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SUMMARY

Circadian protein oscillations are maintained by the lifelong repetition of protein
production and degradation in daily balance. It comes at the cost of ever-re-
played, futile protein synthesis each day. This biosynthetic cost with a given oscil-
latory protein profile is relievable by a rhythmic, not constant, degradation rate
that selectively peaks at the right time of day but remains low elsewhere, saving
much of the gross protein loss and of the replenishing protein synthesis. Here, our
mathematical modeling reveals that the rhythmic degradation rate of proteins
with circadian production spontaneously emerges under steady and limited activ-
ity of proteolytic mediators and does not necessarily require rhythmic post-trans-
lational regulation of previous focus. Additional (yet steady) post-translational
modifications in a proteolytic pathway can further facilitate the degradation’s
rhythmicity in favor of the biosynthetic cost saving. Our work is supported by an-
imal and plant circadian data, offering a generic mechanism for potentially wide-
spread, time-dependent protein turnover.

INTRODUCTION

Circadian clocks in various organisms generate endogenous molecular oscillations with �24-h periodicity,

enabling physiological adaptation to diurnal environmental changes caused by the Earth’s rotation around

its axis. Circadian clocks play a pivotal role in maintaining biological homeostasis, and the disruption of

their function is associated with a wide range of pathophysiological conditions (Brody and Harris, 1973; Ga-

chon et al., 2004; Nagel and Kay, 2012; Sehgal et al., 1994). Despite the ongoing efforts to understand the

mechanisms of circadian clocks and their downstream regulation, almost absent in the predominating

perception is the price of daily biological rhythms, a key concept that we will delineate below.

Because protein abundances controlled by the circadian system and/or diurnal environmental changes are

periodic over time, the proteins must be degraded by the same amount as a total of their synthesis, in each

period of the oscillations; otherwise, the proteins would be either accumulated or depleted over the pe-

riods without precise repetition of their abundances (Figures 1A and 1B and STAR Methods, relationship

between protein abundance profiles and biosynthetic costs) (Jo et al., 2018). This counterbalance between

protein synthesis and degradation back to the baseline every period could only be sustained at the

expense of ever-replayed protein synthesis on a daily basis—a circadian version of the Red Queen’s

race (Carroll, 1872). We previously demonstrated that these daily rounds might be particularly a burden

to the case of highly oscillatory proteins with sharp waveforms, because establishing these waveforms re-

quires rapid protein degradation at their falling phases (even involving the examples of sub-hour-long pro-

tein half-lives) and thereby substantial proteosynthesis for their replenishment (Figure 1C and STAR

Methods, relationship between protein abundance profiles and biosynthetic costs) (Jo et al., 2018). In

this context, our aforementioned notion, the price of daily biological rhythms, refers to the inevitable

expense of protein synthesis in maintaining lifelong circadian rhythms of a given organism. Although

not at the whole organism level, our rough estimation suggests that�4% of mouse liver proteins with circa-

dian or diurnal rhythmicity account for �20% of the total mouse liver protein synthesis, under the assump-

tion of the constancy of protein half-lives over time (STAR Methods, biosynthetic cost of mouse liver pro-

teins in the case of constant protein half-lives). As mathematically proven in our previous study (Jo et al.,

2018), constant half-life indicates a constantly short-lived protein, which is degraded all the time at least

as rapidly as required at the falling phase of the oscillation (STAR Methods, relationship between protein
iScience 24, 102726, July 23, 2021 ª 2021 The Author(s).
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Figure 1. Relationship between circadian protein degradation and biosynthetic costs

(A) Schematic diagram of protein production and degradation. xðtÞ, gðtÞ, and rðtÞ represent protein concentration, synthesis rate, and degradation rate over

time t, respectively.

(B) Each upper panel shows protein concentration profile xðtÞ, and the lower panel shows the corresponding total protein amount produced (bluish,Rt
0

gðt0Þdt0) or degraded (reddish,
Rt
0

rðt0Þxðt0Þdt0) over time t from t = 0 h. Gray horizontal lines in each lower panel indicate the protein amount produced until

t = 24 h in order to guide visual comparison with the degraded protein amount.

(C) The upper panels show different waveforms of xðtÞ (a sharper waveform on the right-hand side), and the lower panels show the corresponding gðtÞ and
rðtÞwhen rðtÞ is constant over time. In each lower panel, rðtÞ takes a value close to the theoretical minimum (maxt ½ � x0ðtÞ =xðtÞ�) determined at the time point

with an arrow in the upper panel (for details, see STARMethods, relationship between protein abundance profiles and biosynthetic costs). A sloped segment

in each upper panel indicates the rapidness of protein degradation required at the time point with the arrow.

(D) Given the protein profile xðtÞ in (C), the left panels exhibit rðtÞ when rðtÞ is constant or rhythmic (darker color than constant rðtÞ). They also show the

corresponding gðtÞ (light and dark blue for the cases of constant and rhythmic rðtÞ, respectively). The right panel shows the total protein amount produced

(bluish) or degraded (reddish) over time, plotted in a similar fashion to (B). Darker (lighter) colors in the right panel correspond to the case of the rhythmic

(constant) rðtÞ in the left panel. Given the protein profile, the rhythmic degradation rate is associated with a less amount of protein production, i.e., a lower

proteosynthetic cost than the constant degradation rate (STAR Methods, relationship between protein abundance profiles and biosynthetic costs).
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abundance profiles and biosynthetic costs). This constantly high protein loss imposes a severe proteosyn-

thetic load (Figure 1C and STAR Methods, relationship between protein abundance profiles and biosyn-

thetic costs). One of the mechanisms to relieve such a biosynthetic burden is that proteins with oscillating
2 iScience 24, 102726, July 23, 2021
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abundances are rhythmically degraded (Jo et al., 2018; Kiba et al., 2007; Lück et al., 2014; van Ooijen et al.,

2011), rather than only rhythmically produced as commonly assumed with circadian mRNA expression or

translation rates. Specifically, a degradation rate that selectively peaks at the falling phase of an abundance

oscillation, but stays relatively low elsewhere, can reduce a gross protein loss and save much of the proteo-

synthesis in return (Jo et al., 2018). Figure 1D illustrates such a drop of 45% of proteosynthesis, and a similar

or even more saving was anticipated at least for some plant and mammalian core clock proteins (Jo et al.,

2018).

This observation of rhythmic protein degradation as one plausible solution to the price of daily biological

rhythms raises a fundamental question: what is the underpinning molecular mechanism of such rhythmic

degradation? Predominant studies on the rhythmic protein stability have been focusing on the presence

of particular post-translational, proteolytic pathways, presumably under active circadian or diurnal control,

such as the pathways with time-of-day-specific kinase, F-box protein, and autophagic activities (Cha et al.,

2017; Kiba et al., 2007; Lamia et al., 2009; Toledo et al., 2018). However, it is unclear whether the repertoire

of such oscillatory, proteolysis-related processes is really diverse enough to cover all the substrates in our

question. Moreover, their contribution to the biosynthetic cost reduction can be rather limited, if the pro-

teolytic mediators themselves have the own oscillating abundances that incur the extra biosynthetic costs.

In this study, we suggest that the rhythmic degradation of proteins with daily oscillatory production does

not necessarily require the rhythmic post-translational regulation under circadian or diurnal control. Rather,

steady proteolytic mediators suffice to induce clearly rhythmic degradation rates, as long as these media-

tors and their substrate proteins follow certain conditions. We view this inherent biochemical mechanism as

more basal than, yet conditionally synergistic to, the conventional circadian- or diurnal-controlled degra-

dation mechanisms of the rhythmic degradation. Besides, our mathematical framework suggests that extra

yet steady post-translational modifications (PTMs), such as with mono- or multisite phosphorylation, can

elevate the rhythmicity of the substrate degradation rate and thereby cut down the proteosynthetic costs

to substantial degrees. In addition, the model simulation accounts for the major trend of rhythmic ubiqui-

tination and half-life data of animal and plant core clock proteins. The analysis of proteome-wide data is

consistent with our expectations, as well. Our theory, aligned with the experimental data, provides a

possibly prevailing mechanism of affording the price of daily biological rhythms in living creatures, and

an evolutionary insight into the companionship between the circadian system and PTMs.
RESULTS

Rhythmic degradation rates of rhythmically produced proteins can arise with steady post-

translational regulation

If a protein not only is rhythmically produced but also decomposes with a rhythmic degradation rate, the

complexity of the dynamics blurs our intuition and thus calls for a quantitative formulation and analysis. We

derived a mathematical model that describes a temporal concentration profile of a protein with circadian

production and degradation rates (see STAR Methods, computational modeling of protein ubiquitination

without depending on other PTMs; for simplicity, the term ‘‘circadian’’ in this work will often refer to both

circadian and diurnal). As a major route to protein degradation in eukaryotes, we here focus on ubiquitina-

tion, but our results are also applicable for other degradation mechanisms such as autophagy (STAR

Methods, model application beyond protein ubiquitination). Although the incorporation of deubiquitinat-

ing processes is straightforward in our model, its outcome is rather condition-specific and hence will be

omitted here.

Our model attributes the circadian production rate of a protein to a circadian mRNA expression or trans-

lation rate. Yet, a protein degradation rate in the model is not based on any explicitly time-dependent reg-

ulatory processes, but on constantly maintained proteolytic components such as the constant amount and

activity of E3 ubiquitin ligases (STAR Methods, computational modeling of protein ubiquitination without

depending on other PTMs). Nevertheless, clear circadian rhythmicity arises in the degradation rate coeffi-

cient over a range of biochemical conditions: Figure 2A exemplifies a 62.5% increase in the degradation

rate from the lowest to the highest each day. This spontaneous rhythmicity can be understood by an unsyn-

chronized interplay between protein translation and degradation processes. For example, in the case of

protein ubiquitination, ubiquitin ligases with a finite binding affinity would not always capture all newly

translated substrates, and therefore, a lower proportion of the substrates may be ubiquitinated during

the rising phase of the substrate profile than during the falling phase. Hence, the degradation rate tends
iScience 24, 102726, July 23, 2021 3



Figure 2. Phospho-independent degradation simulation with steady proteolytic mediators

(A) The upper panel shows an example of simulated protein profile xðtÞ (black solid line). The lower panel shows the

corresponding protein synthesis rate gðtÞ (light blue, solid line) and degradation rate rðtÞ (dark red, solid line). The

estimate of rðtÞ based on Equation 1 is presented in the lower panel (dark red, dotted line; see also Figure S1). The

minimum degradation rate (maxt ½ � x0ðtÞ =xðtÞ�) under the assumption of a constant degradation rate is indicated in the

lower panel (horizontal dashed line), together with the time point of the largest �x0ðtÞ=xðtÞ in the upper and lower panels

(vertical dashed lines) that determines the minimum constant degradation rate (STAR Methods, relationship between

protein abundance profiles and biosynthetic costs).

(B) Based on the same gðtÞ as in (A), we simulated the model by changing the concentration of ubiquitin ligases (= ufU),

while fixing the other parameters. U denotes an appropriately scaled dimensionless measure of ubiquitinating activity,

defined in STAR Methods, computational modeling of protein ubiquitination without depending on other PTMs. The

simulation gave aD in the upper panel and the time average of the fraction of ubiquitinated proteins (red solid line) and

Rmax (maxt ½ � ð1=r0Þ,x0 ðtÞ=xðtÞ �, gray solid line) in the lower panel. The corresponding u of each value of U is shown in the

unit of nM in parenthesis under the horizontal axis.

(C) This simulation strictly maintains the profile of xðtÞ in (A) and spans the whole range of U in (B), while fixing the other

parameters and adjusting gðtÞ to each value of U. The resulting aD is shown (black solid line) along with the boundary U =

Rmax (gray dashed line). Biologically infeasible results are excluded here (see STAR Methods, computational modeling of

protein ubiquitination without depending on other PTMs). For visual guidance, the horizontal axes in (B, C) are arranged

in the descending order of U. The model in (A–C) consists of Equations 6–10 in STAR Methods, computational modeling

of protein ubiquitination without depending on other PTMs, and was simulated with the following parameter values: u=

0:22 nM (A), v = 0, a0 = 234:9 nM�1h�1, a1 = 17; 880:6 h�1, a2 = 15; 347:2 h�1, r0 = 1:3 h�1, and q= 262:2 h�1.
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to be lower at times other than the falling phase. One may expect that this effect would be enhanced with a

more limited level of ubiquitin ligases and their activity, under the condition when the substrate level with

circadian production undergoes a steeply rising and falling oscillation. Here, we quantify the rhythmicity of

the degradation rate by the peak-to-trough difference in the degradation rate divided by the peak degra-

dation rate. This quantity, denoted by aD , has a larger value away from 0 and approaches 1 as the degra-

dation rhythmicity becomes stronger (STAR Methods, quantification of degradation rhythmicity). As antic-

ipated, the simulated decrease of ubiquitin ligase levels, while maintaining the same level of the circadian

protein production, enhances the rhythmicity aD by lowering the overall proportion of ubiquitinated pro-

teins. However, this enhancement is very gradual over the range of the ubiquitin ligase levels (Figure 2B).

Moreover, a further decrease of the ubiquitin ligases even slightly reduces aD (Figure 2B). In fact, at a given

protein production rate, a decrease in the ubiquitin ligases contributes both positively and negatively to

the magnitude of aD : the negative effect is caused by the overall slowdown of protein turnover, which

weakens the oscillation of the protein abundance (Figure 2B).

This intertwined relation between proteolytic activity levels and protein abundance oscillations motivated

us to uncouple these two factors of degradation rhythmicity for its simpler and clearer analysis. Therefore,
4 iScience 24, 102726, July 23, 2021
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we devised a computational technique to simulate our model with a strictly maintained protein concentra-

tion profile, although parameter values are changed (STAR Methods, computational modeling of protein

ubiquitination without depending on other PTMs). In this simulation, the protein production is not fixed but

adapted to the parameter variations by adjusting the mRNA or translation-rate profile (STAR Methods,

computational modeling of protein ubiquitination without depending on other PTMs). This technique

rigorously controls for the effect of the protein abundance oscillation on the rhythmic degradation rate.

Furthermore, the resulting simulation is expected to offer a more relevant evolutionary viewpoint, because

the protein abundance profile directly influences a biological phenotype compared with an mRNA or trans-

lation-rate profile and thus represents a more fundamental position to which other elements in the system

may have been adapted. For the remaining part of this work, we will apply this simulation technique.

