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Abstract—In this paper we present a collection of graph-based
methods for determining if a team of mobile robots, subjectd
to sensor and communication range constraints, capersistently
achieve a specified formation. What we mean by this is that
the formation, once achieved, will be preserved by the dirgc
maintenance of the smallest subset of all possible pairwisater-
agent distances. In this context, formations are defined byess
of points separated by distances corresponding to desirechtier-
agent distances. Further, we provide graph operations to dsribe
agent interactions that implement a given formation, as welas
an algorithm that, given a persistent formation, automatially
generates a sequence of such operations. Experimental résuare
presented that illustrate the operation of the proposed mdtods
on real robot platforms.

I. INTRODUCTION

Due to recent developments in mobile sensing, computatig
and actuation, formation control for multi-agent netwohles
received significant attention during the last decade. (8e€ Frig. 1. The multi-robot network. This network is used in the-pntarctic
example [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [1]], stages of this project. Its mobility and sensor abilitiespragimate the
[12], [13], [14] for a recent, representative sample.) latfa Q;‘,ﬁ?g"gﬁtg‘,?ﬁa’{ﬁf'ioiﬁ'f'°'e”“y to assemble and deploy faiores using the
recent research suggests the use of graph-theoreticisesact '
to represent formations, where vertices represent agents,
edges represent specific inter-agent distances to be nm&idta are needed, which leads to the study of so-cafledsistent
through decentralized control laws (see [15], [16], [12B]l formations[27].

[19], [20], [21], [22], [23], [24], [25], [26]). In a persistent formation, each agent is assigned a set

This work is part of a National Aeronautics and Spacgf constraints which are specific inter-agent distances to
Administration (NASA) project to implement a multiple-rob - maintain. These constraints are oriented in the sense alht e
system for research in Antarctica. In this project, a team gpnstraint is the responsibility of a single agent rathemth
geologists at NASA should be able to use a mobile sensgfo agents. Maintaining a formation may not require all inte
network composed of mobile robots to take sensor readinggent distances to kiirectly maintained by the control laws.
across ice shelves in order to better understand the impqﬁﬁsistent formations typ|ca||y involve On|y a proper thef
of global climate change on the ice shelves. According | possible inter-agent constraints. In [28], graph ofiers
Specifications, the network should be able to automaticagye proposed that, through successive app"cations' pmdu
deploy and distribute itself across an area of interest @ithgraph corresponding to a persistent formation.
user-defined resolution, and to achieve specific, useretfin \we want to use such operations in order to build persistent
geometric relationships among the members of the netwofkymations in the presence of constraints on the effective
The pre-Antarctic stages of this project will be implemehtecommunication and sensing distances. In fact, these types o
with a prototype multiple-robot system, shown in Fig. 1. constraints were not considered in [28], and the main contri

Based on the NASA project as a motivating applicatiombution of this paper is the sequential construction of séesit
we will study graph-based abstractions of formations, ard Miormations that respect the inter-agent range constraints
define atarget formationas a set of pairwise, desired inter- The outline of this paper is as follows: In Section II, we
agent distances associated with a complete graph, i.ese thgcall some of the basic definitions needed to set up the
distances are specified with respect to all pairs of agengsoplem, followed by a method for determining if a specific
However, it may not be the case that all inter-agent distanagrget formation isrigidly feasiblewith respect to the range

constraints, in Section Ill. Next, in Section IV, we show
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the range constraints, as well as an algorithm for autowgtic In this paper, we utilize a notation such that, for a gréapk
generating a sequence of such operations given a persisténte), V(G) =V € G andE(G) = E € G.

formation graph (Section V). The experimental results are The network graph and a target formatidh defines a
discussed in Section VI, followed by the conclusions iweight functions : F(G,) — R*. Here,d assigns to each
Section VII. edge(v;,v;) € E(G,) the desiredength or distance between
the corresponding points defining such thaté(v;,v;) =
pi — pj-

In this section, we review some of the basic assumptionsThe network grapt@,, can be thus be thought of as repre-
and terminology needed for the development in later segtiosenting a set of constraints associated with a subset ofial p
The main object of interest is a persistent formation in Wwhicof agents, which is why we will refer to this as taenstraint
individual robots are responsible for maintaining spedifter- - topology of the network. Also, each edge;,v;) € E(Gy)
agent distances. Qualitatively, we say that a formation implies that agent must maintain a constant distange —p; ||
persistent if, provided that all agents ensure that thewlé® from agentj. As such, each edge iff,, models aconstraint
constraints they are responsible for are satisfied, then diethe network. The direction of the edge implies which agent
formation is preserved in the sense thlitpairwise distances has the constraint. For examplé;,v;) € E(G,,) implies
are preserved [27]. that the control law of agentdepends on agent

