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Abstract
Additive manufacturing (AM) or three-dimensional printing (3DP) refers to producing objects from digital information layer
by layer. Despite recent advancements in AM, process planning in AM has not received much attention compared to
subtractive manufacturing. One of the critical process planning issues in AM is deciding part orientation. In this research,
the integrative framework of multicriteria decision making for part orientation analysis in AM is investigated. Initially,
quantitative data are assessed using the data envelopment analysis (DEA) technique without preferences from a decision
maker. In contrast, a decision maker’s preferences are qualitatively analysed using the analytic hierarchy process (AHP)
technique. Then, the proposed framework combining explicit data as in DEA, implicit preference as in AHP, and linear
normalization (LN) technique is used, which reflects both preference and objective data in supporting decision making for
3DP part orientation. Two particular AM technologies, namely Fused Deposition Modelling and Selective Laser Sintering, are
used as a case study to illustrate the proposed algorithm, which is further verified with experts to improve process planning
for AM.

Keywords: multicriteria decision making; data envelopment analysis (DEA); analytic hierarchy process; linear
normalization; orientation selection; additive manufacturing

List of Symbols

I : A set of input criteria for DEA
J : A set of output criteria for DEA
K : A set of alternatives called DMUs for DEA
xi, k : Input parameter for a particular DMU for DEA
yi, k : Output parameter for a particular DMU for DEA
Xi : Decision variables relative to the weight of input for DEA
Yj : Decision variables relative to the weight of output for

DEA

A : Decision matrix of pairwise comparison for AHP
ai, j : Comparison between two consecutive objects for AHP
p : The priority vector for AHP
λmax : The maximal Eigenvalue for AHP
C I : The consistency index for AHP
RI : The random index for AHP
C R : The consistency ratio for AHP
gi : The global priority for alternative i for AHP
li, j : The local priority of alternative i for criterion j for AHP
w j : The weight of the criterion j for AHP
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U : The ideal/utopia solution for LN
p : The anti-ideal/nadir solution for LN
ni, j : The normalized value of alternative i for criterion j for

LN

1. Introduction

Additive manufacturing (AM) or three-dimensional printing
(3DP) has gained popularity worldwide from using digital tech-
nology in various applications, thanks to its critical advantages
in design freedom and consolidating part (Sossou et al., 2018;
Jiang et al., 2020, 2021). It is estimated that worldwide revenues
from AM products grow about 17%, accounting for more than
$3 billion in 2017. In contrast, revenues from AM services also
grow approximately 24%, accounting for more than $4 billion in
2017 (Wohlers, 2018). Regardless, production and process plan-
ning for AM is challenged by different materials, technologies,
and printer sizes, which impact efficient and effective use of
AM (Han, 2013; Ha et al., 2016, 2018, 2020; Thompson et al., 2016;
Yao et al., 2017; Jiang et al., 2019a; Ransikarbum et al., 2019a, b,
2020; Ma, 2020; Ransikarbum & Khamhong, 2021; Zhang & Moon,
2021). Among many issues, part orientation is one of the critical
factors that affect production and process planning for AM.

Orientation selection of a part refers to the building direc-
tion for the part being fabricated by the AM printer. The opti-
mal part orientation is considered a critical issue of AM pro-
cesses as it can impact key characteristics in part production
(Nelson et al., 2014; Zhang et al., 2016a; Jiang et al., 2019b; Jiang
& Ma, 2020). As a selection of the part orientation affects mul-
tiple factors, the part orientation can be viewed as the multicri-
teria decision making (MCDM) problem. Standard MCDM meth-
ods include analytic hierarchy process (AHP), analytic network
process (ANP), data envelopment analysis (DEA), multi-objective
programming, and goal programming (e.g. Ransikarbum & Ma-
son, 2016a, b; Ransikarbum et al., 2017; Wattanasaeng & Ran-
sikarbum, 2019, 2021; Puchongkawarin & Ransikarbum, 2020). In
this research, a framework that combines explicit data as in DEA
and implicit preference as in AHP in the form of linear normal-
ization (LN) is developed to utilize preference and objective data
to tackle the drawbacks of using a particular method alone for
the orientation-selection problem. Then, the algorithm’s valid-
ity is verified with technical experts to improve process planning
in two particular AM technologies, fused deposition modelling
(FDM) and selective laser sintering (SLS).

The remaining sections of this paper are organized as fol-
lows. We overview the pertinent literature in Section 2. Then, our
proposed framework of the MCDM for the orientation-selection
problem in AM is presented in Section 3. Next, an experimental
design using our proposed framework and managerial insights
are elaborated in Sections 4 and 5, respectively. Finally, Section 6
presents our research conclusions and outlines future research
directions.

2. Literature Review

AM refers to a set of technologies used to produce end-use
parts directly from 3D computer-aided design (CAD) models
by additively building them in layers (Jiang et al., 2018; Jiang,
2020). According to the American Society for Testing and Ma-
terials (ASTM, 2012), AM technologies can be categorized into
seven main categories: (1) photopolymer vat, (2) material ex-
trusion, (3) powder bed fusion, (4) directed energy deposition,
(5) sheet lamination, (6) material jetting, and (7) binder jetting.
The survey from Wohlers (2018) suggested that FDM – material

extrusion category; stereolithography (SLA) – photopolymer vat
category; and SLS – powder bed fusion category are the top three
AM technologies based on the number of installed industrial
systems. Thus far, other terms commonly used for AM litera-
ture include direct digital manufacturing, solid freeform fabrica-
tion, rapid prototyping, rapid manufacturing, and 3DP. Regard-
less, several studies have been conducted to tackle various pro-
cess and production issues of AM (e.g. Gibson et al., 2014; Gardan,
2015). Wohlers (2018) also suggested that successful AM builds
depend on an effective support structure strategy, the orienta-
tion and location of the parts on the building platform, and the
number of parts that are produced at one time.

The decision for an orientation selection is an essential factor
of process planning in AM. Besides, this process is typically fol-
lowed by various critical steps, including slicing, support genera-
tion, toolpath definition, additive fabrication, and part cleaning.
A number of researchers have proposed diverse methodologies
to tackle the orientation problem for varied AM types (e.g. Byun
& Lee, 2006; Giannatsis & Dedoussis, 2007; Canellidis et al., 2009;
Zhang et al., 2016a, b, 2017, 2019; Ransikarbum & Kim, 2017a, b;
Di Angelo et al., 2020; Leirmo & Martinsen, 2020). Some promi-
nent studies highlighting existing orientation problems are re-
viewed next. Byun and Lee (2006) proposed the simple additive
weighting method to assess the orientation problem using var-
ied models with a hole feature. The authors evaluate surface
quality, build time, and part cost for FDM, SLS, SLA, and lami-
nated object manufacturing (LOM), respectively. Giannatsis and
Dedoussis (2007) proposed a software for build parameters selec-
tion in SLA using specific test parts of alarm clock and electrical
appliance in their study. Canellidis et al. (2009) proposed a deci-
sion support system automating the orientation selection task
based on three other criteria. Taufik and Jain (2013) reviewed the
role of build orientation in AM and find that the best part ori-
entation concerning different AM machine capabilities is not a
trivial task as satisfying one objective may adversely affect some
other objectives of interest.

