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ABSTRACT

While tactile sensation plays an essential role in interactions with the surroundings,
relatively little is known about the neural processes involved in the perception of
tactile information. In particular, it remains unclear how different intensities of
tactile hardness are represented in the human brain during object manipulation. This
study aims to investigate neural responses to various levels of tactile hardness using
functional magnetic resonance imaging while people grasp objects to perceive
hardness intensity. We used four items with different hardness levels but otherwise
identical in shape and texture. A total of Twenty-five healthy volunteers participated
in this study. Before scanning, participants performed a behavioral task in which
they received a pair of stimuli and they were to report the perceived difference of
hardness between them. During scanning, without any visual information, they
were randomly given one of the four objects and asked to grasp it. We found
significant blood oxygen-level-dependent (BOLD) responses in the posterior insula
in the right hemisphere (rpIns) and the right posterior lobe of the cerebellum
(rpCerebellum), which parametrically tracked hardness intensity. These responses
were supported by BOLD signal changes in the rpCerebellum and rplns correlating
with tactile hardness intensity. Multidimensional scaling analysis showed similar
representations of hardness intensity among physical, perceptual, and neural
information. Our findings demonstrate the engagement of the rpCerebellum and
rplns in perceiving tactile hardness intensity during active object manipulation.

Subjects Neuroscience, Neurology, Psychiatry and Psychology, Radiology and Medical Imaging
Keywords fMRI, GLM, Active grasping, Brain, Hardness, Tactile

INTRODUCTION

Tactile sensation with the hands is essential for humans to manipulate objects in their daily
lives. When manipulating objects with various shapes and textures, humans sense the
objects’ physical properties via tactile information processing, beginning with interactions
between sensory receptors underneath the skin and the object (Skedung et al., 2013).
Not only does tactile sensation play an important role in the perception of an object’s
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physical properties but it also facilitates precise object manipulation through sensory
teedback (Augurelle et al., 2002; Monzée, Lammarre & Smith, 2003).

Much effort has been devoted to elucidating the fundamental elements of tactile
perception. By and large, human tactile perception can be characterized by four
fundamental perceptual dimensions: roughness/smoothness, stickiness/slipperiness,
warmth/coolness, and hardness/softness (Hollins et al., 2000; Bensmaia ¢ Hollins, 2005).
As for tactile roughness perception, the spatial patterns of skin deformation play a key role
in the discrimination of roughness (Lederman ¢ Taylor, 1972). In particular, simulated
temporal cues (Cascio & Sathian, 2001; Gamzu ¢ Ahissar, 2001) as well as tangential forces
are known to be important in determining roughness intensity (Smith et al., 2002).

As for stickiness perception, its magnitude closely correlates with a parameter of kinetic
friction between the skin and a surface (Smith ¢ Scott, 1996). The perceived magnitude
of warmth or coolness is determined by contact coefficients and the heat conducted on the
skin area (Ho ¢ Jones, 2006; Ho & Jones, 2008; Stevens ¢» Marks, 1979). Lastly, as for
hardness perception, both tactile and kinesthetic information are necessary to discriminate
hardness levels (Srinivasan ¢ LaMotte, 1995).

A number of functional magnetic resonance imaging (fMRI) studies have explored
tactile information processing in the human brain. Several brain regions including the
primary somatosensory area (SI), supplementary motor area, and bilateral temporal poles
(Kim et al., 2015) are known to be involved in the perception of tactile roughness.

In addition, the secondary somatosensory area (SII) was found to be activated with
high-frequency stimulus (Seri et al., 2019; Seri et al., 2020), while the parietal operculum
lobe is reportedly engaged in the estimation of surface roughness (Kitada et al., 2005;
Stilla & Sathian, 2008), and the posterior insula shows haptic selectivity in processing
visuo-haptic stimuli (Stilla ¢ Sathian, 2008). With respect to stickiness, neural responses
to sticky stimuli were found in the contralateral SI and ipsilateral dorsolateral prefrontal
cortex (Yeon et al., 2017), and particularly those in the posterior parietal regions were
found to discriminate stickiness intensity (Kim et al., 2017). Furthermore, neural activity in
the dorsal posterior insula is correlated with thermal sensation of low temperature
(Craig et al., 2000, Peltz et al., 2011; Oi et al., 2017). Recently, it was confirmed that the
tactile network, including SI and SII, was activated during detection of tactile gratings
using an advanced tactile stimulus that makes a grating using electro-static friction
(Vuong et al., 2020).