There are two problems addressed in this paper:

1) Determine if a target formation is persistently feasibléll. R1GID FEASIBILITY AND RIGID GRAPH GENERATION:

given the maximum sensing and communication range THE MODIFIED “PEBBLE GAME”

of the agents. In thi . t riid feasibility in t f
2) If the formation is persistently feasible, generate a n this section, we present rigid Teasioility In terms of gan

constraint topology for implementing the formation. cons_tralnts. First, we present_r|g|d_|t3_/ as it has been ddfine
previous work. Then, we define rigid feasibility under range

A. Network Trajectories constraints and provide an algorithm for determining if\egi
target formationP is rigidly feasible.

Il. PRELIMINARIES

We assume that the multi-agent network consists afents
indexed byN = {1,...,n} such thati € N is the index of .
agenti. We definel as the initial time and” = [t(, c0) as the A. Rigidity
time interval over which the system is definéd.€ N, we A trajectory X represents theontinuous motiorf a multi-
define a state;; : T — R? such thatr;(t) is the state of agent agent network. For a given target formatiéh we define a
i at timet € T'. We represent theajectory of the netV\C/Fork as edge-consistent trajectos one such thatr; (t) — z;(t)|| =
X : T — R such thatX (t) = |z (1), ...,z ()| .We [P = pjll V(vi,v5) € E(Gn) Vi € T. We define arigid tra-
further assume thati € N, z; is continuously diffefentiable JECOTY as one such thae; (t) —; (1) || = |lpi —pyll V(3. 5) €
with respect to time and, as such, saXs N x NvteT,ie. th_e.netwprk stays in format_pn durlng the

trajectory. Thus, a rigid trajectory representsigid motion
B. Proximity Range\ of the network. For a given formatioR and graphG,, the
multi-agent network isigid if and only if all edge-consistent

the agents, groximity rangeA ¢ (0,00) is defined, within trajectori_es of t_h_e network are _al_so rigid trajectories.alf
which agents can sense and communicate with each other. YiEVOrk is not rigid, we say that it iexible _

assume that any pairs of ageitsj) € N x N can directly The rigidity of the ngtwork for a target forma_ﬂoﬁ and
sense and communicate with each other at tirifeand only network graphG,, implies that the target formation can be

if they are withinA of each other, i.el|z;(t) — z;(t)] < A. maintained by guaranteeing that the constraints repregent
by E(G,,) are maintained. Fig. 2 gives examples of rigid and

C. Target Formations flexible multi-agent networks.

To characterize the sensing and communication abilities

We assume that the desired inter-agent distances are defined
by a set ofn given, relativepositionsp; € R? Vi € N such B. Infinitesimal Rigidity
that||p; —p; || describes the desired distances between all pairgjere, we review the concept of infinitesimal rigidity as
of agents(i,j) € N x N. These positions define @rget presented in [29], [30], [31]. The infinitesimal rigidity of
formation P € R*" such thatP = [p{,...,pL]" . a network is a stronger condition than rigidity in that all
infinitesimally rigid networks are rigid. While some rigid
D. Network Graph networks are{ot i%finitesimally rigid, tr?e infinitesimal rigidit%/
For the network of sizen, we define graplz,, = (V, E) of a network is a much easier condition to both test for and

such that guarantee through our choice in the topologybf and target
o V={vy,...,v,} is the vertex set. formation P.
« E C VxVisthe edge set, where each edgéun v;) € We assume that;(t) is continuously differentiablei € V.
E is anordered-pairof vertices such that; # v;. Since we have defined an edge-consistent trajectory suth tha



C. Generic Rigidity
o1 o1 It is clear that the rigidity of a network depends both on the
/\ /\ topology and the formation. Ayenerically rigid graphis an
9 T3 9 T3 network graph for which there exists a formatiénsuch that
: g : i the network is infinitesimally rigid. Note that generic dgy
/ [ is a property of a network graph, not a network graph and a
S T4 formation, as is infinitesimal rigidity. Therefore, we ref®
generically rigid graphs asgid graphswithout confusion.