Moreover, Lambert (2014) discussed tensile strength and
strain at break for both SLS and FDM. According to the author,
while FDM parts highly exhibit anisotropic mechanical proper-
ties, there is much less directional dependence in SLS parts. Nel-
son et al. (2014) studied the effect of scan direction and orienta-
tion on mechanical properties of SLS and find that the specimen
oriented perpendicularly to the x-axis has more excellent elon-
gation with trade-offs in tensile strength. Zhang and colleagues
(2016a, 2016b, and 2017) presented a method to obtain an op-
timal part for build orientation using AM features with associ-
ated AM production knowledge and MCDM. Ransikarbum and
Kim (2017a, b) proposed the orientation model for a specific part
produced from a particular AM technology. The authors suggest
that the MCDM tool applying to AM study should integrate dif-
ferent methods. Zhang et al. (2019) developed the nonsupervised
machine learning to analyse the orientation problem of complex
medical models. The authors evaluate surface roughness, sup-
port volume, and facet clusters for electron beam melting (EBM)
in their study. Di Angelo et al. (2020) proposed the multi-objective
optimization model to investigate the orientation problem for
FDM using varied case studies. In addition, Leirmo and Martin-
sen (2020) proposed the feature recognition method to assess
the impact of staircase effect to orientation problem from varied
parts for SLS. Regardless, the above studies typically use a single
and simple method to investigate a single or a few criteria of ori-
entation problem in AM without investigating the problem with
varied MCDM methods. Moreover, both quantitative and qual-
itative evaluation should be further explored to take decision
makers’ perspectives into account.
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Table 1: Summary of literature review in part orientation in AM.

Study Method AM type Criteria Case study

Byun and Lee (2006) Simple additive weighting FDM, SLS,
SLA, LOM

Surface quality, build time, part
cost

Varied models with a hole
feature

Giannatsis and Dedoussis
(2007)

MCDM-based decision
support tool

SLA Build time, surface roughness,
layering error

Specific models (alarm
clock, electrical appliance)

Canellidis et al. (2009) Genetic algorithm SLA Build time, surface roughness,
post-processing time

Specific models (pipe, ship,
aircraft)

Ingole et al. (2011) Cost analysis FDM Build cost Complex-shaped parts
Nelson et al. (2014) Design of experiment (DOE) SLS Mechanical properties (physical

density, tensile strength,
elongation)

General part (dogbone test
part)

Moroni et al. (2015) Mathematical analysis N/A Cylindrical feature of the assembly
part

Universal joint part

Zhang et al. (2016a) Surface shape feature
concept

FDM Sharp corners, cutting numbers of
fibers, Z-size-error, support
volume

Thin wall part model

Zhang et al. (2016b) Feature concept and
production knowledge

SLS, SLA Surface roughness, accuracy,
support volume, build height,
tensile strength, time, cost, and
favorableness

Varied models with a hole
feature

Zhang et al. (2017) Genetic algorithm and
feature concept

SLA Build time, build cost Multipart production

Ransikarbum and Kim
(2017a)

AHP FDM Build time, cost, Surface quality,
part accuracy, support volume,
mechanical property

The specific model with a
hole feature

Ransikarbum and Kim
(2017b)

DEA FDM Build time, cost, Surface quality,
part accuracy, support volume,
mechanical property

The specific model with a
hole feature

Ga et al. (2019) Computer-aided analysis N/A Support volume, surface quality,
time, cost

Industrial cases

Qin et al. (2019) Fuzzy MCDM SLA, SLS Surface roughness, time, cost,
support volume, favorableness

Specific model, complex
part

Zhang et al. (2019) Nonsupervised machine
learning

EBM Surface roughness, support
volume, facet clusters

Complex medical models

Di Angelo et al. (2020) Multi-objective
optimization

FDM Cost, surface quality Varied test cases

Leirmo and Martinsen
(2020)

Feature recognition SLS Staircase effect Varied test cases

This study Integrative MCDM (DEA,
AHP, LN)

FDM, SLS Part cost, time, surface quality, part
accuracy, support volume,
mechanical property

The specific model with a
hole feature

Specifically, MCDM methods have evolved to accommodate
various types of applications in the literature (e.g. Dong &
Cooper, 2016; Dweiri et al., 2016; Thanki et al., 2016; Chaiyaphan
& Ransikarbum, 2020; Ransikarbum & Leksomboon, 2021). Re-
searchers suggest that the trend for MCDM method use is to
combine two or more methods to make up for shortcomings in
any particular method (e.g. Vaidya & Kumar, 2006; Kokangül et
al., 2017). Liu et al. (2013) surveyed the DEA literature using a
citation-based approach. According to the authors, the DEA lit-
erature’s size will grow at least double the size of the existing
literature. Vaidya and Kumar (2006) reviewed the applications
using the AHP technique in different fields. The authors point
out that future applications of AHP include being widely used
for decision making and addressing more complex issues based
on an integrated application of AHP and other techniques. Al-
though applications in MCDM have been increasingly used, the
orientation selection in AM considering a framework incorporat-
ing different MCDM approaches is scarce. We highlight existing
literature in Table 1 and discuss our proposed study as follows:

1. Whereas MCDM tools are found in a wide range of applica-
tions in the literature, studies focusing on advanced manu-
facturing such as the AM are still scarce.

2. With regard to AM, a few studies use a particular AM technol-
ogy in their applications. Thus, a framework encompassing
standard AM technologies, such as FDM and SLS, is used in
this study to enhance rationality and compatibility.

3. Existing studies typically use either AHP or DEA methods
alone, with some limitations. Whereas AHP reflects deci-
sion maker’s preferences without explicit data usage, DEA
uses only objective data without considering its preferences.
Thus, a framework that combines explicit data as in DEA and
implicit preference as in AHP in the form of the LN technique
to utilize both preference and objective data is proposed in
this work.

4. Our study clearly emphasizes the particular problem of ori-
entation selection for emerging AM. Despite some existing
studies, we illustrate a comparative analysis of the orienta-
tion problem.
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3. Definition of DEA, AHP, and LN
3.1. DEA methodology

DEA is a multifactor productivity analysis model that compares
each variable with the best-performing one. Variables in DEA
analysis are often referred to as decision-maker units (DMUs), in
which the main aim is to provide benchmarking guidelines for
inefficient DMUs. Advantages of DEA include the capability to
handle multiple inputs and outputs, where the sources of ineffi-
ciency can be analysed and quantified for every evaluated unit.
Also, DEA allows intercriteria comparison with actual units of
criteria (Liu et al., 2013). Following the mathematical notation of
the output-oriented, primal CCR model suggested by Charnes et
al. (1981), the relative efficiency of a particular DMU can be ob-
tained by solving the model M1 (equations 1–4), where the ob-
jective function is to maximize the ratio of the weighted sum of
the outputs to the weighted sum of the inputs. Next, given the
non-linear form, the M1 model can be converted into the linear
programming problem as shown in M2 (equations 5–9).

DEA model (M1):

Maximize Efficiency

∑
j∈J

yj,k0 Vj

∑
i∈I

xi,k0 Ui
(1)

Subject to :

∑
j∈J

yj,kVj

∑
i∈I

xi,kUi
≤ 1; ∀k ∈ K (2)

Ui ≥ 0; ∀i ∈ I (3)

Vj ≥ 0; ∀i ∈ I (4)

DEA linear programming model (M2):

Maximize Efficiency
∑
j∈J

yj,k0 Vj (5)

Subject to :
∑
i∈I

xi,k0 Ui = 1 (6)

∑
j∈J

yj,kVj −
∑
i∈I

xi,kUi ≤ 0; ∀k ∈ K (7)

Ui ≥ 0; ∀i ∈ I (8)

Vj ≥ 0; ∀i ∈ I (9)

A particular DMU will be considered efficient if it obtains
a score of one, whereas scores that are lesser than one imply
relative inefficiency. Moreover, more than one alternative may
be found to be efficient, which can be served as benchmarking
guidelines for inefficient DMUs to improve decisions.