Among all tactile perceptual dimensions, this study aims to investigate neural activity
related to hardness. Because tactile hardness is defined by the ratio between the relative
force exerted on the surface and its displacement, one can posit that tactile hardness
perception relies on proprioception (Okamoto, Nagano ¢ Yamada, 2013). However,
several studies have shown that tactile cues are more attributed to the perception of
cutaneous hardness than proprioception (Srinivasan ¢ LaMotte, 1995; Bergmann Tiest,
2010). As for the neural substrates of tactile hardness perception, a non-human primate
study showed that surface compliance modulated the activity of slowly adapting type-1
afferents, but not rapidly adapting afferents (Srinivasan & LaMotte, 1995). Other
studies in non-human primates revealed that neural activities in areas 3b and 1 in SI
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could discriminate hard and soft objects (Randolph ¢ Semmes, 1974) and that lesions
in the SII decreased discrimination performance between hard and soft stimuli
(Murray & Mishkin, 1984). In humans, a few studies have shown the involvement of the
SI and the parietal operculum, such that cerebral blood volume in these regions increased
during hardness sensation. Moreover, the neural activity from the parietal operculum
predicts different levels of object softness (Bodegird et al., 2003) during passive touch
(Kitada et al., 2019). To date, converging evidence suggests the involvement of the
bilateral parietal operculum in perceiving tactile hardness along with other sensory
information (Lederman et al., 2001; Reed, Shoham & Halgren, 2004; Kim et al., 2019).

However, it is still unknown how tactile hardness intensity information is processed in
the human brain during active exploration. Hence, this study aimed to investigate
neural representations of tactile hardness intensity while grasping an object with the hand.
In order to recognize an object’s hardness, both cutaneous tactile cues and dexterous
manipulation applying pressure to an object are needed (Bergmann Tiest, 2010). This
active exploration process is difficult to control but nevertheless an important factor in
hardness perception.

Previous studies have shown that pressing or grasping an object is needed to perceive its
hardness (Harper & Stevens, 1964; Turvey ¢ Carello, 1995) and that active exploration
could improve identification of the tactile properties of an object over passive exploration
(Gibson, 1962). As such, we expected a more natural identification of the neural correlates
of the perception of tactile hardness during active tactile exploration.

The hypothesis of this study is that SI and SII neural responses would represent
hardness intensities during active grasp exploration. To this end, we employed a dexterous
grasping task to elicit hardness sensation (Lederman et al., 2001) and attempted to identify
the brain regions that track tactile hardness intensity. Participants performed both
psychophysical and fMRI experiments: the psychophysical experiment was designed to
measure perceived differences in tactile hardness intensities between stimuli, and the fMRI
experiment was designed to measure the neural responses to different hardness intensities.

MATERIALS & METHODS

Participants and ethics approval

A total of twenty-five healthy volunteers (mean age = 24 + 4 years old, age range = 19-29,
nine male and 16 female), with no contraindications against MRI and no history of
neurological disorders, participated in this study. All participants were right-handed and had
no deficits in tactile processing. Experimental procedures were approved by the ethics
committee of the Ulsan National Institute of Science and Technology (UNISTIRB-15-16-A).
The study was conducted in accordance with the Declaration of Helsinki. All participants
were informed of the study objectives and experimental procedures and voluntarily
submitted a written consent form.

Tactile stimuli
The tactile stimuli for the current study had the same physical properties (e.g., shape and
surface texture) except their hardness intensity. To satisfy this criterion, we selected a
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Figure 1 Stimuli and behavioral experiment procedure. (A) Grasping posture during experiment.
(B) Each stimulus featured one of the four hardness intensities measured by the durometer: 28, 36, 45,
and 57. The stimuli used in this study are commercially available (Eggsercizer, Magister Corp.; Chat-
tanooga, TN, USA). The stimuli were made of synthetic rubbers. Each stimulus had an identical oval
shape with a 5.1-cm diameter and 7-cm height. (C) The behavioral task was conducted before the fMRI
experiment. Participants were asked to report perceived hardness differences between each provided pair
of stimuli. A set of ten pairs of stimuli was provided to participants, which was repeated four times.
Full-size k&l DOI: 10.7717/peerj.11760/fig-1

