Robot. Automat., vol. 15, pp. 818–828, Oct.
1999.

[16] T. Eren, W. Whiteley, B. D. O. Anderson, A. S. Morse, and P. N.
Belhumeur, “Information structures to secure control of rigid formations
with leader-follower architecture,” inProceedings of the American
Control Conference, Portland, Oregon, June 2005, pp. 2966–2971.

[17] J. A. Fax and R. M. Murray, “Graph laplacian and stabilization of vehicle
formations,” inProceedings of the 15th IFAC Conf, 2002, pp. 283–288.

[18] J. Fax and R. Murray, “Information flow and cooperative control of
vehicle formations,”IEEE Trans. Automat. Contr., vol. 49, pp. 1465–
1476, Sept 2004.

[19] J. L. A. Jadbabaie and A. S. Morse, “Coordination of groups of mobile
autonomous agents using nearest neighbor rules,”IEEE Transactions on
Automatic Control, vol. 48, no. 6, pp. 988–1001, June 2003.

[20] M. Ji and M. Egerstedt, “Distributed coordination control of multi-
agent systems while preserving connectedness,”IEEE Transactions on
Robotics, vol. 23, pp. 693–703, 2007.

[21] Z. Lin, M. Broucke, and B. Francis, “Local control strategies for groups
of mobile autonomous agents,”IEEE Trans. Automat. Contr., vol. 49,
no. 4, pp. 622–629, 2004.

[22] Y. Kim and M. Mesbahi, “On maximizing the second smallest eigenvalue
of a state-dependent graph laplacian,”IEEE Trans. Automat. Contr.,
vol. 51, pp. 116–120, Jan. 2006.

[23] W. Ren and R. Beard, “Consensus of information under dynamically
changing interaction topologies,” inProceedings of the American Con-
trol Conference 2004, vol. 6, June 30-July 2 2004, pp. 4939–4944.

[24] R. O. Saber and R. M. Murray, “Distributed structural stabilization and
tracking for formations of dynamic multi-agents,” inProceedings of the
41st IEEE Conference on Decision and Control 2002, vol. 1, Dec. 2002,
pp. 209–215.

[25] ——, “Flocking with obstacl avoidance: cooperation with limited com-
munication in mobile networks,” inProceedings of the 42nd IEEE
Conference on Decision and Control 2003, vol. 2, Maui, Hawaii USA,
Dec. 2003, pp. 2022–2028.

[26] ——, “Agreement problems in networks with directed graphs and
switching toplogy,” in Proceedings of the 42nd IEEE Conference on
Decision and Control 2003, vol. 4, Maui, Hawaii USA, Dec. 2003, pp.
4126–4132.

[27] J. M. Hendrickx, B. D. O. Anderson, J.-C. Delvenne, and V. D.
Blondel, “Directed graphs for the analysis of rigidity and persistence
in autonomous agent systems,”International Journal of Robust and
Nonlinear Control, 2000.

[28] J. M. Hendrickx, B. Fidan, C. Yu, B. D. O. Anderson, and V.D. Blondel,
“Elementary operations for the reorganization of minimally persistent
formations,” in Proceedings of the Mathematical Theory of Networks
and Systems (MTNS) Conference, no. 17, Kyoto, Japan, July 2006, pp.
859–873.

[29] H. Gluck, “Almost all simply connected closed surfacesare rigid,” in

Geometric topology, Lecture Notes in Math, vol. 438. Berlin: Springer,
1975, pp. 225–239.

[30] B. Roth, “Rigid and flexible frameworks,”The American Mathematical
Monthly, vol. 88, no. 1, pp. 6–21, 1981.

[31] T. Tay and W. Whiteley, “Generating isostatic frameworks,” Structural
Topology, no. 11, pp. 21–69, 1985.

[32] G. Laman, “On graphs and rigidity of plane skeletal structures,”Journal
of Engineering Mathematics, vol. 4, no. 4, pp. 331–340, October 1970.

[33] D. J. Jacobs and B. Hendrickson, “An algorithm for two-dimensional
rigidity percolation: The pebble game,”Journal of Computational
Physics, vol. 137, no. 2, pp. 346–365, June 1997.

[34] B. S. Smith, M. Egerstedt, and A. Howard, “Automatic deployment and
formation control of decentralized multi-agent networks,” Proceedings of
the IEEE International Conference on Robotics and Automation, 2008.

[35] J. Baillieul and A. Suri, “Information patterns and hedging brockett’s
theorem in controlling vehicle formations,”Proceedings of the 42nd
IEEE International Conference on Decision and Control, pp. 556–563,
Dec. 2003.

[36] T. Eren, W. Whiteley, B. D. Anderson, A. S. Morse, and P. N.
Belhumeur, “Information structures to secure control of rigid formations
with leader-follower architecture,”Proceedings of the 2005 American
Control Conference, vol. 4, pp. 2966–2971, Jun. 2005.

11