3.2. AHP methodology

AHP is essentially based on three critical operations: hierarchy
construction, priority analysis, and consistency verification. The
logical hierarchy is constructed such that a decision maker or a
group of decision makers can systematically assess alternatives’
priority by making pairwise comparisons among criteria and
their respective alternatives concerning each criterion leading
to synchronization of global weight. AHP allows the assessment
of judgment consistency, which is the main distinctive contri-
bution of the AHP when contrasted to other techniques.

Initially, after the goal is identified, the hierarchy structure
can be constructed for the top (i.e. goal or objective), intermedi-
ate (i.e. criteria and sub-criteria), and bottom (i.e. alternatives)
levels. All of the pairwise comparison matrices are then con-
structed and normalized where n is the number of evaluated cri-

teria. The comparison between two elements using AHP can be
made in different ways, where the relative importance scale (1–9
scales) between two alternatives is widely used (Saaty & Sagir,
2009). In this study, the 1–9 fundamental scale is used, which
can be translated as an equal preference or 1, moderately pre-
ferred or 3, strongly preferred or 5, very strongly preferred or 7,
and extreme preference or 9, respectively, with 2, 4, 6, and 8 as
intermediate values. These comparisons can be recorded in a
positive reciprocal matrix as shown in equation (10), such that if
the judgment value is on the left-hand side of diagonal elements
of 1, we put the actual judgment value; otherwise, we put the
reciprocal value if the judgment value is on the right-hand side
of 1. In making judgments, the DM can incorporate experience
and knowledge (Bayazit & Karpak, 2007). In particular, there are
[n × (n − 1)]/2 judgments required to develop the matrix. Then,
the comparison matrix can be normalized by dividing each value
by the total value in each column.

A =

⎡
⎢⎢⎢⎣

1 a12 ... a1n

a21 1 ... a2n

... aji = 1/
ai j

1 ...

an1 ... ... 1

⎤
⎥⎥⎥⎦ (10)

Next, the priority vector (normalized principal Eigenvector)
is calculated, and the maximum Eigenvalue (λmax) is obtained.
The Eigenvector shows the relative weights between each crite-
rion obtained by computing the arithmetic average of all criteria,
where the sum of all values in the vector is one. The meaning of
each value determines the weight of that criterion relative to the
total result of the goal. Mathematically, equation (11) follows.

A · p = λmax · p (11)

Then, it is important to capture whether a DM is consistent
in the choices that are provided. Thus, the consistency check
is next performed by calculating the consistency index (CI), the
random index (RI), and the consistency ratio (CR) for each matrix
(equations 12 and 13). The RI is based on the average CI of 500
randomly filled matrices with the following (n, RI) pairs: (1, 0.00),
(2, 0.00), (3, 0.58), (4, 0.90), (5, 1.12), (6, 1.24), (7, 1.32), (8, 1.41), (9,
1.45), and (10, 1.49). Typically, the CR value will be considered to
have an acceptable consistency if the resulting ratio of CR is less
than 10%. Finally, a global ranking of decision alternatives can
be analysed. The traditional approach called distributive mode
is used in this study (equation 14), which adopts an additive ag-
gregation with normalization of the sum of the local priorities
to unity.

C I = λmax − n
n − 1

(12)

C R = C I
RI

(13)

pi =
∑

j

w j li j (14)

3.3. LN methodology

In a particular decision-making environment, there may be
some limited n alternatives of interest under different, conflict-
ing p criteria, in which a decision maker is interested in finding
the best alternative among all. This particular problem falls un-
der the so-called category of multicriteria selection problem, in
which the decision matrix can be formulated as shown in equa-
tion (15). The matrix typically contains a number of alternative
(Ai ) rows and criterion (C j ) columns. Besides, each cell of the ma-
trix represents data of each alternative for each criterion. All the
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Figure 1: The proposed three-phase MCDA framework.

criteria of interest may certainly have different units with var-
ied magnitude. Thus, it becomes a common problem in decision
making as a relative rating of alternatives may change merely
because the units of measurement differ. Thus, criteria normal-
ization is typically needed for the MCSP problem to allow inter-
criterion comparison.

C1 C2 C3 C p

Decision Matrix =
A1

A2

A3

An

⎡
⎢⎢⎢⎣

a11 a12 a13 a1p

a21 a22 a23 a2p

a31 a31 a33 a3p

an1 an2 an3 anp

⎤
⎥⎥⎥⎦

(15)

We illustrate one normalization technique called LN as
shown in equations (16) and (17) for a benefit criterion (i.e. a
decision maker prefers more of it or more is better) and cost
criterion (i.e. a decision maker prefers less of it or less is bet-
ter), respectively. This technique can convert data for all alter-
natives concerning each criterion to be in a range between 0
and 1. This normalization technique employs the ideal/utopia
(I) and anti-ideal/nadir (AI) solutions, where the I and AI solu-
tions are the best and worst possible alternatives from consid-
ering each criterion j, respectively. Whereas I j represents the
ideal alternative based on max value for benefit criterion and
min value for cost criterion, AI j implies the anti-ideal solu-
tion based on min value for benefit criterion and max value for
cost criterion. We note that all the normalized values (ni j ) af-
ter performing the LN technique will be transformed to benefit
criteria.

ni j = ai j − AI j

I j − AI j
; Benefit Criterion (16)

ni j = AI j − ai j

AI j − I j
; Cost Criterion (17)

4. MCDM Framework for
Orientation-Selection Problem

To enhance the reliability of the decision-making process,
we develop a framework incorporating multiple multicriteria
decision-making methods. As shown in Fig. 1, the proposed pro-
cedure is divided into three main phases as follows.

Phase 1: Selecting evaluation alternatives and criteria. A
problem of interest from diverse decision makers may cover dif-
ferent variables in terms of alternatives and criterion list. Thus,

numerous groups of data can create various kinds of rankings.
We note that a ranking is a ranked list resulting from comparing
objects using specific evaluation methods with one particular
criterion or with multiple criteria. From the DEA perspective, the
criteria may be viewed as the input and output criteria, whereas
the overall efficiency score can be treated as the outcome of the
measurement. Regardless, there may be the case that more than
one alternative is efficient among the peers. Besides, DEA does
not incorporate the viewpoint or experience of decision makers
for the preferred criteria in the ranking.

Phase 2: Clustering DMUs for DEA analysis. DEA is a nonpara-
metric method that can be used not only to measure the relative
efficiency but also to designate a reference target for an ineffi-
cient DMU. Thus, DEA is a type of clustering technique that sepa-
rates DMUs into two categories of being efficient and inefficient.
Also, as the DEA technique shows relative efficiency (not abso-
lute efficiency) among peers of evaluation, data in an experi-
ment of interest may be organized into subgroups, such that DEA
analysis is done for each subgroup rather than the entire group
for meaningful discussion. Next, an evaluation of the criterion
weight can be done using AHP. Although the DEA technique can
be used to assess the efficiency of a particular DMU, this method
alone does not incorporate the viewpoint or experience of de-
cision makers for the preferred criteria in the ranking. Thus,
the AHP technique can be used to secure criterion weight based
on preference and experience of the decision maker in making
criterion judgment. However, unlike using judgment for crite-
rion evaluation, using AHP to rank all alternatives will transform
quantitative data for all alternatives concerning each criterion
into a judgment scale during pairwise comparisons and may not
reflect actual data collected.