Given a protein oscillation profile, the above new simulation does result in monotonically increasing rhyth-

micity aD , as the ubiquitin ligase amount or activity decreases (Figure 2C). For a better understanding of the

model output, we derived an approximate formula for a protein degradation rate rðtÞ as a function of time t:

rðtÞzr0

�
1+

1

U

�
1+

1

r0
,
x0ðtÞ
xðtÞ

���1

(Equation 1)

where xðtÞ denotes the protein concentration as a function of time, U denotes an appropriately scaled

dimensionless measure of ubiquitinating activity that is proportional to the ubiquitin ligase concentration,

and r0 is the theoretical upper limit of the degradation rate for fully ubiquitinated proteins (STAR Methods,

computational modeling of protein ubiquitination without depending on other PTMs). Equation 1 is fairly

accurate in the anticipation of our simulation results (Figures 2A and S1A–S1I), although under rather spe-

cific biochemical conditions (STAR Methods, computational modeling of protein ubiquitination without

depending on other PTMs). Even beyond such biochemical conditions, Equation 1 can still be useful to pro-

vide analytical insights into the system.

It is clear from Equation 1 that a rhythmic degradation rate naturally emerges from the oscillation of protein

concentration xðtÞ. We further define Rmax and Rmin as the maximum and minimum values of

RðtÞh� ð1=r0Þ,x0 ðtÞ=xðtÞ of the day, respectively, and their magnitudes are proportional to the highest

decline and rising rates of the logarithmic protein abundance. In agreement with Equation 1, the simulated

degradation rate consistently peaks when RðtÞzRmax, that is, near the trough of the protein level during its

falling phase (Figure 2A). At this time point, the largest fraction of the proteins has become tagged with

ubiquitin without much addition of newly translated proteins.

Based on Equation 1, wemathematically showed that a ubiquitin ligase concentration cannot be lower than

a certain limit (specifically, UaRmax) in order to maintain a given oscillatory profile of the substrate (STAR

Methods, computational modeling of protein ubiquitination without depending on other PTMs); other-

wise, the substrate protein is forced to have a weaker oscillation with a smaller Rmax. This mathematical

finding is highly consistent with the results of our model simulation with a given protein profile, where U

could not be reduced below Rmax without the loss of biological feasibility (e.g., Figure 2C). As a result,

the rhythmicity aD is maximized at a point that U is reduced at most to near Rmax (e.g., Figure 2C).

The dependence of rhythmicity aD on proteolytic factors and the substrate oscillation can be systematically

assessed by the following formula based on Equation 1 (STAR Methods, computational modeling of pro-

tein ubiquitination without depending on other PTMs):

aDz
Rmax � Rmin

U + 1� Rmin
(Equation 2)

This aD is further approximated as aDz2Rmax=ðU + 1 +RmaxÞ if the protein profile is approximately symmet-

ric around its peak phase and so Rminz� Rmax in Equation 2. This form of aD reveals the quantitative struc-

ture of the degradation’s rhythmicity, which is enhanced by a reduction in the ubiquitin ligases (U) and an

increase in the substrate oscillation (Rmax). Our extensive model simulation of various protein profiles, ubiq-

uitin ligase concentrations, and kinetic parameter values shows that the quantitative relation in Equation 2

works correctly under the conditions where Equation 1 is likely valid (Figure S1). Yet, even stronger degra-

dation rhythmicity (aDa0:7) than expected by Equation 2 is seen in physiologically relevant conditions

(Table S1). For a part of the conditions not covered by Equations 1 and 2, we derived the alternative

form of rðtÞ:
iScience 24, 102726, July 23, 2021 5



Figure 3. Phospho-dependent degradation simulation with steady proteolytic mediators

n denotes the number of phosphorylation events required for protein ubiquitination. n= 0 corresponds to phospho-independent ubiquitination.

(A) Maintaining the protein profile xðtÞ and model parameters in Figure 2A, we increased n and simulated the degradation rate rðtÞ for each n (solid lines in

the center panel). The bottom panel shows the total protein amount produced (bluish solid line) or degraded (reddish solid line) over time for each n. In the

top and center panels, horizontal and vertical dashed lines are the same in Figure 2A with a constant degradation rate. The dashed lines in the bottom panel

correspond to this constant degradation-rate case.

(B) Given the protein profile xðtÞ in (A), we computed the probability distributions of aD and a proteosynthetic cost for each n (solid lines) over physiologically

relevant parameter ranges in Table S1. The dashed line in the right upper panel corresponds to a constant degradation-rate case.

(C) When n = 1, aD and proteosynthetic costs are shown with varying kinase (fY ) and ubiquitin ligase (fU) concentrations, while the other parameters and

xðtÞ are fixed as (A). The top-right corner of each plot corresponds to Y = U = Rmax. Biologically infeasible regimes are not plotted here (STAR Methods,

computational modeling of phosphorylation-dependent protein ubiquitination; see also Figure S3).

(D) kmin denotes the lowest binding rate of a kinase across phosphosites of a target protein. When n = 3, the density plot of varying kmin and the

corresponding aD was obtained over randomly sampled kinase binding rates from physiologically relevant ranges in Table S1 (the other parameters and xðtÞ
were fixed as in (A)). Likewise, the density plot of varying kmin and the corresponding costs was obtained. The dashed lines indicate the results of the identical

binding rates across the phosphosites. Figure S4 provides additional information. For visual guidance, the costs, Y , andU in (B, C) and kmin in (D) are arranged

in the descending order. For notations here, refer to STAR Methods, computational modeling of protein ubiquitination without depending on other PTMs
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Figure 3. Continued

and computational modeling of phosphorylation-dependent protein ubiquitination. The models in (A–D) consist of Equations 6–10 and 19–26 in STAR

Methods, computational modeling of protein ubiquitination without depending on other PTMs and computational modeling of phosphorylation-

dependent protein ubiquitination with the following parameter conditions: y = 152:7 nM (A, D), z = 0, k = k1 = k2 = k3 = k4 = 0:013 nM�1h�1 (A, C), and k1 =
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rðtÞzr0

�
1+

1

U
½1� RðtÞ�

�
1+

r0
q
U +

a0
a1 +q

xðtÞ
���1

(Equation 3)

where a0 (a1) denotes the binding (unbinding) rate of proteins and ubiquitin ligases, q denotes the ubiq-

uitination rate of proteins that are binding to ubiquitin ligases, and xðtÞ, RðtÞ; r0, and U are the same as

the previous ones (STAR Methods, computational modeling of protein ubiquitination without depending

on other PTMs). The fraction a0xðtÞ=ða1 +qÞ in this formula originates fromMichaelis-Menten kinetics of the

protein binding to ubiquitin ligases, but its effect is deflected by the temporal profile of 1� RðtÞ. If jRðtÞj �
1 and U � a0q

ða1 +qÞðr0 +qÞ xðtÞ, Equation 3 resembles the degradation-rate formula assumed in Goldbeter

(1996) and Kurosawa and Iwasa (2002). Equation 3 shows clear agreement with the simulation results in

the relevant biochemical conditions, as exemplified by Figures S1J–S1L.

Extra PTMs can facilitate the rhythmicity of protein degradation and biosynthetic cost

reduction

Thus far, we have considered a rather simple scenario where ubiquitin ligase activation does not require

any prior substrate modifications. In nature, however, cross talk between ubiquitination and other PTMs

is prevalent (Filip�cı́k et al., 2017; Hunter, 2007). Therefore, we now consider the case where protein phos-

phorylation promotes subsequent ubiquitination. This modeling approach and its conclusions can also be

applied to modifications other than phosphorylation (STAR Methods, model application for PTMs beyond

phosphorylation).

For the modeling of phosphorylation-dependent ubiquitination, we considered constant levels and activ-

ities of protein kinases, still without any explicitly time-dependent, post-translational processes. In this

modified model, mono- or multisite phosphorylation is a prerequisite for ubiquitination (STAR Methods,

computational modeling of phosphorylation-dependent protein ubiquitination). Although more than

one degradation route may exist for the same substrate with multiple phosphorylation events, most of

these simulation results are largely reflective of the effects of individual phospho-specific degradation

pathways (Figure S2 and STAR Methods, model expansion for multiple degradation routes); therefore,

we here focus on the streamlined individual pathways.

For a given protein abundance profile, phospho-dependent ubiquitination in most of our model results

tends to confer higher rhythmicity on the degradation rate than the previously simulated, phospho-inde-

pendent ubiquitination (Figure 3A). In most simulation cases, the more the number of phosphoryl group

attachments required for ubiquitination, the stronger the rhythmicity that tends to develop until eventually

saturated (e.g., Figures 3A and 3B; in the case of Figure 3B, the distribution of aD roughly converges around

tri- or tetra-phosphorylation). For example, a peak-to-trough ratio of the degradation rate in Figure 3A in-

creases by 36.3%–220.7% with mono- to tetra-phosphorylation, compared with phospho-independent

degradation. In the case of Figure 3A, the degradation’s rhythmicity enhanced by phosphorylation can

be explained as follows: kinases with a finite binding affinity cannot always achieve full phosphorylation

of all newly translated proteins, and this effect retards further ubiquitination depending on the number

of the phosphorylation events required for ubiquitination. This retardation is prominent during the rising

phase of the protein abundance, where new proteins are actively accumulated. This phase largely overlaps

with the aforementioned phase of a low protein degradation rate under phospho-independent ubiquitina-

tion. On the other hand, this retardation effect by phosphorylation diminishes near the trough of the pro-

tein profile during the falling phase, where new protein translation is slow and the declining amount of pro-

teins is subject to saturating phosphorylation and ubiquitination without much lag. Intriguingly, this

moment coincides with the previously mentioned peak time of a protein degradation rate under phos-

pho-independent ubiquitination. To summarize, the retardation of ubiquitination due to phosphorylation

leads to a further drop in a low degradation rate, exacerbated by the presence of more phosphorylation

events, but does not much impact a peak degradation rate. This time-of-day-differential effect enhances

the rhythmicity of the degradation rate, which is manifested by more phosphorylation events prior to

k2 = k3 = k4 (B). The other parameters are the same as in Figure 2.
iScience 24, 102726, July 23, 2021 7
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ubiquitination. The detailed behavior rather varies and can be conditionally different from Figure 3A, but

the overall enhancement of the degradation rate’s rhythmicity by phosphorylation still remains valid for

most simulation cases (e.g., Figure 3B).

These extra PTMs in a proteolytic pathway serve as a simple mechanism for proteosynthetic cost reduction,

via the enhanced rhythmicity in the protein degradation rate as well as via the reduction of the overall

degradation rate. The rhythmic degradation rate becomes selectively high at the falling phase of the pro-

tein profile but stays markedly lower elsewhere, saving much of the gross protein loss and thereby the pro-

tein synthetic cost (STAR Methods, relationship between protein abundance profiles and biosynthetic

costs). Given a particular protein abundance profile, Figure 3A demonstrates an 18.1%–47.3% reduction

in protein synthesis with mono- to tetra-phosphorylation, compared with phospho-independent degrada-

tion. Noteworthy is that rhythmic degradation by ubiquitination alone, not dependent on phosphorylation,

saves 11.4% in a proteosynthetic cost in the case of Figure 3A, compared with a constant degradation rate;

therefore, phospho-dependent ubiquitination saves additional costs from this base cost. In most of our

simulated conditions, the greater the number of phosphorylation events, the less the proteosynthetic costs

tend to be incurred, until they converge to certain ranges (e.g., Figure 3B; in the case of Figure 3B, the cost

distribution roughly converges around tri- or tetra-phosphorylation). One may wonder whether the

expense of adenosine triphosphate (ATP) hydrolysis for phosphorylation discounts the energetic benefit

of the proteosynthetic cost reduction. However, this discounting effect would be negligible in practice

even in the case of multisite phosphorylation. This is due to the fact that the formation of each peptide

bond in protein synthesis requires the release of at least four phosphoryl groups from ATP and guanosine

triphosphate (GTP) molecules (Urry et al., 2016), so the net free energy is always saved as long asan= 4N of

the protein synthesis is reduced with the phospho-dependent ubiquitination (N is the number of amino

acids in a substrate protein and n is the number of the phosphorylation events for the ubiquitination).

The calculation with Na100 and n(4 suggests that a mere �1% reduction in the protein synthesis under

the phospho-dependent ubiquitination would be sufficient to pay off the ATP expense for the phosphor-

ylation, which then does not serve as a meaningful factor in the net energetic cost.

Many circadian clock proteins have been reported as the targets of phosphorylation (Farré and Kay, 2007;

Reischl and Kramer, 2011; Wang et al., 2010; Zhou et al., 2015). By our count, two-thirds of the core clock

proteins in plant Arabidopsis thaliana are known phosphoproteins (STAR Methods, known phosphopro-

teins in theArabidopsis circadian clock). Apart from other functions of protein phosphorylation such as pro-

tein localization and protein complex formation (Reischl and Kramer, 2011; Wang et al., 2010), the present

outcomes from our model suggest that phosphorylation helps lower biosynthetic costs by facilitating the

rhythmic turnover of circadian proteins and hence relieve the price of daily biological rhythms. Later, we will

revisit this issue with additional analysis.

Analogous to the previous case of phospho-independent ubiquitination, a decrease in the amount of pro-

tein kinases or ubiquitin ligases under phospho-dependent ubiquitination monotonically increases the

degradation rhythmicity aD (e.g., Figures 3C and S3). The increased rhythmicity aD is accompanied by a

reduced proteosynthetic cost, as well (e.g., Figures 3C and S3). In the case of mono-phosphorylation,

the following approximate formula exists for the degradation rate rðtÞ in a similar fashion to Equation 1:

rðtÞzr0

��
1+

1

U
½1� RðtÞ�

��
1� 1

Y
RðtÞ

�
+
1

Y

��1

(Equation 4)

where Y denotes an appropriately scaled dimensionless measure of kinase activity that is proportional to

the kinase concentration, RðtÞh� ð1=r0Þ,x0 ðtÞ=xðtÞ as defined above, and xðtÞ, r0, and U are the same as in

Equation 1 (STAR Methods, computational modeling of phosphorylation-dependent protein ubiquitina-

tion). Equation 4 becomes equivalent to Equation 1 when the kinases are very abundant and thus not an

appreciable limiting factor in the degradation pathway (usually when Y[U). Equation 4 reveals that a finite

level of the kinases amplifies the degradation rhythmicity (which originates from the oscillation of RðtÞ),
compared with the degradation in Equation 1 that does not depend on prior phosphorylation.

With previously defined Rmax, wemathematically showed that the concentration of kinases, as well as that of

ubiquitin ligases, cannot be lower than a certain limit, i.e., Y ; UaRmax in order to maintain a given protein

profile (STAR Methods, computational modeling of phosphorylation-dependent protein ubiquitination).

