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Abstract: Junction networks made of longitudinally connected metal oxide nanowires (MOx NWs)
have been widely utilized in resistive-type gas sensors because the potential barrier at the NW
junctions leads to improved gas sensing performances. However, conventional MOx–NW-based
gas sensors exhibit limited gas access to the sensing sites and reduced utilization of the entire NW
surfaces because the NW networks are grown on the substrate. This study presents a novel gas
sensor platform facilitating the formation of ZnO NW junction networks in a suspended architecture
by growing ZnO NWs radially on a suspended carbon mesh backbone consisting of sub-micrometer-
sized wires. NW networks were densely formed in the lateral and longitudinal directions of the
ZnO NWs, forming additional longitudinally connected junctions in the voids of the carbon mesh.
Therefore, target gases could efficiently access the sensing sites, including the junctions and the entire
surface of the ZnO NWs. Thus, the present sensor, based on a suspended network of longitudinally
connected NW junctions, exhibited enhanced gas response, sensitivity, and lower limit of detection
compared to sensors consisting of only laterally connected NWs. In addition, complete sensor
structures consisting of a suspended carbon mesh backbone and ZnO NWs could be prepared using
only batch fabrication processes such as carbon microelectromechanical systems and hydrothermal
synthesis, allowing cost-effective sensor fabrication.

Keywords: gas sensor; metal oxide nanowire; nanowire junction networks; suspended architecture;
carbon nanomesh; C-MEMS

1. Introduction

In the past decades, gas sensors have been widely applied in various fields, such
as production facilities, automotive industry, medical technology, environmental protec-
tion, and industrial safety [1–5]. Among the various types of gas sensors, those based
on metal oxide (MOx) are actively investigated owing to their high sensitivity, fast and
reliable response, as well as simple operating principles [6–10]. In particular, the investiga-
tion of various MOx nanostructures has enabled the development of high-performance
gas sensors with improved sensitivity, stability, and detection range, benefiting from the
strained surface lattice, prevalence of step, edge, corner, and terrace sites, as well as high
surface-to-volume ratio of these materials [11–13]. Among the various MOx nanomaterials
investigated, one-dimensional (1-D) nanostructures possess a very high surface-to-volume
ratio and aspect ratio, making them suitable for applications in gas sensors, whose op-
eration is based on surface reactions [14,15]. In addition, MOx nanowires (NWs) can be
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synthesized using relatively simple methods, such as hydrothermal growth. This versatile
method facilitates the fabrication of gas sensors with densely aligned MOx NWs [16,17].
In general, MOx nanomaterials form core–shell structures. For example, in the case of
n-type metal oxides, the oxygen adsorbed on the surface creates an electron depletion layer,
resulting in an increased electrical resistivity. Exposure to oxidizing or reducing gases alters
the concentration of oxygen pre-adsorbed on the surface of n-type MOx nanostructures
and thus the thickness of the depletion layer; in turn, this affects the amount of current
flowing through the MOx structure. Therefore, the target gas can be monitored simply
by measuring the resistance change of the MOx nanostructures in the gas sensors [18,19].
Furthermore, the sensitivity of the sensor can be further improved when the MOx nanos-
tructures are connected to form junctions [20]. When 1-D MOx nanomaterials are grown
and aligned on the substrate, they can connect with each other to facilitate the formation
of dense junctions. These junctions act as additional current paths, creating a potential
barrier at junction points when exposed to oxidizing or reducing gases [21]. The height
of this potential barrier also changes as the metal oxide reacts with oxidizing or reducing
gases. Thus, the electrical resistance of the MOx NW networks is determined by changes
in both the depletion layer thickness and the potential barrier height; the latter conduc-
tivity change mechanisms have been reported to be more sensitive [22]. Therefore, the
formation of junction networks has been widely employed to facilitate the fabrication of
MOx-based gas sensors. In addition, the formation of NW networks is more efficient for
sensor manufacturing processes compared to the fabrication of single wire-based sensors,
which requires complex and difficult alignment procedures.