Phase 3: Scaling measurement units using LN. The last phase
is to normalize actual data collected from an experiment to en-
sure that the relative rating of alternatives will not be changed
merely because of different measurement units. We use LN in
this study and note that there are some other normalization
techniques as well. This LN is used to combine explicit data as in
DEA and implicit preference as in AHP to utilize both preference
and objective data in supporting decision making under various
AM environments. Thus, by combining the criterion weight ob-
tained from the AHP in the previous phase with the normalized
data in this phase, the list of alternatives can be ranked and in-
terpreted. Also, the ranked list reflects the viewpoint and judg-
ment of a decision maker through the criterion weight that likely
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Figure 2: Orientation alternatives for the case study.

differs among decision makers involved in a decision-making
process.

4.1. Experimental setup

In this section, we initially conduct an experimental design to
illustrate the use of a particular DEA and AHP technique individ-
ually using a test part with a hole feature adapted from Cheng et
al. (1995); that is, the test part model with the size of 70 × 25 × 30
mm3 is evaluated based on the concept of convex envelope com-
prising of six alternatives for build directions (Fig. 2). We note
that orientation alternatives 2 and 4 are further differentiated
in this study, such that alternative 2 is oriented with sharp an-
gle between the printing platform and part, whereas alternative
4 is perpendicularly oriented between the printing platform and
part. Given a list of related criteria affecting the part orienta-
tion (e.g. Ga et al., 2019; Di Angelo et al., 2020), six evaluation
criteria are chosen to illustrate the proposed method, which is
build time (BT), build cost (BC), surface quality (SQ), part accu-
racy (PA), mechanical properties (MP), and support volume (SV)
for two different AM technologies (i.e. FDM and SLS). Concern-

ing the material and printer specification, PLA material and For-
mer’s Farm are used for the FDM. In contrast, Duraform PA mate-
rial and sPro 60 from 3D Systems are used for the SLS. Figure 3a
and b illustrate the part component fabricated from both FDM
and SLS printers, respectively.

We briefly discuss the criteria in this experiment next. Build-
time criterion refers to the time spent on layer scanning depen-
dent on the number of slices. As orientation of the part will affect
a part’s height, it follows that different orientations greatly im-
pact the build time. Build cost refers to the resources consumed
during the manufacturing of a part, which usually contains di-
rect and indirect costs. As the indirect cost can be estimated
based on the build time, orientation of a part will have a sub-
stantial effect on the part cost. Concerning the surface-quality
criterion, parts being typically parallel or perpendicular to the
build orientation will tend to have a better surface roughness
or finish than those whose face has an angle to the build direc-
tion. In contrast, declining faces resulting from an orientation
will be affected by the stair-step effect. Next, the part-accuracy
criterion refers to the difference between the produced part and
the designed model. Part orientation can affect both shrinkage
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Figure 3: Printed components from (a) FDM and (b) SLS printer.

and distortion, which are the main factors in AM resulting in
this difference. Besides, it is well known that the properties of
a part produced by AM are anisotropic. Thus, orientation direc-
tion affects various mechanical properties. Last but not least, the
support-volume criterion depends on the support structure de-
pendent on AM technology. For example, whereas support struc-
ture is needed in FDM for overhanging, it is not required in SLS,
as un-sintered materials act as a support.

To evaluate each criterion for printed part orientations, a
questionnaire filled out by technical experts, part testing, and
MagicsTM software developed by Materialise (2016) are used to
obtain the necessary information to aid a decision maker to eval-
uate each orientation alternative. Data related to the build time,
build cost, and support volume are estimated from MagicsTM.
In contrast, surface quality, part accuracy, and mechanical prop-
erties are combined qualitative and quantitative data obtained
from part test and expert opinions. Given varied support struc-
tures from each orientation, data related to the build cost and
build time are computed to account for this aspect. Also, part
accuracy in terms of the root mean square (RMS) error is ob-
tained from the 3D scanner using Solutionix REXCAN 4 with an
accuracy of 10 micrometers (+/− 0.01 millimeter). In addition,
surface quality in terms of the surface roughness data (Ra) is ob-
tained from measuring the largest surface area of each part on
the Mitutoyo FORMTRACER machine with an accuracy of 1.5 mi-
crometers (+/− 0.0015 millimeter). Figure 4 illustrates the test
during the designed experiment to obtain data for surface qual-
ity (Fig. 4a and b) and part accuracy (Fig. 4c and d), respectively.
In particular, we illustrate the analysed data for part accuracy
using a 3D scanner for FDM and SLS as shown in Fig. 5a and b, in
which the shrinkage is found for SLS affecting the final dimen-
sional accuracy.

The summary of data is shown in Table 2. Data from different
AM technologies and altered orientation alternatives are con-
flicting with each other. For example, while the build time and
the build cost for different alternatives in FDM are found to be in
a similar range, SLS shows to have varied build time and build

cost. This is due to the difference between the energy source and
material between them. Besides, although the support material
is not required in SLS, it is typically needed in FDM.

The mechanical properties are also clearly rated differently
between SLS and FDM. The total height of the oriented part tech-
nically affects the anisotropic property of a part; that is, there
exists a higher probability of inhomogeneous density affected
by gravity in a taller part. The part produced in the Z-direction
on FDM typically has the lowest tensile strength when compar-
ing to X- and Y-directions. Thus, orientation 4 containing the
least height on the Z-direction is rated with a higher score. In
contrast, orientation 1 has the least bottom area for SLS, which
helps minimize thermal contraction by layers during the print-
ing process and is rated with a higher score. Besides, the surface
roughness data of orientations 3 and 6 obtained from the exper-
iment for both SLS and FDM are higher (worst) than the others.
However, while the value of orientation 4 in FDM is found to be
the lowest (i.e. the best surface quality), orientation 5 in SLS is
found to be the best one. On the other hand, while the RMS val-
ues representing the part accuracy of orientations 4 and 5 for
FDM are lower than the others (i.e. good part accuracy), orienta-
tions 1 and 4 for SLS exhibit good part accuracy with low RMS
values. Also, all part orientation alternatives from SLS are found
to have shrinkage.

4.2. DEA analysis and discussion

We now illustrate the DEA analysis to obtain relative efficiency
of each part orientation alternative, given multiple input and
output. Given six conflicting criteria, build time and build cost
are chosen in this study as input criteria that reflect limited re-
sources of the process planner in AM. In contrast, other criteria
of interest are selected as output criteria to reveal desired per-
formance measures. To illustrate how DMUs are clustered, we
create two subgroups based on AM technology. The relative ef-
ficiency scores for all alternatives are reported in Table 3. The
orientation alternative 4 of FDM is found to be efficient, whereas
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Figure 4: Test procedure to obtain surface roughness and part accuracy.

Figure 5: Test for data accuracy for (a) FDM and (b) SLS printer.

alternatives 1 and 4 for SLS are found to be efficient. It is caution-
ary noted that efficiency obtained from DEA is relative among
peers rather than absolute. Thus, how data are set up for clus-
tering, as well as how criteria are chosen for input/output set,
will also impact relative efficiency.