If G, is rigid, and the network is infinitesimally rigid with
@ (b) formation P € R?", we say thatP is a generic formation
of G,. If G, is rigid, then the generic formations af,

1 form a dense, open subset Bf" [30]. This implies that,

: for any generically rigid graplds,,, any formationP’ can be

/\ well-approximated by a generic formatiaR such that the
2 XT3 corresponding network is infinitesimally rigid and, thene,

\ / rigid.
o4 D. Rigid Feasibility

We definerigid feasibility as follows:
Definition 3.1: A target formationP is rigidly feasiblefor
© a multi-agent network with proximity rangd if and only if

there exists a network graph2 such thatG24 is rigid, and
Fig. 2. Rigid and flexible networks. 2(a): A flexible networkhe dotted 5(6) < A Ve € E(GA)
)

line represents circular motion that agent 4 can perform sifidsatisfy its . . . .
constraint with agent 3. 2(b): Agent 4 can move in a manner thanges Itis clear that addlng edges to a r'g|d graph cannot affect it

its distance to agents 1 and 2. 2(c): A rigid network. If alhswaints are rigidity. A minimally rigid graphis rigid but does not remain
satisfied during continuous motion, then the formation duatschange. rigid after the removal of a single edge. By Laman’s theorem
[32], a network with agents defined IR? with n > 2 vertices

is minimally rigid if and only if

1) it has2n — 3 edges, and

2) each induced subgraph af < n vertices has no more
(b (8) = (£)" (i (8) = 2; (1) = 0 (1) than2n’ — 3 edges.

To generate minimally rigid graphs, we utilize thgebble
game” algorithm[33], which is an algorithm for constructing
minimally rigid graphs, with a worst case performance of
lﬁ(rﬂ) [33]. In the pebble game, each vertex is represented
as having two pebbles, each pebble representing a degree of
freedom for that vertex. Aebble coveringxists if each edge
can be covered by a pebble from a vertex incident to that
edge. To keep track of pebbles, the pebble game works with
a directed graph, where a directed edgg v;) indicates that

M(P,G,)U =0, edge(v;,v;) is covered by a pebble from vertex.

The pebble game starts with a directed graph with no edges
where M (P, G,,) is known as therigidity matrix [31]. The and attempts to add each potential edge one at a time to the
rigidity matrix has|E(G,,)| rows and2n columns. For each pebble covering in a manner that ensures the second part of
edge(v;, v;) € E(Gy), each rowm;; of M (P, G,,) represents | aman’s theorem is satisfied. Since the pebbles of eachxverte
the equation for that edge as a 2n-vector of the form limit the number of edges directed out of each vertex, this is

L , AT , NT accomplished by modifying the directions of both the edge to

mig = 0oy (i =), 00000 (pg = i), 0)- () be added and the other edges already in the graph. If part 2
Here,(p;—p;)" is in two columns for vertex, (p; —p;)” isin of Laman’s theorem is satisfied, we say thavalid pebble
the columns forj, and zeroes are elsewhere [31]. A networkoveringhas been found. If a valid pebble covering2ef — 3
with n > 2 points inIR? and a formationP is infinitesimally such edges is found, then this implies that the first part of
rigid if and only if rank(M (P,G,)) = 2n — 3 [30], [31]. Laman’s theorem is satisfied and the graph is minimally rigid

Infinitesimal rigidity implies rigidity, but rigidity doesot For more detail on the implementation of this algorithm, see
imply infinitesimal rigidity [29]. Still, the rigidity matix is an  [33].
effective way to demonstrate infinitesimal rigidity, andush  To test for a minimally rigid graph that satisfies Definition
rigidity, based on the formation and topology of the networlB.1, we modify the pebble game algorithm so that it only

the distance between points(¢) andx;(t) remains constant
all along the trajectory, this implies that

for all (v;,v;) € E(G,) Vt € T. To define a method of
predicting infinitesimal rigidity, we (temporarily) assenthat
x;(tg) = p; Vi € N. The assignment of constant instantaneo
velocitiesu; € R? Vi € N such thati;(ty) = u; satisfies (1)
Y(vi, v5) € E(Gr) whent = t, is described as ainfinitesimal
motion of the network [31]. LetU € R?" be defined by the
infinitesimal motion such thal/ = [u],... ,uﬂT. Then (1)
is represented in matrix form as



considers edges of length less thAn The modified pebble

game is described in Algorithm 1.