commercially available product (Eggsercizer, Magister Corp.; Chattanooga, TN, USA),
primarily used in motor rehabilitation (e.g., grip strengthening). The Eggsercizer is made
of synthetic rubber and silicon and has an oval shape with a diameter of 5.1 cm and a
height of 7 cm (Figs. 1A and 1B). The stimulus weights were approximately identical
(75.24 £ 0.4 g). The physical hardness intensities were quantitatively measured by
resistance to indentation using a Durometer Hardness OO-Type device (ASKER/Shore;
OO-Type) at KOPTRI (Korea Polymer Testing & Research Institute, Seoul, South Korea).
For the experiment, four different stimuli with different hardness intensities (28, 36,

45, and 57 a.u.) were prepared where a higher number indicated a harder stimulus
(physical hardness intensity of each stimulus is denoted as H28, H36, H45, and H57,
hereafter). Although these intensity values did not map exactly to perceived hardness, in
general, tactile hardness intensities of 20 and 50 were reportedly perceived similar to those
of chewing gum and solid truck tires, respectively. The stimuli were kept clean after
each experiment using a wet tissue until their surface was free of matter.

Experimental procedure

Before the fMRI experiment, participants performed a behavioral task in which they
received a pair of stimuli with eyes closed (Fig. 1C). During the behavioral experiment,
participants sat on a chair and put their right hands on a desk in front of the chair.

To eliminate any visual effects, participants were blindfolded during the entire behavioral
experiment. An experimenter placed the stimulus on the palm of the participants’ right
hand with the thin side oriented toward the thumb. The stimulus was placed at the palm
center with the major axis perpendicular to the fingers except the thumb and participants
grasped each stimulus once for 1 s and released it. Participants were instructed to exert
a grasping force as constantly as possible for every stimulus. Immediately after participants
released the stimulus, the experimenter removed it from participants’ hands and placed
the next stimulus after a 5-s inter-stimulus interval. In the instruction session, an
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experimenter presented to participants a pair of stimuli with the highest (H57) and lowest
intensities (H28) to allow participants to perceive the greatest difference in the hardness
intensity of the experimental stimuli. Then, a pair of stimuli with the same hardness
intensity (randomly selected out of four levels) was presented to participants along with
information about the same hardness intensity.

Participants performed four main sessions of the behavioral task in each of which a total
of 10 stimulus pairs were presented to participants. This set of 10 pairs consisted of pairs of
stimuli with different hardness and four additional pairs with the same hardness level
(4C2 + 4 = 10 pairs). In each trial of the behavioral task, participants were presented with
one pair of stimuli after the other and grasped each stimulus as described above. Then,
they verbally reported a perceived difference. Each participant was allowed to report a
difference in their own numerical scale, which would be normalized in the following data
analyses (see Data analysis for normalization details). Each main session began with
the instruction session. There was a maximum 60-s break between successive sessions.
Overall, a total of 40 pairs (10 pairs x 4 repetitions) were presented to participants during
the behavioral experiment.

The objective of the fMRI experiment was to identify brain regions related to tactile
hardness perception and neural activities representing the hardness intensity during active
exploration of presented objects. As in the behavioral experiment, stimuli with four
hardness levels were presented to participants. In addition, participants were given a
“sham” stimulus as a control task where they executed the same grasping and releasing
motions without holding any objects. During this control task, participants were asked to
curl their fingers as if they grasped a virtual object in their hands, following the visual
cue. Note that participants were instructed to avoid contacting their fingers with the palm
to minimize the potential effects of unnecessary tactile sensations.