4.3. AHP analysis and discussion

We next illustrate the AHP approach to obtain a ranking list for
orientation alternatives. Rather than using the nonparametric
DEA method without decision maker’s involvement, the pair-
wise comparison-based AHP approach is introduced to incorpo-
rate the decision maker’s preference and prior knowledge into a

ranking list. In particular, AHP’s criterion weight is initially ob-
tained to reflect requirements for two decision maker’s types
(i.e. a decision maker prioritizing BC first called economic de-
cision maker and a decision maker prioritizing MP first called
performance-first decision maker). The economical type illus-
trates a user who desires to pay less for a printed part regard-
less of other factors. On the other hand, the performance type
is willing to pay more as long as the printed part has a high per-
formance and good mechanical properties. Given that there are
two decision-maker types, two comparison matrices, each with
the size of 6 × 6 based on six criteria, are needed for the crite-
rion level. Following equations (10)–(13), the pairwise compari-
son matrix for the criteria filled by the economic decision maker
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Table 2: Summary of data in an experimental design.

FDM Alt. 1 Alt. 2 Alt. 3 Alt. 4 Alt. 5 Alt. 6

BT (hrs.) 4.5–5.0 5.0–5.5 4.5–5.0 4.0–4.5 4.5–5.0 4.5–5.0
BC ($) $12 $15 $13 $12 $13 $13

SQ (Ra) Ra 5.58 Ra 5.45 Ra 13.06 Ra 2.75 Ra 9.98 Ra 11.22
PA (RMS in mm.) 0.128 0.127 0.146 0.109 0.103 0.141
MP (good 5 bad 1) Score 2 Score 3 Score 1 Score 5 Score 4 Score 1

SV (g) 3 1 5 1 3 4

SLS Alt. 1 Alt. 2 Alt. 3 Alt. 4 Alt. 5 Alt. 6

BT (hrs.) 4.0–4.5 5.0–5.5 6.0–6.5 3.5–4.0 4.0–4.5 7.5–8.0
BC ($) $70–80 $75–85 $80–90 $50–60 $70–80 $90–100

SQ (Ra) Ra 17.54 Ra 25.67 Ra 36.68 Ra 31.49 Ra 11.72 Ra 35.63
PA (RMS in mm.) 0.211 0.283 0.271 0.232 0.244 0.249
MP (good 5 bad 1) Score 5 Score 3 Score 1 Score 4 Score 2 Score 1

SV (g) No need No need No need No need No need No need

Note: Ra denotes the profile roughness parameter; RMS denotes error between CAD file and part.

Table 3: Relative efficiency score from DEA analysis.

AM Orientation Relative efficiency AM Orientation Relative efficiency

FDM Alternative 1 (DMU 1) 0.5 SLS Alternative 1 (DMU 1) 1.0
Alternative 2 (DMU 2) 0.4 Alternative 2 (DMU 2) 0.5
Alternative 3 (DMU 3) 0.2 Alternative 3 (DMU 3) 0.2
Alternative 4 (DMU 4) 1.0 Alternative 4 (DMU 4) 1.0
Alternative 5 (DMU 5) 0.7 Alternative 5 (DMU 5) 0.4
Alternative 6 (DMU 6) 0.2 Alternative 6 (DMU 6) 0.2

is illustrated in Table 4. The pairwise-comparison matrix is then
normalized, the Eigenvector is calculated, and the CI and CR are
calculated. Next, λmax= 6.44 is computed, and the CI can be cal-
culated, such that CI = (6.44–6)/(6–1) = 0.09. After the RI = 1.24
is chosen, the CR can be calculated as CR = 0.09/1.24 = 0.07.
Since the CR’s value is less than 10% (i.e. 0.1), the judgments
are found to be acceptably consistent. We note that a similar
pairwise-comparison matrix for the performance-first decision
maker can be similarly computed.

Then, for a particular AM process, six comparison matrices,
each with the size of 6 × 6 based on six alternatives required
for each criterion, are needed for the level of the alternative. Ta-
ble 5 shows the pairwise comparison for all the alternatives con-
cerning each criterion in the SLS process. The pairwise compar-
ison matrices for the FDM process can be similarly performed.
Finally, after obtaining the Eigenvectors of criteria and all al-
ternatives for each criterion, we can develop an overall prior-
ity ranking as shown in Fig. 6. In particular, the decision maker
with economic type ranks orientation alternatives 4, 5, 1, 2, 3,
and 6 for SLS, indicating that orientation 4 is the best orienta-
tion for him or her. When the FDM is ranked, the ranked list is
orientation 4, 1, 5, 3, 2, and 6, showing that alternative 4 is the
most suitable. Next, when the performance-first decision maker
ranks SLS, the ranked list for all orientation alternatives is 1, 4,
5, 2, 3, and 6, whereas the ranked list for FDM is 4, 5, 1, 2, 3,
and 6.

Although the results are found to be consistent for both SLS
and FDM, some insights are next discussed. The DEA approach
shows that DMU 4 from FDM is the only efficient one, whereas
DMUs 1 and 4 from SLS are efficient. DEA analysis does not take
any preferences or knowledge of a decision maker into account.
On the other hand, even though the AHP-based ranking also

consistently shows that alternative 4 is found to be the best one
for FDM regardless of decision-maker types, the best ranking for
SLS is affected by decision-maker types, such that the econom-
ical type will prefer alternative 4 and the performance-first type
will choose alternative 1. Next, considering the worst relative ef-
ficiency, DMUs 3 and 6’s efficiency scores are found to be equally
the lowest for both SLS and FDM. However, the AHP-based analy-
sis shows that although alternatives 3 and 6 are the worst in SLS
ranking, alternative 3 is preferred to alternative 6, given a deci-
sion maker’s judgment. Finally, the AHP-based ranking for FDM
shows that alternative 6 is the worst one regardless of decision-
maker types. However, the economical type ranks alternative 2
as the second worst, but the performance-first type ranks alter-
native 3 as the second worst.

It is clear that DEA does not involve decision makers during a
decision-making process and ultimately convert collected input
and output data into justified efficient and inefficient clusters.
In contrast, even if the AHP takes knowledge from a decision
maker, there may be some inconsistencies in making judgment,
especially for comparing alternatives for each criterion. This is
the case as AHP uses the complete decision maker’s judgments
and opinions based on the collected data. Thus, we next empha-
size the use of a normalization technique called LN combined
with the AHP-based criterion weight, which utilizes both actual
collected data as in DEA and decision maker’s judgments on cri-
teria as in AHP.

4.4. LN analysis and discussion

We next illustrate the LN technique to scale different unit mea-
surements to a range between 0 and 1 to allow intercriteria com-
parison. Following equations (15)–(17), the ideal and anti-ideal
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Table 4: Pairwise comparison and normalized matrix (economic decision maker).

Criteria BT BC SQ PA MP SV

BT 1 1/3 3 3 4 2
BC 3 1 5 6 6 5
SQ 1/3 1/5 1 2 3 2
PA 1/3 1/6 1/2 1 3 2
MP 1/4 1/6 1/3 1/3 1 1/3
SV 1/2 1/5 1/2 1/2 3 1

(sum) 5.42 2.07 10.33 12.83 20.00 12.33

Eigenvector

BT 0.19 0.16 0.29 0.23 0.20 0.16 0.21
BC 0.55 0.48 0.48 0.47 0.30 0.41 0.45
SQ 0.06 0.10 0.10 0.16 0.15 0.16 0.12
PA 0.06 0.08 0.05 0.08 0.15 0.16 0.10
MP 0.05 0.08 0.03 0.03 0.05 0.03 0.04
SV 0.09 0.10 0.05 0.04 0.15 0.08 0.09

(sum) 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Table 5: Pairwise comparison matrices of all alternatives for SLS (economical DM).