Another approach to improve the performances of resistive-type gas sensors involves
separating the 1-D sensing structures from the substrate to form a suspended architec-
ture [23–26]. When the sensing materials are suspended at a fixed distance from the
substrate, the target gas can transfer more efficiently to the sensing sites, which allows elim-
inating substrate effects such as heat loss as well as stagnant layer effects. This approach
can enhance sensor characteristics such as response and recovery time, limit of detection
(LOD), and sensitivity. However, the conventional fabrication methods of suspended
sensor platforms require complex processes and/or expensive equipment.

In this study, we present a novel gas sensor platform with improved sensing per-
formance, achieved by forming ZnO NW junction networks in a suspended architecture
via the radial growth of ZnO NWs onto the surface of a suspended carbon nanomesh, as
shown in Figure 1. The suspended carbon mesh consists of sub-micrometer-sized carbon
wires that intersect at a small, fixed interval. Thus, the ZnO NWs, grown radially from
the surface of the carbon mesh wires facing each other, are connected longitudinally to
form a dense junction network in the center of the void spaces of the mesh, as shown in
Figure 1e. Our group had previously reported a simple method to fabricate monolithic
mixed-scale carbon structures consisting of suspended 1-D carbon nanostructures sup-
ported by micrometer-sized carbon posts, using the carbon microelectromechanical systems
(C-MEMS) process [27]. This approach enables the cost-effective wafer-level fabrication of
complex carbon micro/nanostructures simply through the pyrolysis of photoresist struc-
tures pre-patterned by photolithography [28,29]. In addition, the pyrolysis is accompanied
by a dramatic volume reduction, allowing the tailored fabrication of nanoscale carbon
devices without requiring expensive and complex nanofabrication technologies [30–32]. In
this study, suspended carbon mesh backbones were fabricated using C-MEMS processes,
as described above. Then, a thin ZnO seed layer was selectively coated on the suspended
mesh using photolithography and isotropic sputtering processes. Thus, ZnO NWs could
be selectively grown on the mesh surfaces using a simple hydrothermal growth process,
as shown in Figure 1d,e. Moreover, dense ZnO NW junction networks could be formed
in a suspended architecture at a wafer level. As the integrated metal oxide nanowires are
distributed circumferentially around the carbon mesh wires, the gas can efficiently access
the sensing sites located at nanowire surfaces and junctions. To evaluate the effectiveness of
the suspended network of metal oxide nanowire junctions, we fabricated various types of
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suspended ZnO NW-based sensors and compared their sensing properties. The suspended
junction networks formed through the longitudinal connection of ZnO NWs exhibited
enhanced response, LOD, and sensitivity compared with those measured using suspended
and laterally connected ZnO NWs.
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Figure 1. Schematic of the fabrication steps of suspended carbon nanomesh functionalized with ZnO NW networks.
(a) Suspended polymer micromesh patterned by two-step photolithography; (b) conversion from polymer to carbon
structures by pyrolysis; (c) gold electrode patterning; (d) selective exposure of suspended carbon mesh via photolithography;
(e) selective integration of ZnO NW networks via ZnO seed layer deposition and hydrothermal growth processes (enlarged
image: ZnO NW junctions with embedded carbon nanomesh backbone).