Otherwise, the protein would show a weaker oscillation with a smaller Rmax in force, in a similar way to
8 iScience 24, 102726, July 23, 2021



Figure 4. TIM abundance and ubiquitination data

(A) The experimental abundance of TIM at each time t (CT). The profile xðtÞ (solid line) is the spline of the abundance data

points (STAR Methods, analysis of TIM ubiquitination data).

(B) The experimental fraction of ubiquitinated TIM (blue), together with �x0ðtÞ=xðtÞ (red) at each time t (CT). The average

of the ubiquitinated fractions at CT 0 h is scaled to 1 (STAR Methods, analysis of TIM ubiquitination data). In (A, B), each

data point and error bar represent the average and standard deviation of two replicates, respectively.
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the previous analysis of Equation 1. Consistently, our model simulation shows that both Y and U could not

be reduced below Rmax, and the degradation rate ends up with its largest rhythmicity (and the proteosyn-

thetic cost is minimized) when Y and U are reduced at most to near Rmax (Figure 3C).

The expansion of Equation 4 to cover the ubiquitination with multisite phosphorylation is presented in

STAR Methods, computational modeling of phosphorylation-dependent protein ubiquitination. Briefly,

the expanded formula suggests that, among the kinase binding rates across multiple phosphosites, the

lowest binding rate determines the overall possible ranges of the rhythmicity aD and of the proteosynthetic

cost. This expectation is supported by our simulation results (e.g., Figures 3D and S4).

In our model, we further considered the activities of phosphatases and deubiquitinating enzymes, but their

effects on the degradation rhythmicity were condition-dependent (STAR Methods, computational

modeling of phosphorylation-dependent protein ubiquitination).

To summarize, our results suggest that a rhythmic degradation rate of a circadian protein does not neces-

sarily require rhythmic post-translational regulation, while extra, constant PTMs (including phosphorylation

and other modifications coverable by our model as in STAR Methods, model application for PTMs beyond

phosphorylation) can further enhance the rhythmicity of the protein degradation and reduce proteosyn-

thetic costs. Here, the degradation rate is escalated during the falling phase of the protein oscillation.

Therefore, we expect that this inherent biochemical mechanismmay also synergize with conventional circa-

dian- or diurnal-regulated degradation mechanisms (Cha et al., 2017; Kiba et al., 2007; Lamia et al., 2009;

Toledo et al., 2018) to amplify the degradation rhythmicity, if that circadian-regulated degradation prefer-

ably targets the protein falling phase.
TIMELESS shows a ubiquitination pattern consistent with the model prediction

We observe that the rhythmic fraction of ubiquitinated proteins in our simulation tends to have an almost

single peak at the time of the near-maximum � x0ðtÞ=xðtÞ, when the protein level xðtÞ is approximately si-

nusoidal. In the example of the protein profile xðtÞ in Figure 3A and the parameter conditions in Figure 3B,

all the simulation results with aD>0:2 through phospho-independent and mono- to tetra-phosphorylation-

dependent cases showed almost single peaks of ubiquitinated protein fractions, only with < 2-h peak-time

differences from the �x0ðtÞ=xðtÞ profile. This tendency is analytically supported by Equations 17, 18, and 29

(equivalent to Equations 1, 3, and 4), as well.

TIMELESS (TIM) is one of the core proteins in the circadian clock ofDrosophila melanogaster (Sehgal et al.,

1994; Szabó et al., 2018). Both its oscillatory protein level and ubiquitinated protein ratio in a relative

manner are available over time from the recent experiments with Drosophila in constant darkness (Szabó
iScience 24, 102726, July 23, 2021 9
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Figure 5. PRR7 and PER2 degradation simulation

n denotes the number of phosphorylation events required for protein ubiquitination. n= 0 corresponds to phospho-

independent ubiquitination.

(A and B) The upper panel shows the experimental abundance profile of PRR7 (A) or PER2 (B). The lower panel shows the

simulated (solid line, when n = 3) and empirical (dashed line) degradation-rate profiles, together with the observed

degradation-rate data (circles). S in the lower panel is the similarity between the simulated and empirical degradation-

rate profiles (see STAR Methods, PRR7 and PER2 degradation modeling and analysis).

(C and D) The probability distribution of a proteosynthetic cost of PRR7 (C) or PER2 (D) from uniformly sampled parameter

sets, when n = 3. An arrow indicates the proteosynthetic cost of a sampled parameter set with the largest S. For visual

guidance, the horizontal axis is arranged in the descending order of a proteosynthetic cost.

(E and F) The probability distributions (green solid line) of S and a proteosynthetic cost of PRR7 (E) or PER2 (F) for each n

from uniformly sampled parameter sets. Horizontal dim gray lines indicate the largest S values (upper panel) and their

associated proteosynthetic costs (lower panel). See also Table S2.

(G and H) The density plot of S and a proteosynthetic cost of PRR7 (G) or PER2 (H) from uniformly sampled parameter sets,

when n = 3. The densities were normalized to the highest density for each range of S. Themodel results in (A–H) are based

on Equations 6–10 and 19–26 in STARMethods, computational modeling of protein ubiquitination without depending on

other PTMs and computational modeling of phosphorylation-dependent protein ubiquitination with parameter

conditions z = 0, v = 0, and k1 = k2 = k3 = k4. A total of 106 sets of parameter values (C–H) were uniformly sampled from

physiologically relevant ranges in Table S1 (see STAR Methods, PRR7 and PER2 degradation modeling and analysis and

Figure S5 for further details).
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et al., 2018), as presented in Figures 4A and 4B (STAR Methods, analysis of TIM ubiquitination data). Fig-

ure 4B demonstrates that the fraction of ubiquitinated TIMmarkedly peaks at the phase between circadian

time (CT) 21 h (= �3 h) and 3 h, which is near the estimated peak phase of �x0ðtÞ=xðtÞ (CT 0.35 h). In view of

the aforementioned simulation outcomes, our theory then at least captures the observed feature of TIM

ubiquitination, although this consistency may not necessarily rule out alternative explanations of these

TIM data.
Plant and mammalian clock proteins exhibit rhythmic degradation patterns with low

biosynthetic costs

We now move to the examination of the observed half-lives of plant and mammalian clock proteins.

PSEUDO RESPONSE REGULATOR 7 (PRR7) and PERIOD2 (PER2) proteins are core constituents in the Ara-

bidopsis and mouse clocks, respectively, and known to exhibit both rhythmic concentrations and half-lives

over time (Farré and Kay, 2007; Jo et al., 2018; Nakamichi et al., 2010; Zhou et al., 2015). Figures 5A and 5B

show these experimental concentration profiles and degradation rates (degradation rate and half-life are

inversely proportional to each other). To what extent is our proposed mechanism of rhythmic degradation

able to capture the observed patterns of these degradation rates?

Reportedly, both PRR7 and PER2 are phosphoproteins and undergo proteasome-mediated degradation,

and the PER2 degradation involves the phospho-specific recognition by a ubiquitin ligase complex sub-

unit b-transducin repeat-containing protein (b-TrCP) (Farré and Kay, 2007; Zhou et al., 2015). For PRR7, it

is unclear at the moment whether phosphorylation affects protein stability. For PRR7 and PER2, we

considered our present model of ubiquitination with or without phosphorylation dependency. Yet, as

previously noted, our model is applicable for a number of PTMs that can precede ubiquitination, rather

than only for phosphorylation (STAR Methods, model application for PTMs beyond phosphorylation).

This point would be particularly relevant to the less-well-characterized PRR7 degradation. The PRR7

and PER2 abundance profiles in the simulation were maintained as strictly the same as their own exper-

imental profiles, based on the computational technique used in our above simulations (STAR Methods,

computational modeling of protein ubiquitination without depending on other PTMs and computational

modeling of phosphorylation-dependent protein ubiquitination; Figures 5A and 5B). Although actual

PER2 degradation involves the combination of multiple pathways (Liu et al., 2018; Zhou et al., 2015),

our model with simplified pathways aimed to capture the effective mode of the PER2 degradation

without losing the interpretability of the results by unnecessary model complexity (STAR Methods,

PRR7 and PER2 degradation modeling and analysis). Nevertheless, a full expansion of the model for real-

istic PER2 degradation, as well as the consideration of phosphatases and deubiquitinating enzymes in

the PER2 and PRR7 simulation, does not much affect the results presented here (Figure S5 and STAR

Methods, PRR7 and PER2 degradation modeling and analysis). We made our PRR7 and PER2 simulation

more compact by harnessing the previous finding in Figures 3D and S4 that the lowest kinase binding
iScience 24, 102726, July 23, 2021 11
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rates in multisite phosphorylation guide the overall substrate degradation dynamics (STAR Methods,

PRR7 and PER2 degradation modeling and analysis).

Within a physiologically relevant range, we uniformly searched through the sets of biochemical parameter

values for the simulations closely mimicking the experimental degradation patterns (Table S1 and STAR

Methods, PRR7 and PER2 degradation modeling and analysis). More specifically, given the scarcity of

experimental PRR7 and PER2 degradation rates, we temporally extended (interpolated and extrapolated)

these data points in a reasonable way (STARMethods, PRR7 and PER2 degradation modeling and analysis)

and measured similarity S between this empirical degradation-rate profile and the simulated degradation-

rate profile from each parameter set. Here, S was devised to approach 1 away from 0, as the simulated pro-

file quantitatively better matches the empirical profile (STAR Methods, PRR7 and PER2 degradation

modeling and analysis). Figures 5A and 5B show simulated PRR7 and PER2 degradation rates with S =

0.76 and 0.75 compared with their empirical profiles, respectively.

According to our previous analysis, proteosynthetic cost reduction may benefit considerably from rhythmic

protein degradation. To check this effect, we computed proteosynthetic costs in addition to the degrada-

tion rates (STAR Methods, relationship between protein abundance profiles and biosynthetic costs). Sur-

prisingly, we found that, in mono- to tetra-phosphorylation-dependent and phospho-independent degra-

dation simulations, the degradation-rate profiles closest to the empirical ones (i.e., with the largest S

values) incur only the proteosynthetic costs comparable with the minimum costs achievable by the simula-

tions (Figures 5C–5F): the minimum costs were just(10% and(15% different from the costs of the largest

S values, with uniformly sampled parameter sets and parameter optimization, respectively (P< 1:23 10�4;

STAR Methods, PRR7 and PER2 degradation modeling and analysis and quantification and statistical anal-

ysis and Table S2). For example, in the case of tri-phosphorylation, there exist PRR7 and PER2 parameter

sets with the costs from which the minimum costs under uniform parameter sampling were only 3.5% and

2.2% different, respectively. These PRR7 and PER2 parameter sets gave the most realistic degradation-rate

profiles with S = 0.76 and 0.75 in the case of tri-phosphorylation, respectively (Figures 5C and 5D).

Consistently, we found the very strong tendency that the more similar a computed degradation-rate profile

is to the empirical profile, the less the proteosynthesis tends to cost in the mono-to tetra-phosphorylation

and phospho-independent cases (e.g., Spearman’s r<� 0:99 between S and the proteosynthetic cost in

Figures 5G and 5H for the tri-phosphorylation case and P<10�4; see STARMethods, quantification and sta-

tistical analysis). In other words, lowering the biosynthetic costs under physiological conditions can account

for the substantial quantitative trends of the observed PRR7 and PER2 degradation rates. Together, these

results are consistent with our expectation on the biosynthetic cost savings promoted by the rhythmic

degradation of circadian clock proteins.

Compared with phospho-independent degradation, phospho-dependent degradation tends to lower the

overall proteosynthetic costs from sampled parameters in the PRR7 and PER2 simulation (Figures 5E and

5F), reminiscent of our previous simulation results in Figure 3B. The phospho-dependent degradation

tends to give better S values as well (Figures 5E and 5F and Table S2). The overall costs and S values, how-

ever, show only slight or essentially no improvements once the number of phosphorylation events passes

about two (Figures 5E and 5F). Compared with the phospho-independent scenario, the enhanced S values

in the phospho-promoted PRR7 degradation indicate that PRR7 degradation in nature may be indeed

mediated by prior PTMs such as phosphorylation (Farré and Kay, 2007), warranting further experiments.

Some discrepancies between the simulated and experimental degradation rates in Figures 5A and 5B

may be due to possibly missing components in our model, such as nucleocytoplasmic partitioning of mo-

lecular events or partly circadian-regulated degradation processes.
Circadian proteome data correlate phosphorylation with the need for biosynthetic cost

saving

Our model proposes that additional PTMs can noticeably lower the biosynthetic costs of proteins with

circadian abundances through enhanced degradation rhythmicity (Figures 3A and 3B). Not only would

this proposed effect be relevant to the core clock proteins examined thus far, but possibly also to a broad

repertoire of circadian-regulated proteins. We therefore expected that, at the proteomic level, circadian-

regulated proteins are more likely targets of the PTMs than non-circadian proteins, considering the biolog-

ical benefits of reducing the substantial cost of the circadian oscillations. Because protein phosphorylation
12 iScience 24, 102726, July 23, 2021



Figure 6. Analysis of Arabidopsis and mouse-liver proteome data

(A and B) The fraction of phosphoproteins in either all detected proteins (‘‘Total’’) or the proteins with circadian

oscillations (‘‘Osc.’’) is shown for Arabidopsis (A) or mouse liver (B). P<10�4 in (A) and P = 0:01 in (B) (STAR Methods,

analysis of Arabidopsis and mouse-liver proteome data and quantification and statistical analysis).

(C) The fraction of phosphoproteins (circle) in mouse-liver circadian proteins is plotted across different ranges of cg (STAR

Methods, analysis of Arabidopsis and mouse-liver proteome data). Each range of cg for the calculation of the

phosphoprotein fraction lies between adjacent triangular ticks on the horizontal axis. A linear regression line is drawn for

visual guidance (gray solid line; R2 = 0:9992). P = 0:008 (STAR Methods, quantification and statistical analysis). The inset

shows the phosphoprotein fractions (circles) in a similar way, but only includes the set of phospho- and non-phospho-

proteins in the controlled abundance range described in STAR Methods, analysis of Arabidopsis and mouse-liver

proteome data. In the inset, each range of cg for the calculation of the phosphoprotein fraction lies between adjacent

triangular ticks on the horizontal axis, and a linear regression line is drawn for visual guidance (gray solid line; R2 = 0:33).

P = 0:04 (STARMethods, quantification and statistical analysis). (C) and its inset have the same aspect ratio of scales on the

horizontal and vertical axes.
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has been reported as a major type of the PTM that triggers ubiquitination for the protein degradation (Fil-

ip�cı́k et al., 2017; Hunter, 2007), we evaluated the enrichment of phosphoproteins in circadian proteomes in

Arabidopsis and mouse liver. Our analysis of Arabidopsis protein data from Choudhary et al. (2016) and

other datasets in combination reveals that 65.1% of the proteins with circadian abundances are phospho-

proteins, surpassing the fraction of phosphoproteins (41.2%) among all detected Arabidopsis proteins

(Figure 6A and P<10�4; see STAR Methods, analysis of Arabidopsis and mouse-liver proteome data and

quantification and statistical analysis).