BT O1 O2 O3 O4 O5 O6 PA O1 O2 O3 O4 O5 O6

O1 1 2 4 1/3 1 8 0.19 O1 1 7 6 3 4 4 0.42
O2 1/2 1 3 1/5 1/5 6 0.10 O2 1/7 1 1/3 1/6 1/4 1

4 0.04
O3 1/4 1/3 1 1/7 1/6 4 0.06 O3 1/6 3 1 1/5 1/4 1

2 0.06
O4 3 5 7 1 2 7 0.37 O4 1/3 6 5 1 2 3 0.23
O5 1 5 6 1/2 1 7 0.25 O5 1/4 4 4 1/2 1 3 0.16
O6 1/8 1/6 1/4 1/7 1/7 1 0.03 O6 1/4 4 2 1/3 1/3 1 0.09

BC O1 O2 O3 O4 O5 O6 MP O1 O2 O3 O4 O5 O6

O1 1 2 4 1/4 1 7 0.17 O1 1 5 8 2 6 8 0.45
O2 1/2 1 5 1/5 1/3 5 0.12 O2 1/5 1 5 1/2 3 3 0.15
O3 1/4 1/5 1 1/7 1/5 2 0.05 O3 1/8 1/5 1 1/6 1/2 1 0.04
O4 4 5 7 1 4 8 0.45 O4 1/2 2 6 1 3 6 0.24
O5 1 3 5 1/4 1 5 0.18 O5 1/6 1/3 2 1/3 1 2 0.07
O6 1/7 1/5 1/2 1/8 1/5 1 0.03 O6 1/8 1/3 1 1/6 1/2 1 0.04

SQ O1 O2 O3 O4 O5 O6 SV O1 O2 O3 O4 O5 O6

O1 1 2 7 3 1/3 6 0.22 O1 1 1 1 1 1 2 0.19
O2 1/2 1 4 4 1/5 4 0.15 O2 1 1 1 1 1 1 0.17
O3 1/7 1/4 1 1/4 1/8 1/2 0.03 O3 1 1 1 1 1 1 0.17
O4 1/3 1/4 4 1 1/5 4 0.09 O4 1 1 1 1 1 1 0.17
O5 3 5 8 5 1 8 0.45 O5 1 1 1 1 1 2 0.19
O6 1/6 1/4 2 1/4 1/8 1 0.04 O6 1

2 1 1 1 1
2 1 0.13

values are initially obtained. We note that MP is classified as a
benefit criterion (i.e. the max value is better), whereas other cri-
teria are classified as cost criterion (i.e. min value is better) in
this study. Next, the normalized values for all alternatives con-
cerning each criterion are computed as shown in Table 6. Con-
sidering FDM, for instance, the ideal value (the minimum value)
of all alternatives concerning the SQ criterion is 2.75, whereas
the anti-ideal value (the maximum value) is 13.06. Thus, equa-
tion (17) is applied such that the normalized value for alternative
1 concerning the SQ criterion is (13.06–5.58)/(13.06–2.75) = 0.73.
On the other hand, the ideal value (the maximum value) of all al-
ternatives for the MP criterion is 5, whereas the anti-ideal value

(the minimum value) is 1. Thus, equation (16) is used and the
normalized value for alternative 1 is (2–1)/(5–1) = 0.25.

Then, the ranked list of all alternatives is obtained using AHP
analysis for criterion weight to incorporate decision maker’s
preferences and judgments as shown in Table 7. Initially, we
illustrate equal weight for all criteria and compute the overall
score for both FDM and SLS. For example, the score 0.57 for al-
ternative 1 of FDM can be computed as the sum of the product
between the normalized values of alternative 1 for all the criteria
and the criterion weight; that is, 0.57 = (0.50∗1/6) + (1.00∗1/6) +
(0.73∗1/6) + (0.42∗1/6) + (0.25∗1/6) + (0.5∗1/6). Thus, based on the
score of all alternatives, the ranked list considering equal weight
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Figure 6: AHP-based ranking representation for FDM and SLS technology.

Table 6: LN matrix using ideal and anti-ideal values.

AM Alt. BT BC SQ PA MP SV
(Min) (Min) (Min) (Min) (Max) (Min)

Ideal 4 12 2.75 0.103 5 1
Anti-Ideal 5 15 13.06 0.146 1 5

FDM Alt. 1 0.50 1.00 0.73 0.42 0.25 0.50
Alt. 2 0.00 0.00 0.74 0.44 0.50 1.00
Alt. 3 0.50 0.67 0.00 0.00 0.00 0.00
Alt. 4 1.00 1.00 1.00 0.86 1.00 1.00
Alt. 5 0.50 0.67 0.30 1.00 0.75 0.50
Alt. 6 0.50 0.67 0.18 0.12 0.00 0.25

Ideal 3.5 60 11.72 0.211 5 0
Anti-Ideal 7.5 100 36.68 0.283 1 0

SLS Alt. 1 0.88 0.50 0.77 1.00 1.00 1.00
Alt. 2 0.63 0.38 0.44 0.00 0.50 1.00
Alt. 3 0.38 0.25 0.00 0.17 0.00 1.00
Alt. 4 1.00 1.00 0.21 0.71 0.75 1.00
Alt. 5 0.88 0.50 1.00 0.54 0.25 1.00
Alt. 6 0.00 0.00 0.04 0.47 0.00 1.00

for FDM is alternatives 4, 5, 1, 2, 6, and 3, whereas the ranked list
for SLS is alternatives 1, 4, 5, 2, 3, and 6. It is worth observing that
the ranked lists for FDM and SLS considering equal weight are
consistent with the relative efficiency scores found from using
DEA analysis. Recall that DEA analysis does not take any prefer-
ences among criteria from a decision maker. For example, when
rearranging DEA’s relative efficiency scores of DMUs 1–6 for FDM
from the highest to the lowest, it follows that DMU 4 (efficiency
1.0) > DMU 5 (efficiency 0.7) > DMU 2 (efficiency 0.5) > DMU 1
(efficiency 0.4) > DMUs 3 and 6 (efficiency 0.2). In addition, rear-
ranging DEA’s relative efficiency scores for SLS shows that DMUs
1 and 4 (efficiency 1.0) > DMU 2 (efficiency 0.5) > DMU 5 (effi-
ciency 0.4) > DMUs 3 and 6 (efficiency 0.2).

Besides, the AHP-based criterion weights from a decision
maker with economical and performance-first types show that

the ranked lists can also be computed when preferences among
criteria are involved. Based on the criterion weight of the eco-
nomic decision maker, the ranked list for FDM is alternatives 4,
1, 5, 6, 3, and 2. In contrast, the ranked list for SLS is alterna-
tives 4, 1, 5, 2, 3, and 6. Besides, based on the criterion weight
of performance-first decision maker, the ranked list for FDM is
alternatives 4, 5, 1, 2, 6, and 3. In contrast, the ranked list for SLS
is alternatives 1, 4, 5, 2, 3, and 6.

4.5. Analysis of the proposed MCDM framework

We further analyse the ranked list for the proposed MCDM
framework and a particular method from implementing either
DEA or AHP alone as illustrated in Table 8. In particular, only
implementing the DEA technique lacks a perspective of judg-
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Table 7: Ranking list for combined LN and AHP-based criterion weight.