2. Materials and Methods
2.1. Fabrication of the Suspended Carbon Nanomesh Backbone

The fabrication steps of the present gas sensors are shown in detail in Figure S1. All
processes were performed on a 6-inch Si wafer (p-type, boron-doped, 5–20 Ω·cm, thick-
ness = 660–700 µm; LG Siltron Co., Ltd., Gumi-si, Korea). First, a 1 µm-thick SiO2 insulation
layer was grown on the Si wafer by wet oxidation. Suspended polymer micromesh struc-
tures were fabricated via two successive photolithography steps. A negative photoresist
(SU-8 2025, Microchem. Corp., Westborough, MA, USA) was spin-coated on the SiO2/Si
substrate to a thickness of 25 µm and soft-baked at 95 ◦C for 8 min. This photoresist layer
was exposed to UV light with a high dose (180 mJ·cm−2) from top to bottom to create post
structures supporting a suspended micromesh. In the subsequent UV exposure, only the
top portion of the photoresist layer was exposed to a low dose of UV light (15 mJ·cm−2),
in order to form a suspended polymer micromesh. After post-exposure baking (95 ◦C for
7 min), the monolithic polymer structure consisting of the suspended polymer micromesh
and the supporting post structures was obtained through a single development step. The
polymer mesh structure was then carbonized into a carbon mesh by pyrolysis at 600 ◦C
and 1 ◦C·min−1 in a vacuum furnace (Daemyoung, Ltd., Gwangmyeong, Korea). Because
of the huge volume reduction during the pyrolysis process, the microscale polymer mesh
shrank into a nanoscale carbon mesh structure. After pyrolysis, a 100 nm-thick Au layer
was coated on the two carbon posts to compensate for the low electrical conductivity of
the carbon posts pyrolyzed at low temperature. Thus, the electrical resistance between
the two carbon posts mainly depended on the resistance of the ZnO NW networks. A
positive photoresist (AZ 4330, AZ Electronic Materials, Somerville, NJ, USA) and e-beam
evaporation (10 nm Cr/100 nm Au) were used for Au layer patterning.
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2.2. ZnO Nanowire Growth on the Suspended Mesh Backbone

ZnO NWs were grown on the suspended carbon mesh via selective seed layer de-
position followed by hydrothermal growth, as shown in Figure S1l–q. For the selective
patterning of the ZnO seed layer, a positive photoresist (AZ 4330, AZ Electronic Materials,
Somerville, NJ, USA) layer was spin-coated on the substrate. Then, only the top portion of
the photoresist was exposed to a low dose of UV light. Thus, the unexposed photoresist
layer under the suspended carbon nanomesh remained intact, and a 20 nm-thick ZnO
seed layer could be selectively deposited onto the suspended carbon nanomesh by radio
frequency (RF) sputtering and photoresist removal processes. After seed layer patter-
ing, the ZnO NWs were hydrothermally grown using 10 mM zinc nitrate hexahydrate
(Zn(NO3)2·6H2O, Sigma-Aldrich, St. Louis, MO, USA) and 10 mM hexamethylenete-
tramine ((CH2)6N4, Sigma-Aldrich, St. Louis, MO, USA) in an autoclave system.

2.3. ZnO Nanowire Characterization

The morphology and composition of the ZnO NWs were characterized using scanning
electron microscopy (SEM; Quanta 200, FEI, Hillsboro, OR, USA), high-resolution X-ray
diffraction (XRD; D8 Advance, Bruker, Billerica, MA, USA) using CuKα radiation (average
wavelength = 1.5418 Å), and high-resolution transmission electron microscopy (HRTEM;
JEM-2100, JEOL, Ltd., Tokyo, Japan). A focused ion beam (FIB) milling machine (Helios
450HP, FEI, Hillsboro, OR, USA) was used for the preparation of the HRTEM samples.

2.4. Gas Sensing Tests

The sensing performances of the present sensor were evaluated for various gases
such as NO2, SO2, CO, CH4, C6H6, and H2 using a gas chamber integrated with a heater
(MPS-CHL, Nextron, Busan, Korea), as shown in Figure S2. Before the gas sensor tests, the
gas-sensing chamber was prepared by several N2 purging and vacuum pumping cycles.
The concentration of the target gas was controlled by mixing it with dry air as a carrier
gas using a mass flow controller (GMC1200, Atovac, Yongin-si, Korea). The flow rate of
dry air was fixed at 1000 sccm in all experiments. The change in the electrical resistance of
the gas sensor was monitored using a source meter (Keithley 2450, Keithley Instruments,
Inc., Cleveland, OH, USA), and the operating temperature was controlled using a ceramic
heater stage installed inside the gas-sensing chamber. The experiments were carried out
at atmospheric pressure. Gas response was represented as Rg/Ra for oxidizing gas (NO2)
and Ra/Rg for reducing gases (SO2, CO, CH4, C6H6, and H2), where Rg and Ra represent
the sensor resistance for target gas and dry air, respectively. The effect of humidity on
gas detection was evaluated by mixing the target gas with wet air at controlled humidity
(0–80% RH).