During the scanning sessions, participants laid comfortably on the MRI bed, leaving
their right palm facing up. A total of two or three foam cushions were placed in the space
between the head and the head coil to fix the participant’s head, minimizing movement
effects. Participants were instructed to grasp the stimuli with constant force, and to focus
on stimuli’s hardness during the grasping action. The procedure of each trial is illustrated
in Fig. 2. An experimenter stood at the entrance of the magnet bore and presented
stimuli along the screen’s instruction. After a 15-s baseline period, participants performed
the grasping task by following the instructions shown on a visual display. Each trial
comprised five 3-s grasping periods, taking 15 s total (Fig. 2). In each grasping period, the
cue “Grab” was presented for 2 s. At the same time, the experimenter placed a stimulus on
participants’ hands. Each time participants viewed the ‘Grab’ instruction, they were
asked to grasp the stimulus for 1 s and released it afterwards. After 15 s, the stimulus was
collected by the experimenter and participants held a resting position for 9 s until the next
trial. The same stimulus was grasped repeatedly by participants in a single trial. A total
of five stimuli (four hardness levels plus one sham stimulus) were presented five times each
in a fully randomized order over 25 trials per session. Participants conducted two sessions
overall. Each session took 618 s on average.
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Figure 2 fMRI experiment process. The fMRI task consisted of 25 active grasping and resting trials in
an interleaved order; each grasping trial comprised five 3-s grasping periods where participants were
asked to grab each stimulus for 1 s and release it for the subsequent 2 s. In each grasping period, par-
ticipants were instructed to follow the visual cues of instructions presented on the screen.

Full-size K&l DOT: 10.7717/peer;.11760/fig-2

MRI Data acquisition and preprocessing

The blood oxygen-level-dependent (BOLD) signal of participants during the tactile
hardness perception task was measured using a 3-T fMRI scanner (Magnetom TrioTim,
Siemens Healthineers; Erlangen, Germany). Three-dimensional (3D) functional images
constructed from 48 slices covered the whole cerebrum (T2*-weighted gradient echo
planar imaging, covering the whole depth of brain area, repetition time [TR] = 3,000 ms,
echo time [TE] = 30 ms, flip angle = 90°, field of view [FOV] = 192 mm, slice thickness =
3 mm, and voxel size = 2.0 x 2.0 x 3.0 mm’). Anatomical high-resolution images were
also acquired (T1-weighted 3D magnetization prepared rapid gradient echo sequence,
TR = 2,300 ms, TE = 2.28 ms, flip angle = 8°, FOV = 256 mm, voxel size = 1.0 x 1.0 x
1.0 mm’). Functional images were preprocessed using SPM12 software (Wellcome
Department of Imaging Neuroscience; London, UK), following the sequence: slice-timing
correction, realignment, co-registration, segmentation, spatial normalization to the
Montreal Neurological Institute (MNI) template and smoothing with a 6-mm full-width-
half-maximum isotropic Gaussian kernel.

Data analysis

We excluded four participants from all data analyses because of excessive head movements
over the maximal translation (2, 2, and 3 mm in X, y, z, respectively). Consequently,
behavioral and functional data analyses were performed on 21 participants. To estimate
the perceptual magnitude of hardness intensity, participants’ responses were first
normalized into a scale from 0 to 10 using the unity-based normalization given by

,  x—min(x)

- x 10 1
max(x) — min(x) (1)
where x is the original value of participants’ responses and x’ is the normalized value
between 0 to 10. This normalization process was performed on each participant’s data.
Then, we examined a possible order effect of stimulus presentation within stimulus pairs
(see Behavioral experiment). Specifically, we used a paired t-test to compare the normalized
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responses between the trials where the same set of stimuli were presented in the opposite
order (e.g., [H28, H57] vs. [H57, H28]). In addition, we used a repeated-measures analysis of
variance (rmANOVA) to compare the normalized responses among trials involving
different levels of tactile hardness.

We performed event-related fMRI analyses of participants’ BOLD responses to tactile
hardness perception. Two separate design matrices were used for first-level general
linear model (GLM) analyses: one design matrix to find brain regions involved in tactile
hardness perception, and the other to find the brain regions that track hardness intensity.
In the first design matrix, all stimulus types (four hardness levels plus one sham) were
modeled as separate linear regressors. We specified tactile perception events as the time at
which participants grasped the stimuli with their hand. All events in each regressor were
convolved with the canonical hemodynamic response function. At first-level, contrast
images that reflected BOLD response differences between all actual versus sham tactile
perceptions were generated for each participant. The second-level model was constructed
as a one-sample t-test using the contrast images from the first-level. Where indicated,
tamily-wise error (FWE) was controlled to correct for multiple comparisons.

In the second design matrix, the subjective hardness intensity obtained from the
behavioral experiment was added as a parametric modulator to identify the brain
regions that track tactile hardness intensity. At first-level, contrast images that reflected
whole-brain responses positively and negatively correlated with hardness intensity
were generated for each participant. The same strategy as with the first design matrix
(contrast analysis described above) was followed for second-level analysis and multiple
comparisons correction. For both contrast and parametric modulation analyses, we
labeled statistically significant clusters using the automated anatomical labeling toolbox
(Tzourio-Mazoyer et al., 2002).