Algorithm 1 Modi fied PebbleGame(P, A)
Require: P is a formation ofn. points
Initialize G2 such that/ (G4) := {v, ..
0
Initialize rigid := false
for all possible edges = (v;,v;) € V(GL) x V(GS)
such thaté(e) < A andwhile rigid = false do
E(G%) = E(GY) Ue;

St E(GS) =

Rearrange edge directions to try to find a valid pebble

covering;
if a valid pebble covering isot found then
B(G) = E(GY)\ ¢

end if

end for

if |E(G5)| =2n—3 then
rigid := true;

end if

return (rigid, G%);
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Fig. 3. Persistence example. 3(a): A network that is notigters. Here,

The following Theorem 3.1 states the effectiveness of tiggent 4 can perform circular motion around agent 3. 3(b)géra 4 moves,

modified pebble game to test for rigid feasibility.
Theorem 3.1:A target formationP is rigidly feasible for a
multi-agent network with proximity rangA if and only if the

agent 2 cannot move in a way that preserves the distancesdetagent 2
and agents 1, 3, and 4. 3(c): A persistent network. It is camgtconsistent
and rigid. Agents 3 and 4 are a leader-follower pair. 3(dadént 4 satisfies
its constraint, the other agents maintain formation dudagtinuous motion.

algorithm M odi fied PebbleGame(P, A) returns a minimally
rigid graph.

Proof: Definition 3.1 is satisfied for formatiorP? only if
there exists a rigid grapli’s such thaté(e) < A Ve €
E(G%). This implies the existence of a minimally rigi
graph with the same properties. Assume tG4t exists, but A persistence
that M odi fied PebbleGame(P, A) fails to return a minimally

L . Persistence is a quality of networks that is very closely
rigid graph. l\!o_te from [33] that the.uand'fIEd pebble 93aM%ated to the concept afonstraint consistencdnformally,

NHe say that constraint consistence means that all contstrain
are satisfied as long as all agents satisfy their individual
?Hgltstraints, i.e., no subset of agents can satisfy thestcaints
in a manner which prevents another agent from satisfying a
I%onstraint. Constraint consistence is determined by tingeun

graph [33], this implies that all rigid graphs result in awetk and _orlentatlon .of the_ constraints. Fig. 3 shows cor_lstramt
consistent and inconsistent networks. For a more rigorous

with §(e) > A for somee € E(G%). However, this violates -~ .~ : ; . -
our assumption tha&2 exists. Therefore, the formation is.defm'tlon' see [27]. A network is persistent if and only if it

rigidly feasible only if Modfied PebbleGame(P, A) returns s rigid and constraint consistent [27]. Fig. 3(c) and Fig)3
. o show a persistent network.
a minimally rigid graph.
If the modified pebble game produces such a minimally. Persistent Feasibility
rigid graph such thati(e) < A Ve € E(G%), then the
conditions of Definition 3.1 are satisfied. ™

feasibility and persistent feasibility are equivalent. \Akso
show that the modified pebble game algorithm generates
dminimally persistent graphs.

to a flexible graph until it becomes minimally rigid. Theredp
the failure of Modi fied PebbleGame(P, A) implies that no
such graph can be generated considering only edges such
their distance in the network would be less thAn Since

the unmodified pebble game always returns a minimally rig

Similar to generic rigidity, we say that an network graph
G, is generically persistenif there exists a target forma-
tion P for which the network is infinitesimally rigid and
constraint consistent, implying that the network is péesis
Like generic rigidity, generic persistence applies to gsgmot

In this section, we present persistent feasibility in teiwhs networks. Therefore, we refer to generically persisteapbs
range constraints. First, we present persistence as itdes bas persistent graphs without confusion. A persistent giaph
defined in previous work. Then, we define persistent featyibil minimally persistenif it is persistent and if no edge can be
under range constraints. Further, we demonstrate thad rigemoved without losing persistence [27].