3. Results and Discussions
3.1. Morphology of the Gas Sensor Platform Based on the Suspended Network of ZnO NW
Junctions

The suspended carbon nanomesh backbone structures were fabricated using succes-
sive photolithography and pyrolysis processes, as shown in Figure 2a,b. The shape of
the carbon nanomesh was maintained after pyrolysis, whereas the mesh size changed,
as shown in Figure S3. As described in the experimental section, during the pyrolysis
process, the polymer structure underwent a volume reduction of 40–90%, depending on
its shape and size [27]. Thus, the width and thickness of the wires forming the mesh were
reduced from 1 µm to 300 nm and from 4 µm to 0.6–1 µm, respectively. Similarly, the
posts supporting the suspended structures shrank, and thus the distance between the two
carbon posts increased from 120 to 140 µm. Nevertheless, the suspended carbon nanomesh
did not show significant damage, because most of the volume reduction occurred before
carbonization during the pyrolysis process [27].
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Figure 2. SEM images of (a,b) a bare suspended carbon nanomesh and (c,d) the same nanomesh functionalized with ZnO
NWs. (e,f) SEM images of a section of carbon mesh showing a network of ZnO NW junctions.

The ZnO NWs were selectively integrated on the surface of the suspended carbon
nanomesh by hydrothermal growth, which resulted in the formation of networks of NW
junction. As shown in Figure 2d–f, ZnO NWs with a high aspect ratio (diameter ~60–90 nm,
length ~2.5–3.5 µm) were densely grown and connected side by side on the carbon mesh. In
addition, the ZnO NWs were distributed along the circumference of the carbon nanowires,
facilitating the access of the target gas to the NW surface. The ZnO NWs grown on a carbon
nanowire were long enough to connect with other NWs located across the void region of
the mesh, forming dense NW junctions.

3.2. Microstructure and Composition of the ZnO Nanowires

The morphology and crystallinity of the ZnO NWs were analyzed through HRTEM
and XRD, as shown in Figures S4 and S5, respectively. For the TEM analysis, the ZnO
NWs were grown on a flat carbon pad under the same conditions used for the growth of
the NWs on the suspended carbon mesh. The TEM images in Figure S4a,b show the ZnO
NWs grown on a ZnO seed layer deposited onto carbon. Here, the seed layer acts as a
nucleation site for the growth of the ZnO NWs. The corresponding selected-area electron
diffraction (SAED) pattern shown in Figure S4c confirms the crystalline nature of the
ZnO nanostructures, exhibiting unidirectional growth. The HRTEM image in Figure S4b
displays the crystalline pattern of the grown ZnO NWs. In addition, the interplanar spacing
of 0.26 nm shown in the inset of Figure S4b matches the spacing of the (002) crystal lattice
of ZnO, confirming the growth of highly crystalline ZnO NWs along the c-axis.

The ZnO NW sample for the XRD analysis was prepared on a quartz wafer, to avoid
the high-intensity Si peak. A carbon pad and ZnO NWs were also prepared using the same
processes used for the suspended ZnO NWs. As shown in Figure S5, the XRD pattern
displays a distinct (002) peak with full width at half maximum of 0.366◦. The relatively
higher intensity of the (002) peak, compared with that of the other lattice planes, indicates
that the ZnO NWs were preferentially grown along the c-axis. The elemental compositions
of ZnO NWs grown on a carbon nanomesh were quantitatively analyzed using energy-
dispersive spectroscopy (EDS) measurements at two distinct spots, as shown in Figure S6.
The EDS profile obtained from the spot corresponding to the ZnO NW surface shows the
presence of zinc and oxygen in a 1:1 ratio, whereas no other elements were detected. This
confirmed the pure ZnO composition of the as-grown NWs, with a negligible amount of
impurities. The spectrum of the carbon core revealed a significantly higher carbon content.
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3.3. Gas Sensor Characterization