Similarly, mouse liver data combined fromMauvoisin et al. (2014) and other sources show the enrichment of

phosphoproteins in the proteins with circadian abundances, but to a lesser degree than the Arabidopsis

data: 51.3% and 43.4% for the phosphoprotein fractions among the circadian and entire mouse liver pro-

teins, respectively (Figure 6B and P = 0:01; STAR Methods, analysis of Arabidopsis and mouse-liver prote-

ome data and quantification and statistical analysis). The only moderate difference between these two frac-

tions in the mouse liver data prompted us to ask whether the mouse liver phosphoproteins with circadian

oscillations are biased toward proteins of otherwise higher biosynthetic costs. In the previous study, we

introduced quantity cg, the lower limit of the proteosynthetic cost of a given protein when its degradation

rate is assumed to be constant (Jo et al., 2018). The quantity cg of each circadian protein is estimated to be

the maximum decline rate of the logarithmic protein abundance (i.e., the maximum of � x0ðtÞ=xðtÞ) multi-

plied by the protein’s typical absolute abundance level (STAR Methods, analysis of Arabidopsis and

mouse-liver proteome data). The quantity cg can be roughly viewed as the characteristic scale of the

cost when the degradation rate is not rhythmic enough. In this regard, cg indicates potential biological

need for a highly rhythmic degradation rate to reduce this cost level. We hence expected that high cg pro-

teins would be the preferable targets of phosphorylation among the circadian proteins in the mouse liver.

Indeed, our analysis of the mouse liver data reveals that the higher the cg values, the more is the proportion

of phosphoproteins with circadian oscillations, as shown in Figure 6C (P = 0:008; STAR Methods, analysis of

Arabidopsis and mouse-liver proteome data and quantification and statistical analysis). For example, the
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proportion of phosphoproteins is 59.2% for cg>3:23104 copy number per cell$h�1, that is, 25.8% higher than

for cg<31:8 copy number per cell$h�1 (Figure 6C). This result is partially contributed to by relatively large

abundance levels of those phosphoproteins that enhance their overall cg values (STAR Methods, analysis

of Arabidopsis and mouse-liver proteome data). Still, strictly controlling for the abundance ranges of

both phospho- and non-phosphoproteins leads to the enrichment of the phosphoproteins with relatively

high cg values, although weak (Figure 6C inset and P = 0:04; STAR Methods, analysis of Arabidopsis and

mouse-liver proteome data and quantification and statistical analysis). These results indicate that phosphor-

ylation is positively associated not only with the absolute abundance level of a circadian protein, but also

with the strength of its oscillation (i.e., the maximum value of �x0ðtÞ=xðtÞ in cg). In other words, all the indi-

vidual elements in the calculation of cg collectively contribute to the observed tendency between cg and the

circadian phosphoproteins. Together, our proteome-wide analysis indicates a positive association between

phosphorylation and the potential biological need for proteosynthetic cost saving represented by cg.

DISCUSSION

Through quantitative mathematical formulation, we here proposed that the rhythmic degradation rate of

proteins with circadian production does not necessarily require rhythmic post-translational regulation. The

rhythmic degradation rate spontaneously emerges when the activity of steady-state proteolytic mediators

is limited. This rhythmicity can be further amplified by the presence of additional PTMs in the proteolytic

pathway. Our theory accounts for empirical patterns of animal and plant core clock proteins as well as those

in the proteome-wide data. This work presents an underexplored, generic mechanism of the rhythmic turn-

over of circadian proteins in a biochemically complementary manner to the previously characterized,

explicitly circadian- or diurnal-controlled proteolytic pathways (Cha et al., 2017; Kiba et al., 2007; Lamia

et al., 2009; Toledo et al., 2018). We propose that such rhythmic degradation is serving as a plausible so-

lution for relieving circadian biosynthetic costs and thus affording sustained circadian rhythms in many

different organisms. Furthermore, the very generic nature of our proposed mechanism indicates poten-

tially more widespread, time-dependent protein turnover in circadian and other contexts than previously

thought (Jo et al., 2018; Kiba et al., 2007; Lück et al., 2014; van Ooijen et al., 2011). On the other hand,

for any protein with multiple likely mechanisms of rhythmic degradation, our proposed mechanism can

be viewed as a null model to examine the maximum extent to which the rhythmic degradation is sponta-

neously developable (as indicated by the largest S values in Figures 5E and 5F), rather than entirely exclude

the other sources of the degradation rhythmicity.

The close biological association between circadian clock proteins and protein phosphorylation has been

well documented (Farré and Kay, 2007; Reischl and Kramer, 2011; Wang et al., 2010; Zhou et al., 2015),

and two-thirds of Arabidopsis clock proteins are known phosphoproteins, as discussed above. Our work

suggests that another value of this chrono-phospho partnership is to present a natural route to biosynthetic

cost saving through rhythmic protein degradation. The proposed mechanism here does not rely on abun-

dance oscillations of the proteolytic mediators, which themselves force additional circadian proteosynthe-

sis that may perhaps compromise biosynthetic cost savings. On the other hand, ATP hydrolysis associated

with the proposed phospho-dependent degradation is not a likely factor that undermines the energetic

benefit of the biosynthetic cost saving, as we calculated above.

Follow-up expansion of our theoretical framework, in concert with more extensive experimental studies on

time-specific protein degradation, is warranted for a comprehensive understanding of circadian turnover

dynamics and phenotypic implications (Wirianto et al., 2020; Zhou et al., 2015). A recent report suggests

that about one thousand human genes with circadian expression encode the targets, transporters, and

metabolizing enzymes of drugs (Ruben et al., 2018). If possible, a massive experimental profiling of

drug-related protein turnover over the course of a day would open new avenues to augment our theory

in the context of circadian medicine (Panda, 2019). Beyond the scope of the present work, turnover of

mRNA or other biomolecules would be analyzable using a similar approach to ours. We also envisage

the possibility that a time-of-day-specific translation rate per mRNA molecule (Caster et al., 2016; Lipton

et al., 2015) might not be entirely attributed to the circadian control of the translation rate, analogous to

our present results on the spontaneous generation of degradation rhythmicity.

Limitations of the study

Despite the apparent generality of our mathematical framework, its explicit expansion to other processes

such as cell cycle and ultradian events may require more comprehensive formulation of energetic demands
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in molecular economy. On the other hand, our current model includes protein degradation promoted by

phosphorylation, but in future versions phosphorylation-inhibited degradation (Hunter, 2007; Yin et al.,

2006) needs to be considered as well. In addition, the continuum between our proposed mechanism of

spontaneous rhythmic degradation and the conventional degradation mechanisms with circadian or

diurnal control remains to be explored.

Although the existing animal and plant data are supportive of our theoretical predictions, experimental

tests are clearly warranted including direct validation of our proposed mechanism. This validation could

start by identifying (or constructing) a system where a protein with rhythmic expression does not involve

either rhythmically controlled degradation pathways or the oscillation of the protein’s subcellular partition-

ing ratio; this system can then be used for testing the presence of rhythmic degradation rates in our pre-

dicted conditions. In this sense, the use of appropriately designed synthetic oscillators (Chen et al., 2015;

O’Keeffe et al., 2017) may be one avenue for such experimental validation. Although less straight, a more

feasible short-term experimental test would be just to measure the degradation rate and/or relevant mo-

lecular quantities (e.g., ubiquitinated proportion) of a known circadian protein over the whole course of a

day with high temporal resolution. One can compare the temporal profile of these data points to our model

predictions, provided that the degradation pathway of this protein is not known to involve rhythmic post-

translational regulation. Any discrepancy between experimental and theoretical results shall be useful for

our model improvement. Consideration of protein localization and stochastic fluctuation (Beesley et al.,

2020; Ghim and Almaas, 2009; Kim and Price, 2010) would be necessary for more complete modeling in

this subject.
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Merlo, P., Botrè, F., Schwartz, G.J., et al. (2018).
Autophagy regulates the liver clock and glucose
metabolism by degrading CRY1. Cell Metab. 28,
268–281.
Urry, L.A., Cain, M.L., Wasserman, S.A., Minorsky,
P.V., and Reece, J.B. (2016). Campbell Biology in
Focus (Pearson Education).

van Ooijen, G., Dixon, L.E., Troein, C., and Millar,
A.J. (2011). Proteasome function is required for
biological timing throughout the twenty-four
hour cycle. Curr. Biol. 21, 869–875.

Virtanen, P., Gommers, R., Oliphant, T.E.,
Haberland, M., Reddy, T., Cournapeau, D.,
Burovski, E., Peterson, P., Weckesser, W., Bright,
J., et al. (2020). SciPy 1.0: fundamental algorithms
for scientific computing in Python. Nat. Methods
17, 261–272.

Vlastaridis, P., Kyriakidou, P., Chaliotis, A., Van de
Peer, Y., Oliver, S.G., and Amoutzias, G.D. (2017).
Estimating the total number of phosphoproteins
and phosphorylation sites in eukaryotic
proteomes. Gigascience 6, 1–11.

Wang, L., Fujiwara, S., and Somers, D.E. (2010).
PRR5 regulates phosphorylation, nuclear import
and subnuclear localization of TOC1 in the
Arabidopsis circadian clock. EMBO J. 29, 1903–
1915.

Wirianto, M., Yang, J., Kim, E., Gao, S., Paudel,
K.R., Choi, J.M., Choe, J., Gloston, G.F., Ademoji,
P., Parakramaweera, R., et al. (2020). The GSK-3b-
FBXL21 axis contributes to circadian TCAP
degradation and skeletal muscle function. Cell
Rep. 32, 108140.

Yin, L., Wang, J., Klein, P.S., and Lazar, M.A.
(2006). Nuclear receptor Rev-erba is a critical
lithium-sensitive component of the circadian
clock. Science 311, 1002–1005.

Zhou, M., Kim, J.K., Eng, G.W., Forger, D.B., and
Virshup, D.M. (2015). A Period2 phosphoswitch
regulates and temperature compensates
circadian period. Mol. Cell 60, 77–88.
iScience 24, 102726, July 23, 2021 17

http://refhub.elsevier.com/S2589-0042(21)00694-5/sref28
http://refhub.elsevier.com/S2589-0042(21)00694-5/sref28
http://refhub.elsevier.com/S2589-0042(21)00694-5/sref28
http://refhub.elsevier.com/S2589-0042(21)00694-5/sref28
http://refhub.elsevier.com/S2589-0042(21)00694-5/sref29
http://refhub.elsevier.com/S2589-0042(21)00694-5/sref29
http://refhub.elsevier.com/S2589-0042(21)00694-5/sref29
http://refhub.elsevier.com/S2589-0042(21)00694-5/sref29
http://refhub.elsevier.com/S2589-0042(21)00694-5/sref29
http://refhub.elsevier.com/S2589-0042(21)00694-5/sref30
http://refhub.elsevier.com/S2589-0042(21)00694-5/sref30
http://refhub.elsevier.com/S2589-0042(21)00694-5/sref30
http://refhub.elsevier.com/S2589-0042(21)00694-5/sref30
http://refhub.elsevier.com/S2589-0042(21)00694-5/sref31
http://refhub.elsevier.com/S2589-0042(21)00694-5/sref31
http://refhub.elsevier.com/S2589-0042(21)00694-5/sref31
http://refhub.elsevier.com/S2589-0042(21)00694-5/sref31
http://refhub.elsevier.com/S2589-0042(21)00694-5/sref31
http://refhub.elsevier.com/S2589-0042(21)00694-5/sref31
http://refhub.elsevier.com/S2589-0042(21)00694-5/sref32
http://refhub.elsevier.com/S2589-0042(21)00694-5/sref32
http://refhub.elsevier.com/S2589-0042(21)00694-5/sref32
http://refhub.elsevier.com/S2589-0042(21)00694-5/sref32
http://refhub.elsevier.com/S2589-0042(21)00694-5/sref32
http://refhub.elsevier.com/S2589-0042(21)00694-5/sref33
http://refhub.elsevier.com/S2589-0042(21)00694-5/sref33
http://refhub.elsevier.com/S2589-0042(21)00694-5/sref33
http://refhub.elsevier.com/S2589-0042(21)00694-5/sref33
http://refhub.elsevier.com/S2589-0042(21)00694-5/sref33
http://refhub.elsevier.com/S2589-0042(21)00694-5/sref34
http://refhub.elsevier.com/S2589-0042(21)00694-5/sref34
http://refhub.elsevier.com/S2589-0042(21)00694-5/sref34
http://refhub.elsevier.com/S2589-0042(21)00694-5/sref35
http://refhub.elsevier.com/S2589-0042(21)00694-5/sref35
http://refhub.elsevier.com/S2589-0042(21)00694-5/sref35
http://refhub.elsevier.com/S2589-0042(21)00694-5/sref35
http://refhub.elsevier.com/S2589-0042(21)00694-5/sref35
http://refhub.elsevier.com/S2589-0042(21)00694-5/sref36
http://refhub.elsevier.com/S2589-0042(21)00694-5/sref36
http://refhub.elsevier.com/S2589-0042(21)00694-5/sref36
http://refhub.elsevier.com/S2589-0042(21)00694-5/sref36
http://refhub.elsevier.com/S2589-0042(21)00694-5/sref36
http://refhub.elsevier.com/S2589-0042(21)00694-5/sref36
http://refhub.elsevier.com/S2589-0042(21)00694-5/sref36
http://refhub.elsevier.com/S2589-0042(21)00694-5/sref37
http://refhub.elsevier.com/S2589-0042(21)00694-5/sref37
http://refhub.elsevier.com/S2589-0042(21)00694-5/sref37
http://refhub.elsevier.com/S2589-0042(21)00694-5/sref38
http://refhub.elsevier.com/S2589-0042(21)00694-5/sref38
http://refhub.elsevier.com/S2589-0042(21)00694-5/sref39
http://refhub.elsevier.com/S2589-0042(21)00694-5/sref39
http://refhub.elsevier.com/S2589-0042(21)00694-5/sref39
http://refhub.elsevier.com/S2589-0042(21)00694-5/sref39
http://refhub.elsevier.com/S2589-0042(21)00694-5/sref40
http://refhub.elsevier.com/S2589-0042(21)00694-5/sref40
http://refhub.elsevier.com/S2589-0042(21)00694-5/sref40
http://refhub.elsevier.com/S2589-0042(21)00694-5/sref41
http://refhub.elsevier.com/S2589-0042(21)00694-5/sref41
http://refhub.elsevier.com/S2589-0042(21)00694-5/sref41
http://refhub.elsevier.com/S2589-0042(21)00694-5/sref41
http://refhub.elsevier.com/S2589-0042(21)00694-5/sref41
http://refhub.elsevier.com/S2589-0042(21)00694-5/sref41
http://refhub.elsevier.com/S2589-0042(21)00694-5/sref42
http://refhub.elsevier.com/S2589-0042(21)00694-5/sref42
http://refhub.elsevier.com/S2589-0042(21)00694-5/sref42
http://refhub.elsevier.com/S2589-0042(21)00694-5/sref42
http://refhub.elsevier.com/S2589-0042(21)00694-5/sref43
http://refhub.elsevier.com/S2589-0042(21)00694-5/sref43
http://refhub.elsevier.com/S2589-0042(21)00694-5/sref43
http://refhub.elsevier.com/S2589-0042(21)00694-5/sref43
http://refhub.elsevier.com/S2589-0042(21)00694-5/sref43
http://refhub.elsevier.com/S2589-0042(21)00694-5/sref44
http://refhub.elsevier.com/S2589-0042(21)00694-5/sref44
http://refhub.elsevier.com/S2589-0042(21)00694-5/sref44
http://refhub.elsevier.com/S2589-0042(21)00694-5/sref44
http://refhub.elsevier.com/S2589-0042(21)00694-5/sref44
http://refhub.elsevier.com/S2589-0042(21)00694-5/sref44
http://refhub.elsevier.com/S2589-0042(21)00694-5/sref45
http://refhub.elsevier.com/S2589-0042(21)00694-5/sref45
http://refhub.elsevier.com/S2589-0042(21)00694-5/sref45
http://refhub.elsevier.com/S2589-0042(21)00694-5/sref46
http://refhub.elsevier.com/S2589-0042(21)00694-5/sref46
http://refhub.elsevier.com/S2589-0042(21)00694-5/sref46
http://refhub.elsevier.com/S2589-0042(21)00694-5/sref46
http://refhub.elsevier.com/S2589-0042(21)00694-5/sref47
http://refhub.elsevier.com/S2589-0042(21)00694-5/sref47
http://refhub.elsevier.com/S2589-0042(21)00694-5/sref47
http://refhub.elsevier.com/S2589-0042(21)00694-5/sref47
http://refhub.elsevier.com/S2589-0042(21)00694-5/sref47
http://refhub.elsevier.com/S2589-0042(21)00694-5/sref47
http://refhub.elsevier.com/S2589-0042(21)00694-5/sref48
http://refhub.elsevier.com/S2589-0042(21)00694-5/sref48
http://refhub.elsevier.com/S2589-0042(21)00694-5/sref48
http://refhub.elsevier.com/S2589-0042(21)00694-5/sref48
http://refhub.elsevier.com/S2589-0042(21)00694-5/sref48
http://refhub.elsevier.com/S2589-0042(21)00694-5/sref49
http://refhub.elsevier.com/S2589-0042(21)00694-5/sref49
http://refhub.elsevier.com/S2589-0042(21)00694-5/sref49
http://refhub.elsevier.com/S2589-0042(21)00694-5/sref49
http://refhub.elsevier.com/S2589-0042(21)00694-5/sref49
http://refhub.elsevier.com/S2589-0042(21)00694-5/sref50
http://refhub.elsevier.com/S2589-0042(21)00694-5/sref50
http://refhub.elsevier.com/S2589-0042(21)00694-5/sref50
http://refhub.elsevier.com/S2589-0042(21)00694-5/sref50
http://refhub.elsevier.com/S2589-0042(21)00694-5/sref50
http://refhub.elsevier.com/S2589-0042(21)00694-5/sref51
http://refhub.elsevier.com/S2589-0042(21)00694-5/sref51
http://refhub.elsevier.com/S2589-0042(21)00694-5/sref51
http://refhub.elsevier.com/S2589-0042(21)00694-5/sref51
http://refhub.elsevier.com/S2589-0042(21)00694-5/sref52
http://refhub.elsevier.com/S2589-0042(21)00694-5/sref52
http://refhub.elsevier.com/S2589-0042(21)00694-5/sref52
http://refhub.elsevier.com/S2589-0042(21)00694-5/sref52