IV. PERSISTENTFEASIBILITY AND PERSISTENTGRAPH
GENERATION

4



We definePersistent feasibilityas follows: deg~(v;) = 0, deg~(vs) = 1, and 3I(vy,v;) € E(GS). We
Definition 4.1: A target formation defined by configurationsay that vertexy; is the leader vertex and vertexv; is the
P is persistently feasibldor a multi-agent network with follower vertex
proximity rangeA if and only if a exists an network graph The leader agent has no constraints, and thus has two
G4 such thatG% is persistent, and(e) < A Ve € E(G%).  degrees of freedom, implying that the persistent formatih
For any minimally rigid graph, it is possible to assigrollow the leader agentilR2. Similarly, the follower agent has
directions to the edges such that the obtained directechgrame constraint, and thus one degree of freedom, implying tha
is minimally persistent [28]. Therefore, we have the foliogy the persistent formation will rotate around the leader agen
Theorem 4.1 describing necessary and sufficient condifans as the follower agent performs circular motion around the
a target formation to be persistently feasible. leader. For a persistent graph, edge-reversing operatiams
Theorem 4.1:For a multi-agent network with proximity make any pair of adjacent agents a leader-follower pair with
rangeA, a target formationP is persistently feasible if and the graph remaining persistent [28]. A leader-follower psi
only if it is rigidly feasible. demonstrated in Fig. 3(c) and Fig. 3(d).
Proof: If P is rigidly feasible, then, by Definition 3.1, there
exists a minimally rigid grapiG4 such that the network is B. Persistent Graph Operations
rigid and, for all edges$(e) < A Ve € E(G%). This implies
that the directions of the edges@f such that it is a persistent
graph, implying that rigidly feasible formations are pstsitly
feasible. Since a network is persistent if and only if it igidi
and constraint consistent, théhis not persistently feasible if
it is not rigidly feasible.

In an actual multi-agent network, achieving a persistent
formation requires agents with no constraints to interact a
establish constraints. Such a sequence of agent intamagctfo
successful, results in a persistent formation, with irtgent
distances corresponding to the target formation.

Graph operations can be used to represent such a sequence
Theorem 4.1 shows that the modified pebble game tests édragent interactions. [28] presents graph operations $er a

both rigid and persistent feasibility. sembling and modifying persistent graphs. These opestion
] . consist of directed vertex addition and edge-splitting repe
C. Persistent Graph Generation ations. Consider a grap&¥ such that{v;,v;,v,} € V(G),
Here, we show that the pebble game algorithm also genés;,v;) € E(G), andu, ¢ V(G). A vertex addition consists
ates minimally persistent graphs. of addingu, to V(G) and adding edgetu, v;), (vg,v;) to

A graph is minimally persistent if and only if it is minimally E(G). Fig. 4(a) and Fig. 4(b) show a vertex addition operation.
rigid and no vertex has an out-degree larger than 2 [27]. \Wen edge-splitting operation consists of addingto V(G) and
denote the out-degree of vertexby deg™(v;). Note that the adding edgesvy, v;), (vg, v;) to E(G), while also removing
pebble game produces a directed grafh, where each edge edge (v,,v;) from E(G). Fig. 4(c) and Fig. 4(d) show
(vi, vj) is covered by one of two pebbles from verigxThus, an edge-splitting operation. Graph operation sequences fo

we have the following theorem: assembling minimally persistent graphs are typically getes
Theorem 4.2:The pebble game and modified pebble gamey performing inverse graph operations on the graph to be
algorithms generate minimally persistent graphs. assembled, along with edge reversing operations.

Proof: Assume that74 is a rigid graph successfully generated In [28], it is shown that any persistent graph can be decon-
by the pebble game. In [33], it is shown that the pebble gars&ructed by a combination of these inverse operations, zar t
generates a minimally rigid graph. Since each directed edgeonstructed by a reverse sequence of non-inverse apesati
(vi,v;) € E(GS) represents the edge being covered by Additionally, [28] guarantees that each intermediate grap
pebble from vertex;, this implies thatdeg~ (v;) < 2 Vv; € is persistent. However, these methods are completely graph
V(G%). This implies thatG2 is minimally persistent. This based, and do not take into account a proximity range for

also holds for the modified pebble game. m a multi-agent network. Consider Fig. 5. This network has a
minimally rigid graph. An inverse vertex addition cannot be
V. GRAPH OPERATIONS performed. Also, note that any inverse edge-splitting apen

aw(iJI introduce a new edge into the network which has a length
r(')nger than any other edge. This new edge could violate the

present graph operations that represent agent interadt proximity range of the mobile agent netwoikherefore, given
R formation and a proximity range limit on the edge lengths of

execute a perS|stent formation. We also prgsent an_algmnta network, certain network graphs cannot be deconstrucsed b
for generating a sequence of graph operations, which rep{e- I~ ; ; . : :

. . “these traditional operations without introducing a coastit
sents a sequence of agent interactions to execute a thsq € i violates the proximity range
formation. P y range.