The present gas-sensing mechanism is based on changes in electrical resistance, as the
conductivity of the suspended ZnO NWs varies in response to the target gas concentration.
Therefore, the electrical resistance of the carbon mesh should be high enough to ensure that
the main current path is represented by the ZnO NW networks between the two carbon
posts. The electrical conductivity of pyrolyzed carbon strongly depends on (and increases
with) the pyrolysis temperature [33]. In this study, the carbon structure was pyrolyzed at
600 ◦C, resulting in a relatively low conductivity. Starting from this temperature, the rate
of volume reduction during pyrolysis decreased, allowing efficient size control [27]. We
evaluated the effect of the electrical resistance of the carbon structures on the total resistance
of the suspended hybrid mesh by measuring the I–V curves shown in Figure S7. Although
the deposition of a thin seed layer did not significantly affect the electrical resistance, the
growth of the ZnO NW network reduced the total resistance by 50% at room temperature
(Figure S7a). Moreover, at the high operating temperature (250 ◦C) of gas sensors, the total
resistance of the hybrid mesh network was significantly reduced, and thus the effect of the
carbon backbone on the total resistance became negligible (Figure S7b). In addition, the
I–V curves show a good ohmic contact.

As explained in Section 1, when ZnO NWs are connected to each other forming
network junctions, the depletion region or band bending increases significantly at the
junctions with the exposure to oxidizing gases. This is because the electron density excited
over the potential barrier exponentially decreases with the potential barrier [34]. Therefore,
the potential barrier at the network junctions affects more sensitively the current flow along
the MOX NW networks compared to the depletion layer thickness. In this study, three
different types of ZnO NW junction networks were prepared to assess the effect of the
suspended architecture and ZnO NW junctions on the gas detection properties. These
sensor types were classified according to their carbon mesh void size and the architecture
(suspended or substrate-bound): (A) ZnO NW junction networks grown on the suspended
carbon mesh with large voids, (B) ZnO NW junction networks grown on the suspended
carbon mesh with small voids, (C) ZnO NW junction networks grown on the substrate,
as shown in Figure 3a–c, respectively. For a clear comparison, all types of sensors were
prepared under the same ZnO NW growth conditions to obtain similar ZnO NW geometries.
In addition, the size of the mesh void was designed differently to control the formation of
the longitudinally connected NW junction networks (e.g., type A and B). When the size of
the carbon mesh void area was large (type A), as shown in Figure 3a (side length of the
unit diamond mesh ~14 µm), the ZnO NWs were connected transversely. For the carbon
mesh with a small void region (side length of the unit diamond mesh ~5–6 µm), additional
junctions were formed in the center of the void region of the carbon mesh (type B), as
indicated by the yellow dotted diamonds in Figure 3b.

