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ABSTRACT The automation and improvement of nano-scale electron microscopy imaging technologies
have expanded a push in neuroscience to understand brain circuits at the scale of individual cells and
their connections. Most of this research effort, called ‘connectomics’, has been devoted to handling,
processing, and segmenting large-scale image data to reconstruct graphs of neuronal connectivity. However,
connectomics datasets contain awealth of high-resolution information about the brain that could be leveraged
to understand its detailed anatomy beyond just the connections between neurons, such as cell morphologies
and distributions. This study introduces a novel visualization system, ZeVis, for the interactive exploration
of a whole larval zebrafish brain using a terabyte-scale serial-section electron microscopy dataset. ZeVis
combines 2D cross-sectional views and 3D volumetric visualizations of the input serial-section electron
microscopy data with overlaid segmentation results to facilitate the analyses of various brain structures and
their interpretations. The system also provides a graph-based data processing interface to generate subsets
of feature segmentation data easily. The segmentation data can be filtered by morphological features or
anatomical constraints, allowing statistical analysis and comparisons across regions. We applied ZeVis to
actual data of a terabyte-scale whole-brain larval zebrafish and analyzed cell nucleus distributions in several
anatomical regions.

INDEX TERMS Cell morphology, larval zebrafish, serial-section electron microscopy, visual analytics.

I. INTRODUCTION
Connectomics is a branch of neuroscience that aims to study
the densely connected neuronal circuits embedded within
the brain. To examine densely packed neuronal tubes hav-
ing diameters of only tens of nanometers [1], thin serial
sectioning of a tissue sample and high-resolution electron
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microscopy (EM) imaging are commonly used. The resolu-
tion of serial-section electron microscopy (ssEM) is typically
4−50 nanometers per voxel edge. Hence, the imaging of even
small tissue samples (e.g., 1 mm3) can result in petabyte-scale
raw data sizes containing about 100,000 nerve cells with
1 billion synapses [2]. One of the main challenges in ana-
lyzing connectomics datasets lies in developing scalable and
automatic image processing and data analysis algorithms
to cope with the ever-increasing data size and complexity.
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FIGURE 1. Visual analysis workflow and summary of each data processing step in ZeVis.

Over the past decade, significant research progress has
been made in computer vision and visualization domains
to address challenges in connectomics. Many prior studies
focused on developing image processing algorithms, includ-
ing image enhancement and segmentation, for extracting neu-
ronal connectivity graphs from ssEM datasets. Most previous
visualization research in connectomics [3]–[7] focused on
building interactive data exploration systems that provide
enhanced visual cues or metaphors to help users better deter-
mine brain connectivity. While a vast number of computa-
tional studies have focused on connectomics [8]–[12], few
have sought to leverage the abundant information available in
large-scale connectomics datasets to examine anatomical and
cell biological details—e.g., cell distributions, cell densities,
or morphological variations—across brain regions.

Our primary objective here is to begin to fill this void by
producing a unified visual analysis workflow to examine the
distribution and shape of segmented cell nuclei throughout
an entire brain. We approach this problem using a recently
generated terabyte-scale whole-brain larval zebrafish ssEM
dataset [8], [13]. In this study, we propose a novel visual-
ization system, ZeVis, which includes an interactive visu-
alization technique for inspecting cell nucleus morphology
and distribution in 2D cross-sectional and 3D volumetric
views. This system also offers graph-based data processing
for generating subsets of nuclei with specific properties or
restricted to specific brain regions, while allowing users to
filter data and perform comparative visual analysis easily
and interactively. We demonstrated the usability of ZeVis via
two case studies: selection of target cell nucleus subsets and
comparison of brain symmetry. In these case studies, we gen-
erated normal cell nucleus subsets by filtering out objects
segmented incorrectly. We then analyzed the difference in
cell nucleus morphology, density, and distribution across the

left and right hemispheres of the larval zebrafish brain. We
also demonstrated that the proposed system could handle
multi-terabyte ssEM data.