In this section, we describe methods for representing
choosing leader-follower pairs of a persistent formatidre

A. Leader-follower pairs C. PersistentA Operations

We define aleader-follower pair[16] as a pair of adja- In this section we present two new graph operations to
cent vertices(v,vp) € V(GL) x V(GS) such that vertex construct persistent graphs. These, combined with toawditi
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Fig. 4. Persistent graph operations. Fig. 4(a) and Fig. difioyv the results
of a vertex addition operation. Fig. 4(c) and Fig. 4(d) shbe tesults of an V; V;
edge-splitting operation. In this figure, the shaded arpeesents a minimally ® [ ]
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Fig. 6. Persistent\ graph operations. 6(a), 6(b): a vertex addition. 6(c),:6(d)
a single-vertex addition. 6(e), 6(f): an edge insertionrapien. As before, the
shaded area represents a minimally persistent graph bitfereperation.

Fig. 5. An example network where performing an inverse exjgiting
operation introduces a new edge whose length is greaterathgne-existing
edges. This new edge could violate the proximity range ofridigvork.

Consider a directed grapl such thatv; € V(G),
. ddit I istent h with a leadel ¢ V(@G). Single-vertex additiomonsists of adding a vertex
vertex addition, allow any persistent graph with a leader ', V(G) and adding edgdu;,v;) to E(G). A single-

. . . v
follower pair to be constructed without using any edges th\%rtex addition is represented asngleVerter(vi,v;) —
??vjh {(vj,v:)}). Note that this operation doe®t preserve

are not contained in the final graph. We call this set of thr
graph operationpersistentA operations persistence. In fact, it guarantees a loss of persisteimes s
this new vertex has one degree of freedom.

Each operation is represented by a doulgle= (V, E),
whereV(op) = V € op is a set of vertices to add to the
graph, andE(op) = E € op is a set of edges to add to the Consider a directed graphi2 such that(v;,v;) € V(G) x
graph. V(@) and(v;,v;) ¢ E(G). Edge insertiorconsists of adding

A vertex additionas a persistentx operation defined edge (v;,v;) to E(G). An edge insertion is represented as
as in Section V-B. A vertex addition is represented asigelnsertion(v;,v;) = (0,{(vj,v;)}). Fig. 6 shows these
vertex Addition(v;, v, vr) = ({vi}, {(vk, vs), (Vg, vj)}). operations.
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D. PersistentA Sequence Generation Algorithm 2 PersistentAGeneration(G,)

This section describes how persisténtoperations can be Require: GraphG4 exists such tha@4 is minimally persis-
used to construct any persistent graph with a leader-felftow tent with leader-follower paifv;, vy).
pair. Initialize leader-follower seed := G5 such thatV (G) :=
If G2 is a minimally persistent graph such that vertex V(Gy) = {v;,v;} and E(G) := E(G2) = {(vf,v)};
deg~(v;) > 1 and vertexdeg~(v;) < 1, then there is a Initialize sequence of graph operatiofis= 0;
directed path fromw; to v; [28]. Also, if v, vy € V(G2) while |V (G)| < |[V(G%)| or |E(G)| < |E(G%)| do

are a leader-follower pair, respectively, then, for alltiers Initialize sequence of graph operatiofis:= ;
v € V(GE) \ {v, v}, deg~(v) = 2 [27]. This leads to the for all (v;,v;) € V(G) x V(G) do
following lemma: {Generate all possible edge insertipns
Lemma 5.1:Let G5 be a minimally persistent graph such if (vj,v;) € E(GS) and (v;,v;) ¢ E(G) then
that vertexy; is the leader vertex and vertex is the follower ei := edgeInsertion(v;, v;);
vertex of a leader-follower pair. This implies the existerof S; =S, - et;
a directed path from all verticesc V(G%) \ v; to v;. end if
Proof: Assume thatz4 exists as in Lemma 5.1. Sineg and end for
vy are a leader-follower pair, this implies a directed pathmiro Initialize vertex Added := false
vy to vy and thatdeg ™ (v;) < deg™ (vy) < 1. This implies that for all v, € V(G4) such thaty, ¢ V(G) do
all verticesv € V(GZ) \ {vi,vs}, deg™(v) = 2. Then there {Generate all possible vertex additidns
is a directed path from to v; andv;. This implies that there if A(v;,v;) € V(G) x V(G) such that
exists path from all vertices iV (G4) \ v; to v;. n (Vk, vi), (v, v;) € E(GS) then
va = vertex Addition(v;, v;, vk)

This leads us to an algorithm for constructing a sequence

of graph operations to construct a minimally persistenpigra S = id;}ad — :
We define aleader-follower seedas a graphG, such that ze?;tex o te
V(Ga) = {v,v7} and £(Gy) = {(vy,w)). Here, vertewy is _ &T¢ |

the leader vertex, and vertex is the follower vertex.