For a type A sensor with ZnO NW networks mainly connected laterally as shown in
Figure 3a, the ZnO NWs are tightly connected in the proximity of the carbon backbone due
to the circumferential distribution of the ZnO NW networks. This tightly packed region
serves as the main current path. On the other hand, the ZnO NW end regions, away from
the carbon wire backbone, do not significantly participate in the current flow, as indicated
by the dotted green lines in Figure 4a. Therefore, not all the depletion zone of the ZnO
nanowire contributes to the overall change of electrical resistance of the ZnO NW networks.
This type of current path also applies to the type B sensor based on the suspended carbon
mesh with small voids, as shown in Figure 3b. In addition, additional current paths extend
through longitudinally connected nanowires across the mesh void region, as shown in
Figure 4b. In this case, most of the entire surface of these longitudinally connected ZnO
NWs can be utilized as a current path. Moreover, enhanced gas sensing performances
are expected, because the radially grown ZnO NW architecture allows the target gas to
access the ZnO NW junctions more efficiently compared to the ZnO NW networks tightly
connected in the lateral direction.
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The effect of the additional junction networks on the gas detection properties was
analyzed by comparing the gas sensing response to 500 ppb NO2 mixed in dry air measured
using the three different types of ZnO NW junction networks, as shown in Figure 5a,b. The
ZnO NW networks with additional longitudinally connected junctions (Type B: Black line
and bar) exhibited a 57.5% higher response compared with the ZnO networks built on the
large carbon mesh (Type A: Blue line and bar). A similar enhancement was also observed for
other sensing properties such as sensitivity and LOD, as shown in Figure 5c. Accordingly,
the LOD of ZnO NWs grown on the small carbon mesh was 30.6 ppb (S/N = 3), which
was 36.1% better than that of ZnO NW networks without additional NW junctions. This is
presumably due to the effect of additional junction-induced potential barriers. In addition,
a gas can access most of the entire surface of the ZnO NWs in the mesh void region, in
contrast to the limited access to the ZnO NWs laterally connected along the carbon wire
backbone. However, both types of sensors exhibited similar responses and recovery times
(Figure 5a), because they consisted of laterally connected ZnO NW junctions.
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For the evaluation of the effect of the suspended architecture on the gas sensing perfor-
mance of sensors based on ZnO NW junction networks, ZnO NW junction networks were
prepared on the substrate, as shown in Figure 3c. For a clear comparison, the substrate-bound
and suspended sensors were prepared under the same ZnO NW growth conditions. Due to
the small size of the carbon mesh, accurate patterning of seed layer on the carbon structures
was difficult. Instead, a ZnO seed layer was patterned without a carbon mesh backbone.
Although the same photomask was used for mesh patterning, the resulting mesh shapes did
not match (side length of the unit square mesh ~10–11 µm), as shown in Figure 3c, because of
the volume change of the suspended carbon mesh during pyrolysis. As shown in Figure S3b
and e, the two posts supporting the suspended mesh shrank during pyrolysis, and the mesh
structure was extended towards the supporting posts. As a result, the shape of the mesh unit
cell changed from square to diamond, as shown in Figure S3c,f, respectively. Therefore, the
effect of the position of the longitudinally connected ZnO NW network on its gas sensing
properties could not be analyzed. Instead, the analysis was performed on transversely
connected ZnO NW-based sensors fabricated on the substrate. This is because the sensing
characteristics of laterally connected junction network-based sensors are determined to a
greater extent by the geometry of the laterally connected ZnO nanowires than by the shape
and size of the carbon mesh backbone. While all three types of ZnO NW networks were
grown under the same hydrothermal growth condition, the substrate-bound sensor exhibited
shorter ZnO NWs (diameter ~40–60 nm, length ~10–15 µm) because of the limited mass
transfer of the precursor to the seed layer on the substrate compared with the suspended
sensor. The effect of the suspended architecture on the gas sensing performance of sensors
based on the ZnO NW junction networks is shown in Figure 5a–c. The suspended sensor
exhibited a higher response compared to the sensors placed on the substrate. ZnO NWs
on the suspended mesh (blue figures) exhibited a 162% higher response for 500 ppb NO2
detection compared with the substrate-bound sensor (green figures). The sensitivity and
LOD were also significantly enhanced by forming the ZnO NW junctions in a suspended
architecture. This is because the suspended mesh facilitates a more effective gas transfer
to the sensing sites without substrate effects [25–27]. In addition, the effect of the smaller
NW length and density resulting from the limited mass transfer of the NW precursor to
the substrate-bound mesh backbone should also be noted.