II. METHODS
The overview of the proposed system is shown in Figure 1.
First, the data is processed into a ZeVis format that enables
interactive exploration of terabyte-scale volumetric data and
effective analysis of cell nuclei. With the formatted data,
specific subsets of cell nuclei can be generated and analyzed
through the interactive visualization and graph-based data
processing steps in the ZeVis system.
The interactive visualization step includes: 1) a 2D multi-

axis view for observing slices through the ssEMdata, anatom-
ical subregions, and selected cell nucleus subsets; 2) a 3D
visualization for observing the shape of each cell nucleus; 3) a
representative cell nucleus explorer that displays the range of
cell nucleus shapes contained within the selected subset; and
4) a 3D distribution viewer that shows the locations of the cell
nuclei contained within the selected subset.

The graph-based data processing step includes: 1) feature-
based cell nucleus selection, 2) anatomical subregion-based
cell nucleus selection, and 3) a data flow system that can com-
bine multiple selection criteria for flexibly generating cell
nucleus subsets and effectively managing multiple analyses.

Through exploration of terabyte-scale data in combination
with the user’s interactions and graph-based data processing,
the interactive visualization step aims to accurately analyze
morphological features of each target cell nucleus and reveal
the distribution of generated cell nucleus subsets. Multiple
selection methods can be used to create subsets of target
cell nuclei in order to facilitate a variety of analyses. In the
subsequent sub-section, we explain how each element of the
ZeVis system achieves these goals.
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A. DATA PREPARATION
The input volume data, consisting of a ssEM image stack,
anatomical subregions, and a cell nucleus segmentation prob-
ability map, must be converted into multi-resolution data
blocks. The cell nucleus segmentation probability map is
converted to cell nucleus labels by thresholding to create a
binary mask (for our experiments, threshold = 0.5) and then
performing connected component analysis (Fig. 2). Morpho-
logical features of each cell nucleus are then computed from
these labels. The six morphological features used in this study
are listed in Table 1.

TABLE 1. Morphological features for cell nucleus analysis.

Because the input data has a terabyte-scale size, it far
exceeds the size that can be handled by a conventional
workstation with only gigabytes of random-access mem-
ory. We utilize a streaming method that interactively loads
the required data from disk to overcome this problem. We
also employ a multi-resolution data structure for the ssEM
data, subregion volumes, and cell nucleus labels based on
three axial views to ensure interactive rendering and rapid
exploration of the multi-terabyte data. Figure 3 shows an
example in which the level 0 block (original resolution) and
the corresponding blocks are converted to the next level
(lower resolution). To accomplish this for the entire dataset,
the original-resolution data is first split into 512× 512× 512
voxel blocks. Then, the next level blocks, with lower res-
olution and a wider view, are generated by downsampling
along two axes, so that even when the level of the block
increases, the resolution of one axis is maintained to permit
smooth viewing of the data at fine increments. By iterating
this process, we create blocks of ssEM data, cell nucleus
labels, and anatomical subregions from level 0 to level 5.
When displaying, the blocks required for the user-requested
rendering scale and region are identified and then 2D image
tiles of size 512× 512 pixels are loaded from the blocks and
rendered. Recently used tiles are cached and searched first to
enable smooth navigation (Fig. 4).

FIGURE 2. Process of cell nucleus labeling | The cell nucleus probability
map (a) is converted to a binary mask (b) by thresholding. The cell
nucleus labels (c) are then generated by connected components analysis.

FIGURE 3. Multi-resolution data block conversion | Each block contains
5123 voxels. Each level 0 block (a) has the original resolution
(56.4 × 56.4 × 60nm3 vx−1). Separate level 1 blocks maintain full
resolution along the y axis (b), the z axis (c), or the x axis (d) and have
half the resolution along the x and z axes, the x and y axes, or the y and z
axes, respectively. The higher-level blocks represent a wider range of data
with a lower resolution for each plane.

B. INTERACTIVE VISUALIZATION
1) 2D MULTI-AXIS VIEWS
The visualization showing the cross-section of each axis
consists of three layers: the ssEM data layer, the anatom-
ical subregion layer, and the cell nucleus label layer. For
the user-specified field of view, the ssEM data layer shows
the EM image data, the anatomical subregion layer shows
restricted areas in the brain defined by masks, and the cell
nucleus label layer shows each individual cell nucleus. In
the cell nucleus label layer, each cell nucleus is assigned a
color representing the individual cell nucleus index (random
color) or the subset to which it belongs (single color per
subset). These three layers are alpha-blended together with
a user-defined transparency for the final rendering (bottom
of Fig. 4).