ll
OPEN ACCESS

iScience
Article
STAR+METHODS

KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Software and algorithms

Custom codes for model simulation This paper https://github.com/rokt-lim/rhythmic-

degradation-of-circadian-proteins

Python 3.7.2 & 3.7.4 Python Software Foundation https://www.python.org

SciPy v1.3.1 Virtanen et al., 2020 https://www.scipy.org
RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources should be directed to and will be fulfilled by the Lead

Contact, Pan-Jun Kim (panjunkim@hkbu.edu.hk).

Materials availability

This study did not generate any unique reagents.

Data and code availability

� This study did not generate new experimental data.

� Source codes for our model simulation have been deposited to the public repository GitHub, and

the link is provided in the key resources table.

� Any additional information required to reanalyze the data reported in this paper is available from the

lead contact upon request.
METHOD DETAILS

Relationship between protein abundance profiles and biosynthetic costs

We here overview the relationship between waveforms of protein concentrations over time and the cost of

protein synthesis in our previous study (Jo et al., 2018). In a circadian system, the protein concentration pro-

file xðtÞ over time t can often be described by the following equation (Figure 1A):

dxðtÞ
dt

= gðtÞ � rðtÞxðtÞ; (Equation 5)

where gðtÞ and rðtÞ denote protein synthesis and degradation rates, respectively. Here, we do not assume

any specific forms of gðtÞ and rðtÞ at the beginning, and they are allowed to take very general forms (e.g.,

even the functions of any variables such as xðtÞ). An oscillatory waveform of xðtÞ satisfies a relation xðtÞ=

xðt +TÞ where T is an oscillation period. Using the notations hgðtÞ ith1
T

ZT
0

gðtÞdt and

hrðtÞxðtÞ ith1
T

R T
0 rðtÞxðtÞdt, Equation 5 and xðtÞ= xðt +TÞ give rise to hgðtÞ it � hrðtÞxðtÞ it = 1

T

R T
0

dxðtÞ
dt dt =

1
T ½xðTÞ � xð0Þ � = 0. Therefore, hgðtÞ it = hrðtÞxðtÞ it . In other words, the periodic nature of the circadian pro-

tein levels requires that the proteins must be synthesized as much as they are degraded in each period. The

cost of protein synthesis is quantified by the average of the protein amount synthesized per time (Jo et al.,

2018), and thus takes the following form for circadian proteins:

Dx

T
=
1

T

ZT

0

gðtÞdt = hgðtÞ it = hrðtÞxðtÞ it ;

where Dx is the protein amount synthesized over the period T . Therefore, given the protein profile xðtÞ and
degradation rate rðtÞ, we calculate the protein synthetic cost hrðtÞxðtÞ it .
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Because gðtÞR0, rðtÞR0, and gðtÞ= x0ðtÞ+ rðtÞxðtÞ (x0ðtÞ is a time derivative of xðtÞ), we obtain

rðtÞRmax½ � x
0 ðtÞ=xðtÞ; 0 � . Hence, the lower bound of the protein degradation rate is determined by the

waveform xðtÞ of the protein profile. This lower bound becomes large for a sharp waveform with a high

value of �x0ðtÞ=xðtÞ at the falling phase of the oscillation. Protein half-life is equal to ln2=rðtÞ, and �
x0ðtÞ=xðtÞ of some plant and mammalian clock proteins indicates that these proteins have (25 � 88 min-

long half-lives at their highest �x0ðtÞ=xðtÞ time points (Jo et al., 2018). Establishing such a waveform with

high�x0ðtÞ=xðtÞ values imposes large values of the lower bound of rðtÞ and thereby the potentially high pro-

tein synthetic cost hrðtÞxðtÞ it .

If the protein degradation rate is constant over time with rðtÞ = r, then rRmaxt ½�x0ðtÞ =xðtÞ� from the con-

dition rRmax½ � x
0 ðtÞ=xðtÞ; 0 � for arbitrary time t (here, maxt ½�x0ðtÞ =xðtÞ� denotes the peak value of� x0ðtÞ=

xðtÞ over time). In other words, a constant degradation rate (i.e., constant half-life) indicates a constantly

short-lived protein, which is degraded all the time at least as rapidly as required at the time of the highest

� x0ðtÞ=xðtÞ. The protein synthetic cost satisfies the relation hr,xðtÞ it = rhxðtÞ itRcg where

cghmaxt ½ � x
0 ðtÞ=xðtÞ �hxðtÞ it . cg is entirely determined by the waveform xðtÞ and serves as the lower bound

of the cost when the degradation rate is constant. Typically, the sharper is a waveform (i.e. the larger is

maxt ½ � x0ðtÞ =xðtÞ�), the higher is cg. The circadian clock proteins in our previous study (Jo et al., 2018)

exhibit very high values of cg. For example, from DxRcgT using the above Dx=TRcg, PRR7 and PRR5 pro-

teins must be synthesized per day at least �21 and �41 times more than actual protein level hxðtÞ its,
respectively, under the assumption that their degradation rates are constant over time (Jo et al., 2018).

These excessive cost levels can be effectively alleviated by rhythmic degradation rates. If the degradation

rate rðtÞ is not constant over time, rðtÞ is allowed to become smaller than maxt ½�x0ðtÞ =xðtÞ� during the time

except for the time point of the highest � x0ðtÞ=xðtÞ. Therefore, the cost can become lower than cg.
Biosynthetic cost of mouse liver proteins in the case of constant protein half-lives

We here consider a scenario that protein degradation rates (proportional to the inverse of protein half-

lives) are constant over time. Based on the above discussion, the ratio of the biosynthetic cost of proteins

with oscillating (circadian or diurnal) abundances to the biosynthetic cost of all detected proteins can be

expressed as

P
i˛CrihxiðtÞ itP
i˛ArihxiðtÞ it

R

P
i˛Cmaxt

�
� x

0
i ðtÞ
xiðtÞ

�
hxiðtÞ it

P
i˛Cmaxt

�
� x

0
i
ðtÞ

xiðtÞ

�
hxiðtÞ it +

P
i˛ðA�CÞrihxiðtÞ it

;

where i is an index of each protein, C and A are the sets of proteins with oscillating abundances and all de-

tected proteins, respectively, xiðtÞ and x0i ðtÞdenote the concentration of protein i at time t and its derivative,

respectively, ri is a degradation rate of protein i, and C,Dt and maxt ½ ,� take the average and maximum over

time, respectively. In the case of oscillating proteins with constant degradation rates, riRmaxt ½ �
x0i ðtÞ =xiðtÞ�, and this fact leads to the above inequality relation. Here, for a given protein i,

maxt
�� x

0
i ðtÞ=xiðtÞ

�hxiðtÞ it corresponds to cg defined above. In the case of non-oscillating proteins, we as-

sume that the long-term average level of each protein remains similar over time, and thus the protein pro-

duction and degradation are balanced in a long term. This long-term balance gives the terms
P
i˛A

rihxiðtÞ it
and

P
i˛ðA�CÞ

rihxiðtÞ it on the left- and right-hand sides of the above inequality relation, respectively. Here, the

value of the right-hand side will be referred to as Fcost.

We estimated Fcost for mouse liver proteins: first, we obtained a list of oscillating proteins and their relative

abundance profiles (FDR = 0.25) from Data S1 in Mauvoisin et al., 2014. We then obtained the spline curve

of the abundance profile of each protein if the protein has at least seven data points across two replicates

andmore than two pairs of its consecutive data points are not separated withR6 hours each. Cubic splines

were achieved using scipy.interpolate.interp1d in SciPy v1.3.1, Python 3.7.2, and the results remained

similar for other interpolation methods. From the spline curves, we computed the values of maxt ½ �
x0i ðtÞ =xiðtÞ�. Next, a comprehensive set of detected mouse liver proteins was identified by combining

Table S7 in Azimifar et al. (2014) and Data S1 in Mauvoisin et al., 2014. Given the limited availability of

data, we used time snapshot data of absolute protein abundances in mouse hepatocyte (Table S7 in
iScience 24, 102726, July 23, 2021 19
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Azimifar et al., 2014) as a rough proxy for hxiðtÞ it values. Taking the average of protein degradation rates

from Data S4 in Karunadharma et al., 2015, we used riz 0.01 h–1 in the calculation of
P

i˛ðA�CÞ
rihxiðtÞ it .

The combination of these data gives rise to
P
i˛C

hxiðtÞ itz1:33108 copy number per cell,
P
i˛A

hxiðtÞ itz3:03109

copy number per cell,
P
i˛C

maxt
�� x

0
i ðtÞ=xiðtÞ

�hxiðtÞ itz8:63106 copy number per cell$h–1, and

P
i˛ðA�CÞ

rihxiðtÞ itz3:63107 copy number per cell$h–1. Therefore,
P
i˛C

hxiðtÞ it=
P
i˛A

hxiðtÞ itz0:04 and Fcostz 0:2.

In other words, only�4% proteins with oscillating abundances account for at least�20% of the total protein

synthesis in mouse liver, under the assumption that the protein degradation rates are constant over time.
Quantification of degradation rhythmicity

In this study, the rhythmicity of a protein degradation rate rðtÞ is quantified by

aDhfmaxt ½rðtÞ � �mint ½rðtÞ � g=maxt ½rðtÞ �, where maxt ½rðtÞ� and mint ½rðtÞ� denote the maximum and mini-

mum values of rðtÞ over time of day, respectively.
Computational modeling of protein ubiquitination without depending on other PTMs

We constructed a model of rhythmically-produced proteins that undergo ubiquitination-mediated degra-

dation, which does not depend on other types of protein modification such as phosphorylation:

dx0ðtÞ
dt

= gðtÞ � a0uðtÞx0ðtÞ+ a1xE;0ðtÞ+ sxH;ubðtÞ; (Equation 6)
dxE;0ðtÞ
dt

= a0uðtÞx0ðtÞ � a1xE;0ðtÞ � qxE;0ðtÞ; (Equation 7)

dx ðtÞ
E;ub

dt
= qxE;0ðtÞ+ a0uðtÞx0;ubðtÞ � a2xE;ubðtÞ � r0xE;ubðtÞ; (Equation 8)

dx ðtÞ
0;ub

dt
= a2xE;ubðtÞ+b1xH;ubðtÞ � b0vðtÞx0;ubðtÞ � a0uðtÞx0;ubðtÞ � r0x0;ubðtÞ; (Equation 9)
dxH;ubðtÞ
dt

= b0vðtÞx0;ubðtÞ � b1xH;ubðtÞ � sxH;ubðtÞ � r0xH;ubðtÞ; (Equation 10)

where t denotes time, gðtÞ is a protein synthesis rate governed by mRNA-to-protein translation, x0ðtÞ is the
concentration of free proteins without any modifications, xE;0ðtÞ is the concentration of not-ubiquitinated

proteins, binding to ubiquitin ligases, xE;ubðtÞ is the concentration of ubiquitinated proteins, binding to

ubiquitin ligases, x0;ubðtÞ is the concentration of ubiquitinated proteins, not binding to ubiquitin ligases

or deubiquitinating enzymes, xH;ubðtÞ is the concentration of the ubiquitinated proteins, binding to deubi-

quitinating enzymes, uðtÞ is the concentration of ubiquitin ligases, not binding to their substrate proteins,

vðtÞ is the concentration of deubiquitinating enzymes, not binding to their substrate proteins, r0 is the

degradation rate of ubiquitinated proteins, q is the ubiquitination rate of proteins binding to ubiquitin li-

gases, s is the deubiquitination rate of proteins binding to deubiquitinating enzymes, lumped with their

subsequent dissociation from the deubiquitinating enzymes, a0 is the rate of ubiquitin ligase binding to

their substrate proteins, a1 is the rate of dissociation between ubiquitin ligases and their not-ubiquitinated

substrate proteins, a2 is the rate of dissociation between ubiquitin ligases and their ubiquitinated proteins,

b0 is the rate of deubiquitinating enzyme binding to ubiquitinated substrate proteins, and b1 is the rate of

dissociation between deubiquitinating enzymes and their ubiquitinated substrate proteins.