Furthermore, we calculated and depicted the percent signal change (PSC) within the
brain regions identified by parametric modulation analysis to better illustrate the region’s
responses tracking the stimuli hardness information. PSC was calculated as the BOLD
signal ratio in response to stimuli over that without stimulus. This analysis aimed to
supplement the finding of brain regions above by confirming the correlation between the
PSC in the identified regions and hardness intensity. We set the activated regions
determined by the parametric modulation analysis as regions of interest (ROIs) and
estimated the PSC of each single ROI in response to each hardness stimulus using the
Marsbar toolbox (Brett et al., 2016).

To examine relationships between physical intensities, perceptual responses, and
neural responses regarding tactile hardness, we further constructed the dissimilarity
matrices of each data type. The PSC in the ROIs above was used as representational neural
responses to tactile hardness. As the perceptual responses were normalized in a scale
between 0 and 10, neural and physical intensity data were similarly normalized between 0
and 10. A dissimilarity matrix of physical hardness was constructed using the normalized
differences between every pair of the four tactile stimuli, resulting in a 4 x 4 symmetric
matrix with diagonal entries equal to zero. We constructed the dissimilarity matrix of
perceptual responses in the following manner. First, participants’ perceptual responses
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to each stimulus were normalized within a scale from 0 to 10 using the unity-based
normalization given in Eq. (1). Second, the difference of the normalized perceptual
responses between every possible pair of stimuli was calculated. Third, the difference
values for each pair were averaged over all participants. Fourth, a dissimilarity matrix of
perceptual responses was constructed from each averaged difference. The dissimilarity
matrix of neural responses of each ROI was also constructed using the normalized
PSC difference values averaged across participants but resulting in a 4 x 4 symmetric
matrix.

A Mantel test, often used for analyzing functional connectivity in the brain (Glerean
et al., 2016), was employed to find statistically significant correlations (Pearson’s
correlation) between dissimilarity matrices (Mantel, 1967).

Lastly, we applied multidimensional scaling (MDS) to the dissimilarity matrices to find
low-dimensional representations of physical, perceptual, and neural responses. These
low-dimensional representations of hardness intensity were meant to visualize similarities
between the three different domains of tactile hardness: physical, perceptual, and neural
representation of object hardness.

RESULTS

Behavioral responses to tactile stimuli with different hardness
intensities

We first confirmed the lack of order effects in perceived difference between the stimuli
set. Thus, we did not further consider presentation order in subsequent analyses of
behavioral responses. It also led us to define the absolute perceptual differences between
a pair of stimuli as the perceived distance of tactile hardness. Then, we examined
differences in perceived distance among all possible pairs of tactile stimuli using
rmANOVA and observed a significant difference of mean perceived distance among
those pairs (F ((9,180)) = 144.62, p < 0.0001) (Fig. 3). A post-hoc Bonferroni test further
revealed significant differences in perceived distance between pairs with dissimilar
hardness differences (all p < 0.0001; Fig. 3) but no difference between pairs with similar
hardness differences. As an additional explorative analysis, we examined potential
gender differences in the perceived distance among all possible pairs of tactile stimuli
using two sample t-tests, but none of the pairs showed significant difference between
male and female participants (Table S1). These results show that participants could
accurately perceive objective differences in hardness between pairs of tactile stimuli.

Neural responses to tactile stimuli with different hardness intensities
We examined the BOLD signal evoked by tactile hardness by contrasting each hardness
intensity against the “Sham” using GLM analysis. However, we found no commonly
activated regions across the whole brain. To examine the brain regions that track the
physical properties (hardness intensity) of stimuli, we ran a whole-brain analysis using
a design matrix including physical hardness intensity as a parametric modulator. We found a
significant positive correlation between hardness intensity and neural responses in the
posterior insula in the right hemisphere (rpIns) (MNI space coordinates of x = 40, y = —26,
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Figure 3 Behavioral experiment results. Participants were able to perceive the objective hardness level
differences between the paired stimuli. Error bars indicate s.e.m. ***p < 0.001; n.s., not significant.