2) 3D VISUALIZATION OF CELL NUCLEUS DISTRIBUTIONS
With only 2D cross-sectional views, it is difficult to repre-
sent the spatial distribution of cell nuclei in the 3D space.
Therefore, directly visualizing the cell nucleus distribution
in 3D can help the user understand and analyze the data more
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FIGURE 4. Image rendering process | When a rendering is requested,
the required data for the position and scale is first searched for in
memory. If found in memory, the data is referenced directly. Otherwise,
the data is loaded from data blocks on the disk. The loaded data are then
rendered by alpha blending to produce the final result.

intuitively. To generate a 3D representation of the cell nucleus
distribution, a 3D histogram for the spatial distribution of the
selected cell nucleus subset is computed and rendered with
the ssEM image volume by direct volume rendering (Fig. 5).
When the user specifies the scale of the 3D visualization,
a 3D grid that fits the scale is formed and the cell nucleus
count within each grid bin is calculated. When the scale is
small, the grid is created sparsely to efficiently depict the
overall distribution (Fig. 5a). When the scale is increased,
the a denser grid is created to show the distribution with more
detail (Fig. 5b). Additionally, a range of cell nucleus counts
can be selected interactively so that only grid bins with the
corresponding values are displayed (Fig. 5c).

3) 3D VISUALIZATION OF INDIVIDUAL CELL NUCLEI
It can also be useful to visualize and analyze the 3D shape
of individual cell nuclei. To increase the information avail-
able to the user, we generate a visualization that combines
the ssEM data and cell nucleus label (Fig. 7). First, a 3D
volume is created by loading the segmented cell nucleus
region from the segmentation label block. Next, a 3D masked
ssEM volume is created by loading the ssEM image data
belonging to this same segmented cell nucleus region from
the ssEM data block, thus separating the data of interest
from complex surrounding structures. The ssEM volume is
then visualized using direct volume rendering to display the
detailed internal structure of the cell nucleus, blended with

FIGURE 5. Interactive 3D histogram for intuitive observation of cell
nucleus distribution | Grids are generated at the user-selected scale for
binning cell nucleus counts (left panels). The grids are then visualized
in 3D (right panels). The grid is generated sparsely at the lower scale
(a) and densely at the higher scale (b). If a specific range of cell nucleus
counts is specified, only the grids with counts in the specified range are
displayed (c).

the surface rendering of the segmented cell nucleus region
for better representation of its 3D shape (Fig. 7d).

4) EXPLORATION OF REPRESENTATIVE CELL NUCLEI
To extract a representative set of example cell nuclei from
a given subset, we use clustering in the 5-dimensional cell
nucleus morphology feature space (intensity, volume, surface
area, sphericity, and eccentricity). Through k-means cluster-
ing, 64 clusters are created. The cell nuclei closest to the cen-
ters of each cluster are then selected as the representative cell
nuclei for the subset. 3D visualizations for the representative
cell nuclei are created and displayed as an 8× 8 grid (bottom
of Fig. 6). Thismakes it possible to analyze or check the shape
distribution of cell nuclei in a subset without checking each
individually. In one basic use case, real cell nuclei (green
background grid elements in Fig. 6) can be extracted from
unwanted segmentation errors (red background grid elements
in Fig. 6). These results can also be marked on the 2D view
(green and red dots on the 2D plot in Fig. 6), allowing intuitive
and precise selection of cell nucleus subsets. These extracted
representative subsets can also be used for training machine
learning classifiers (see Section II-C1).

C. GRAPH-BASED DATA PROCESSING
1) FEATURE-BASED CELL NUCLEUS SELECTION
The simplest method of selecting cell nuclei is to specify a
particular range of cell nucleus feature valueswhile observing
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FIGURE 6. Process for creating cell nucleus subsets | Three analysis flows
are used to generate a normal cell nucleus subset (shown in the upper
part) from the initial cell nucleus segmentation set, which contains some
noise. The bottom left, middle, and right panels depict the results of
selection for non-nucleus objects, merged cell nuclei, and normal cell
nuclei, respectively.