In the case of circadian or diurnal protein production, gðtÞ = gðt +TÞ, where T is a period of the

protein production. The summation of Equations 6–10 results in the form of Equation 5, when

xðtÞ denotes the total protein concentration as xðtÞhx0ðtÞ+ xE;0ðtÞ+ xE;ubðtÞ+ x0;ubðtÞ+ xH;ubðtÞ and

rðtÞhr0
�
xE;ubðtÞ+ x0;ubðtÞ+ xH;ubðtÞ

���
x0ðtÞ+ xE;0ðtÞ+ xE;ubðtÞ+ x0;ubðtÞ+ xH;ubðtÞ

�
. This rðtÞ is interpreted as

the protein degradation rate, regarding its mathematical position in Equation 5. In this study, we

assume that ubiquitin ligase and deubiquitinating enzyme concentrations/activities are constant over

time, i.e., uhuðtÞ+ xE;0ðtÞ+ xE;ubðtÞ and vhvðtÞ+ xH;ubðtÞ are constant together with the above parameters

not expressed as the functions of t. We then replace uðtÞ and vðtÞ in Equations 6–10 by u� xE;0ðtÞ � xE;ubðtÞ
and v � xH;ubðtÞ, respectively.

For the simulation of our model, we numerically solved Equations 6–10 with given profile gðtÞ and

parameter values, and obtained xðtÞ and rðtÞ. However, this method makes it difficult to assess the effect
20 iScience 24, 102726, July 23, 2021
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of parameter changes on rðtÞ while controlling for the profile of xðtÞ, because the parameter changes

usually affect both rðtÞ and xðtÞ together when gðtÞ is given. Therefore, we implemented another

simulation method to maintain the profile of xðtÞ. Specifically, using the relation xðtÞ =
x0ðtÞ+ xE;0ðtÞ+ xE;ubðtÞ+ x0;ubðtÞ+ xH;ubðtÞ, we replaced x0ðtÞ in Equation 7 by xðtÞ� xE;0ðtÞ� xE;ubðtÞ�
x0;ubðtÞ� xH;ubðtÞ, and numerically solved Equations 7–10 with given profile xðtÞ and parameter values.

rðtÞ and gðtÞ were obtained by rðtÞ= r0½xE;ubðtÞ + x0;ubðtÞ + xH;ubðtÞ�=xðtÞ and gðtÞ= x0ðtÞ+ rðtÞxðtÞ from Equa-

tion 5, respectively. In this way, we simulated our model with a strictly-maintained profile of xðtÞ across
different parameter values, and gðtÞ was reversely determined in each of these parameter conditions.

The parameter values were selected from physiologically-relevant ranges in Table S1. If the simulation

leads any of gðtÞ, x0ðtÞ, uðtÞ, and vðtÞ to %0, we view this combination of the xðtÞ profile and parameter

values as biologically infeasible and abandon its simulation results. For simulation without deubiquitinating

enzymes, we set v and the initial condition of xH;ubðtÞ as zero. For all simulations throughout this study, or-

dinary differential equations were solved by RK45 or LSODA (scipy.integrate.solve_ivp, rtol = 10�5 and

atol = 10�5) in SciPy v1.3.1 of Python 3.7.4.

We introduce the dimensionless quantities thr0t; XðtÞha0
r0

	
q

a1 +q



xðtÞ; DðtÞh1

r0
rðtÞ =

½xE;ubðtÞ + x0;ubðtÞ + xH;ubðtÞ�=xðtÞ, Uha0
r0

	
q

a1 +q



u, and Vhb0

r0

	
r0 + s

b1 + r0 + s



v. By definition, DðtÞ%1. In the limit

of fully ubiquitinated proteins, DðtÞ/1 and thus rðtÞ/r0. In other words, r0 is the theoretical upper limit of

rðtÞ. On the other hand, the sum of Equations 8–10 is equivalent to

dDðtÞxðtÞ
dt

= qxE;0ðtÞ � sxH;ubðtÞ � r0DðtÞxðtÞ (Equation 11)

Next, we consider the parameter values that fulfill the following conditions: (i) max

	
1
q;

1
a2
; 1

s



� T , (ii)U � q

r0
,

(iii) V � r0 + s
r0

; and (iv) maxt ½XðtÞ� � min

�
q
r0
;

	
a2 + r0
r0


	
q

a1 +q



; a0

b0

	
b1 + r0 + s

r0


	
q

a1 +q


�
. Under the condition (i),

xE;0ðtÞ, xE;ubðtÞ, and xH;ubðtÞ approximately reach the steady states of Equations 7, 8, and 10 at each time

t, respectively. Therefore,

xE;0ðtÞza0uðtÞx0ðtÞ
q+ a1

; (Equation 12)
xE;ubðtÞzqxE;0ðtÞ+ a0uðtÞx0;ubðtÞ
a2 + r0

; (Equation 13)
xH;ubðtÞzb0vðtÞx0;ubðtÞ
s+b1 + r0

(Equation 14)

Under the conditions (ii) and (iii), Equations 12 and 14 lead to xE;0ðtÞ � x0ðtÞ and xH;ubðtÞ � x0;ubðtÞ, respec-
tively. Under the condition (iv), Equation 12 leads to xE;0ðtÞ � uðtÞ, Equations 12 and 13 lead to xE;ubðtÞ �
uðtÞ, and Equation 14 leads to xH;ubðtÞ � vðtÞ. These results allow the approximation of

xðtÞzx0ðtÞ+ xE;ubðtÞ+ x0;ubðtÞ, DðtÞz½xE;ubðtÞ + x0;ubðtÞ�=xðtÞ, uzuðtÞ; and vzvðtÞ. In other words, x0ðtÞz
½1�DðtÞ�xðtÞ and xE;ubðtÞzDðtÞxðtÞ� x0;ubðtÞ. Combining these relations with Equations 12–14 allows

one to express xE;0ðtÞ and xH;ubðtÞ as only the functions of DðtÞ, xðtÞ, u, and v. Incorporating these expres-

sions of xE;0ðtÞ and xH;ubðtÞ into Equation 11 gives rise to

dDðtÞXðtÞ
dt

zU

	
1 +

BV

1+AU



½1�DðtÞ�XðtÞ �

	
1 +

V

1+AU



DðtÞXðtÞ; (Equation 15)

where Ahr0ða1 +qÞ=½qða2 + r0Þ � and Bhr0=ða2 + r0Þ. This equation is equivalent to

dDðtÞ
dt

z

	
1 +

BV

1+AU



U �

�
U + 1�RðtÞ + 1+BU

1+AU
V

�
DðtÞ; (Equation 16)

where RðtÞh� X 0ðtÞ=XðtÞ. When V = 0 and the change of RðtÞ is slow enough for DðtÞ to roughly reach a

fixed point of Equation 16 at each instant t (i.e., when the right-hand side of Equation 16 approaches zero

for each RðtÞ),

DðtÞz
�
1+

1

U
½1� RðtÞ�

��1

(Equation 17)
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This analytical form of DðtÞ is equivalent to Equation 1, regarding DðtÞ= 1
r0
rðtÞ and t = r0t.

Combining Equation 5 and gðtÞR0 straightforwardly leads to RðtÞ%DðtÞ%1. This relation and Equation 17

give rise to UaRmaxhmaxt½RðtÞ�. From Equation 17, DðtÞ is an approximately increasing function of RðtÞ,
and hence, this DðtÞ and rðtÞ would peak at the time when RðtÞzRmax. Likewise, they would fall into the

trough when RðtÞzRminhmint ½RðtÞ�. Incorporating these results into either Equation 1 or 17 for the calcu-

lation of aD leads to Equation 2.

To seek a possible alternative to Equation 17, we assume v = 0 and the following conditions (v)–(vii) instead

of the above (i)–(iv): (v) 1
q � T , (vi) maxt ½xE;ubðtÞ =xE;0ðtÞ� � 1, and (vii) either maxt ½XðtÞ� � U + q

r0
or U �

mint ½XðtÞ�+ q
r0
. Under the condition (v), xE;0ðtÞ approximately reaches the steady state of Equation 7 at

each time t, and therefore Equation 12 is valid in this case. On the other hand, the condition (vi) assures

uzuðtÞ+ xE;0ðtÞ. Combining this relation with ½1�DðtÞ�xðtÞ= x0ðtÞ+ xE;0ðtÞ and Equation 12 leads to the

approximate form of xE;0ðtÞ as the function of u and ½1 � DðtÞ�xðtÞ, analogous to the exact version of

Michaelis–Menten kinetics in Buchler and Louis (2008):

xE;0ðtÞz1

2

(
u + ½1�DðtÞ�xðtÞ + q+ a1

a0
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
u+ ½1� DðtÞ�xðtÞ+q+ a1

a0

�2

� 4½1�DðtÞ�uxðtÞ
s )

:

Applying the above expression to Equation 11 with xH;ubðtÞ= 0 when v = 0, we obtain

dDðtÞ
dt

z
q

2r0

8<
: 1

XðtÞ
	
U +

q

r0



+ 1�DðtÞ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1

XðtÞ
	
U +

q

r0



+ 1�DðtÞ

�2
� 4U

XðtÞ ½1�DðtÞ�
s 9=

;
� ½1�RðtÞ�DðtÞ:

We consider the zeroth- and first-order terms of DðtÞ in the right-hand side of the above equation, and as-

sume that the changes of XðtÞ and RðtÞ are slow enough for DðtÞ to roughly reach a fixed point at each

instant t (i.e., the right-hand side approaches zero for each XðtÞ and RðtÞ). Therefore,

DðtÞz
q

2r0XðtÞ

(
U +XðtÞ+ q

r0
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
U +XðtÞ+ q

r0

�2
� 4UXðtÞ

s )

q
2r0

8>><
>>:1+

U�XðtÞ� q
r0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�

U +XðtÞ+ q
r0

�2

�4UXðtÞ

s
9>>=
>>;+ 1� RðtÞ

:

Because of the condition (vii), the above DðtÞ is further approximated by

DðtÞz
�
1+

1

U
½1� RðtÞ�

�
1+

r0
q
U +

r0
q
XðtÞ

���1

(Equation 18)

This analytical form of DðtÞ is equivalent to Equation 3, regarding DðtÞ = 1
r0
rðtÞ, t = r0t, and XðtÞ =

a0
r0

	
q

a1 +q



xðtÞ. The XðtÞ term in Equation 18 originates fromMichaelis–Menten kinetics of substrate binding

to ubiquitin ligases, but its effect is deflected by the temporal profile of 1� RðtÞ. Equation 18 is reduced to

Equation 17, or equivalently Equation 1, in the case that U � q
r0
and maxt ½XðtÞ� � q

r0
(similar to the above

conditions (ii) and (iv) in the derivation of Equation 17 and more stringent than the condition (vii)).

Model application beyond protein ubiquitination

It is clear that our model with Equations 6–10 can be applied for molecular tagging-based degradation

mechanisms, mainly protein ubiquitination. Beyond such molecular tagging, we here show that degrada-

tion processes triggered by protein complex formation can be approximated by our model. For simplicity,

we set V = 0 in Equation 15, which is then the same as

dDðtÞXðtÞ
dt

zU½1�DðtÞ�XðtÞ � DðtÞXðtÞ

If we re-interpret DðtÞ as the proportion of a protein that is binding to a proteolytic mediator and thereby

committed to degradation, the left-hand side of the equation represents a concentration change of a
22 iScience 24, 102726, July 23, 2021
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degradable protein, the first term on the right-hand side stands for complex formation between free pro-

tein (f½1 � DðtÞ�XðtÞ) and proteolytic mediator (fU), and the second term for protein degradation after

the complex formation. The degradation rate is proportional to DðtÞ. Evidently, the generic form of this

equation broadly works for protein degradation triggered by protein complex formation, which does

not necessarily involve molecular tagging. For example, in the case of autophagic degradation via interac-

tion of light chain 3 (LC3)-interacting region (LIR) motifs with autophagosome marker LC3 (Birgisdottir

et al., 2013; Toledo et al., 2018), this equation can describe a substrate protein sequestered by an LIR-con-

taining protein, or the LIR-containing substrate protein itself targeted for degradation.
Computational modeling of phosphorylation-dependent protein ubiquitination

We consider a scenario that protein ubiquitination in a degradation pathway requires n prior phosphory-

lation events of a substrate protein (nR1). When n= 1 (mono-phosphorylation), themodel consists of Equa-

tions 8–10 and the following equations:

dx0ðtÞ
dt

= gðtÞ � kyðtÞx0ðtÞ+ lzðtÞxpðtÞ; (Equation 19)

dx ðtÞ
p

dt
= kyðtÞx0ðtÞ � lzðtÞxpðtÞ � a0uðtÞxpðtÞ+ a1xE;0ðtÞ+ sxH;ubðtÞ; (Equation 20)

dx ðtÞ
E;0

dt
= a0uðtÞxpðtÞ � a1xE;0ðtÞ � qxE;0ðtÞ; (Equation 21)

where xpðtÞ is the concentration of phosphorylated but not ubiquitinated proteins, not binding to any en-

zymes at time t, yðtÞ is the concentration of protein kinases, zðtÞ is the concentration of protein phospha-

tases, k is the rate of kinase binding to substrate proteins, lumped with subsequent phosphorylation and

substrate dissociation, and l is the rate of phosphatase binding to phosphorylated substrate proteins,

lumped with subsequent dephosphorylation and substrate dissociation.