Full-size K&l DOT: 10.7717/peer;j.11760/fig-3

z = 18; FWE corrected p < 0.05, cluster size > 10, cluster defining threshold p < 0.001)
(Fig. 4A). A set of brain regions negatively tracked physical hardness intensity (Fig. 5A).
And we found a significant negative correlation in the right posterior lobe of the cerebellum
(rpCerebellum) (MNI space coordinates of x = 42, y = —74, z = —40; FWE corrected p < 0.05,
cluster size > 10, cluster defining threshold p < 0.001) (Fig. 5A).

Dissimilarity analysis

We constructed three dissimilarity matrices of physical hardness intensities, perceived
responses, and neural responses to hardness intensities (Fig. 6). For the neural dissimilarity
matrix, PSC differences between the rpIns and rpCerebellum were used as a neural
representation of tactile hardness.

MDS analysis of the dissimilarity matrices produced two-dimensional (2D)
representations of physical, neural, and perceptual hardness intensity (Fig. 7). This 2D
depiction clearly visualized the response clustering into four groups according to hardness
intensity across all three types of representations (physical, perceptual, and neural).
Moreover, it appeared that only one dimension (MDS1) was sufficient to effectively
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Figure 4 Neural responses in the posterior insula in the right hemisphere (rpIns) positively track
physical hardness intensity. (A) A network of brain regions including rpIns positively tracked per-
ceptual hardness intensity of stimuli (T activation map from parametric modulation, family-wise error
p <0.05; displayed at p < 0.001, cluster size > 10 for illustrative purposes). (B) For illustrative purposes, we
estimated percent signal change (PSC) in the rplns region of interest (ROI). PSC shows that the blood
oxygen-level dependent responses in the ROI positively tracked the physical hardness intensity of stimuli.
There were a set of brain regions that negatively tracked physical hardness intensity (Fig. 4A). We found a
significant negative correlation in the right posterior lobe of the cerebellum (rpCerebellum) (MNI space
coordinates of x = 42, y = 74, z = —40; FWE corrected p < 0.05, cluster size > 10, cluster defining
threshold p < 0.001) (Fig. 4A). Full-size k&l DOL: 10.7717/peer;.11760/fig-4

Right posterior lobe of Cerebellum
B (rpCerebellum)

0.14

Percent Signal Change

H28 H36 H45 H57
Stimulus

Figure 5 Neural responses in the right posterior lobe of the cerebellum (rpCerebellum) negatively
track physical hardness intensity. (A) rpCerebellum negatively tracked perceptual hardness intensity
of stimuli (T activation map from parametric modulation, family-wise error p < 0.05; displayed at
P <0.001, cluster size > 10 for illustrative purposes). (B) For illustrative purposes, we estimated percent
signal change (PSC) in the cerebellum region of interest (ROI). PSC shows that the blood oxygen-level
dependent responses in the ROI negatively tracked the physical hardness intensity of stimuli.

Full-size K&l DOI: 10.7717/peerj.11760/fig-5
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Figure 6 Dissimilarity matrix of the stimuli based on physical, perceptual hardness, and neural data.
Measurements of physical, perceptual, and neural differences between all possible pairs of four stimuli
(H28, H36, H45 and H57) produced three symmetric dissimilarity matrices (see text for difference
measures). The color bar illustrates differences in the normalized scale from 0 to 10.

Full-size &) DOI: 10.7717/peerj.11760/fig-6

[oc]

[¢)] [¢]

©

@ Perceptual
lPhysicaI
0.5 H36 H45 Neural
o H28 .0 H57
a o A B A A B
= H28 ) H36 H36 H45 H45 @® H57
05 H28 H57
-1
6 -4 2 0 2 4 6
MDS1

Figure 7 Multidimensional scaling results. The relative positions of the four different types of hardness
intensities across physical, perceptual, and neural properties are depicted in two-dimensional space.
Full-size K&l DOT: 10.7717/peerj.11760/fig-7

represent hardness intensity, not only for physical stimuli properties but also for neural
and perceptual responses.