FIGURE 7. 3D visualization of individual cell nuclei | The cell nucleus
boundary (a) is found and the ssEM image data and cell nucleus label
region are retrieved (b). The final visualization is generated by combining
the ssEM volume rendering and the region surface rendering (c).
An example of this visualization is shown for a Mauthner cell (d).

the resulting distribution in a 1D feature histogram or a 2D
feature plot. This method can create cell nucleus subsets that
belong to specific feature ranges using information obtained
either through exploration or prior knowledge.

However, this approach is insufficient when the exact fea-
ture distribution of the target cell nuclei is unknown or there
is no single feature value threshold that can select the target
cell nuclei accurately. An intelligent cell nucleus selection
can instead be used to overcome this problem, for example
by utilizing a machine learning approach to categorize cell

nuclei (Fig. 8). To accomplish this, target cell nuclei (fore-
ground seed) and non-target cell nuclei (background seed) are
selected from the 64 representative cell nuclei extracted from
the input cell nucleus subset, then used to train a random for-
est classifier to categorize the nuclei in real-time. The trained
classifier generates a new cell nucleus subset by performing
classification on all cell nuclei in the input subset.

2) ANATOMICAL SUBREGION-BASED CELL NUCLEUS
SELECTION
Cell subsets belonging to a specific region of the data can be
created through anatomical region data. Moreover, new sub-
regions can be created interactively by defining cut-planes,
for example to divide the larval zebrafish into right and left
sides along the body midplane. This process is computa-
tionally intensive and consume substantial amounts of time
because the anatomical subregion can span large portions of
the data. To minimize this burden, we create a subregion tree
that represents the anatomical subregion as an octree [15].
The octree can then be used to perform cell nucleus filter-
ing, subregion volume calculation, and cut-plane operations
(Fig. 9). The subregion tree is created for each data block
spanning the desired region and is divided into eight child
nodes starting from a root node of size 5123 until all voxels
in the node are included or excluded in the subregion. Leaf
nodes that do not contain all voxels in the region are removed.
That is, the region can be expressed entirely as leaf nodes of
the subregion tree.

To check whether each cell nucleus in the input subset is
included in the subregion, we check that a leaf node at the
cell nucleus location exists. The subregion volume can be
calculated by summing the volumes of all leaf nodes. For
creating a new subregion through a cut-plane operation, each
node of the input subregion tree is checked to determine if it
should be included in the new region, with only the included
nodes being retained.

3) DATA FLOW SYSTEM
For flexible cell selection and efficient analysis, we employed
a data flow system, which is an intuitive and dynamic tech-
nique that allows users to perform tasks by constructing flow
diagrams [16], [17]. All selection and subregion generation
methods can be chained in the data flow system for generating
the desired subsets of cell nuclei from the entire brain set.
This flow system uses a directed acyclic graph (DAG), where
each node represents either data or an operation and each edge
represents the data flow between nodes. Due to the nature
of directed graphs, any modification to a node affects its
descendants.

For visualization or analysis, the user can create an analysis
flow starting from the whole brain cell nucleus set to the
desired cell nucleus subset by connecting several selection
method nodes. Additionally, a new cell nucleus subset can
be created by combining different flows using set operations
such as union, intersection, and subtraction between cell
nucleus subsets.
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FIGURE 8. Intelligent cell nucleus selection | From the input cell nucleus
subset (a), a representative cell nuclei (b) are found using a clustering
approach. A random forest classifier (c) is then trained with the
foreground and background selection information to re-classify all input
cell nuclei and generate a new cell nucleus subset (d).

FIGURE 9. Selection of cell nuclei within an anatomical subregion | The
input subregion tree for the brain region can be filtered by a cut-plane
operation (top) to separate the left and ride sides of the body. The new
cell nucleus subset is generated by cell inclusion testing (bottom) using
the generated subregion tree.

Figure 6 shows an example of the data flow system. In
the upper graph interface, starting from the entire brain cell
nucleus set (left-most node), a subset is generated by thresh-
olding based on the value of the volume feature for each
nucleus before being divided into three different analysis
flows. The middle analysis flow (green arrow) creates a sub-
set of objects that are not cell nuclei (artifacts). The bottom
analysis flow (yellow arrow) creates a subset of cell nuclei
which were incorrectly merged during segmentation. Finally,
a subset of normal cell nuclei is generated by combining these
analysis flows using the subtraction operation.