AHP weight Equal weight 1/6 1/6 1/6 1/6 1/6 1/6

Economical type 0.21 0.45 0.12 0.10 0.04 0.09
Performance-first type 0.20 0.11 0.06 0.15 0.44 0.04

Alt. 1 Alt. 2 Alt. 3 Alt. 4 Alt. 5 Alt. 6

FDM Score (equal) 0.57 0.45 0.19 0.98 0.62 0.29
Ranking (equal) 3 4 6 1 2 5
Score (economical) 0.74 0.24 0.41 1.00 0.62 0.46
Ranking (economical) 2 6 5 1 3 4
Score (performance-first) 0.45 0.37 0.17 0.98 0.69 0.21
Ranking (performance-first) 3 4 6 1 2 5

SLS Score (equal) 0.86 0.49 0.30 0.78 0.69 0.25
Ranking (equal) 1 4 5 2 3 6
Score (economical) 0.73 0.46 0.30 0.88 0.68 0.14
Ranking (economical) 2 4 5 1 3 6
Score (performance-first) 0.91 0.45 0.17 0.80 0.52 0.11
Ranking (performance-first) 1 4 5 2 3 6

Table 8: Comparison of the analysed ranking list for orientation alternatives.

Ranked list
DEA

technique AHP technique LN technique

Economical
type

Performance-first
type

Equal
weight

Economical
type

Performance-first
type

FDM Alt. 1 3 2 3 3 2 3
Alt. 2 4 5 4 4 6 4
Alt. 3 5 4 5 6 5 6
Alt. 4 1 1 1 1 1 1
Alt. 5 2 3 2 2 3 2
Alt. 6 5 6 6 5 4 5

SLS Alt. 1 1 3 1 1 2 1
Alt. 2 3 4 4 4 4 4
Alt. 3 5 5 5 5 5 5
Alt. 4 1 1 2 2 1 2
Alt. 5 4 2 3 3 3 3
Alt. 6 5 6 6 6 6 6

Remark: The bold values indicate the best alternative under each category.

ments from any decision makers and may include a number of
efficient orientation alternatives that are difficult for reaching a
final decision (i.e. Alternative 4 for FDM and Alternatives 1 and
4 for SLS). In contrast, the AHP technique employed in this anal-
ysis incorporates preferences from economical decision maker
and performance-requiring decision maker to analyse the best
ranking list (i.e. Alternative 4 for FDM’s economical type and
performance-first type, Alternative 4 for SLS’s economical type,
and Alternative 1 for SLS’s performance-first type). However, the
caution should be noted as the AHP technique alone requires
subjective judgment at both the level of criterion evaluation and
the level of alternatives with respect to criteria. Thus, uncer-
tainty and inconsistency in making judgments from AHP should
be carefully treated (Khamhong et al., 2019; Munier & Hontoria,
2021). On the other hand, the LN technique employs AHP-based
subjective weights for criteria and explicit data for the level of
alternatives with respect to criteria, which allows the ranking
list to be analysed (i.e. Alternative 4 for FDM’s economical type,
performance-first type, and equal-weight type, Alternative 4 for

SLS’s economical type, Alternative 1 for SLS’s performance-first
type, and Alternative 1 for SLS’s equal-weight type). We note that
although the ranking lists between AHP and LN techniques are
found to be similar, it may not always be the case since subjec-
tive judgments concerning alternative judgments from AHP are
avoided.

The analysed ranking lists obtained from the proposed
framework are further confirmed with the technical experts to
understand the validity of the proposed algorithm. Across the
FDM process, alternative 4 with perpendicular orientation for
the printing platform is found to be the best orientation. Given
the least build cost, build time, and little support volume, while
providing the best mechanical properties and surface quality
combining with moderate part accuracy, the combination of ori-
entation 4 under simultaneous criteria consideration is shown
to be the best one. Concerning the SLS process, both alternatives
4 and 1 are shown to be efficient. Whereas alternative 4 performs
well when the economic preference is driven, alternative 1 com-
paratively performs well when the performance-first preference
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Figure 7: Verification with the open-source, auto-orientation module Tweaker.

is motivated. This is due to that orientation 4 uses the least time
and the least cost in printing. On the other hand, alternative 1
is found to have the best combination of part accuracy and me-
chanical properties.

4.6. Verification and comparison of the proposed
MCDM framework

We further verify the proposed analysis with the open-source
Python application called Tweaker, which is embedded with
Ultimaker Cura (Tweaker-3, 2020), to illustrate the efficacy of
the proposed method as shown in Fig. 7. Various algorithms
have been integrated in the Tweaker module to analyse the ob-
ject’s mesh representation concerning bottom area, overhang,
contour length, and unprintable characteristics (Schranz, 2016).
According to Schranz (2016), Tweaker is the first open-source,
auto-orientation module to search for optimal orientation on
the printing platform to improve the efficiency of AM print-
ing. That is, Fig. 7a shows the initial random placement, while
Fig. 7b presents the result obtained from the Tweaker’s auto-
orientation suggestion. The result obtained from Tweaker shows
that the orientation 4 is the best orientation. Thus, similar result
between the proposed MCDM framework and the Tweaker mod-
ule is found, which illustrates the validity of our proposed algo-

rithm. Regardless, in contrast to our proposed methodology, we
note that the Tweaker module cannot justify the effectiveness
of other orientation alternatives. Additionally, decision makers’
subjective preferences are not incorporated in the Tweaker mod-
ule.

Next, the result obtained from the proposed MCDM frame-
work is compared with other studies that use a similar part
with a hole feature for a case study. We note that other objects
with hole features have also been used as a case study by var-
ious studies for comparative study of orientation alternatives
(e.g. Xu et al., 1999; Giannatsis & Dedoussis, 2007; Zhang et al.,
2019). Table 9 presents the top-three ranking list obtained from
the proposed MCDM framework in this study by comparing with
the results from Cheng et al. (1995), Byun and Lee (2006), and
Zhang et al. (2016b). We illustrate the AHP with economical deci-
sion maker and LN with equal weight for the comparative study.
In addition, possible discrepancy concerning the case study be-
tween this study and other studies should be noted; that is, ori-
entation alternatives 2 and 4 are differentiated in this study,
such that while alternative 2 is oriented with sharp angle be-
tween the printing platform and part, alternative 4 is perpendic-
ularly oriented between the printing platform and part. Besides,
criterion list and AM type analysed in this study and other com-
parative studies may not necessarily be the same. For example,
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Table 9: Comparison of this study with other studies for the similar case study.

Study Criteria evaluation AM Type Method
1st

rank
2nd
rank

3rd
rank

This study Surface roughness, time, cost,
accuracy, support volume, mechanical
property

FDM DEA Alt. 4 Alt. 5 Alt. 1

AHP (economical) Alt. 4 Alt. 1 Alt. 5
LN (equal) Alt. 4 Alt. 5 Alt. 1

SLS DEA Alt. 1 and Alt. 4 Alt. 2
AHP (economical) Alt. 4 Alt. 5 Alt. 1
LN (equal) Alt. 1 Alt. 4 Alt. 5

Cheng et al. (1995) Accuracy, time SLA Multi-objective model Alt. 4 Alt. 1 Alt. 5
Byun and Lee (2006) Surface roughness SLA Simple additive weighting Alt. 4 Alt. 6 Alt. 1

Time Alt. 4 Alt. 5 Alt. 1
Cost Alt. 4 Alt. 5 Alt. 1

Zhang et al. (2016b) Surface roughness, time, cost,
favorableness

SLS AM feature/production
knowledge-based MCDM

Alt. 4 Alt. 5 Alt. 1

while this study assesses both FDM and SLS, Cheng et al. (1995)
and Byun and Lee (2006) use SLA for the test part. In addition,
the SLS printer is investigated by Zhang et al. (2016b).