Any minimally persistent graph can be constructed from
a leader-follower seed by a sequence of persisterraph
operations. First, given a minimally persistent gra@h, a
graphg is initialized to the leader-follower see&, using the
leader and follower vertices i@ . Until all vertices and edges

if vertexAdded = false then
for all v; € V(G%) such that; ¢ V(G) do
{Generate all possible single-vertex additipbns
if Jv; € V(G) such that(v;,v;) € E(GS) then

sva := singleVertex(v;, v;);

of G4 are present irG, the following process is performed: engi h:‘: i
1) Generate each possible edge insertion. end for

2) Generate each possible vertex addition. .
3) If no vertex additions were performed, generate each end if
M X i W P » g for all operationsop € S; do

posgple smglg—vertex add'tlohf _ {Perform all determined graph operati¢ns
The condition for single-vertex addition is due to the fdwitt V(G) == V(G) UV (op);

smgle—verte_x. addition does not preserve persistenceckid E(G) == E(G) U E(op);

vertex addition does. Therefore, these are preferred. Edge gnqg for

insertions are necessary to complete the graph after single ¢._ g. S,:

vertex additions are performed. After this process, each®f o4 while

generated graph operations is executed on the gfaphhis return S

process is repeated until all vertices and edges have beled ad

to the graph. Algorithm 2 describes this process. In Aldwnit

2, we represent concatenating elemetud the end of sequence

S by S-s. If there are more than two vertices, then, by Lemma 5.1,
Fig. 7 shows a resulting sequence of this algorithm. We hatjtere exists a path from all vertices WWG2') \ {v;} to vertex

the following theorem for the effectiveness of this method: v- This implies that there exists a pair of vertiges, v;) such
Theorem 5.1:For a minimally persistent grapt® with thatv; € V(G2),v; € V(G), v € V(G), (vj,v:) € E(GR).

a leader-follower pair, the persisteAt-generation algorithm This implies that a single-vertex addition is possible (¢he

will generate a sequence of graph operations that constr0dy also be vertex additions possible, but this is unnecgssa

G2 from a leader-follower seed. for the proof).

Proof: Assume thatG4 exists, withv;,v; as the leader and  Assume that a single-vertex operation is performed, irgsrea

follower of a leader-follower pair, and thét is the initialized ing the size of\/(G) and E(G). Note thatG always has the

leader-follower seed. If the graph has only two vertices, theader-follower pair. Therefore, if there are remainingtices

graph is constructed. v € V(GS) such thaw ¢ V(G), then Lemma 5.1 also shows
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defines a vertex addition rule as shown in this figure. Thekes rallow the
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formations with control laws is simplified. As a consequence

these graphs can be assembled from a leader-follower seed by
© (@) sequences of vertex additions only.
We implement the following scenario: We have a network

Fig. 7. A sequence of Persisteftoperations constructing a framework. 7(a):gf six robots with data collection sensors. and we wish to
The initial leader-follower seed. 7(b): Two vertex additoare performed. '

7(c): No more vertex additions are possible. Three singhtex additions are diStribUt? them in a 5 m triangular coverage pattern over an
performed. 7(d): Three edge insertions are performed, onedch single- area of interest. Triangular coverage patterns occur éetly