III. RESULTS
In this section, we demonstrate the usability and performance
of the ZeVis system for examining a terabyte-scale larval
zebrafish brain ssEM dataset.

A. DATASET
The input data used in this experiment are a larval zebrafish
brain ssEM image volume, cell nucleus probability map, and
subregion mask volumes for the brain, habenula, and optic
tectum neuropil, each with size 10240×9216×16000 voxels.

The larval zebrafish ssEM dataset was captured from a
5.5 days post-fertilization larval zebrafish. This specimenwas

cut into ∼18,000 serial sections and collected onto a tape
substrate using an ATUM device [18]. A series of images
spanning the anterior quarter of the larval zebrafish was
acquired at a nearly isotropic resolution of 56.4 × 56.4× ∼
60nm3vx−1 from 16,000 sections using a scanning EM. All
image planes were then co-registered into a 3D volume with
a FFT signal whitening approach [19], forming an image vol-
ume that spans 2.28× 108 µm3 with 1.12× 1012 voxels and
occupies 2.4 terabytes [8], [13]. This volume was converted
to the ZeVismulti-resolution data structure, which resulted in
a total size of 5.68 terabytes.

To obtain cell nucleus labels, we used an automatic seg-
mentation approach. Automatic nucleus segmentation is par-
ticularly challenging in the larval zebrafish brain because
many of its cell nuclei are densely packed into a band along
the body midplane. Many studies have tried to solve similar
challenges with deep learning approaches, including deep
neural networks [20], deep contextual networks [21], and
deep fully residual convolutional neural networks (Fusion-
Net [22]). Among the methods we investigated, FusionNet
achieved better segmentation accuracy by leveraging recent
advances in machine learning, including semantic segmenta-
tion and incorporation of residual neural network layers with
summation-based skip connections to enable a much deeper
network architecture. Therefore, we used FusionNet segmen-
tation results to delineate cell nucleus regions automatically
in the larval zebrafish ssEM dataset. The cell nucleus prob-
ability map obtained from these methods was converted to a
cell nucleus label volume and multi-resolution data structure
resulting in total size of 3.29 terabytes.

B. TARGET CELL NUCLEUS SELECTION
ssEM image segmentation is prone to errors due to various
image artifacts and noise. Therefore, it is necessary to find
and filter out abnormal structures such as non-nucleus objects
and merged cell nuclei for accurate image analysis.

To exclude non-nucleus objects that are impractically small
or large, lower and upper bounds on the volume feature are
set. The upper bound can be determined by examining known
large neurons that are likely to also have large cell nuclei.
Figure 10 shows the volume histogram of all cell nucleus
labels. The volume of the right-side Mauthner cell (denoted
by the cyan line in Fig. 10), which has the largest volume
among the known large neurons (denoted by the blue lines
in Fig. 10), was defined as the upper bound. To determine
the lower bound, the smallest cell nucleus volume among
known large neurons (MiV2, green line in Fig. 10) was
mirrored (red line in Fig. 10) across the median volume of
the all cell nucleus labels (black dashed line in Fig. 10).
Therefore, the lower and upper bound volumes of the nor-
mal cell nuclei were defined as 13.72µm3 and 236.78µm3,
respectively.

It is possible that non-nucleus objects or merged cell nuclei
may exist in the normal cell nucleus volume range. To exclude
these, a non-nucleus object subset (bottom left in Fig. 6) and
merged cell nucleus subset (bottom middle in Fig. 6) were
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TABLE 2. Comparison of cell nucleus distributions across the left and right sides of the brain. WB: whole brain, L: left side of the brain, R: right side of the
brain, HL: left habenula, HR: right habenula, OTNL: left optic tectum neuropil, and OTNR: right optic tectum neuropil.

FIGURE 10. Lower and upper bound selection for realistic volume feature
values using known large neurons | The blue lines on the volume
histogram represent volumes associated with known identified large
neurons. The upper bound (cyan line) was defined by the largest value
among the known neurons. The smallest value among the known
neurons (green line) was mirrored across the median of all cell nucleus
labels to define the lower bound (red line).

generated by intelligent cell nucleus selection and excluded
using a set operation.