DISCUSSION

The aim of the current study was to investigate neural responses to various levels of tactile
hardness during active object grasping. The behavioral results clearly demonstrated that
each stimulus could be distinguished by its physical hardness intensity. We found that
the neural responses in the rplns positively track the perceived tactile hardness intensity,
while those of the rpCerebellum negatively track hardness intensity. The low-dimensional
representations of physical hardness, perceptual responses, and neural responses
obtained by MDS analysis, commonly revealed a clear segregation of hardness intensity,
again supporting that the rpIns and rpCerebellum encode tactile hardness intensity
information. To the best of our knowledge, this is the first study to reveal the neural
correlates of hardness intensity perception during active tactile exploration in humans.
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Perceptual discrimination of tactile hardness

The behavioral results showed that participants could distinguish different levels of tactile
hardness when they grasped the presented stimuli. Self-reported perceptual differences
between stimuli well-reflected the relative physical difference of objects’ hardness. In our
data, stimulus presentation order did not affect the recognition of hardness differences.
This might be due to the fact that we only used four different types of stimuli (i.e., the
four stimuli resulted in six distinct pairs); participants might have easily learned the
minimum and maximum hardness at the beginning of each session which might helped
with accurate estimation. Nonetheless, we prepared stimuli with clearly separated hardness
for this study because we wanted to explore neural substrates of well explained tactile
perception.

Brain regions representing tactile hardness intensity

By comparing brain responses to stimuli against sham, we attempted to find brain regions
involved in hardness intensity perception. Because all stimuli had the same shape and
surface texture, we expected to identify the brain regions commonly involved in different
hardness intensity perception by contrasting each hardness intensity against the sham
trials. However, there was no such commonly responsive brain region, including the SI

or SII. A possibility is that the SI might have been involved in sham trials due to participants’
imaginary tactile perception. Previous rodent studies showed similar prominent activation
in both the MI and SI during motor control (Diamond et al., 2008; Matyas et al., 2010).
In our task, hand movements were dominant in all trials because participants perceived
hardness via active exploration, leading to SI activations in response to both sham and tactile
stimulations.

We found that neural responses in the rpIns increased as a function of perceived tactile
hardness. Conversely, neural activity in the rpCerebellum decreased with increased
perceived tactile hardness. The rpIns has been reported to be involved in tactile pressure
and proprioceptive perception. Previous studies reported bilateral posterior insula
activation during a tactile hardness perception task (Lederman et al., 2001) and the
involvement of the posterior insula in tactile and body displacement perception and bodily
self-consciousness (Richer et al., 1993; Blefari et al., 2017; Findlater et al., 2018), as well as
activation in response to tactile pressure stimulation (Chung et al., 2015). Based on
previous lesion studies, the posterior insula is known to be involved in self-awareness of
actions (Karnath ¢ Baier, 2010). Previous research backs up our finding that rpIns might
be engaged in the perception of hardness intensity during active grasping. Our results
provide additional evidence that the human posterior insula might play a role in the tactile
perception of hardness intensity. While we found activation only in the rpIns, a more
liberal statistical threshold (p < 0.001, uncorrected) revealed involvement of the bilateral
posterior insula. Future studies should examine the functional connectivity between the
bilateral posterior insula and other brain regions, such as the SI, to understand why rpIns
showed stronger responses than the contralateral hemisphere.

One of the most noticeable findings in the current study is that the cerebellum was
activated during active perception of tactile hardness. A number of human neuroimaging
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studies has shown that the cerebellum is functionally connected to the sensorimotor
network combining the sensorimotor cortex, premotor area, and supplementary motor
area. In addition, the cerebellum is known to participate in motor control, motor learning,
and motor planning (Habas et al., 2009; Krienen & Buckner, 2009; OReilly et al., 2010,
Zeeuw & Brinke, 2015; Gao et al., 2018). In particular, the rpCerebellum is known to be
engaged in self-produced tactile perception (Blakemore, Wolper ¢ Frith, 1999), which may
be necessary in to recognize hardness intensity. According to a recent study, functional
connectivity between the primary somatosensory cortex and the cerebellum was
strengthened when participants reported perceptual attenuations of self-generated touch
(Kilteni &> Ehrsson, 2020). These results suggest that the ipsilateral cerebellum has a crucial
role in predicting self-generated touch. Our results showed that cerebellar activity is
associated with perceived tactile hardness during active grasping, and are in line with the
aforementioned previous findings.

Relationship between neural responses, physical, and perceptual
tactile hardness

The Mantel test and MDS analysis were conducted to intuitively illustrate the relationship
among physical, perceptual, and neural representations of tactile hardness intensity.