When n>1 (multisite phosphorylation), the model consists of Equations 8–10 and the following equations:

dx0ðtÞ
dt

= gðtÞ � k1yðtÞx0ðtÞ+ l1zðtÞxp1
ðtÞ; (Equation 22)
dxp1
ðtÞ

dt
= k1yðtÞx0ðtÞ+ l2zðtÞxp2

ðtÞ � l1zðtÞxp1
ðtÞ � k2yðtÞxp1

ðtÞ; (Equation 23)
dxpi ðtÞ
dt

= kiyðtÞxpi�1
ðtÞ+ li + 1zðtÞxpi + 1

ðtÞ � lizðtÞxpi ðtÞ � ki + 1yðtÞxpi ðtÞ

ði = 2; 3; /; n� 1 for n>2Þ; (Equation 24)

dx ðtÞ
pn

dt
= knyðtÞxpn�1

ðtÞ � lnzðtÞxpn ðtÞ � a0uðtÞxpnðtÞ+ a1xE;0ðtÞ+ sxH;ubðtÞ; (Equation 25)

dx ðtÞ
E;0

dt
= a0uðtÞxpn ðtÞ � a1xE;0ðtÞ � qxE;0ðtÞ; (Equation 26)

where xpi ðtÞ denotes the concentration of the ith phosphorylated (but not ubiquitinated) proteins, which are

not binding to any enzymes at time t, ki and li are the extended versions of the parameters k and l in Equa-

tions 19 and 20, specific to the (i �1)th and ith phosphorylated proteins, respectively.

In the samemanner as thephospho-independent case,gðtÞ = gðt +TÞ, whereT is aperiodof proteinproduction.

The summationof Equations 8–10 andeither Equations 19–21 (forn = 1) or Equations 22–26 (forn> 1) results in the

form of Equation 5, when xðtÞ denotes the total protein concentration as xðtÞhx0ðtÞ+ xpðtÞ+
xE;0ðtÞ+ xE;ubðtÞ+ x0;ubðtÞ+ xH;ubðtÞ (n = 1) or xðtÞhx0ðtÞ+

Pn
i = 1

xpi ðtÞ+ xE;0ðtÞ+ xE;ubðtÞ+ x0;ubðtÞ+ xH;ubðtÞ (n> 1),

and rðtÞhr0½xE;ubðtÞ + x0;ubðtÞ + xH;ubðtÞ�=xðtÞ. Similar to the previous case, this rðtÞ is interpreted as a protein

degradation rate, regarding its mathematical position in Equation 5. We assume that kinase, phosphatase, ubiq-

uitin ligase, and deubiquitinating enzyme concentrations/activities are constant over time, i.e., yhyðtÞ, zh zðtÞ,
uhuðtÞ+ xE;0ðtÞ+ xE;ubðtÞ, and vhvðtÞ+ xH;ubðtÞ are constant together with the above parameters not expressed

as the functions of t. We then replace yðtÞ, zðtÞ, uðtÞ, and vðtÞ in Equations 8–10 and 19–26 by y, z, u� xE;0ðtÞ�
xE;ubðtÞ, and v� xH;ubðtÞ, respectively.

In a similar fashion to the phospho-independent case, we controlled for the profile of xðtÞ in our model

simulation by replacing x0ðtÞ in Equations 20 and 23 by xðtÞ � xpðtÞ � xE;0ðtÞ � xE;ubðtÞ � x0;ubðtÞ � xH;ubðtÞ
and xðtÞ� Pn

i = 1

xpi
ðtÞ� xE;0ðtÞ� xE;ubðtÞ� x0;ubðtÞ� xH;ubðtÞ, respectively. We numerically solved Equations
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8–10 and either Equations 20 and 21 (for n = 1) or Equations 23–26 (for n>1) with given profile xðtÞ and
parameter values. rðtÞ and gðtÞ were obtained by rðtÞ= r0½xE;ubðtÞ + x0;ubðtÞ + xH;ubðtÞ�=xðtÞ and gðtÞ=
x0ðtÞ+ rðtÞxðtÞ from Equation 5, respectively. In this way, we simulated our model with a strictly-maintained

profile of xðtÞ across different parameter values and gðtÞ was reversely determined in each of these param-

eter conditions. The parameter values were selected from physiologically-relevant ranges in Table S1.

Throughout this study, uniform sampling of parameter values was conducted by the Mersenne Twister in

random.py of Python 3.7.4. If the simulation of particular parameter values leads any of gðtÞ, x0ðtÞ, uðtÞ,
and vðtÞ to%0, we view this combination of the xðtÞ profile and parameter values as biologically infeasible

and abandon its simulation results. For simulation without phosphatases and deubiquitinating enzymes,

we set z, v, and the initial condition of xH;ubðtÞ as zero.

In addition to the previous dimensionless quantities t, XðtÞ;DðtÞ, U, and V , we introduceWðtÞh xpðtÞ=xðtÞ,
Yhk

r0
y, and Zhðl =r0Þz, when n = 1. We further consider the parameter values that fulfill the aforemen-

tioned conditions (i)–(iv) in the phospho-independent case. Based on these parameters, we take the

pseudo-steady state approximation of the model with n= 1 in a similar fashion to the derivation of Equa-

tion 16, and then obtain

dWðtÞ
dt

zY �
�
Y + U�RðtÞ + Z +

BQUV

1+AU

�
WðtÞ �

	
Y � QV

1+AU



DðtÞ; (Equation 27)	 
 � �
dDðtÞ
dt

zU 1 +
BV

1+AU
WðtÞ � 1�RðtÞ + V

1+AU
DðtÞ; (Equation 28)

where RðtÞ, A, and B are the same as those in Equation 16 andQhs=ðr0 + sÞ. When Z =V = 0 and the change

of RðtÞ is slow enough for WðtÞ and DðtÞ to roughly reach a fixed point of Equations 27 and 28 at each

instant t,

DðtÞz
��

1+
1

U
½1� RðtÞ�

��
1� 1

Y
RðtÞ

�
+
1

Y

��1

(Equation 29)

This analytical form of DðtÞ is equivalent to Equation 4, regarding DðtÞ= 1
r0
rðtÞ and t = r0t. Combining

Equation 5 and gðtÞR0 straightforwardly leads to RðtÞ%DðtÞ%1. This relation and Equation 29 give rise

to UaRmaxhmaxt ½RðtÞ �.

Following a similar procedure to the derivation of Equation 29, the pseudo-steady state approximation of

the model with arbitrary n for multisite phosphorylation leads to

DðtÞzUK1K2/KnYn

hnðRtÞ ;

where Kih
ki
k1

ði = 1; 2; /; nÞ, RthRðtÞ, and hnðRtÞhUK1K2/KnY
n +K1K2/KnY

nð1 �
RtÞ+K1K2/Kn�1Y

n�1ð1 � RtÞðU � RtÞ+K1K2/Kn�2Y
n�2ð1 � RtÞðU � RtÞðKnY � RtÞ+K1K2/Kn�3Y

n�3ð1 �

RtÞðU � RtÞðKnY � RtÞðKn�1Y � RtÞ+/+K1K2Y
2ð1 � RtÞðU � RtÞ

Yn
i = 4

ðKiY � RtÞ+ ð1 � RtÞðU �

RtÞðK1Y +K2Y � RtÞ
Yn
i = 3

ðKiY � RtÞ.

The above DðtÞ is inversely proportional to hnðRtÞ=ðK1K2/KnY
nÞ. From the above form of hnðRtÞ, the

explicit calculation of hnðRtÞ=ðK1K2/KnY
nÞ shows the repetitive presence of a term ½1� Rt=ðKiYÞ�. The tem-

poral variation of this term, driven by the oscillation of Rt , is particularly large when KiY is small. In other

words, among the kinase binding rates across multiple phosphosites, the lowest binding rates (f

miniðKiÞ) determine the overall rhythmicity of a degradation rate (fDðtÞ). These limiting steps of phosphor-

ylation also constrain the overall cost of protein production, because the cost is proportional to hDðtÞXðtÞ it
and thus strongly affected by the rhythmicity of DðtÞ.
Model application for PTMs beyond phosphorylation

Our model with Equations 8–10 and 19–26 is based on ubiquitination promoted by phosphorylation, but

other types of PTMs as targeting signals for ubiquitination can also be addressed by this model. For

simplicity, we set Z =V = 0 in Equations 27 and 28, which are then equivalent to
24 iScience 24, 102726, July 23, 2021
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dWðtÞXðtÞ
dt

zY ½1�WðtÞ�DðtÞ�XðtÞ � UWðtÞXðtÞ;
dDðtÞXðtÞ
dt
zUWðtÞXðtÞ � DðtÞXðtÞ:

If we re-interpret WðtÞ as the proportion of a protein that is modified in some ways for subsequent ubiq-

uitination, the left-hand sides of the first and second equations represent concentration changes of this

modified and the ubiquitinated proteins, respectively. In the first equation, the first term on the right-

hand side stands for the enzymatic modification (fY ) of an unmodified substrate (f½1 � WðtÞ �
DðtÞ�XðtÞ), and the second term for the ubiquitination (fUðtÞ) of the modified substrate (f WðtÞXðtÞ).
In the second equation, the degradation rate is proportional to a ubiquitinated fraction (DðtÞ) on the

right-hand side. Clearly, the generic forms of these equations work for the modification types that do

not necessarily involve phosphorylation. The examples include SUMOylation (Miteva et al., 2010) and

PTMs in the N-degron pathway (Dissmeyer, 2019).
Model expansion for multiple degradation routes

We expanded Equations 8–10 and 22–26 with n= 4 to a scenario of protein degradation where more than

one degradation route exists for a given protein with multiple phosphorylation events. The model consists

of Equation 22 and the following equations:

dxp1
ðtÞ

dt
= k1yðtÞx0ðtÞ+ l2zðtÞxp2

ðtÞ � l1zðtÞxp1
ðtÞ � k2yðtÞxp1

ðtÞ
� a1;0u1ðtÞxp1

ðtÞ+ a1;1x1;E;0ðtÞ+ s1x1;H;ubðtÞ;
dx ðtÞ
p2

dt
= k2yðtÞxp1

ðtÞ+ l3zðtÞxp3
ðtÞ � l2zðtÞxp2

ðtÞ � k3yðtÞxp2
ðtÞ

� a2;0u2ðtÞxp2
ðtÞ+ a2;1x2;E;0ðtÞ+ s2x2;H;ubðtÞ;

dx ðtÞ
p3

dt
= k3yðtÞxp2

ðtÞ+ l4zðtÞxp4
ðtÞ � l3zðtÞxp3

ðtÞ � k4yðtÞxp3
ðtÞ

� a3;0u3ðtÞxp3
ðtÞ+ a3;1x3;E;0ðtÞ+ s3x3;H;ubðtÞ;

dx ðtÞ
p4

dt
= k4yðtÞxp3

ðtÞ � l4zðtÞxp4
ðtÞ � a4;0u4ðtÞxp4

ðtÞ+ a4;1x4;E;0ðtÞ+ s4x4;H;ubðtÞ;

dxi;E;0ðtÞ

dt
= ai;0uiðtÞxpi ðtÞ � ai;1xi;E;0ðtÞ � qixi;E;0ðtÞ ði = 1; 2; 3; 4Þ;

dx ðtÞ
i;E;ub

dt
=qixi;E;0ðtÞ+ ai;0uiðtÞxi;0;ubðtÞ � ai;2xi;E;ubðtÞ � ri;0xi;E;ubðtÞ ði = 1; 2; 3; 4Þ;

dx ðtÞ
i;0;ub

dt
= ai;2xi;E;ubðtÞ+bi;1xi;H;ubðtÞ � bi;0viðtÞxi;0;ubðtÞ � ai;0uiðtÞxi;0;ubðtÞ � ri;0xi;0;ubðtÞ ði = 1; 2; 3; 4Þ;

dx ðtÞ
i;H;ub

dt
= bi;0viðtÞxi;0;ubðtÞ � bi;1xi;H;ubðtÞ � sixi;H;ubðtÞ � ri;0xi;H;ubðtÞ ði = 1; 2; 3; 4Þ;

where the variables and parameters are the same as in Equations 8–10 and 23–26, except those in ubiqui-

tination/deubiquitination of phosphorylated proteins. Specifically, xi;E;0ðtÞ, xi;E;ubðtÞ, xi;0;ubðtÞ, xi;H;ubðtÞ, and
ri;0 are the counterparts of xE;0ðtÞ, xE;ubðtÞ, x0;ubðtÞ, xH;ubðtÞ, and r0 in Equations 8–10, 25, and 26 for the ith

phosphorylated protein. uiðtÞ and viðtÞ denote the concentrations of free ubiquitin ligase and deubiquiti-

nating enzyme specific to the ith phosphorylated protein, respectively. ai;0, ai;1, ai;2, and qi are the counter-

parts of a0, a1, a2, and q in Equations 8–10, 25, and 26 for the ubiquitin ligase specific to the ith phosphor-

ylated protein. bi;0, bi;1, and si are the counterparts of b0, b1, and s in Equations 8–10, 25, and 26 for the

deubiquitinating enzyme specific to the ith phosphorylated protein.

We assume that kinase, phosphatase, ubiquitin ligase, and deubiquitinating enzyme levels/activities are

constant over time, i.e., uihuiðtÞ+ xi;E;0ðtÞ+ xi;E;ubðtÞ, vihviðtÞ+ xi;H;ubðtÞ, yhyðtÞ, and zhzðtÞ are constant

together with the above parameters not expressed as the functions of t. In a similar way to the previous

cases, we performed numerical simulations of this model and obtained the protein degradation rate, its

rhythmicity aD , and the protein synthetic cost (Figure S2). We simulated different combinations of degra-

dation routes by setting the ubiquitin ligase levels (ui) in irrelevant degradation pathways as zero, and

otherwise setting ui>0. The specific parameter values were chosen from physiologically-relevant ranges

in Table S1.
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Known phosphoproteins in the Arabidopsis circadian clock

We checked whether the following clock proteins in plant Arabidopsis thaliana are listed as phosphopro-

teins in the Arabidopsis Protein Phosphorylation Site Database (PhosPhAt) 4.0 (Durek et al., 2010): LATE

ELONGATED HYPOCOTYL (LHY), CIRCADIAN CLOCK ASSOCIATED 1 (CCA1), PRR9, PRR7, PRR5,

TIMING OF CAB EXPRESSION 1 (TOC1), EARLY FLOWERING 3, 4 (ELF3, ELF4), LUX ARRHYTHMO

(LUX), GIGANTEA (GI ), ZEITLUPE (ZTL), and REVEILLE 8 (RVE8).