In particular, the overall optimal part orientation (i.e. the 1st
rank) obtained from this study is found to be the same with
other studies except for the case of LN technique with equal
weight for SLS; that is, orientation alternative 4 is found to be the
best option, in which the perpendicular direction for the print-
ing platform is used. Regardless, when considering the 2nd and
3rd ranks for all the comparative studies, the results show good
agreement even though a little difference exists among them.
Additionally, orientation alternatives 5 and 1 are found to be ac-
ceptable options for most of the results obtained from the eval-
uated studies. Regardless, orientation alternative 6 is also noted
as a 2nd rank for the surface roughness criterion in the Byun and
Lee (2006) study.

5. Managerial Insights

MCDM has been proven a successful method that can evaluate
multiple conflicting criteria in making decisions and planning.
Process planning in AM faces a similar issue, given conflicting
criteria with trade-offs among criteria of interest. It is also nec-
essary to understand the context of each particular AM technol-
ogy, in which the quality of 3D part fabrication highly depends
on the processing printer. In this study, the selection problem for
part orientation planning of both material extrusion (FDM) and
powder bed fusion (SLS) is illustrated. We propose a framework
that combines explicit data as in DEA and implicit preference as
in AHP in the form of LN technique to utilize both preference
and objective data in supporting AM process planning. Several
authors suggest that the limitation of using a particular method
alone can be minimized (e.g. Hadad & Hanani, 2011; Keren et al.,
2014; Rashidi, 2020). Thus, combining AHP and DEA in the frame-
work for a selection problem using LN technique allows a reduc-
tion of subjective opinions for alternatives with respect to each
criterion and provides the concrete ranking list that suits well
requirements from each decision maker. In addition, LN tech-
nique also allows considering what-if analysis in various sce-
narios based on preferences to criteria and allows ranking of ef-
ficient decision-making units.

Initially, careful consideration should be taken in selecting
alternatives of interest and variables for a criterion list. During
this step, an expert opinion from an experienced decision maker
for FDM and SLS technology is required. In this study, the crite-

ria are selected to reflect both consumed resources and desired
outputs for AM process planning. Next, when DMUs are clus-
tered to evaluate efficiency using DEA analysis, it should be cau-
tious that the DEA’s efficiency score is relative to the peers and
not absolute value that should be set as an ultimate target. Also,
the comparison of DMUs in a clustered group should be reason-
ably comparable. Thus, we categorize the orientation DMUs into
two clusters based on each AM technology for a fair evaluation
(i.e. FDM and SLS). The relative efficiency scores found in this
study show that the orientation alternative 4 of FDM is efficient
and alternatives 1 and 4 for SLS are efficient. Thus, more than
one alternative may be found efficient in a clustering group. We
note, however, that DEA methodology does not involve decision
makers during a decision-making process and ultimately con-
vert collected input and output data into justified efficient and
inefficient clusters. Thus, AHP technology may be used to rate
judgments from a decision maker.

We next reflect requirements for two decision maker’s types
by implementing the AHP methodology. The AHP-based ranking
is consistent with DEA showing that alternative 4 is the best one
for FDM regardless of decision-maker types. In contrast, the best
ranking for SLS is affected by decision maker’s preferences be-
tween economical and performance-first types. Still, it is worth
mentioning that by synthesizing the local weight of criterion
level and alternative level using AHP, the collected data are not
explicitly used in the computation. Rather, the decision maker’s
judgments use pairwise comparison based on these data. Next,
the LN is then used by combining with the AHP-based criterion
weight to explicitly use both actual collected data and decision
maker’s judgments on criteria in the synthesis. The ranked lists
for FDM and SLS considering equal weight are found to be con-
sistent with the relative efficiency scores from DEA. This is ex-
pected as DEA also does not take any preference from a decision
maker, which is analogous to having no preferences among the
criterion list. However, the ranked lists from using LN with other
criterion-weight settings are affected by how decision maker’s
preferences are involved.

6. Conclusions and Future Research

AM processes have gained many communities’ interests as
they can provide several benefits in design flexibility, time-to-
market reduction, high speed of the process, product customiza-
tion, material savings, etc. While an emphasis in the AM has
moved toward end-use parts, some issues related to process
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inefficiency and instability resulting from certain factors, in-
cluding the orientation selection of a part, still exist and need to
be addressed. In this research, we propose the integrative frame-
work using MCDM methods to tackle the drawbacks of each ap-
proach for the part orientation decision in AM. Initially, we pro-
pose a framework that combines explicit data as in DEA and im-
plicit preference as in AHP in the form of LN technique to uti-
lize both preference and objective data in supporting decision
making under various AM environments. An experimental de-
sign was conducted following the selection of alternatives and
criteria (build time, build cost, surface quality, part accuracy, me-
chanical properties, and support volume). Then, the alternatives
or DMUs are clustered using DEA analysis for two AM processes
(FDM and SLS). Then, to integrate a judgment or preference from
two types of decision makers (economic and performance-first
types), the criterion weight was analysed using the pairwise
comparison-based AHP approach. Finally, the LN technique was
proposed to scale and normalize actual collected data for all al-
ternatives concerning each criterion so that the relative rating
of alternatives will not be changed merely because of different
units of measurement in the study.

This paper provides a case study to demonstrate how the ori-
entation alternatives can be analysed using a framework of in-
tegrative multicriteria decision analysis for their efficiency clus-
ter and ranked list based on both quantitative and qualitative
measurements. We note, however, that this paper is the first
phase of our integrated AM process planning studies by synthe-
sizing three modules of printer selection, part orientation deci-
sion, and part-to-printer scheduling. Thus, our future works are
to integrate the orientation model with the other two modules
of printer selection and part-to-printer optimization. Addition-
ally, part orientation alternatives produced from other AM tech-
nologies should be further tested and compared. Besides, while
this study provides a single case study to illustrate a proof-of-
concept evaluation of the proposed integrative MCDM frame-
work, the technique employed can be further extended for se-
lecting the orientation of a part component with highly complex
structures, such as parts with a topologically optimized struc-
ture like brackets and cellular solids.

The MCDM framework based on AHP, DEA, and LN proposed
in this study also exhibits some limitations. Interdependence
among criteria, such as the dependence between build time and
support volume, and between part accuracy and surface qual-
ity, may exist in reality. Thus, other MCDM techniques that al-
low a consideration of the interdependence among criteria, such
as the ANP, the decision making trial and evaluation labora-
tory (DEMATEL), and the structural equation modelling (SEM),
may be employed. Regardless, it is noted that considering in-
terdependence among criteria may involve complex procedure,
bias of associated human judgment, and a larger sample size.
Moreover, other criteria, such as scan path and machine param-
eters, can be further investigated for the dependent effect to
the best orientation alternative. Additionally, decision makers’
judgments based on varied application areas will also interest-
ingly affect how part orientation is to be selected. Finally, the
proposed framework in this study can be extended for other se-
lection problems related to AM, such as 3DP material selection
and AM printer selection.
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