The Mantel test results suggested similar perception of different levels of hardness intensity
to neural responses, which were marginally correlated with the physical hardness of
stimuli, suggesting that the brain tracks the subjective perception of objects’ hardness
rather than their physical hardness. The MDS analysis showed similar clustering of
physical, perceptual, and neural representations of each hardness level. This confirms that
neural responses in both posterior insula and cerebellar regions represented perceived
hardness.

Limitations

This study has a few limitations. First, we assumed that individuals show stable perceptual
responses. In the behavioral experiments, we could identify the relationship between the
physical and the perceived hardness for each participant. During the scanning phase,

we did not directly collect participants’ subjective responses because we intended for
participants to fully concentrate on the grasping motions. Under our experimental
environment, it was difficult to obtain a direct response from participants during MRI
scanning. During neural image acquisition, participants explored stimuli with their right
hand and held a squeeze ball for emergency with their left hand, which prohibited them
from making behavioral responses with button pressing. Alternatively, we attempted to
receive verbal responses directly during scanning, but the scanner noise was too loud.
As such, we decided to separate behavioral and neural imaging experiments while ensuring
that participants maintained the same active grasping across both experiments. Therefore,
the question whether the neural activations measured in the scanner would be the same as
those outside remains unanswered. Similarly, albeit very unlikely, it is still unclear whether
participants experienced the same hardness perception outside the scanner as inside.

To minimize this difference, we trained participants to grasp the stimuli with constant
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force before conducting the main experiments. Future studies could use MRI-compatible
electromyography (EMG) or force sensors that can measure individuals’ grasping force
during the scanning phase.

Second, our findings may be limited by the fact that only four hardness intensities were
used. We observed that neural responses in the cerebellum and posterior insula were
correlated with perceived hardness. However, due to the small number of stimulus types,
our data cannot distinguish subtle differences between models that assume linear versus
non-linear (e.g., logarithmic, quadratic) associations of neural and perceptual responses.

Third, there is a chance that the neural responses measured in this study might also
reflect the changing reaction force applied to the hand with hardness. To minimize this
confounding effect, we intended to ensure that participants grasped the stimuli with a
constant force. However, it is still impossible to determine whether participants exerted
exactly the same force during the experiment. In an effort to bypass this factor, we used
subjective ratings of hardness levels rather than physical hardness, so that the self-reported
rates should already take the participants’ own perception of exerted force into account.
Still, to further optimize the task design, future studies could use a visual feedback that
shows an EMG-based gage to inform participants of their exerted force in real-time.

In addition, in an experiment with real-time EMG, we could observe neural responses
during tactile information processing using EEG or MEG with finer time resolution
(Golnaz et al., 2020; Hagiwara et al., 2020), which would help confirm the relationship
between muscle strength and neural responses in real-time.

Fourth, our experimental design solely focused on active exploration of tactile stimuli.
Thus, potential individual differences in passive tactile perception may exist. Note that we
controlled for such a confounding factor by examining neural responses parametrically
modulated as a function of perceived stimulus hardness.

Fifth, and lastly, it is possible that the marginal association between neural activity and
physical hardness could be partially due to insufficient statistical power (the sample size in
this study was pre-determine based on that used in similar studies using functional
neuroimaging in tactile perception (Case et al., 2016)). Our task design and instruction do not
rule out the possibility that neural responses would encode physical hardness, but our results
suggest that the neural responses elicited in our active grasping task are more associated
with perceptual object discrimination rather than tracking of physical hardness per se.

Also, from our explorative analyses addressing potential gender differences,
inconsistent with a previous report (Abdouni et al., 2018), we did not find any differences
in either behavioral or neural results. Still, as this is an exploratory approach, the
interpretation of this result should be cautious. Such an inconsistency could be due to lack
of power, given our small sample size for each gender group, and thus, future studies would
be necessary to further examine the potential effects of gender differences in tactile

sensation.

CONCLUSIONS

Nevertheless, in the present study, we found several brain regions associated with hardness
intensity perception during active exploring. Neural responses in the cerebellum and
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posterior insula regions significantly correlated with physical hardness intensity and
behavioral intensity rating. Extension of the tactile dimensions (e.g., slipperiness) and
exploration of a broader psychophysical range in future studies may further our
understanding of human tactile information processing. Further, by using multivoxel
pattern analysis and functional connectivity analyses, we can construct more sophisticated
neural and behavioral models in tactile processing that may provide insights for
developing realistic haptic devices and artificial intelligence that simulates human’s
subjective tactile perception.
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