3.4. Gas Sensing Tests

The gas sensing performances of the sensor based on ZnO NWs grown on a suspended
mesh with small voids (Type B, as shown in Figure 3b) were tested by measuring the changes
in electrical resistance at a variety of operating temperature conditions (200–250 ◦C), as shown
in Figures S8 and S9. The present sensor exhibited the highest response and fast reac-
tion/recovery at 250 ◦C, and thus this temperature condition was selected for further sensor
tests. The gas responses were measured for different NO2 concentrations (50–500 ppb),
as shown in Figure 6a. The electrical resistance increased with the concentration of the
oxidizing NO2 gas, reflecting the general behavior of n-type semiconducting materials.
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The present gas sensor exhibited a good gas response at very low concentrations (1.98 for
50 ppb), as well as a linear response with high sensitivity (0.92% ppb−1) up to 500 ppb
(black squares in Figure 5c), resulting in a good LOD (30.6 ppb, S/N = 3). The sensor also
exhibited changes in electrical resistance upon exposure to various reducing hazardous
gases such as C6H6, CH4, CO, H2, and SO2, as shown in Figure 6b. Although the concentra-
tions of the reducing gases were more than four times higher than that of NO2, the sensor
responses to these gases were much lower compared to that measured for NO2, which can
facilitate the selective detection of NO2. This is presumably because the potential barrier
changes are more sensitive to the increased size of the depletion zone.
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The reliability of the sensor based on a suspended network of ZnO NW junctions
was also assessed by evaluating the effect of humidity (0–80% RH) on the gas sensing
performances (500 ppb NO2), as shown in Figure 7. The humidity in the sensing chamber
was controlled by mixing the target gas with wet air at controlled humidity. The sensor
exhibited negligible changes in gas response and response time until the humidity increased
to 50% RH. When the humidity reached 80% RH, the response decreased by ~7%. This is
because water molecule chemisorption occurs at the ZnO NW surface with the increase in
humidity, forming adsorbed surface hydroxyl groups (OH(ad)), which hinders the surface
reaction of NO2 [35]. However, this small change in response with respect to a wide range
of humidity values (0–80% RH) indicates the reliability of the present sensor in practical
applications.
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4. Conclusions

In this study, we developed a novel gas sensor platform based on a suspended network
of ZnO NW junctions formed on a carbon nanomesh backbone. The complex-shape ZnO
NW networks could be selectively grown on the carbon mesh using a simple hydrothermal
process; this is due to the suspended architecture and robust structure of the carbon mesh
backbone. The void size of the carbon mesh was designed to be small enough to allow the
formation of longitudinally connected junctions made of ZnO NWs grown from carbon
meshes facing each other. The ZnO NWs were grown radially around the suspended carbon
wire and connected in the center of the void regions of the mesh, resulting in efficient gas
access to the sensing sites, including the longitudinally connected junctions and the entire
NW surfaces. The enhanced gas access as well as the potential barrier at the junctions
resulted in improved gas sensing performances such as response and sensitivity, compared
to gas sensors based on either substrate-bound ZnO NW networks or suspended networks
consisting of only laterally connected ZnO NW junctions. As shown in Table 1, the presented
sensor showed comparable performances to those of other gas sensors based on various
types of MOx NW junction networks, even though the presented ZnO MOx NW is a
pristine semiconductor without any surface modification and heterogeneous material
composition. In addition, the presented sensor fabrication method is based on a cost-
effective wafer-level C-MEMS process. This process is compatible with various MOx
nanostructures synthesis methods such as the vapor–liquid–solid (VLS) method under
non-oxidizing conditions and the hydrothermal method, because pyrolyzed carbon has
good chemical and thermal stability. Therefore, our sensor platform technology is easily
accessible and compatible with various MOx NW synthesis methods and is therefore
expected to contribute to enhancing the performances of gas sensors based on various
types of MOx NWs. The suspended ZnO NW network-based sensor ensured reliable NO2
sensing performances even in humid environments. In addition, the mesh-like backbone
of the present sensor can allow robust and reliable gas detection, because the gas sensor
function can be maintained even if the sensor is subjected to slight structural damage;
this is due to the redundant carbon wires forming the mesh backbone. In conclusion, this
work provides a novel and cost-effective approach to facilitate the formation of junction
networks of well-aligned metal oxide nanowires (widely used in nanowire-based gas
sensors) in a suspended architecture. Because of its high temperature/chemical stability
and robustness and the suspended architecture of the sensor backbone, the present gas
sensor platform is expected to be applicable in gas-sensing devices based on various types
of metal oxide nanowires. However, the limitation of the presented sensor platform should
be noted. The current design of the sensor is not equipped with a low-power heater, which
is required to heat ZnO NWs to the optimum operating temperature. This limitation can
be overcome by utilizing the suspended carbon mesh backbone as a heater template, and
therefore suspended MOx NW networks with a micro-heater can be implemented. In this
heater-integrated sensor configuration, the carbon mesh backbone is selectively coated
with a metal layer acting as a heater, and ZnO NWs are grown on the metal-coated mesh
after insulation of the metal layer. This suspended heater-integrated MOx NW junction
network-based sensor will be reported in the near future.
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Table 1. Summary of the sensing performances of gas sensors based on MOx NW junctions.