vertex addition. since they dictate an equal distance (in this case, of 5 m) be-
tween each adjacent robot in the coverage pattern. Therefor
that more single-vertex additions are possible. In factrano?V€ €Nnter a triangulation pattern of positions in our graphic
single-vertex additions will always be possible until taeipes Program discussed in Section Il and shown in Fig. 8.
not exist av € V(G2) such thatv ¢ V(G). Since we have The points entered in the GUI define our target formation
not added any vertices¢ V(G2) to V(G), this implies that, P. The modified pebble game is used to define the minimally
at this point,V(G2) = V(G). persistent graptG4 shown in Fig. 8, as well as a leader-
For all edgesn(vj v) € E(G2), either (vj,v;) = follower seedG, (here, with vertices 1 and 2), and a sequence
(vy,v),the leader-follower edge, @v;, v;) is not the leader- of vertex addition operations that define a Henneberg seguen
follower edge. If (v;,v;) is the leader-follower edge, then®- _ ) )
it was added toE(G) when the leader-follower seed was 10 implement these graph operations with the network, we
initialized. If it is not the leader-follower edge, note thaus anEmbedded Graph Grammar (EGGystem. In this sys-
we have already proven that all vertict§G2) are added tem, arule is defined for each graph operation, as well as the
to V(G) such thatV(G2) = V(G). This im%lies that, for assembly of the leader-follower seed graph. The EGG system
any remaining edges not added by vertex or single-vertdg2!s with labeled graphs where each label correspondeto th
additions, there exists a pair of verticas, v;) € V(G) such position in the forma’qon assigned to each rob(_)t._ Each rt_lie h
that (v;,v;) € E(G2) and (v;,v;) ¢ E(G). These edges are? left graph L and aright graph R, and this pair in rule- is
added by edge insertions. denoted agL — R) € r. We defineG,, as the network graph
Since the algorithm uses these conditions to search fetresponding to the actual robot network. When an induced
single-vertex additions and edge-insertions, all suchrapeSuPgraph ot is a label-preserving isomorphism bf it can
tions are performed, guaranteeing thatG2) = V(G) and be replaced byR. Thus, we can define rules that correspond

E(G2) = E(G). ged to vertex additions for implementing formation assemblg. F
9 shows how each vertex addition graph operation (Fig. 6)
VI. IMPLEMENTATION SCENARIO AND RESULTS define vertex addition rules in the EGG system.
Here, we demonstrate the assembly of formations on alnitially, each robot begins with a label af, indicating
multi-robot network using graph operations. that the robot is not assigned a position. First, the leader-

In [34], we consider automatic methods for implementing ®llower rule assigns the leader and follower position t@ tw
subset of minimally persistent formations with leadefefaler robots. After this, vertex addition rules (correspondimg t
pairs. Specifically, we consider minimally persistent farm vertex addition operations) assign other positions to rothe
tions that correspond tstably rigid graphg[35], [36]. Since robots. As such, the topology a@¥, changes as the system
stably rigid graphs are acyclic, the implementation of ¢he®volves. Finally, each robot is assigned a position, and the
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Fig. 8. The Graphical User Interface (GUI) for specifyingrfmtions. By defining the formatio® and the proximity range\, the software uses our
methods to determine if the formation is persistently fielasilf so, it automatically generates a sequence of perdigt graph operations for assembling
such a formation, as well as analogous rules for an EmbeddaghGGrammar (EGG) system to assemble the formation. The BE®S are used by the
network to assemble formations with the multi-robot netwir 10.

labeling of G,, is an isomorphism frond,, to G4, the desired persistent graphs under such proximity constraints and we
network graph for our target formatioR. The EGG system also presented new graph operations to construct a pesiste
also describes themodeof each robot, corresponding to thegraph that represents a formation under range constrasts,
vertex it is assigned irG5. The topology of G2 and the well as a method for automatically generating a sequence of
geometry defined by the target formatiéhdefine the control these operations for any formation in question. These graph
laws for each robot according to the position it is assignehd operations describe the control and coordinationegfies
in the formation. This combination of assembly rules andecessary to allow the desired formation to emerge in a multi
control laws result in the geometry of the assembled formnatiagent network. Experimental results were given that shaw th
corresponding to the target formatiaR, with a topology the developed methods can be implemented on a real robot
corresponding t&>4 (For a more detailed explanation of thenetwork.
definition of this EGG system, see [34]).

Fig. 10 shows the execution results of the scenario. In this VIII. A CKNOWLEDGEMENTS
figure, each rObo_t is labeled with eithey indigating Fhat it is ~ This work was partially supported under a contract with the
a wanderer, or with the number corresponding to its vertex iational Aeronautics and Space Administration. We alsonkha
Fig. 8. In Fig. 10(a), we see the initial setup, where eaclotroblulien Hendrickx for helpful discussions about graph fitgicand
is a wanderer. First, a leader-follower pair is formed suwtt t Persistence.
one of the robots is now a leader (labeled and the other
is a follower (labele®), and the follower begins moving to
reach a distance df m from the leader, as shown in Figs. [1] T. Balch and R. C. Arkin, “Behavior-based formation cmht for
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