From a total of 279427 label objects, 167516 objects were
selected by volume thresholding. Among these, a normal
cell nucleus subset with 149098 objects was created (bottom
right in Fig. 6) by excluding 16395 non-nucleus objects and
2509 merged cell nucleus labels (486 labels were in both
exclusion groups).

C. SYMMETRY COMPARISON
We compared the distribution of cell nuclei between the left
and right sides of the brain. The brain subregion mask used
in this study spans the entire brain without separating the
left and right sides. Part of the spinal cord is also included
in the brain mask. Hence, we make new subregions for the
left and right side of the brain by applying vertical cut-planes
to the entire brain subregion mask along the body midplane
(Fig. 11). By combining this anatomical refinement with the
normal cell nucleus subset, we generated cell nucleus subsets
for each side of the brain.

For each side, the cell nucleus count, volume, and density
were calculated from these subsets, as well as the difference
between the left and right sides for the cell nucleus count and
the cell nucleus density. Similarly, we also generated the left

FIGURE 11. Subregion generation for the left side of the brain | A new
subregion is created by applying a cut-plane operation that removes the
spinal cord and a cut-plane operation that divides the left and right sides
of the brain.

and right side subregions for other anatomical regions such
as the habenula and the optic tectum neuropil and performed
the same calculations. The results are shown in Table 2.

D. PERFORMANCE ANALYSIS
We measured the memory consumption of the aforemen-
tioned experiments to verify the scalability of the system.
Additionally, to verify if the terabyte-scale data is processed
interactively, time consumption for each operation was mea-
sured while the user performed the experiments. This mea-
surement was performed on a workstation containing an Intel
i7-6700 CPU, 64GBRAM, RTX 2080 Ti GPU, andWindows
10 OS. The complete dataset consisted of 10.15 terabytes and
was streamed from a 12 terabyte capacity SATA 7.2K RPM
hard drive.

Upon initial loading of the dataset, 2023.7 megabytes was
consumed and it took 6.8 s. For data exploration in the
2D multi-axis view, the average rendering performance was
5.69 frames per second and an average of 162.3 megabytes of
data was cached in memory. For representative cell nucleus
exploration, a total of 407.3 megabytes were consumed to
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create 64 visualizations of cell nuclei in 3D and this took
58.9 s (0.9 s for each object). Subregion tree generation for
anatomical region analysis required 1447.7 megabytes and
253.8 s for the brain region, 6.9 megabytes and 19.8 s for
the habenula region, and 347.2 megabytes and 57.5 s for
the optic tectum neuropil region. Filtering the subregion tree
using the cut-plane operation consumed 1444.5 megabytes
and 21.5 s for removing the spinal cord region. For parti-
tioning the brain into separate sides, 1256.2 megabytes and
56.5 s were consumed for creating the left side region, while
639.9 megabytes and 49.6 s were used for the right side. More
time is required to create a subregion tree for the first time
than a subsequent subregion filtering task because the former
requires data blocks to be referenced from disk. However,
because this operation is performed through multi-threading,
the user can proceed with other analyses while these tasks are
being completed.

IV. CONCLUSION
In this study, we introduced a visual analysis system for
studying cell nuclei across the entire larval zebrafish brain.
Unlike existing tools for analyzing ssEM datasets, which
mainly focus on connectivity analysis, our system is designed
to examine the distribution and shape of brain cell nuclei.
To achieve this goal, our system provides interactive visual-
ization of cell nucleus morphology and cell nucleus spatial
distributions with a unified workflow management inter-
face for efficient data processing. Our experiments with the
terabyte-scale larval zebrafish dataset showed that our system
can effectively analyze cell nucleus morphology and distri-
bution. While we focused on only a few anatomical regions
here, we expect that several other regions can be studied in
future work. Furthermore, we considered all cell nuclei in
the brain, but future studies could examine specific cell types
such as neurons, glia, or progenitors. We believe that this
tool serves as a starting point for analyzing the wealth of
additional information available through ssEM datasets.

The ZeVis system uses automatic cell nucleus segmenta-
tion results and subregion masks as input data in addition
to the ssEM images. Such data pre-processing is usually
time-consuming, which can be a bottleneck in the analysis
workflow. In the future, a more efficient analysis might be
possible by producing the necessary segmentation and masks
interactively in the system (e.g., applying segmentation only
to the region of interest at a specific zoom level in real-time).
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