Configuration
MOx NW
Growth
Method

Type Target Gas Temperature
(◦C)

1 Concentration
(ppm)

2 Response
3 LOD
(ppb) Reference

SnO2–ZnO
hierarchical

network
Hydrothermal Substrate-

bound C2H5OH 400 25 3.0(Rg/Ra) - [36]

SnO2 NWs
junction network

4 VLS Substrate-
bound NO2 300 0.5 1.0(∆R/Ra) - [37]

ZnO NWs
junction network Hydrothermal Substrate-

bound NO 70 50 0.147(∆R/Ra) 100 [38]

5 Au–
ZnO/APTES
NWsjunction

network

6 Dielec-
trophoretic

coating

Substrate-
bound NO2 ~25 1 1.69(∆R/Ra) - [39]

ZnO NWs
junction network Hydrothermal Suspended NO2 250 0.5 4.71(Rg/Ra) 30.6 This

work
1 Concentration: Lowest concentration of target gas measured in each study; 2 Response: Gas sensor response at 1 the lowest measurable
concentration and at the optimal temperature; 3 LOD: Calculated limit of detection; 4 VLS: Vapor–Liquid–Solid method without an
oxidation condition, 5 Au–ZnO/APTES: Au-doped ZnO NW with a (3-aminopropyl) triethoxysilane layer; 6 Dielectrophoretic coating:
Aligning pre-grown ZnO NWs (in powder form) using dielectrophoretic force.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/s21134525/s1, Figure S1: Schematic fabrication steps of the suspended carbon nanomesh
functionalized with ZnO NWs (PR: Photoresist), Figure S2: (a) Schematic of the gas sensing experi-
ment setup. (b) Photograph of the-sensing chamber, Figure S3: SEM images of a (a–c) suspended
polymer micromesh before pyrolysis and (d–f) the corresponding suspended carbon nanomesh after
pyrolysis: (a,d) Bird-eye view. (b,c,e,f) Top view, Figure S4: TEM analysis results of ZnO–NWs
grown on a carbon pad: (a) TEM image of the overall sample structure, (b) HRTEM image, and
(c) corresponding diffraction pattern, Figure S5: XRD pattern of ZnO NWs grown on a pyrolyzed
carbon thin film in the quartz substrate, Figure S6: EDS analysis of the suspended carbon nanomesh
functionalized with ZnO NWs: Point chemical analysis spectrum from (a) ZnO NWs and (b) car-
bon nanomesh, Figure S7: I–V curves of suspended nanomesh structures (black line: Bare carbon
nanomesh, red line: ZnO seed layer/carbon mesh, blue line: ZnO NWs/ZnO seed layer/carbon
mesh) measured at (a) room temperature and (b) 250 ◦C, Figure S8: Gas sensing responses of a Type
B sensor (ZnO NW junction networks grown on a suspended mesh with small voids) to 500 ppb
NO2 at various operating temperature conditions (200–300 ◦C), Figure S9: (a) Gas response and (b)
response (blue)/recovery(red) time for various operating temperature conditions corresponding to
the results shown in Figure S8.
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