Among these proteins, LHY, CCA1, PRR7, PRR5, ELF4, LUX, GI , and RVE8 were classified as phosphopro-

teins with the cited experimental evidence in PhosPhAt 4.0.
Analysis of TIM ubiquitination data

We collected the circadian profiles of the TIM’s abundance and ubiquitinated fraction in constant darkness

in Szabó et al., 2018. Specifically, two replicates of the TIM abundance levels associated with Figure 3A of

Szabó et al., 2018 were kindly provided by Áron Szabó, and normalized by their average at CT 18 hr. To

achieve the protein profile xðtÞ (Figure 4A), we obtained the smoothing cubic spline of the average abun-

dances with k = 3 (degree of the spline fit) and s = 5 (smoothing condition) using scipy.interpolate.splrep in

SciPy v1.3.1, Python 3.7.2. This profile xðtÞ was used for the calculation of �x0ðtÞ=xðtÞ (Figure 4B). The

average and standard deviation of the proportions of ubiquitinated TIM at each time point were retrieved

from Figure 3B of Szabó et al., 2018. In this literature source, the average proportion of ubiquitinated TIM at

CT 0 hr was scaled to 100, and we rescaled it to 1 (Figure 4B).
PRR7 and PER2 degradation modeling and analysis

To address the cases of PRR7 and PER2 degradation, we adopted the phospho-independent and phospho-

dependent protein degradation models in Equations 6–10 and 19–26. The protein kinase, phosphatase,

ubiquitin ligase, and deubiquitinating enzyme levels/activities were assumed to be constant over time.

Following the aforementioned procedure of our model simulation, we maintained the profile of xðtÞ set
to the experimental PRR7 or PER2 abundance profile (Figures 5A and 5B) and obtained the ensemble of

rðtÞ with uniformly-sampled parameter sets in physiologically-relevant ranges in Table S1. For the experi-

mental PRR7 abundance profile, we obtained the abundance data with 2-hour resolution under equal

length light-dark cycles in Figure 5A of Nakamichi et al., 2010 and used the cubic spline curve. For the

experimental PER2 abundance profile, we obtained the abundance data with 0.1-hour resolution (cyclo-

heximide-untreated control data) in Figure 1A of Zhou et al. (2015) and smoothened them with a moving

window average (3-hour window).

For each simulated rðtÞ, we computed the protein synthetic cost hrðtÞxðtÞ it as derived above. In addition,

we measured similarity S between the simulated rðtÞ and the empirical degradation-rate profile rEðtÞ, as
follows:

Sh

R T

0 min½rðtÞ; rEðtÞ�dtR T

0 max½rðtÞ; rEðtÞ�dt
;

where T is an oscillation period of rðtÞ and rEðtÞ. S takes a range of 0%S%1, and becomes large for quan-

titatively similar trajectories of rðtÞ and rEðtÞ. In this study, the alternative definition of S did not much

change our results. Given the scarcity of the experimental PRR7 and PER2 degradation rates, we estimated

their rEðtÞ profiles in the following way: first, we obtained the experimental PRR7 degradation rates at zeit-

geber time 4 hr, 12 hr, and 18 hr (Farré and Kay, 2007) and the experimental PER2 degradation rates at t =

19 hr, 22 hr, 25 hr, 28 hr, and 30 hr (Zhou et al., 2015), as detailed in Jo et al. (2018). Because rEðtÞ is required
to satisfy rEðtÞRmax½ � x

0 ðtÞ=xðtÞ; 0 � as shown above, the linear inter- or extrapolation of the experimental

degradation rates was compared with max½ � x
0 ðtÞ=xðtÞ; 0 � at each time t, and a higher value between them

was chosen for the estimation of rEðtÞ. In the case of PER2,�x0ðtÞ=xðtÞ derived from xðtÞ was very noisy, and
therefore smoothened with a moving window average (1-hour window). For PRR7 or PER2, we set the lower

bound of rEðtÞ to the minimum value of the experimental degradation rates. The inferred profiles of rEðtÞ
are presented in Figures 5A and 5B.

In the simulation conditions in Figure 5, the phosphatase and deubiquitinating enzyme levels were set to

zero. In addition, k1, k2, $$$, kn in Equations 21–24 were set to the identical values. We tried this simplifica-

tion because the lowest kinase binding rate (fminðk1; k2;/; knÞ) in multisite phosphorylation governs the
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substrate’s overall degradation dynamics (Figures 3D and S4) and therefore unifying the kinase binding

rates would reduce themodel complexity without disrupting themajor mode of the degradation dynamics.

Nevertheless, the PRR7 simulation without those constraints, as well as the simulation of our full realistic

model of the PER2 degradation, did not much affect the main results (Figure S5). Here, the realistic

PER2 degradation model was modified from the previous model in Zhou et al. (2015) and comprised the

following equations:

dx0ðtÞ
dt

= gðtÞ � k1yðtÞx0ðtÞ+ l1zðtÞxp1
ðtÞ � kbyðtÞx0ðtÞ+ lbzðtÞxpb

ðtÞ
� a0;0uðtÞx0ðtÞ+ a0;1x0;E;0ðtÞ+ s0x0;H;ubðtÞ;

dx ðtÞ
p1

dt
= k1yðtÞx0ðtÞ+ l2zðtÞxp2

ðtÞ � l1zðtÞxp1
ðtÞ � k2yðtÞxp1

ðtÞ � a1;0uðtÞxp1
ðtÞ+ a1;1x1;E;0ðtÞ+ s1x1;H;ubðtÞ;
dxp2
ðtÞ

dt
= k2yðtÞxp1

ðtÞ+ l3zðtÞxp3
ðtÞ � l2zðtÞxp2

ðtÞ � k3yðtÞxp2
ðtÞ

� a2;0uðtÞxp2
ðtÞ+ a2;1x2;E;0ðtÞ+ s2x2;H;ubðtÞ;

dx ðtÞ
p3

dt
= k3yðtÞxp2

ðtÞ+ l4zðtÞxp4
ðtÞ � l3zðtÞxp3

ðtÞ � k4yðtÞxp3
ðtÞ

� a3;0uðtÞxp3
ðtÞ+ a3;1x3;E;0ðtÞ+ s3x3;H;ubðtÞ;
dxp4
ðtÞ

dt
= � l4zðtÞxp4

ðtÞ+ k4yðtÞxp3
ðtÞ � a4;0uðtÞxp4

ðtÞ+ a4;1x4;E;0ðtÞ+ s4x4;H;ubðtÞ;� �
dxi;E;0ðtÞ
dt

= ai;0uðtÞxpi ðtÞ � ai;1xE;0ðtÞ � qixi;E;0ðtÞ i = 0; 1; 2; 3; 4; xp0
ðtÞhx0ðtÞ ;

dx ðtÞ
i;E;ub

dt
=qixi;E;0ðtÞ+ ai;0uðtÞxi;0;ubðtÞ � ai;2xi;E;ubðtÞ � ri;0xi;E;ubðtÞ ði = 0; 1; 2; 3; 4Þ;

dx ðtÞ
i;0;ub

dt
= ai;2xi;E;ubðtÞ+bi;1xi;H;ubðtÞ � bi;0vðtÞxi;0;ubðtÞ � ai;0uðtÞxi;0;ubðtÞ � ri;0xi;0;ubðtÞ ði = 0; 1; 2; 3; 4Þ

dx ðtÞ
i;H;ub

dt
= bi;0vðtÞxi;0;ubðtÞ � bi;1xi;H;ubðtÞ � sixi;H;ubðtÞ � ri;0xi;H;ubðtÞ ði = 0; 1; 2; 3; 4Þ;
dxpb
ðtÞ

dt
= � lbzðtÞxpb

ðtÞ+ kbyðtÞx0ðtÞ � ab;0ubðtÞxpb
ðtÞ+ ab;1xb;E;0ðtÞ+ sbxb;H;ubðtÞ;

dx ðtÞ
b;E;0

dt
= ab;0ubðtÞxpb

ðtÞ � ab;1xb;E;0ðtÞ � qbxb;E;0ðtÞ;

dxb;E;ubðtÞ

dt
= qbxb; E;0ðtÞ+ ab;0ubðtÞxb;0;ubðtÞ � ab;2xb;E;ubðtÞ � rb;0xb;E;ubðtÞ;
dxb;0;ubðtÞ
dt

= ab;2xb;E;ubðtÞ+bb;1xb;H;ubðtÞ � bb;0vbðtÞxb;0;ubðtÞ � ab;0ubðtÞxb;0;ubðtÞ � rb;0xb;0;ubðtÞ;
dx ðtÞ
b;H;ub

dt
= bb;0vbðtÞxb;0;ubðtÞ � bb;1xb;H;ubðtÞ � sbxb;H;ubðtÞ � rb;0xb;H;ubðtÞ:

The above variables and parameters are the overall same as in the model with multisite phosphorylation-

dependent degradation (Equations 8–10 and 22–26). To be clear, subscripts i and pi correspond to the ith

phosphorylation state of the familial advanced sleep phase (FASP) site, subscripts b and pb correspond to

the phosphorylation state of the b-transducin repeat–containing protein (b-TrCP) binding site, yðtÞ is the
concentration of casein kinases 1 ε and d (CK1ε and CK1d), and ubðtÞ is the concentration of the SCFb�TrCP

ubiquitin ligase complex, not binding to its target site. gðtÞ=gðt +TÞ where T is a period of the PER2

production.

Throughout all the PRR7 and PER2 simulations, we excluded biologically-infeasible results defined under

Equations 6–10 and 19–26. For comparison with S values and protein synthetic costs from uniformly-

sampled parameter sets, we performed the parameter optimization to maximize S or minimize the cost

from each version of the models. The Nelder–Mead method in SciPy v1.3.1 (scipy.optimize) was applied

to the parameter optimization.
Analysis of Arabidopsis and mouse-liver proteome data

We obtained a list of oscillating Arabidopsis proteins from Tables S3–S6 in Choudhary et al. (2016), based

on top hit proteins of rhythmic protein spots. A comprehensive set of detected Arabidopsis proteins was

identified by combining Data S2 in Mergner et al., 2020) and Tables S3–S6 in Choudhary et al. (2016).
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Among them, we identified phosphoproteins with the existing experimental evidence from PhosPhAt 4.0

(Durek et al., 2010).

In the case of mouse liver proteins, we followed the aforementioned procedures to collect the lists of oscil-

lating proteins and all detected proteins, the relative abundance profiles of the oscillating proteins, and

their absolute abundance levels (given the limited availability of data, we used time-snapshot data of

the absolute protein abundances in mouse hepatocyte (Azimifar et al., 2014) as a rough proxy for hxðtÞ it
in the calculation of cg). The list of mouse phosphoproteins was obtained from File S3 in Vlastaridis et

al., 2017. We calculated cg of each oscillating mouse-liver protein, as detailed above.

The analysis of the mouse liver data revealed that oscillating phosphoproteins have themedian abundance

of 1:73105 copy number per cell (MAD = 1:63105 copy number per cell), whereas oscillating non-phospho-

proteins have the median abundance of 1:13105 copy number per cell (MAD = 9:53104 copy number per

cell). In other words, those phosphoproteins tend to have larger abundance levels than the non-phospho-

proteins, and this result partially contributes to the enrichment of the phosphoproteins in relatively high cg

levels (Figure 6C). Hence, we controlled for the abundance ranges of both the phospho- and non-phospho-

proteins in the analysis of cg. Specifically, we started with the observation that the probability distribution of

absolute protein abundance (c) follows a power-law PðcÞfc�g: gz1 for both the phospho- and non-phos-

pho-proteins in the range of cmin%c%cmax where cminz3:03104 copy number per cell and cmaxz 5:43 105

copy number per cell. Because both the phospho- and non-phospho-proteins exhibit these power-law dis-

tributions with the almost same g values for that c range, the ratio of the phospho-to non-phospho-proteins

remains similar for an arbitrary window of c within the range cmin%c%cmax. In other words, as long as c lies

between cmin and cmax, the phosphoproteins have no systematic abundance biases toward higher cg

values. In this regard, we only chose the proteins with the abundance range of cmin%c%cmax and obtained

the fraction of phosphoproteins across the cg values (Figure 6C inset).
QUANTIFICATION AND STATISTICAL ANALYSIS

For a parameter set with the largest S value of the degradation rate in each version of the PRR7 and PER2

models, we tested the statistical significance of the proximity of its proteosynthetic cost to the simulated

minimum cost, as follows: we randomly sampled 106 parameter sets of the model from physiologically-rele-

vant ranges in Table S1, and excluded the parameter sets with the previously-defined biologically infea-

sible simulation results. Using the remaining parameter sets, we numerically computed the probability

that the cost with a given parameter set is closer to the minimum cost (either from uniformly-sampled or

optimized parameter sets) than the cost with the largest-S parameter set. The resulting probability from

this one-tailed test was adopted for the P value of the proximity of the cost with the largest S to the min-

imum cost.

Spearman’s r between S and the proteosynthetic costs in Figures 5G and 5H was calculated using scipy.s-

tats.spearmanr in SciPy v1.3.1. To test the statistical significance of a large magnitude of the r value, we

randomly permuted the costs against the S values, and obtained the distribution of r from 104 sets of these

randomly-paired S and costs. Using this null distribution of r, the one-tailed test was conducted to give the

P value of the observed r.

To test the statistical significance of the enrichment of phosphoproteins in oscillating proteins in Figures 6A

and 6B, we randomly selected from all detected Arabidopsis or mouse liver proteins the same number of

proteins as the oscillating ones. For each of these 104 sets of the randomly-selected proteins, we calculated

the fraction of phosphoproteins. Using this null distribution of the phosphoprotein fractions, the one-tailed

test was conducted to give the P value of the observed phosphoprotein fraction in the oscillating proteins.

We assessed the statistical significance of the positive association between cg and the proportions of phos-

phoproteins in Figure 6C and its inset, as follows: we randomly permuted cg values of all oscillating proteins

regardless of phospho- and non-phospho-proteins, and obtained 104 sets of these randomly-paired cg and

proteins. For each of these sets, we computed the proportions of phosphoproteins across the ranges of cg
in Figure 6C or its inset. Based on this information, we numerically computed the probability that a fold

change of this randomized phosphoprotein proportion between adjacent cg ranges is always greater

than or equal to the fold change of the observed phosphoprotein proportion, across cg levels in the
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ascending order. This probability from the one-tailed test was adopted for the P value of the positive as-

sociation between cg and the phosphoprotein proportions.

For all random number generations in the above statistical significance tests, we used the Mersenne

Twister in random.py of Python 3.7.4.
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